| /* |
| * Copyright © 2019 Raspberry Pi Ltd |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include "v3dv_private.h" |
| |
| #include "drm-uapi/drm_fourcc.h" |
| #include "util/format/u_format.h" |
| #include "util/u_math.h" |
| #include "vk_util.h" |
| #include "vulkan/wsi/wsi_common.h" |
| #include "vk_android.h" |
| |
| /** |
| * Computes the HW's UIFblock padding for a given height/cpp. |
| * |
| * The goal of the padding is to keep pages of the same color (bank number) at |
| * least half a page away from each other vertically when crossing between |
| * columns of UIF blocks. |
| */ |
| static uint32_t |
| v3d_get_ub_pad(uint32_t cpp, uint32_t height) |
| { |
| uint32_t utile_h = v3d_utile_height(cpp); |
| uint32_t uif_block_h = utile_h * 2; |
| uint32_t height_ub = height / uif_block_h; |
| |
| uint32_t height_offset_in_pc = height_ub % PAGE_CACHE_UB_ROWS; |
| |
| /* For the perfectly-aligned-for-UIF-XOR case, don't add any pad. */ |
| if (height_offset_in_pc == 0) |
| return 0; |
| |
| /* Try padding up to where we're offset by at least half a page. */ |
| if (height_offset_in_pc < PAGE_UB_ROWS_TIMES_1_5) { |
| /* If we fit entirely in the page cache, don't pad. */ |
| if (height_ub < PAGE_CACHE_UB_ROWS) |
| return 0; |
| else |
| return PAGE_UB_ROWS_TIMES_1_5 - height_offset_in_pc; |
| } |
| |
| /* If we're close to being aligned to page cache size, then round up |
| * and rely on XOR. |
| */ |
| if (height_offset_in_pc > PAGE_CACHE_MINUS_1_5_UB_ROWS) |
| return PAGE_CACHE_UB_ROWS - height_offset_in_pc; |
| |
| /* Otherwise, we're far enough away (top and bottom) to not need any |
| * padding. |
| */ |
| return 0; |
| } |
| |
| /** |
| * Computes the dimension with required padding for mip levels. |
| * |
| * This padding is required for width and height dimensions when the mip |
| * level is greater than 1, and for the depth dimension when the mip level |
| * is greater than 0. This function expects to be passed a mip level >= 1. |
| * |
| * Note: Hardware documentation seems to suggest that the third argument |
| * should be the utile dimensions, but through testing it was found that |
| * the block dimension should be used instead. |
| */ |
| static uint32_t |
| v3d_get_dimension_mpad(uint32_t dimension, uint32_t level, uint32_t block_dimension) |
| { |
| assert(level >= 1); |
| uint32_t pot_dim = u_minify(dimension, 1); |
| pot_dim = util_next_power_of_two(DIV_ROUND_UP(pot_dim, block_dimension)); |
| uint32_t padded_dim = block_dimension * pot_dim; |
| return u_minify(padded_dim, level - 1); |
| } |
| |
| static bool |
| v3d_setup_plane_slices(struct v3dv_image *image, uint8_t plane, |
| uint32_t plane_offset, |
| const VkSubresourceLayout *plane_layouts) |
| { |
| assert(image->planes[plane].cpp > 0); |
| |
| uint32_t width = image->planes[plane].width; |
| uint32_t height = image->planes[plane].height; |
| uint32_t depth = image->vk.extent.depth; |
| |
| uint32_t utile_w = v3d_utile_width(image->planes[plane].cpp); |
| uint32_t utile_h = v3d_utile_height(image->planes[plane].cpp); |
| uint32_t uif_block_w = utile_w * 2; |
| uint32_t uif_block_h = utile_h * 2; |
| |
| uint32_t block_width = vk_format_get_blockwidth(image->vk.format); |
| uint32_t block_height = vk_format_get_blockheight(image->vk.format); |
| |
| /* Note that power-of-two padding is based on level 1. These are not |
| * equivalent to just util_next_power_of_two(dimension), because at a |
| * level 0 dimension of 9, the level 1 power-of-two padded value is 4, |
| * not 8. Additionally the pot padding is based on the block size. |
| */ |
| uint32_t pot_width = 2 * v3d_get_dimension_mpad(width, |
| 1, |
| block_width); |
| uint32_t pot_height = 2 * v3d_get_dimension_mpad(height, |
| 1, |
| block_height); |
| uint32_t pot_depth = 2 * v3d_get_dimension_mpad(depth, |
| 1, |
| 1); |
| |
| assert(image->vk.samples == VK_SAMPLE_COUNT_1_BIT || |
| image->vk.samples == VK_SAMPLE_COUNT_4_BIT); |
| bool msaa = image->vk.samples != VK_SAMPLE_COUNT_1_BIT; |
| |
| bool uif_top = msaa; |
| |
| assert(image->vk.array_layers > 0); |
| assert(depth > 0); |
| assert(image->vk.mip_levels >= 1); |
| |
| /* Texture Base Address needs to be 64-byte aligned. If we have an explicit |
| * plane layout we will return false to fail image creation with appropriate |
| * error code. |
| */ |
| uint32_t offset; |
| if (plane_layouts) { |
| offset = plane_layouts[plane].offset; |
| if (offset % 64 != 0) |
| return false; |
| } else { |
| offset = plane_offset; |
| } |
| assert(plane_offset % 64 == 0); |
| |
| for (int32_t i = image->vk.mip_levels - 1; i >= 0; i--) { |
| struct v3d_resource_slice *slice = &image->planes[plane].slices[i]; |
| |
| slice->width = u_minify(width, i); |
| slice->height = u_minify(height, i); |
| |
| uint32_t level_width, level_height, level_depth; |
| if (i < 2) { |
| level_width = slice->width; |
| level_height = slice->height; |
| } else { |
| level_width = u_minify(pot_width, i); |
| level_height = u_minify(pot_height, i); |
| } |
| |
| if (i < 1) |
| level_depth = u_minify(depth, i); |
| else |
| level_depth = u_minify(pot_depth, i); |
| |
| if (msaa) { |
| level_width *= 2; |
| level_height *= 2; |
| } |
| |
| level_width = DIV_ROUND_UP(level_width, block_width); |
| level_height = DIV_ROUND_UP(level_height, block_height); |
| |
| if (!image->tiled) { |
| slice->tiling = V3D_TILING_RASTER; |
| if (image->vk.image_type == VK_IMAGE_TYPE_1D) |
| level_width = align(level_width, 64 / image->planes[plane].cpp); |
| } else { |
| if ((i != 0 || !uif_top) && |
| (level_width <= utile_w || level_height <= utile_h)) { |
| slice->tiling = V3D_TILING_LINEARTILE; |
| level_width = align(level_width, utile_w); |
| level_height = align(level_height, utile_h); |
| } else if ((i != 0 || !uif_top) && level_width <= uif_block_w) { |
| slice->tiling = V3D_TILING_UBLINEAR_1_COLUMN; |
| level_width = align(level_width, uif_block_w); |
| level_height = align(level_height, uif_block_h); |
| } else if ((i != 0 || !uif_top) && level_width <= 2 * uif_block_w) { |
| slice->tiling = V3D_TILING_UBLINEAR_2_COLUMN; |
| level_width = align(level_width, 2 * uif_block_w); |
| level_height = align(level_height, uif_block_h); |
| } else { |
| /* We align the width to a 4-block column of UIF blocks, but we |
| * only align height to UIF blocks. |
| */ |
| level_width = align(level_width, 4 * uif_block_w); |
| level_height = align(level_height, uif_block_h); |
| |
| slice->ub_pad = v3d_get_ub_pad(image->planes[plane].cpp, |
| level_height); |
| level_height += slice->ub_pad * uif_block_h; |
| |
| /* If the padding set us to to be aligned to the page cache size, |
| * then the HW will use the XOR bit on odd columns to get us |
| * perfectly misaligned. |
| */ |
| if ((level_height / uif_block_h) % |
| (V3D_PAGE_CACHE_SIZE / V3D_UIFBLOCK_ROW_SIZE) == 0) { |
| slice->tiling = V3D_TILING_UIF_XOR; |
| } else { |
| slice->tiling = V3D_TILING_UIF_NO_XOR; |
| } |
| } |
| } |
| |
| slice->offset = offset; |
| slice->stride = level_width * image->planes[plane].cpp; |
| |
| /* We assume that rowPitch in the plane layout refers to level 0 */ |
| if (plane_layouts && i == 0) { |
| if (plane_layouts[plane].rowPitch < slice->stride) |
| return false; |
| if (plane_layouts[plane].rowPitch % image->planes[plane].cpp) |
| return false; |
| if (image->tiled && (plane_layouts[plane].rowPitch % (4 * uif_block_w))) |
| return false; |
| slice->stride = plane_layouts[plane].rowPitch; |
| } |
| |
| slice->padded_height = level_height; |
| if (slice->tiling == V3D_TILING_UIF_NO_XOR || |
| slice->tiling == V3D_TILING_UIF_XOR) { |
| slice->padded_height_of_output_image_in_uif_blocks = |
| slice->padded_height / |
| (2 * v3d_utile_height(image->planes[plane].cpp)); |
| } |
| |
| slice->size = level_height * slice->stride; |
| uint32_t slice_total_size = slice->size * level_depth; |
| |
| /* The HW aligns level 1's base to a page if any of level 1 or |
| * below could be UIF XOR. The lower levels then inherit the |
| * alignment for as long as necessary, thanks to being power of |
| * two aligned. |
| */ |
| if (i == 1 && |
| level_width > 4 * uif_block_w && |
| level_height > PAGE_CACHE_MINUS_1_5_UB_ROWS * uif_block_h) { |
| slice_total_size = align(slice_total_size, V3D_UIFCFG_PAGE_SIZE); |
| } |
| |
| offset += slice_total_size; |
| } |
| |
| image->planes[plane].size = offset - plane_offset; |
| |
| /* UIF/UBLINEAR levels need to be aligned to UIF-blocks, and LT only |
| * needs to be aligned to utile boundaries. Since tiles are laid out |
| * from small to big in memory, we need to align the later UIF slices |
| * to UIF blocks, if they were preceded by non-UIF-block-aligned LT |
| * slices. |
| * |
| * We additionally align to 4k, which improves UIF XOR performance. |
| * |
| * Finally, because the Texture Base Address field must be 64-byte aligned, |
| * we also need to align linear images to 64 if the image is going to be |
| * used for transfer. |
| */ |
| if (image->tiled) { |
| image->planes[plane].alignment = 4096; |
| } else { |
| image->planes[plane].alignment = |
| (image->vk.usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) ? |
| 64 : image->planes[plane].cpp; |
| } |
| |
| uint32_t align_offset = |
| align(image->planes[plane].slices[0].offset, |
| image->planes[plane].alignment) - |
| image->planes[plane].slices[0].offset; |
| if (align_offset) { |
| image->planes[plane].size += align_offset; |
| for (int i = 0; i < image->vk.mip_levels; i++) |
| image->planes[plane].slices[i].offset += align_offset; |
| } |
| |
| /* Arrays and cube textures have a stride which is the distance from |
| * one full mipmap tree to the next (64b aligned). For 3D textures, |
| * we need to program the stride between slices of miplevel 0. |
| */ |
| if (image->vk.image_type != VK_IMAGE_TYPE_3D) { |
| image->planes[plane].cube_map_stride = |
| align(image->planes[plane].slices[0].offset + |
| image->planes[plane].slices[0].size, 64); |
| |
| if (plane_layouts && image->vk.array_layers > 1) { |
| if (plane_layouts[plane].arrayPitch % 64 != 0) |
| return false; |
| if (plane_layouts[plane].arrayPitch < |
| image->planes[plane].cube_map_stride) { |
| return false; |
| } |
| image->planes[plane].cube_map_stride = plane_layouts[plane].arrayPitch; |
| } |
| |
| image->planes[plane].size += image->planes[plane].cube_map_stride * |
| (image->vk.array_layers - 1); |
| } else { |
| image->planes[plane].cube_map_stride = image->planes[plane].slices[0].size; |
| if (plane_layouts) { |
| /* We assume that depthPitch in the plane layout refers to level 0 */ |
| if (plane_layouts[plane].depthPitch != |
| image->planes[plane].slices[0].size) { |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| static VkResult |
| v3d_setup_slices(struct v3dv_image *image, bool disjoint, |
| const VkSubresourceLayout *plane_layouts) |
| { |
| if (disjoint && image->plane_count == 1) |
| disjoint = false; |
| |
| uint64_t offset = 0; |
| for (uint8_t plane = 0; plane < image->plane_count; plane++) { |
| offset = disjoint ? 0 : offset; |
| if (!v3d_setup_plane_slices(image, plane, offset, plane_layouts)) { |
| assert(plane_layouts); |
| return VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT; |
| } |
| offset += align64(image->planes[plane].size, 64); |
| } |
| |
| /* From the Vulkan spec: |
| * |
| * "If the size of the resultant image would exceed maxResourceSize, then |
| * vkCreateImage must fail and return VK_ERROR_OUT_OF_DEVICE_MEMORY. This |
| * failure may occur even when all image creation parameters satisfy their |
| * valid usage requirements." |
| */ |
| if (offset > 0xffffffff) |
| return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| |
| image->non_disjoint_size = disjoint ? 0 : offset; |
| return VK_SUCCESS; |
| } |
| |
| uint32_t |
| v3dv_layer_offset(const struct v3dv_image *image, uint32_t level, uint32_t layer, |
| uint8_t plane) |
| { |
| const struct v3d_resource_slice *slice = &image->planes[plane].slices[level]; |
| |
| if (image->vk.image_type == VK_IMAGE_TYPE_3D) |
| return image->planes[plane].mem_offset + slice->offset + layer * slice->size; |
| else |
| return image->planes[plane].mem_offset + slice->offset + |
| layer * image->planes[plane].cube_map_stride; |
| } |
| |
| VkResult |
| v3dv_update_image_layout(struct v3dv_device *device, |
| struct v3dv_image *image, |
| uint64_t modifier, |
| bool disjoint, |
| const VkImageDrmFormatModifierExplicitCreateInfoEXT *explicit_mod_info) |
| { |
| assert(!explicit_mod_info || |
| image->plane_count == explicit_mod_info->drmFormatModifierPlaneCount); |
| |
| assert(!explicit_mod_info || |
| modifier == explicit_mod_info->drmFormatModifier); |
| |
| image->tiled = modifier != DRM_FORMAT_MOD_LINEAR; |
| |
| image->vk.drm_format_mod = modifier; |
| |
| return v3d_setup_slices(image, disjoint, |
| explicit_mod_info ? explicit_mod_info->pPlaneLayouts : |
| NULL); |
| } |
| |
| VkResult |
| v3dv_image_init(struct v3dv_device *device, |
| const VkImageCreateInfo *pCreateInfo, |
| const VkAllocationCallbacks *pAllocator, |
| struct v3dv_image *image) |
| { |
| /* When using the simulator the WSI common code will see that our |
| * driver wsi device doesn't match the display device and because of that |
| * it will not attempt to present directly from the swapchain images, |
| * instead it will use the prime blit path (use_buffer_blit flag in |
| * struct wsi_swapchain), where it copies the contents of the swapchain |
| * images to a linear buffer with appropriate row stride for presentation. |
| * As a result, on that path, swapchain images do not have any special |
| * requirements and are not created with the pNext structs below. |
| */ |
| VkImageTiling tiling = pCreateInfo->tiling; |
| uint64_t modifier = DRM_FORMAT_MOD_INVALID; |
| const VkImageDrmFormatModifierListCreateInfoEXT *mod_info = NULL; |
| const VkImageDrmFormatModifierExplicitCreateInfoEXT *explicit_mod_info = NULL; |
| |
| /* This section is removed by the optimizer for non-ANDROID builds */ |
| VkImageDrmFormatModifierExplicitCreateInfoEXT eci; |
| VkSubresourceLayout a_plane_layouts[V3DV_MAX_PLANE_COUNT]; |
| if (vk_image_is_android_native_buffer(&image->vk)) { |
| VkResult result = vk_android_get_anb_layout( |
| pCreateInfo, &eci, a_plane_layouts, V3DV_MAX_PLANE_COUNT); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| explicit_mod_info = &eci; |
| modifier = eci.drmFormatModifier; |
| } |
| |
| if (tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) { |
| mod_info = |
| vk_find_struct_const(pCreateInfo->pNext, |
| IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT); |
| explicit_mod_info = |
| vk_find_struct_const(pCreateInfo->pNext, |
| IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT); |
| assert(mod_info || explicit_mod_info); |
| |
| if (mod_info) { |
| for (uint32_t i = 0; i < mod_info->drmFormatModifierCount; i++) { |
| switch (mod_info->pDrmFormatModifiers[i]) { |
| case DRM_FORMAT_MOD_LINEAR: |
| if (modifier == DRM_FORMAT_MOD_INVALID) |
| modifier = DRM_FORMAT_MOD_LINEAR; |
| break; |
| case DRM_FORMAT_MOD_BROADCOM_UIF: |
| modifier = DRM_FORMAT_MOD_BROADCOM_UIF; |
| break; |
| } |
| } |
| } else { |
| modifier = explicit_mod_info->drmFormatModifier; |
| } |
| assert(modifier == DRM_FORMAT_MOD_LINEAR || |
| modifier == DRM_FORMAT_MOD_BROADCOM_UIF); |
| } else if (pCreateInfo->imageType == VK_IMAGE_TYPE_1D || |
| image->vk.wsi_legacy_scanout) { |
| tiling = VK_IMAGE_TILING_LINEAR; |
| } |
| |
| if (modifier == DRM_FORMAT_MOD_INVALID) |
| modifier = (tiling == VK_IMAGE_TILING_OPTIMAL) ? DRM_FORMAT_MOD_BROADCOM_UIF |
| : DRM_FORMAT_MOD_LINEAR; |
| |
| const struct v3dv_format *format = |
| v3d_X((&device->devinfo), get_format)(image->vk.format); |
| v3dv_assert(format != NULL && format->plane_count); |
| |
| assert(pCreateInfo->samples == VK_SAMPLE_COUNT_1_BIT || |
| pCreateInfo->samples == VK_SAMPLE_COUNT_4_BIT); |
| |
| image->format = format; |
| |
| image->plane_count = vk_format_get_plane_count(image->vk.format); |
| |
| const struct vk_format_ycbcr_info *ycbcr_info = |
| vk_format_get_ycbcr_info(image->vk.format); |
| |
| for (uint8_t plane = 0; plane < image->plane_count; plane++) { |
| VkFormat plane_format = |
| vk_format_get_plane_format(image->vk.format, plane); |
| image->planes[plane].cpp = |
| vk_format_get_blocksize(plane_format); |
| image->planes[plane].vk_format = plane_format; |
| |
| image->planes[plane].width = image->vk.extent.width; |
| image->planes[plane].height = image->vk.extent.height; |
| |
| if (ycbcr_info) { |
| image->planes[plane].width /= |
| ycbcr_info->planes[plane].denominator_scales[0]; |
| |
| image->planes[plane].height /= |
| ycbcr_info->planes[plane].denominator_scales[1]; |
| } |
| } |
| |
| /* Our meta paths can create image views with compatible formats for any |
| * image, so always set this flag to keep the common Vulkan image code |
| * happy. |
| */ |
| image->vk.create_flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT; |
| |
| /* At this time, an AHB handle is not yet provided. |
| * Image layout will be filled up during vkBindImageMemory2 |
| * This section is removed by the optimizer for non-ANDROID builds |
| */ |
| if (vk_image_is_android_hardware_buffer(&image->vk)) |
| return VK_SUCCESS; |
| |
| bool disjoint = image->vk.create_flags & VK_IMAGE_CREATE_DISJOINT_BIT; |
| |
| return v3dv_update_image_layout(device, image, modifier, disjoint, |
| explicit_mod_info); |
| } |
| |
| static VkResult |
| create_image(struct v3dv_device *device, |
| const VkImageCreateInfo *pCreateInfo, |
| const VkAllocationCallbacks *pAllocator, |
| VkImage *pImage) |
| { |
| #if !DETECT_OS_ANDROID |
| const VkImageSwapchainCreateInfoKHR *swapchain_info = |
| vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR); |
| if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE) { |
| return wsi_common_create_swapchain_image(&device->pdevice->wsi_device, |
| pCreateInfo, |
| swapchain_info->swapchain, |
| pImage); |
| } |
| #endif |
| |
| VkResult result; |
| struct v3dv_image *image = NULL; |
| |
| image = vk_image_create(&device->vk, pCreateInfo, pAllocator, sizeof(*image)); |
| if (image == NULL) |
| return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| result = v3dv_image_init(device, pCreateInfo, pAllocator, image); |
| if (result != VK_SUCCESS) |
| goto fail; |
| |
| /* This section is removed by the optimizer for non-ANDROID builds */ |
| if (vk_image_is_android_native_buffer(&image->vk)) { |
| result = vk_android_import_anb(&device->vk, pCreateInfo, pAllocator, |
| &image->vk); |
| if (result != VK_SUCCESS) |
| goto fail; |
| } |
| |
| *pImage = v3dv_image_to_handle(image); |
| |
| return VK_SUCCESS; |
| |
| fail: |
| vk_image_destroy(&device->vk, pAllocator, &image->vk); |
| return result; |
| } |
| |
| VKAPI_ATTR VkResult VKAPI_CALL |
| v3dv_CreateImage(VkDevice _device, |
| const VkImageCreateInfo *pCreateInfo, |
| const VkAllocationCallbacks *pAllocator, |
| VkImage *pImage) |
| { |
| V3DV_FROM_HANDLE(v3dv_device, device, _device); |
| return create_image(device, pCreateInfo, pAllocator, pImage); |
| } |
| |
| static void |
| get_image_subresource_layout(struct v3dv_device *device, |
| struct v3dv_image *image, |
| const VkImageSubresource2KHR *subresource2, |
| VkSubresourceLayout2KHR *layout2) |
| { |
| const VkImageSubresource *subresource = &subresource2->imageSubresource; |
| VkSubresourceLayout *layout = &layout2->subresourceLayout; |
| |
| uint8_t plane = v3dv_plane_from_aspect(subresource->aspectMask); |
| const struct v3d_resource_slice *slice = |
| &image->planes[plane].slices[subresource->mipLevel]; |
| |
| /* About why the offset below works for both disjoint and non-disjoint |
| * cases, from the Vulkan spec: |
| * |
| * "If the image is disjoint, then the offset is relative to the base |
| * address of the plane." |
| * |
| * "If the image is non-disjoint, then the offset is relative to the base |
| * address of the image." |
| * |
| * In our case, the per-plane mem_offset for non-disjoint images is the |
| * same for all planes and matches the base address of the image. |
| */ |
| layout->offset = |
| v3dv_layer_offset(image, subresource->mipLevel, subresource->arrayLayer, |
| plane) - image->planes[plane].mem_offset; |
| layout->rowPitch = slice->stride; |
| layout->depthPitch = image->vk.image_type == VK_IMAGE_TYPE_3D ? |
| image->planes[plane].cube_map_stride : 0; |
| layout->arrayPitch = image->vk.array_layers > 1 ? |
| image->planes[plane].cube_map_stride : 0; |
| |
| if (image->vk.image_type != VK_IMAGE_TYPE_3D) { |
| layout->size = slice->size; |
| } else { |
| /* For 3D images, the size of the slice represents the size of a 2D slice |
| * in the 3D image, so we have to multiply by the depth extent of the |
| * miplevel. For levels other than the first, we just compute the size |
| * as the distance between consecutive levels (notice that mip levels are |
| * arranged in memory from last to first). |
| */ |
| if (subresource->mipLevel == 0) { |
| layout->size = slice->size * image->vk.extent.depth; |
| } else { |
| const struct v3d_resource_slice *prev_slice = |
| &image->planes[plane].slices[subresource->mipLevel - 1]; |
| layout->size = prev_slice->offset - slice->offset; |
| } |
| } |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| v3dv_GetImageSubresourceLayout2KHR(VkDevice _device, |
| VkImage _image, |
| const VkImageSubresource2KHR *subresource2, |
| VkSubresourceLayout2KHR *layout2) |
| { |
| V3DV_FROM_HANDLE(v3dv_device, device, _device); |
| V3DV_FROM_HANDLE(v3dv_image, image, _image); |
| get_image_subresource_layout(device, image, subresource2, layout2); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| v3dv_GetDeviceImageSubresourceLayoutKHR(VkDevice vk_device, |
| const VkDeviceImageSubresourceInfoKHR *pInfo, |
| VkSubresourceLayout2KHR *pLayout) |
| { |
| V3DV_FROM_HANDLE(v3dv_device, device, vk_device); |
| |
| memset(&pLayout->subresourceLayout, 0, sizeof(pLayout->subresourceLayout)); |
| |
| VkImage vk_image = VK_NULL_HANDLE; |
| VkResult result = create_image(device, pInfo->pCreateInfo, NULL, &vk_image); |
| if (result != VK_SUCCESS) |
| return; |
| |
| struct v3dv_image *image = v3dv_image_from_handle(vk_image); |
| get_image_subresource_layout(device, image, pInfo->pSubresource, pLayout); |
| |
| v3dv_DestroyImage(vk_device, vk_image, NULL); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| v3dv_DestroyImage(VkDevice _device, |
| VkImage _image, |
| const VkAllocationCallbacks* pAllocator) |
| { |
| V3DV_FROM_HANDLE(v3dv_device, device, _device); |
| V3DV_FROM_HANDLE(v3dv_image, image, _image); |
| |
| if (image == NULL) |
| return; |
| |
| /* If we have created a shadow tiled image for this image we must also free |
| * it (along with its memory allocation). |
| */ |
| if (image->shadow) { |
| bool disjoint = image->vk.create_flags & VK_IMAGE_CREATE_DISJOINT_BIT; |
| for (int i = 0; i < (disjoint ? image->plane_count : 1); i++) { |
| if (image->shadow->planes[i].mem) { |
| v3dv_FreeMemory(_device, |
| v3dv_device_memory_to_handle(image->shadow->planes[i].mem), |
| pAllocator); |
| } |
| } |
| v3dv_DestroyImage(_device, v3dv_image_to_handle(image->shadow), |
| pAllocator); |
| image->shadow = NULL; |
| } |
| |
| vk_image_destroy(&device->vk, pAllocator, &image->vk); |
| } |
| |
| VkImageViewType |
| v3dv_image_type_to_view_type(VkImageType type) |
| { |
| switch (type) { |
| case VK_IMAGE_TYPE_1D: return VK_IMAGE_VIEW_TYPE_1D; |
| case VK_IMAGE_TYPE_2D: return VK_IMAGE_VIEW_TYPE_2D; |
| case VK_IMAGE_TYPE_3D: return VK_IMAGE_VIEW_TYPE_3D; |
| default: |
| unreachable("Invalid image type"); |
| } |
| } |
| |
| static VkResult |
| create_image_view(struct v3dv_device *device, |
| bool driver_internal, |
| const VkImageViewCreateInfo *pCreateInfo, |
| const VkAllocationCallbacks *pAllocator, |
| VkImageView *pView) |
| { |
| V3DV_FROM_HANDLE(v3dv_image, image, pCreateInfo->image); |
| struct v3dv_image_view *iview; |
| |
| iview = vk_image_view_create(&device->vk, driver_internal, pCreateInfo, |
| pAllocator, sizeof(*iview)); |
| if (iview == NULL) |
| return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| const VkImageAspectFlagBits any_plane_aspect = |
| VK_IMAGE_ASPECT_PLANE_0_BIT | |
| VK_IMAGE_ASPECT_PLANE_1_BIT | |
| VK_IMAGE_ASPECT_PLANE_2_BIT; |
| |
| if (image->vk.aspects & any_plane_aspect) { |
| assert((image->vk.aspects & ~any_plane_aspect) == 0); |
| iview->plane_count = 0; |
| static const VkImageAspectFlagBits plane_aspects[]= { |
| VK_IMAGE_ASPECT_PLANE_0_BIT, |
| VK_IMAGE_ASPECT_PLANE_1_BIT, |
| VK_IMAGE_ASPECT_PLANE_2_BIT |
| }; |
| for (uint8_t plane = 0; plane < V3DV_MAX_PLANE_COUNT; plane++) { |
| if (iview->vk.aspects & plane_aspects[plane]) |
| iview->planes[iview->plane_count++].image_plane = plane; |
| } |
| } else { |
| iview->plane_count = 1; |
| iview->planes[0].image_plane = 0; |
| } |
| /* At this point we should have at least one plane */ |
| assert(iview->plane_count > 0); |
| |
| const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange; |
| |
| /* If we have D24S8 format but the view only selects the stencil aspect |
| * we want to re-interpret the format as RGBA8_UINT, then map our stencil |
| * data reads to the R component and ignore the GBA channels that contain |
| * the depth aspect data. |
| * |
| * FIXME: thwe code belows calls vk_component_mapping_to_pipe_swizzle |
| * only so it can then call util_format_compose_swizzles later. Maybe it |
| * makes sense to implement swizzle composition using VkSwizzle directly. |
| */ |
| VkFormat format; |
| if (image->vk.format == VK_FORMAT_D24_UNORM_S8_UINT && |
| range->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) { |
| format = VK_FORMAT_R8G8B8A8_UINT; |
| uint8_t stencil_aspect_swizzle[4] = { |
| PIPE_SWIZZLE_X, PIPE_SWIZZLE_0, PIPE_SWIZZLE_0, PIPE_SWIZZLE_1, |
| }; |
| uint8_t view_swizzle[4]; |
| vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle, view_swizzle); |
| |
| util_format_compose_swizzles(stencil_aspect_swizzle, view_swizzle, |
| iview->view_swizzle); |
| } else { |
| format = iview->vk.format; |
| vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle, |
| iview->view_swizzle); |
| } |
| |
| iview->vk.view_format = format; |
| iview->format = v3d_X((&device->devinfo), get_format)(format); |
| assert(iview->format && iview->format->plane_count); |
| |
| for (uint8_t plane = 0; plane < iview->plane_count; plane++) { |
| iview->planes[plane].offset = v3dv_layer_offset(image, |
| iview->vk.base_mip_level, |
| iview->vk.base_array_layer, |
| plane); |
| |
| if (vk_format_is_depth_or_stencil(iview->vk.view_format)) { |
| iview->planes[plane].internal_type = |
| v3d_X((&device->devinfo), get_internal_depth_type)(iview->vk.view_format); |
| } else { |
| v3d_X((&device->devinfo), get_internal_type_bpp_for_output_format) |
| (iview->format->planes[plane].rt_type, |
| &iview->planes[plane].internal_type, |
| &iview->planes[plane].internal_bpp); |
| } |
| |
| const uint8_t *format_swizzle = |
| v3dv_get_format_swizzle(device, format, plane); |
| util_format_compose_swizzles(format_swizzle, iview->view_swizzle, |
| iview->planes[plane].swizzle); |
| |
| iview->planes[plane].swap_rb = v3dv_format_swizzle_needs_rb_swap(format_swizzle); |
| iview->planes[plane].channel_reverse = v3dv_format_swizzle_needs_reverse(format_swizzle); |
| } |
| |
| v3d_X((&device->devinfo), pack_texture_shader_state)(device, iview); |
| |
| *pView = v3dv_image_view_to_handle(iview); |
| |
| return VK_SUCCESS; |
| } |
| |
| VkResult |
| v3dv_create_image_view(struct v3dv_device *device, |
| const VkImageViewCreateInfo *pCreateInfo, |
| VkImageView *pView) |
| { |
| return create_image_view(device, true, pCreateInfo, NULL, pView); |
| } |
| |
| VKAPI_ATTR VkResult VKAPI_CALL |
| v3dv_CreateImageView(VkDevice _device, |
| const VkImageViewCreateInfo *pCreateInfo, |
| const VkAllocationCallbacks *pAllocator, |
| VkImageView *pView) |
| { |
| V3DV_FROM_HANDLE(v3dv_device, device, _device); |
| |
| return create_image_view(device, false, pCreateInfo, pAllocator, pView); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| v3dv_DestroyImageView(VkDevice _device, |
| VkImageView imageView, |
| const VkAllocationCallbacks* pAllocator) |
| { |
| V3DV_FROM_HANDLE(v3dv_device, device, _device); |
| V3DV_FROM_HANDLE(v3dv_image_view, image_view, imageView); |
| |
| if (image_view == NULL) |
| return; |
| |
| if (image_view->shadow) { |
| v3dv_DestroyImageView(_device, |
| v3dv_image_view_to_handle(image_view->shadow), |
| pAllocator); |
| image_view->shadow = NULL; |
| } |
| |
| vk_image_view_destroy(&device->vk, pAllocator, &image_view->vk); |
| } |
| |
| VKAPI_ATTR VkResult VKAPI_CALL |
| v3dv_CreateBufferView(VkDevice _device, |
| const VkBufferViewCreateInfo *pCreateInfo, |
| const VkAllocationCallbacks *pAllocator, |
| VkBufferView *pView) |
| { |
| V3DV_FROM_HANDLE(v3dv_device, device, _device); |
| |
| struct v3dv_buffer *buffer = |
| v3dv_buffer_from_handle(pCreateInfo->buffer); |
| |
| struct v3dv_buffer_view *view = |
| vk_object_zalloc(&device->vk, pAllocator, sizeof(*view), |
| VK_OBJECT_TYPE_BUFFER_VIEW); |
| if (!view) |
| return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| uint32_t range; |
| if (pCreateInfo->range == VK_WHOLE_SIZE) |
| range = buffer->size - pCreateInfo->offset; |
| else |
| range = pCreateInfo->range; |
| |
| enum pipe_format pipe_format = vk_format_to_pipe_format(pCreateInfo->format); |
| uint32_t num_elements = range / util_format_get_blocksize(pipe_format); |
| |
| view->buffer = buffer; |
| view->offset = pCreateInfo->offset; |
| view->size = view->offset + range; |
| view->num_elements = num_elements; |
| view->vk_format = pCreateInfo->format; |
| view->format = v3d_X((&device->devinfo), get_format)(view->vk_format); |
| |
| /* We don't support multi-plane formats for buffer views */ |
| assert(view->format->plane_count == 1); |
| v3d_X((&device->devinfo), get_internal_type_bpp_for_output_format) |
| (view->format->planes[0].rt_type, &view->internal_type, &view->internal_bpp); |
| |
| const VkBufferUsageFlags2CreateInfoKHR *flags2 = |
| vk_find_struct_const(pCreateInfo->pNext, |
| BUFFER_USAGE_FLAGS_2_CREATE_INFO_KHR); |
| |
| VkBufferUsageFlags2KHR usage; |
| if (flags2) |
| usage = flags2->usage; |
| else |
| usage = buffer->usage; |
| |
| if (usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT || |
| usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) |
| v3d_X((&device->devinfo), pack_texture_shader_state_from_buffer_view)(device, view); |
| |
| *pView = v3dv_buffer_view_to_handle(view); |
| |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| v3dv_DestroyBufferView(VkDevice _device, |
| VkBufferView bufferView, |
| const VkAllocationCallbacks *pAllocator) |
| { |
| V3DV_FROM_HANDLE(v3dv_device, device, _device); |
| V3DV_FROM_HANDLE(v3dv_buffer_view, buffer_view, bufferView); |
| |
| if (buffer_view == NULL) |
| return; |
| |
| vk_object_free(&device->vk, pAllocator, buffer_view); |
| } |