blob: 6eba43a5ca6c5184145fbae50aec01ca9f1cb5f6 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* SPDX-License-Identifier: MIT
*/
#include "radv_queue.h"
#include "radv_buffer.h"
#include "radv_cp_reg_shadowing.h"
#include "radv_cs.h"
#include "radv_debug.h"
#include "radv_device_memory.h"
#include "radv_image.h"
#include "radv_printf.h"
#include "radv_rmv.h"
#include "vk_semaphore.h"
#include "vk_sync.h"
#include "ac_cmdbuf.h"
#include "ac_debug.h"
#include "ac_descriptors.h"
enum radeon_ctx_priority
radv_get_queue_global_priority(const VkDeviceQueueGlobalPriorityCreateInfo *pObj)
{
/* Default to MEDIUM when a specific global priority isn't requested */
if (!pObj)
return RADEON_CTX_PRIORITY_MEDIUM;
switch (pObj->globalPriority) {
case VK_QUEUE_GLOBAL_PRIORITY_REALTIME:
return RADEON_CTX_PRIORITY_REALTIME;
case VK_QUEUE_GLOBAL_PRIORITY_HIGH:
return RADEON_CTX_PRIORITY_HIGH;
case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM:
return RADEON_CTX_PRIORITY_MEDIUM;
case VK_QUEUE_GLOBAL_PRIORITY_LOW:
return RADEON_CTX_PRIORITY_LOW;
default:
unreachable("Illegal global priority value");
return RADEON_CTX_PRIORITY_INVALID;
}
}
static VkResult
radv_sparse_buffer_bind_memory(struct radv_device *device, const VkSparseBufferMemoryBindInfo *bind)
{
VK_FROM_HANDLE(radv_buffer, buffer, bind->buffer);
VkResult result = VK_SUCCESS;
struct radv_device_memory *mem = NULL;
VkDeviceSize resourceOffset = 0;
VkDeviceSize size = 0;
VkDeviceSize memoryOffset = 0;
for (uint32_t i = 0; i < bind->bindCount; ++i) {
struct radv_device_memory *cur_mem = NULL;
if (bind->pBinds[i].memory != VK_NULL_HANDLE)
cur_mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
if (i && mem == cur_mem) {
if (mem) {
if (bind->pBinds[i].resourceOffset == resourceOffset + size &&
bind->pBinds[i].memoryOffset == memoryOffset + size) {
size += bind->pBinds[i].size;
continue;
}
} else {
if (bind->pBinds[i].resourceOffset == resourceOffset + size) {
size += bind->pBinds[i].size;
continue;
}
}
}
if (size) {
result = radv_bo_virtual_bind(device, &buffer->vk.base, buffer->bo, resourceOffset, size, mem ? mem->bo : NULL,
memoryOffset);
if (result != VK_SUCCESS)
return result;
}
mem = cur_mem;
resourceOffset = bind->pBinds[i].resourceOffset;
size = bind->pBinds[i].size;
memoryOffset = bind->pBinds[i].memoryOffset;
}
if (size) {
result = radv_bo_virtual_bind(device, &buffer->vk.base, buffer->bo, resourceOffset, size, mem ? mem->bo : NULL,
memoryOffset);
}
return result;
}
static VkResult
radv_sparse_image_opaque_bind_memory(struct radv_device *device, const VkSparseImageOpaqueMemoryBindInfo *bind)
{
VK_FROM_HANDLE(radv_image, image, bind->image);
VkResult result;
for (uint32_t i = 0; i < bind->bindCount; ++i) {
struct radv_device_memory *mem = NULL;
if (bind->pBinds[i].memory != VK_NULL_HANDLE)
mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
result = radv_bo_virtual_bind(device, &image->vk.base, image->bindings[0].bo, bind->pBinds[i].resourceOffset,
bind->pBinds[i].size, mem ? mem->bo : NULL, bind->pBinds[i].memoryOffset);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
static VkResult
radv_sparse_image_bind_memory(struct radv_device *device, const VkSparseImageMemoryBindInfo *bind)
{
VK_FROM_HANDLE(radv_image, image, bind->image);
const struct radv_physical_device *pdev = radv_device_physical(device);
struct radeon_surf *surface = &image->planes[0].surface;
uint32_t bs = vk_format_get_blocksize(image->vk.format);
VkResult result;
for (uint32_t i = 0; i < bind->bindCount; ++i) {
struct radv_device_memory *mem = NULL;
uint64_t offset, depth_pitch;
uint32_t pitch;
uint64_t mem_offset = bind->pBinds[i].memoryOffset;
const uint32_t layer = bind->pBinds[i].subresource.arrayLayer;
const uint32_t level = bind->pBinds[i].subresource.mipLevel;
VkExtent3D bind_extent = bind->pBinds[i].extent;
bind_extent.width = DIV_ROUND_UP(bind_extent.width, vk_format_get_blockwidth(image->vk.format));
bind_extent.height = DIV_ROUND_UP(bind_extent.height, vk_format_get_blockheight(image->vk.format));
VkOffset3D bind_offset = bind->pBinds[i].offset;
bind_offset.x /= vk_format_get_blockwidth(image->vk.format);
bind_offset.y /= vk_format_get_blockheight(image->vk.format);
if (bind->pBinds[i].memory != VK_NULL_HANDLE)
mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
if (pdev->info.gfx_level >= GFX9) {
offset = surface->u.gfx9.surf_slice_size * layer + surface->u.gfx9.prt_level_offset[level];
pitch = surface->u.gfx9.prt_level_pitch[level];
depth_pitch = surface->u.gfx9.surf_slice_size;
} else {
depth_pitch = surface->u.legacy.level[level].slice_size_dw * 4;
offset = (uint64_t)surface->u.legacy.level[level].offset_256B * 256 + depth_pitch * layer;
pitch = surface->u.legacy.level[level].nblk_x;
}
offset +=
bind_offset.z * depth_pitch + ((uint64_t)bind_offset.y * pitch * surface->prt_tile_depth +
(uint64_t)bind_offset.x * surface->prt_tile_height * surface->prt_tile_depth) *
bs;
uint32_t aligned_extent_width = ALIGN(bind_extent.width, surface->prt_tile_width);
uint32_t aligned_extent_height = ALIGN(bind_extent.height, surface->prt_tile_height);
uint32_t aligned_extent_depth = ALIGN(bind_extent.depth, surface->prt_tile_depth);
bool whole_subres = (bind_extent.height <= surface->prt_tile_height || aligned_extent_width == pitch) &&
(bind_extent.depth <= surface->prt_tile_depth ||
(uint64_t)aligned_extent_width * aligned_extent_height * bs == depth_pitch);
if (whole_subres) {
uint64_t size = (uint64_t)aligned_extent_width * aligned_extent_height * aligned_extent_depth * bs;
result = radv_bo_virtual_bind(device, &image->vk.base, image->bindings[0].bo, offset, size,
mem ? mem->bo : NULL, mem_offset);
if (result != VK_SUCCESS)
return result;
} else {
uint32_t img_y_increment = pitch * bs * surface->prt_tile_depth;
uint32_t mem_y_increment = aligned_extent_width * bs * surface->prt_tile_depth;
uint64_t mem_z_increment = (uint64_t)aligned_extent_width * aligned_extent_height * bs;
uint64_t size = mem_y_increment * surface->prt_tile_height;
for (unsigned z = 0; z < bind_extent.depth;
z += surface->prt_tile_depth, offset += depth_pitch * surface->prt_tile_depth) {
for (unsigned y = 0; y < bind_extent.height; y += surface->prt_tile_height) {
uint64_t bo_offset = offset + (uint64_t)img_y_increment * y;
result = radv_bo_virtual_bind(device, &image->vk.base, image->bindings[0].bo, bo_offset, size,
mem ? mem->bo : NULL,
mem_offset + (uint64_t)mem_y_increment * y + mem_z_increment * z);
if (result != VK_SUCCESS)
return result;
}
}
}
}
return VK_SUCCESS;
}
static VkResult
radv_queue_submit_bind_sparse_memory(struct radv_device *device, struct vk_queue_submit *submission)
{
for (uint32_t i = 0; i < submission->buffer_bind_count; ++i) {
VkResult result = radv_sparse_buffer_bind_memory(device, submission->buffer_binds + i);
if (result != VK_SUCCESS)
return result;
}
for (uint32_t i = 0; i < submission->image_opaque_bind_count; ++i) {
VkResult result = radv_sparse_image_opaque_bind_memory(device, submission->image_opaque_binds + i);
if (result != VK_SUCCESS)
return result;
}
for (uint32_t i = 0; i < submission->image_bind_count; ++i) {
VkResult result = radv_sparse_image_bind_memory(device, submission->image_binds + i);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
static VkResult
radv_queue_submit_empty(struct radv_queue *queue, struct vk_queue_submit *submission)
{
struct radv_device *device = radv_queue_device(queue);
struct radeon_winsys_ctx *ctx = queue->hw_ctx;
struct radv_winsys_submit_info submit = {
.ip_type = radv_queue_ring(queue),
.queue_index = queue->vk.index_in_family,
};
return device->ws->cs_submit(ctx, &submit, submission->wait_count, submission->waits, submission->signal_count,
submission->signals);
}
static void
radv_set_ring_buffer(const struct radv_physical_device *pdev, struct radeon_winsys_bo *bo, uint32_t offset,
uint32_t ring_size, bool add_tid, bool swizzle_enable, bool oob_select_raw, uint32_t element_size,
uint32_t index_stride, uint32_t desc[4])
{
const uint8_t oob_select = oob_select_raw ? V_008F0C_OOB_SELECT_RAW : V_008F0C_OOB_SELECT_DISABLED;
const uint64_t va = radv_buffer_get_va(bo) + offset;
const struct ac_buffer_state ac_state = {
.va = va,
.size = ring_size,
.format = PIPE_FORMAT_R32_FLOAT,
.swizzle =
{
PIPE_SWIZZLE_X,
PIPE_SWIZZLE_Y,
PIPE_SWIZZLE_Z,
PIPE_SWIZZLE_W,
},
.swizzle_enable = swizzle_enable,
.element_size = element_size,
.index_stride = index_stride,
.add_tid = add_tid,
.gfx10_oob_select = oob_select,
};
ac_build_buffer_descriptor(pdev->info.gfx_level, &ac_state, desc);
}
static void
radv_fill_shader_rings(struct radv_device *device, uint32_t *desc, struct radeon_winsys_bo *scratch_bo,
uint32_t esgs_ring_size, struct radeon_winsys_bo *esgs_ring_bo, uint32_t gsvs_ring_size,
struct radeon_winsys_bo *gsvs_ring_bo, struct radeon_winsys_bo *tess_rings_bo,
struct radeon_winsys_bo *task_rings_bo, struct radeon_winsys_bo *mesh_scratch_ring_bo,
struct radeon_winsys_bo *ge_rings_bo)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
if (scratch_bo) {
uint64_t scratch_va = radv_buffer_get_va(scratch_bo);
uint32_t rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
if (pdev->info.gfx_level >= GFX11)
rsrc1 |= S_008F04_SWIZZLE_ENABLE_GFX11(1);
else
rsrc1 |= S_008F04_SWIZZLE_ENABLE_GFX6(1);
desc[0] = scratch_va;
desc[1] = rsrc1;
}
desc += 4;
if (esgs_ring_bo) {
/* stride 0, num records - size, add tid, swizzle, elsize4,
index stride 64 */
radv_set_ring_buffer(pdev, esgs_ring_bo, 0, esgs_ring_size, true, true, false, 1, 3, &desc[0]);
/* GS entry for ES->GS ring */
/* stride 0, num records - size, elsize0,
index stride 0 */
radv_set_ring_buffer(pdev, esgs_ring_bo, 0, esgs_ring_size, false, false, false, 0, 0, &desc[4]);
}
desc += 8;
if (gsvs_ring_bo) {
/* VS entry for GS->VS ring */
/* stride 0, num records - size, elsize0,
index stride 0 */
radv_set_ring_buffer(pdev, gsvs_ring_bo, 0, gsvs_ring_size, false, false, false, 0, 0, &desc[0]);
/* stride gsvs_itemsize, num records 64
elsize 4, index stride 16 */
/* shader will patch stride and desc[2] */
radv_set_ring_buffer(pdev, gsvs_ring_bo, 0, 0, true, true, false, 1, 1, &desc[4]);
}
desc += 8;
if (tess_rings_bo) {
radv_set_ring_buffer(pdev, tess_rings_bo, pdev->info.tess_offchip_ring_size, pdev->info.tess_factor_ring_size,
false, false, true, 0, 0, &desc[0]);
radv_set_ring_buffer(pdev, tess_rings_bo, 0, pdev->info.tess_offchip_ring_size, false, false, true, 0, 0,
&desc[4]);
}
desc += 8;
if (task_rings_bo) {
radv_set_ring_buffer(pdev, task_rings_bo, pdev->task_info.draw_ring_offset,
pdev->task_info.num_entries * AC_TASK_DRAW_ENTRY_BYTES, false, false, false, 0, 0, &desc[0]);
radv_set_ring_buffer(pdev, task_rings_bo, pdev->task_info.payload_ring_offset,
pdev->task_info.num_entries * pdev->task_info.payload_entry_size, false, false, false, 0, 0,
&desc[4]);
}
desc += 8;
if (mesh_scratch_ring_bo) {
radv_set_ring_buffer(pdev, mesh_scratch_ring_bo, 0, AC_MESH_SCRATCH_NUM_ENTRIES * AC_MESH_SCRATCH_ENTRY_BYTES,
false, false, false, 0, 0, &desc[0]);
}
desc += 4;
if (ge_rings_bo) {
assert(pdev->info.gfx_level >= GFX11);
ac_build_attr_ring_descriptor(pdev->info.gfx_level, radv_buffer_get_va(ge_rings_bo),
pdev->info.total_attribute_pos_prim_ring_size, 0, &desc[0]);
}
desc += 4;
/* add sample positions after all rings */
memcpy(desc, device->sample_locations_1x, 8);
desc += 2;
memcpy(desc, device->sample_locations_2x, 16);
desc += 4;
memcpy(desc, device->sample_locations_4x, 32);
desc += 8;
memcpy(desc, device->sample_locations_8x, 64);
}
static void
radv_emit_gs_ring_sizes(struct radv_device *device, struct radeon_cmdbuf *cs, struct radeon_winsys_bo *esgs_ring_bo,
uint32_t esgs_ring_size, struct radeon_winsys_bo *gsvs_ring_bo, uint32_t gsvs_ring_size)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
if (!esgs_ring_bo && !gsvs_ring_bo)
return;
if (esgs_ring_bo)
radv_cs_add_buffer(device->ws, cs, esgs_ring_bo);
if (gsvs_ring_bo)
radv_cs_add_buffer(device->ws, cs, gsvs_ring_bo);
radeon_begin(cs);
if (pdev->info.gfx_level >= GFX7) {
radeon_set_uconfig_reg_seq(R_030900_VGT_ESGS_RING_SIZE, 2);
radeon_emit(esgs_ring_size >> 8);
radeon_emit(gsvs_ring_size >> 8);
} else {
radeon_set_config_reg_seq(R_0088C8_VGT_ESGS_RING_SIZE, 2);
radeon_emit(esgs_ring_size >> 8);
radeon_emit(gsvs_ring_size >> 8);
}
radeon_end();
}
static void
radv_emit_tess_factor_ring(struct radv_device *device, struct radeon_cmdbuf *cs, struct radeon_winsys_bo *tess_rings_bo)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
uint64_t tf_va;
uint32_t tf_ring_size;
if (!tess_rings_bo)
return;
tf_ring_size = pdev->info.tess_factor_ring_size / 4;
tf_va = radv_buffer_get_va(tess_rings_bo) + pdev->info.tess_offchip_ring_size;
radv_cs_add_buffer(device->ws, cs, tess_rings_bo);
radeon_begin(cs);
if (pdev->info.gfx_level >= GFX7) {
if (pdev->info.gfx_level >= GFX11) {
/* TF_RING_SIZE is per SE on GFX11. */
tf_ring_size /= pdev->info.max_se;
}
radeon_set_uconfig_reg(R_030938_VGT_TF_RING_SIZE, S_030938_SIZE(tf_ring_size));
radeon_set_uconfig_reg(R_030940_VGT_TF_MEMORY_BASE, tf_va >> 8);
if (pdev->info.gfx_level >= GFX12) {
radeon_set_uconfig_reg(R_03099C_VGT_TF_MEMORY_BASE_HI, S_03099C_BASE_HI(tf_va >> 40));
} else if (pdev->info.gfx_level >= GFX10) {
radeon_set_uconfig_reg(R_030984_VGT_TF_MEMORY_BASE_HI, S_030984_BASE_HI(tf_va >> 40));
} else if (pdev->info.gfx_level == GFX9) {
radeon_set_uconfig_reg(R_030944_VGT_TF_MEMORY_BASE_HI, S_030944_BASE_HI(tf_va >> 40));
}
radeon_set_uconfig_reg(R_03093C_VGT_HS_OFFCHIP_PARAM, pdev->info.hs_offchip_param);
} else {
radeon_set_config_reg(R_008988_VGT_TF_RING_SIZE, S_008988_SIZE(tf_ring_size));
radeon_set_config_reg(R_0089B8_VGT_TF_MEMORY_BASE, tf_va >> 8);
radeon_set_config_reg(R_0089B0_VGT_HS_OFFCHIP_PARAM, pdev->info.hs_offchip_param);
}
radeon_end();
}
static VkResult
radv_initialise_task_control_buffer(struct radv_device *device, struct radeon_winsys_bo *task_rings_bo)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
uint32_t *ptr = (uint32_t *)radv_buffer_map(device->ws, task_rings_bo);
if (!ptr)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
const uint32_t num_entries = pdev->task_info.num_entries;
const uint64_t task_va = radv_buffer_get_va(task_rings_bo);
const uint64_t task_draw_ring_va = task_va + pdev->task_info.draw_ring_offset;
assert((task_draw_ring_va & 0xFFFFFF00) == (task_draw_ring_va & 0xFFFFFFFF));
/* 64-bit write_ptr */
ptr[0] = num_entries;
ptr[1] = 0;
/* 64-bit read_ptr */
ptr[2] = num_entries;
ptr[3] = 0;
/* 64-bit dealloc_ptr */
ptr[4] = num_entries;
ptr[5] = 0;
/* num_entries */
ptr[6] = num_entries;
/* 64-bit draw ring address */
ptr[7] = task_draw_ring_va;
ptr[8] = task_draw_ring_va >> 32;
device->ws->buffer_unmap(device->ws, task_rings_bo, false);
return VK_SUCCESS;
}
static void
radv_emit_task_rings(struct radv_device *device, struct radeon_cmdbuf *cs, struct radeon_winsys_bo *task_rings_bo,
bool compute)
{
if (!task_rings_bo)
return;
const uint64_t task_ctrlbuf_va = radv_buffer_get_va(task_rings_bo);
assert(util_is_aligned(task_ctrlbuf_va, 256));
radv_cs_add_buffer(device->ws, cs, task_rings_bo);
radeon_begin(cs);
/* Tell the GPU where the task control buffer is. */
radeon_emit(PKT3(PKT3_DISPATCH_TASK_STATE_INIT, 1, 0) | PKT3_SHADER_TYPE_S(!!compute));
/* bits [31:8]: control buffer address lo, bits[7:0]: reserved (set to zero) */
radeon_emit(task_ctrlbuf_va & 0xFFFFFF00);
/* bits [31:0]: control buffer address hi */
radeon_emit(task_ctrlbuf_va >> 32);
radeon_end();
}
static void
radv_emit_graphics_scratch(struct radv_device *device, struct radeon_cmdbuf *cs, uint32_t size_per_wave, uint32_t waves,
struct radeon_winsys_bo *scratch_bo)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radeon_info *gpu_info = &pdev->info;
uint32_t tmpring_size;
if (!scratch_bo)
return;
ac_get_scratch_tmpring_size(gpu_info, waves, size_per_wave, &tmpring_size);
radv_cs_add_buffer(device->ws, cs, scratch_bo);
radeon_begin(cs);
if (gpu_info->gfx_level >= GFX11) {
uint64_t va = radv_buffer_get_va(scratch_bo);
radeon_set_context_reg_seq(R_0286E8_SPI_TMPRING_SIZE, 3);
radeon_emit(tmpring_size);
radeon_emit(va >> 8); /* SPI_GFX_SCRATCH_BASE_LO */
radeon_emit(va >> 40); /* SPI_GFX_SCRATCH_BASE_HI */
} else {
radeon_set_context_reg(R_0286E8_SPI_TMPRING_SIZE, tmpring_size);
}
radeon_end();
}
static void
radv_emit_compute_scratch(struct radv_device *device, struct radeon_cmdbuf *cs, uint32_t size_per_wave, uint32_t waves,
struct radeon_winsys_bo *compute_scratch_bo)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radeon_info *gpu_info = &pdev->info;
uint32_t tmpring_size;
uint64_t scratch_va;
uint32_t rsrc1;
if (!compute_scratch_bo)
return;
scratch_va = radv_buffer_get_va(compute_scratch_bo);
rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
if (gpu_info->gfx_level >= GFX11)
rsrc1 |= S_008F04_SWIZZLE_ENABLE_GFX11(1);
else
rsrc1 |= S_008F04_SWIZZLE_ENABLE_GFX6(1);
ac_get_scratch_tmpring_size(gpu_info, waves, size_per_wave, &tmpring_size);
radv_cs_add_buffer(device->ws, cs, compute_scratch_bo);
radeon_begin(cs);
if (gpu_info->gfx_level >= GFX11) {
radeon_set_sh_reg_seq(R_00B840_COMPUTE_DISPATCH_SCRATCH_BASE_LO, 2);
radeon_emit(scratch_va >> 8);
radeon_emit(scratch_va >> 40);
waves /= gpu_info->max_se;
}
radeon_set_sh_reg_seq(R_00B900_COMPUTE_USER_DATA_0, 2);
radeon_emit(scratch_va);
radeon_emit(rsrc1);
radeon_set_sh_reg(R_00B860_COMPUTE_TMPRING_SIZE, tmpring_size);
radeon_end();
}
static void
radv_emit_compute_shader_pointers(struct radv_device *device, struct radeon_cmdbuf *cs,
struct radeon_winsys_bo *descriptor_bo)
{
if (!descriptor_bo)
return;
uint64_t va = radv_buffer_get_va(descriptor_bo);
radv_cs_add_buffer(device->ws, cs, descriptor_bo);
/* Compute shader user data 0-1 have the scratch pointer (unlike GFX shaders),
* so emit the descriptor pointer to user data 2-3 instead (task_ring_offsets arg).
*/
radeon_begin(cs);
radeon_emit_64bit_pointer(R_00B908_COMPUTE_USER_DATA_2, va);
radeon_end();
}
static void
radv_emit_graphics_shader_pointers(struct radv_device *device, struct radeon_cmdbuf *cs,
struct radeon_winsys_bo *descriptor_bo)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
uint64_t va;
if (!descriptor_bo)
return;
va = radv_buffer_get_va(descriptor_bo);
radv_cs_add_buffer(device->ws, cs, descriptor_bo);
radeon_begin(cs);
if (pdev->info.gfx_level >= GFX12) {
uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B410_SPI_SHADER_PGM_LO_HS,
R_00B210_SPI_SHADER_PGM_LO_GS};
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radeon_emit_64bit_pointer(regs[i], va);
}
} else if (pdev->info.gfx_level >= GFX11) {
uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B420_SPI_SHADER_PGM_LO_HS,
R_00B220_SPI_SHADER_PGM_LO_GS};
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radeon_emit_64bit_pointer(regs[i], va);
}
} else if (pdev->info.gfx_level >= GFX10) {
uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0,
R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS, R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radeon_emit_64bit_pointer(regs[i], va);
}
} else if (pdev->info.gfx_level == GFX9) {
uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0,
R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS, R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radeon_emit_64bit_pointer(regs[i], va);
}
} else {
uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0,
R_00B230_SPI_SHADER_USER_DATA_GS_0, R_00B330_SPI_SHADER_USER_DATA_ES_0,
R_00B430_SPI_SHADER_USER_DATA_HS_0, R_00B530_SPI_SHADER_USER_DATA_LS_0};
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radeon_emit_64bit_pointer(regs[i], va);
}
}
radeon_end();
}
static void
radv_emit_ge_rings(struct radv_device *device, struct radeon_cmdbuf *cs, struct radeon_winsys_bo *ge_rings_bo)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
uint64_t va;
if (!ge_rings_bo)
return;
assert(pdev->info.gfx_level >= GFX11);
va = radv_buffer_get_va(ge_rings_bo);
assert((va >> 32) == pdev->info.address32_hi);
radv_cs_add_buffer(device->ws, cs, ge_rings_bo);
radeon_begin(cs);
/* We must wait for idle using an EOP event before changing the attribute ring registers. Use the
* bottom-of-pipe EOP event, but increment the PWS counter instead of writing memory.
*/
radeon_emit(PKT3(PKT3_RELEASE_MEM, 6, 0));
radeon_emit(S_490_EVENT_TYPE(V_028A90_BOTTOM_OF_PIPE_TS) | S_490_EVENT_INDEX(5) | S_490_PWS_ENABLE(1));
radeon_emit(0); /* DST_SEL, INT_SEL, DATA_SEL */
radeon_emit(0); /* ADDRESS_LO */
radeon_emit(0); /* ADDRESS_HI */
radeon_emit(0); /* DATA_LO */
radeon_emit(0); /* DATA_HI */
radeon_emit(0); /* INT_CTXID */
/* Wait for the PWS counter. */
radeon_emit(PKT3(PKT3_ACQUIRE_MEM, 6, 0));
radeon_emit(S_580_PWS_STAGE_SEL(V_580_CP_ME) | S_580_PWS_COUNTER_SEL(V_580_TS_SELECT) | S_580_PWS_ENA2(1) |
S_580_PWS_COUNT(0));
radeon_emit(0xffffffff); /* GCR_SIZE */
radeon_emit(0x01ffffff); /* GCR_SIZE_HI */
radeon_emit(0); /* GCR_BASE_LO */
radeon_emit(0); /* GCR_BASE_HI */
radeon_emit(S_585_PWS_ENA(1));
radeon_emit(0); /* GCR_CNTL */
/* The PS will read inputs from this address. */
radeon_set_uconfig_reg_seq(R_031110_SPI_GS_THROTTLE_CNTL1, 4);
radeon_emit(0x12355123); /* SPI_GS_THROTTLE_CNTL1 */
radeon_emit(0x1544D); /* SPI_GS_THROTTLE_CNTL2 */
radeon_emit(va >> 16); /* SPI_ATTRIBUTE_RING_BASE */
radeon_emit(S_03111C_MEM_SIZE((pdev->info.attribute_ring_size_per_se >> 16) - 1) |
S_03111C_BIG_PAGE(pdev->info.discardable_allows_big_page) |
S_03111C_L1_POLICY(1)); /* SPI_ATTRIBUTE_RING_SIZE */
if (pdev->info.gfx_level >= GFX12) {
const uint64_t pos_address = va + pdev->info.pos_ring_offset;
const uint64_t prim_address = va + pdev->info.prim_ring_offset;
/* When one of these 4 registers is updated, all 4 must be updated. */
radeon_set_uconfig_reg_seq(R_0309A0_GE_POS_RING_BASE, 4);
radeon_emit(pos_address >> 16); /* R_0309A0_GE_POS_RING_BASE */
radeon_emit(S_0309A4_MEM_SIZE(pdev->info.pos_ring_size_per_se >> 5)); /* R_0309A4_GE_POS_RING_SIZE */
radeon_emit(prim_address >> 16); /* R_0309A8_GE_PRIM_RING_BASE */
radeon_emit(S_0309AC_MEM_SIZE(pdev->info.prim_ring_size_per_se >> 5) | S_0309AC_SCOPE(gfx12_scope_device) |
S_0309AC_PAF_TEMPORAL(gfx12_store_high_temporal_stay_dirty) |
S_0309AC_PAB_TEMPORAL(gfx12_load_last_use_discard) | S_0309AC_SPEC_DATA_READ(gfx12_spec_read_auto) |
S_0309AC_FORCE_SE_SCOPE(1) | S_0309AC_PAB_NOFILL(1)); /* R_0309AC_GE_PRIM_RING_SIZE */
if (pdev->info.gfx_level == GFX12 && pdev->info.pfp_fw_version >= 2680) {
/* Mitigate the HiZ GPU hang by increasing a timeout when BOTTOM_OF_PIPE_TS is used as the
* workaround. This must be emitted when the gfx queue is idle.
*/
const uint32_t timeout = pdev->use_gfx12_hiz_his_event_wa ? 0xfff : 0;
radeon_emit(PKT3(PKT3_UPDATE_DB_SUMMARIZER_TIMEOUT, 0, 0));
radeon_emit(S_EF1_SUMM_CNTL_EVICT_TIMEOUT(timeout));
}
}
radeon_end();
}
static void
radv_emit_compute(struct radv_device *device, struct radeon_cmdbuf *cs, bool is_compute_queue)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const uint64_t border_color_va = device->border_color_data.bo ? radv_buffer_get_va(device->border_color_data.bo) : 0;
struct ac_pm4_state *pm4 = ac_pm4_create_sized(&pdev->info, false, 64, is_compute_queue);
if (!pm4)
return;
const struct ac_preamble_state preamble_state = {
.border_color_va = border_color_va,
.gfx11 =
{
.compute_dispatch_interleave = 64,
},
};
ac_init_compute_preamble_state(&preamble_state, pm4);
ac_pm4_set_reg(pm4, R_00B810_COMPUTE_START_X, 0);
ac_pm4_set_reg(pm4, R_00B814_COMPUTE_START_Y, 0);
ac_pm4_set_reg(pm4, R_00B818_COMPUTE_START_Z, 0);
if (pdev->info.gfx_level == GFX8 && device->tma_bo) {
uint64_t tba_va, tma_va;
tba_va = radv_shader_get_va(device->trap_handler_shader);
tma_va = radv_buffer_get_va(device->tma_bo);
ac_pm4_set_reg(pm4, R_00B838_COMPUTE_TBA_LO, tba_va >> 8);
ac_pm4_set_reg(pm4, R_00B83C_COMPUTE_TBA_HI, tba_va >> 40);
ac_pm4_set_reg(pm4, R_00B840_COMPUTE_TMA_LO, tma_va >> 8);
ac_pm4_set_reg(pm4, R_00B844_COMPUTE_TMA_HI, tma_va >> 40);
}
if (pdev->info.gfx_level >= GFX12)
ac_pm4_set_reg(pm4, R_00B8BC_COMPUTE_DISPATCH_INTERLEAVE,
S_00B8BC_INTERLEAVE_1D(preamble_state.gfx11.compute_dispatch_interleave));
ac_pm4_finalize(pm4);
radv_emit_pm4_commands(cs, pm4);
ac_pm4_free_state(pm4);
}
/* 12.4 fixed-point */
static unsigned
radv_pack_float_12p4(float x)
{
return x <= 0 ? 0 : x >= 4096 ? 0xffff : x * 16;
}
void
radv_emit_graphics(struct radv_device *device, struct radeon_cmdbuf *cs)
{
struct radv_physical_device *pdev = radv_device_physical(device);
const uint64_t border_color_va = device->border_color_data.bo ? radv_buffer_get_va(device->border_color_data.bo) : 0;
bool has_clear_state = pdev->info.has_clear_state;
int i;
struct ac_pm4_state *pm4 = ac_pm4_create_sized(&pdev->info, false, 512, false);
if (!pm4)
return;
if (!device->uses_shadow_regs) {
ac_pm4_cmd_add(pm4, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
ac_pm4_cmd_add(pm4, CC0_UPDATE_LOAD_ENABLES(1));
ac_pm4_cmd_add(pm4, CC1_UPDATE_SHADOW_ENABLES(1));
if (has_clear_state) {
ac_pm4_cmd_add(pm4, PKT3(PKT3_CLEAR_STATE, 0, 0));
ac_pm4_cmd_add(pm4, 0);
}
}
const struct ac_preamble_state preamble_state = {
.border_color_va = border_color_va,
};
ac_init_graphics_preamble_state(&preamble_state, pm4);
if (!has_clear_state) {
for (i = 0; i < 16; i++) {
ac_pm4_set_reg(pm4, R_0282D0_PA_SC_VPORT_ZMIN_0 + i * 8, 0);
ac_pm4_set_reg(pm4, R_0282D4_PA_SC_VPORT_ZMAX_0 + i * 8, fui(1.0));
}
}
if (!has_clear_state) {
ac_pm4_set_reg(pm4, R_028230_PA_SC_EDGERULE, 0xAAAAAAAA);
/* PA_SU_HARDWARE_SCREEN_OFFSET must be 0 due to hw bug on GFX6 */
ac_pm4_set_reg(pm4, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET, 0);
}
if (pdev->info.gfx_level <= GFX8)
ac_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, S_00B324_MEM_BASE(pdev->info.address32_hi >> 8));
if (pdev->info.gfx_level < GFX11)
ac_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, S_00B124_MEM_BASE(pdev->info.address32_hi >> 8));
unsigned cu_mask_ps = pdev->info.gfx_level >= GFX10_3 ? ac_gfx103_get_cu_mask_ps(&pdev->info) : ~0u;
if (pdev->info.gfx_level >= GFX12) {
ac_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_RSRC4_HS, S_00B420_WAVE_LIMIT(0x3ff) | S_00B420_GLG_FORCE_DISABLE(1));
ac_pm4_set_reg(pm4, R_00B01C_SPI_SHADER_PGM_RSRC4_PS,
S_00B01C_WAVE_LIMIT_GFX12(0x3FF) | S_00B01C_LDS_GROUP_SIZE_GFX12(1));
} else if (pdev->info.gfx_level >= GFX11) {
ac_pm4_set_reg_idx3(pm4, R_00B404_SPI_SHADER_PGM_RSRC4_HS,
ac_apply_cu_en(S_00B404_CU_EN(0xffff), C_00B404_CU_EN, 16, &pdev->info));
ac_pm4_set_reg_idx3(pm4, R_00B004_SPI_SHADER_PGM_RSRC4_PS,
ac_apply_cu_en(S_00B004_CU_EN(cu_mask_ps >> 16), C_00B004_CU_EN, 16, &pdev->info));
}
if (pdev->info.gfx_level >= GFX10) {
/* Vulkan doesn't support user edge flags and it also doesn't
* need to prevent drawing lines on internal edges of
* decomposed primitives (such as quads) with polygon mode = lines.
*/
unsigned vertex_reuse_depth = pdev->info.gfx_level >= GFX10_3 ? 30 : 0;
ac_pm4_set_reg(pm4, R_028838_PA_CL_NGG_CNTL,
S_028838_INDEX_BUF_EDGE_FLAG_ENA(0) | S_028838_VERTEX_REUSE_DEPTH(vertex_reuse_depth));
if (pdev->info.gfx_level >= GFX10_3) {
/* This allows sample shading. */
ac_pm4_set_reg(pm4, R_028848_PA_CL_VRS_CNTL,
S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE));
}
}
if (pdev->info.gfx_level >= GFX8) {
/* GFX8+ only compares the bits according to the index type by default,
* so we can always leave the programmed value at the maximum.
*/
ac_pm4_set_reg(pm4, R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX, 0xffffffff);
}
unsigned tmp = (unsigned)(1.0 * 8.0);
ac_pm4_set_reg(pm4, R_028A00_PA_SU_POINT_SIZE, S_028A00_HEIGHT(tmp) | S_028A00_WIDTH(tmp));
ac_pm4_set_reg(pm4, R_028A04_PA_SU_POINT_MINMAX,
S_028A04_MIN_SIZE(radv_pack_float_12p4(0)) | S_028A04_MAX_SIZE(radv_pack_float_12p4(8191.875 / 2)));
/* Enable the Polaris small primitive filter control.
* XXX: There is possibly an issue when MSAA is off (see RadeonSI
* has_msaa_sample_loc_bug). But this doesn't seem to regress anything,
* and AMDVLK doesn't have a workaround as well.
*/
if (pdev->info.family >= CHIP_POLARIS10) {
unsigned small_prim_filter_cntl = S_028830_SMALL_PRIM_FILTER_ENABLE(1) |
/* Workaround for a hw line bug. */
S_028830_LINE_FILTER_DISABLE(pdev->info.family <= CHIP_POLARIS12) |
S_028830_SC_1XMSAA_COMPATIBLE_DISABLE(pdev->info.gfx_level >= GFX10);
ac_pm4_set_reg(pm4, R_028830_PA_SU_SMALL_PRIM_FILTER_CNTL, small_prim_filter_cntl);
}
if (pdev->info.gfx_level >= GFX12) {
ac_pm4_set_reg(pm4, R_028644_SPI_INTERP_CONTROL_0,
S_0286D4_FLAT_SHADE_ENA(1) | S_0286D4_PNT_SPRITE_ENA(1) |
S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) |
S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) |
S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) |
S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) |
S_0286D4_PNT_SPRITE_TOP_1(0)); /* vulkan is top to bottom - 1.0 at bottom */
} else {
ac_pm4_set_reg(pm4, R_0286D4_SPI_INTERP_CONTROL_0,
S_0286D4_FLAT_SHADE_ENA(1) | S_0286D4_PNT_SPRITE_ENA(1) |
S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) |
S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) |
S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) |
S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) |
S_0286D4_PNT_SPRITE_TOP_1(0)); /* vulkan is top to bottom - 1.0 at bottom */
}
ac_pm4_set_reg(pm4, R_028BE4_PA_SU_VTX_CNTL,
S_028BE4_PIX_CENTER(1) | S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) |
S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH));
if (pdev->info.gfx_level >= GFX12) {
ac_pm4_set_reg(pm4, R_028814_PA_CL_VTE_CNTL,
S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) | S_028818_VPORT_Z_SCALE_ENA(1) |
S_028818_VPORT_Z_OFFSET_ENA(1));
} else {
ac_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) | S_028818_VPORT_Z_SCALE_ENA(1) |
S_028818_VPORT_Z_OFFSET_ENA(1));
}
if (pdev->info.gfx_level == GFX8 && device->tma_bo) {
uint64_t tba_va, tma_va;
tba_va = radv_shader_get_va(device->trap_handler_shader);
tma_va = radv_buffer_get_va(device->tma_bo);
uint32_t regs[] = {R_00B000_SPI_SHADER_TBA_LO_PS, R_00B100_SPI_SHADER_TBA_LO_VS, R_00B200_SPI_SHADER_TBA_LO_GS,
R_00B300_SPI_SHADER_TBA_LO_ES, R_00B400_SPI_SHADER_TBA_LO_HS, R_00B500_SPI_SHADER_TBA_LO_LS};
for (i = 0; i < ARRAY_SIZE(regs); ++i) {
ac_pm4_set_reg(pm4, regs[i] + 0, tba_va >> 8);
ac_pm4_set_reg(pm4, regs[i] + 4, tba_va >> 40);
ac_pm4_set_reg(pm4, regs[i] + 8, tma_va >> 8);
ac_pm4_set_reg(pm4, regs[i] + 12, tma_va >> 40);
}
}
ac_pm4_set_reg(pm4, R_028828_PA_SU_LINE_STIPPLE_SCALE, 0x3f800000);
if (pdev->info.gfx_level >= GFX12) {
ac_pm4_set_reg(pm4, R_028000_DB_RENDER_CONTROL, 0);
}
if (pdev->info.family >= CHIP_NAVI31 && pdev->info.family <= CHIP_GFX1150) {
/* Disable SINGLE clear codes on GFX11 (including first GFX11.5 rev) to workaround a hw bug
* with DCC. */
ac_pm4_set_reg(pm4, R_028424_CB_FDCC_CONTROL, S_028424_DISABLE_CONSTANT_ENCODE_SINGLE(1));
}
ac_pm4_finalize(pm4);
radv_emit_pm4_commands(cs, pm4);
ac_pm4_free_state(pm4);
radv_emit_compute(device, cs, false);
}
static void
radv_init_graphics_state(struct radeon_cmdbuf *cs, struct radv_device *device)
{
if (device->gfx_init) {
struct radeon_winsys *ws = device->ws;
ws->cs_execute_ib(cs, device->gfx_init, 0, device->gfx_init_size_dw & 0xffff, false);
radv_cs_add_buffer(device->ws, cs, device->gfx_init);
} else {
radv_emit_graphics(device, cs);
}
}
static VkResult
radv_update_preamble_cs(struct radv_queue_state *queue, struct radv_device *device,
const struct radv_queue_ring_info *needs)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
struct radeon_winsys *ws = device->ws;
struct radeon_winsys_bo *scratch_bo = queue->scratch_bo;
struct radeon_winsys_bo *descriptor_bo = queue->descriptor_bo;
struct radeon_winsys_bo *compute_scratch_bo = queue->compute_scratch_bo;
struct radeon_winsys_bo *esgs_ring_bo = queue->esgs_ring_bo;
struct radeon_winsys_bo *gsvs_ring_bo = queue->gsvs_ring_bo;
struct radeon_winsys_bo *tess_rings_bo = queue->tess_rings_bo;
struct radeon_winsys_bo *task_rings_bo = queue->task_rings_bo;
struct radeon_winsys_bo *mesh_scratch_ring_bo = queue->mesh_scratch_ring_bo;
struct radeon_winsys_bo *ge_rings_bo = queue->ge_rings_bo;
struct radeon_winsys_bo *gds_bo = queue->gds_bo;
struct radeon_winsys_bo *gds_oa_bo = queue->gds_oa_bo;
struct radeon_cmdbuf *dest_cs[3] = {0};
const uint32_t ring_bo_flags = RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING;
VkResult result = VK_SUCCESS;
const bool add_sample_positions = !queue->ring_info.sample_positions && needs->sample_positions;
const uint32_t scratch_size = needs->scratch_size_per_wave * needs->scratch_waves;
const uint32_t queue_scratch_size = queue->ring_info.scratch_size_per_wave * queue->ring_info.scratch_waves;
if (scratch_size > queue_scratch_size) {
result = radv_bo_create(device, NULL, scratch_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH, 0, true, &scratch_bo);
if (result != VK_SUCCESS)
goto fail;
radv_rmv_log_command_buffer_bo_create(device, scratch_bo, 0, 0, scratch_size);
}
const uint32_t compute_scratch_size = needs->compute_scratch_size_per_wave * needs->compute_scratch_waves;
const uint32_t compute_queue_scratch_size =
queue->ring_info.compute_scratch_size_per_wave * queue->ring_info.compute_scratch_waves;
if (compute_scratch_size > compute_queue_scratch_size) {
result = radv_bo_create(device, NULL, compute_scratch_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH, 0, true, &compute_scratch_bo);
if (result != VK_SUCCESS)
goto fail;
radv_rmv_log_command_buffer_bo_create(device, compute_scratch_bo, 0, 0, compute_scratch_size);
}
if (needs->esgs_ring_size > queue->ring_info.esgs_ring_size) {
result = radv_bo_create(device, NULL, needs->esgs_ring_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH, 0, true, &esgs_ring_bo);
if (result != VK_SUCCESS)
goto fail;
radv_rmv_log_command_buffer_bo_create(device, esgs_ring_bo, 0, 0, needs->esgs_ring_size);
}
if (needs->gsvs_ring_size > queue->ring_info.gsvs_ring_size) {
result = radv_bo_create(device, NULL, needs->gsvs_ring_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH, 0, true, &gsvs_ring_bo);
if (result != VK_SUCCESS)
goto fail;
radv_rmv_log_command_buffer_bo_create(device, gsvs_ring_bo, 0, 0, needs->gsvs_ring_size);
}
if (!queue->ring_info.tess_rings && needs->tess_rings) {
result = radv_bo_create(device, NULL, pdev->info.total_tess_ring_size, 256, RADEON_DOMAIN_VRAM, ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH, 0, true, &tess_rings_bo);
if (result != VK_SUCCESS)
goto fail;
radv_rmv_log_command_buffer_bo_create(device, tess_rings_bo, 0, 0, pdev->info.total_tess_ring_size);
}
if (!queue->ring_info.task_rings && needs->task_rings) {
assert(pdev->info.gfx_level >= GFX10_3);
/* We write the control buffer from the CPU, so need to grant CPU access to the BO.
* The draw ring needs to be zero-initialized otherwise the ready bits will be incorrect.
*/
uint32_t task_rings_bo_flags =
RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_ZERO_VRAM;
result = radv_bo_create(device, NULL, pdev->task_info.bo_size_bytes, 256, RADEON_DOMAIN_VRAM, task_rings_bo_flags,
RADV_BO_PRIORITY_SCRATCH, 0, true, &task_rings_bo);
if (result != VK_SUCCESS)
goto fail;
radv_rmv_log_command_buffer_bo_create(device, task_rings_bo, 0, 0, pdev->task_info.bo_size_bytes);
result = radv_initialise_task_control_buffer(device, task_rings_bo);
if (result != VK_SUCCESS)
goto fail;
}
if (!queue->ring_info.mesh_scratch_ring && needs->mesh_scratch_ring) {
assert(pdev->info.gfx_level >= GFX10_3);
result =
radv_bo_create(device, NULL, AC_MESH_SCRATCH_NUM_ENTRIES * AC_MESH_SCRATCH_ENTRY_BYTES, 256,
RADEON_DOMAIN_VRAM, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH, 0, true, &mesh_scratch_ring_bo);
if (result != VK_SUCCESS)
goto fail;
radv_rmv_log_command_buffer_bo_create(device, mesh_scratch_ring_bo, 0, 0,
AC_MESH_SCRATCH_NUM_ENTRIES * AC_MESH_SCRATCH_ENTRY_BYTES);
}
if (!queue->ring_info.ge_rings && needs->ge_rings) {
assert(pdev->info.gfx_level >= GFX11);
result = radv_bo_create(device, NULL, pdev->info.total_attribute_pos_prim_ring_size, 2 * 1024 * 1024 /* 2MiB */,
RADEON_DOMAIN_VRAM, RADEON_FLAG_32BIT | RADEON_FLAG_DISCARDABLE | ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH, 0, true, &ge_rings_bo);
if (result != VK_SUCCESS)
goto fail;
radv_rmv_log_command_buffer_bo_create(device, ge_rings_bo, 0, 0, pdev->info.total_attribute_pos_prim_ring_size);
}
if (!queue->ring_info.gds && needs->gds) {
assert(pdev->info.gfx_level == GFX10 || pdev->info.gfx_level == GFX10_3);
/* 4 streamout GDS counters.
* We need 256B (64 dw) of GDS, otherwise streamout hangs.
*/
result = radv_bo_create(device, NULL, 256, 4, RADEON_DOMAIN_GDS, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH, 0, true,
&gds_bo);
if (result != VK_SUCCESS)
goto fail;
/* Add the GDS BO to our global BO list to prevent the kernel to emit a GDS switch and reset
* the state when a compute queue is used.
*/
result = device->ws->buffer_make_resident(ws, gds_bo, true);
if (result != VK_SUCCESS)
goto fail;
}
if (!queue->ring_info.gds_oa && needs->gds_oa) {
assert(pdev->info.gfx_level >= GFX10 && pdev->info.gfx_level < GFX12);
result = radv_bo_create(device, NULL, 1, 1, RADEON_DOMAIN_OA, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH, 0, true,
&gds_oa_bo);
if (result != VK_SUCCESS)
goto fail;
/* Add the GDS OA BO to our global BO list to prevent the kernel to emit a GDS switch and
* reset the state when a compute queue is used.
*/
result = device->ws->buffer_make_resident(ws, gds_oa_bo, true);
if (result != VK_SUCCESS)
goto fail;
}
/* Re-initialize the descriptor BO when any ring BOs changed.
*
* Additionally, make sure to create the descriptor BO for the compute queue
* when it uses the task shader rings. The task rings BO is shared between the
* GFX and compute queues and already initialized here.
*/
if ((queue->qf == RADV_QUEUE_COMPUTE && !descriptor_bo && task_rings_bo) || scratch_bo != queue->scratch_bo ||
esgs_ring_bo != queue->esgs_ring_bo || gsvs_ring_bo != queue->gsvs_ring_bo ||
tess_rings_bo != queue->tess_rings_bo || task_rings_bo != queue->task_rings_bo ||
mesh_scratch_ring_bo != queue->mesh_scratch_ring_bo || ge_rings_bo != queue->ge_rings_bo ||
add_sample_positions) {
const uint32_t size = 304;
result = radv_bo_create(device, NULL, size, 4096, RADEON_DOMAIN_VRAM,
RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_READ_ONLY,
RADV_BO_PRIORITY_DESCRIPTOR, 0, true, &descriptor_bo);
if (result != VK_SUCCESS)
goto fail;
}
if (descriptor_bo != queue->descriptor_bo) {
uint32_t *map = (uint32_t *)radv_buffer_map(ws, descriptor_bo);
if (!map) {
result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
goto fail;
}
radv_fill_shader_rings(device, map, scratch_bo, needs->esgs_ring_size, esgs_ring_bo, needs->gsvs_ring_size,
gsvs_ring_bo, tess_rings_bo, task_rings_bo, mesh_scratch_ring_bo, ge_rings_bo);
ws->buffer_unmap(ws, descriptor_bo, false);
}
for (int i = 0; i < 3; ++i) {
enum rgp_flush_bits sqtt_flush_bits = 0;
struct radeon_cmdbuf *cs = NULL;
cs = ws->cs_create(ws, radv_queue_family_to_ring(pdev, queue->qf), false);
if (!cs) {
result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
goto fail;
}
radeon_check_space(ws, cs, 512);
dest_cs[i] = cs;
if (scratch_bo)
radv_cs_add_buffer(ws, cs, scratch_bo);
/* Emit initial configuration. */
switch (queue->qf) {
case RADV_QUEUE_GENERAL:
if (queue->uses_shadow_regs)
radv_emit_shadow_regs_preamble(cs, device, queue);
radv_init_graphics_state(cs, device);
if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo || task_rings_bo) {
radeon_begin(cs);
radeon_event_write(V_028A90_VS_PARTIAL_FLUSH);
radeon_event_write(V_028A90_VGT_FLUSH);
radeon_end();
}
radv_emit_gs_ring_sizes(device, cs, esgs_ring_bo, needs->esgs_ring_size, gsvs_ring_bo, needs->gsvs_ring_size);
radv_emit_tess_factor_ring(device, cs, tess_rings_bo);
radv_emit_task_rings(device, cs, task_rings_bo, false);
radv_emit_ge_rings(device, cs, ge_rings_bo);
radv_emit_graphics_shader_pointers(device, cs, descriptor_bo);
radv_emit_compute_scratch(device, cs, needs->compute_scratch_size_per_wave, needs->compute_scratch_waves,
compute_scratch_bo);
radv_emit_graphics_scratch(device, cs, needs->scratch_size_per_wave, needs->scratch_waves, scratch_bo);
break;
case RADV_QUEUE_COMPUTE:
radv_emit_compute(device, cs, true);
if (task_rings_bo) {
radeon_begin(cs);
radeon_event_write(V_028A90_CS_PARTIAL_FLUSH);
radeon_end();
}
radv_emit_task_rings(device, cs, task_rings_bo, true);
radv_emit_compute_shader_pointers(device, cs, descriptor_bo);
radv_emit_compute_scratch(device, cs, needs->compute_scratch_size_per_wave, needs->compute_scratch_waves,
compute_scratch_bo);
break;
default:
break;
}
if (i < 2) {
/* The two initial preambles have a cache flush at the beginning. */
const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
enum radv_cmd_flush_bits flush_bits = RADV_CMD_FLAG_INV_ICACHE | RADV_CMD_FLAG_INV_SCACHE |
RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_L2 |
RADV_CMD_FLAG_START_PIPELINE_STATS;
if (i == 0) {
/* The full flush preamble should also wait for previous shader work to finish. */
flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
if (queue->qf == RADV_QUEUE_GENERAL)
flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH;
}
radv_cs_emit_cache_flush(ws, cs, gfx_level, NULL, 0, queue->qf, flush_bits, &sqtt_flush_bits, 0);
}
result = ws->cs_finalize(cs);
if (result != VK_SUCCESS)
goto fail;
}
if (queue->initial_full_flush_preamble_cs)
ws->cs_destroy(queue->initial_full_flush_preamble_cs);
if (queue->initial_preamble_cs)
ws->cs_destroy(queue->initial_preamble_cs);
if (queue->continue_preamble_cs)
ws->cs_destroy(queue->continue_preamble_cs);
queue->initial_full_flush_preamble_cs = dest_cs[0];
queue->initial_preamble_cs = dest_cs[1];
queue->continue_preamble_cs = dest_cs[2];
if (scratch_bo != queue->scratch_bo) {
if (queue->scratch_bo) {
radv_rmv_log_command_buffer_bo_destroy(device, queue->scratch_bo);
radv_bo_destroy(device, NULL, queue->scratch_bo);
}
queue->scratch_bo = scratch_bo;
}
if (compute_scratch_bo != queue->compute_scratch_bo) {
if (queue->compute_scratch_bo) {
radv_rmv_log_command_buffer_bo_destroy(device, queue->compute_scratch_bo);
radv_bo_destroy(device, NULL, queue->compute_scratch_bo);
}
queue->compute_scratch_bo = compute_scratch_bo;
}
if (esgs_ring_bo != queue->esgs_ring_bo) {
if (queue->esgs_ring_bo) {
radv_rmv_log_command_buffer_bo_destroy(device, queue->esgs_ring_bo);
radv_bo_destroy(device, NULL, queue->esgs_ring_bo);
}
queue->esgs_ring_bo = esgs_ring_bo;
}
if (gsvs_ring_bo != queue->gsvs_ring_bo) {
if (queue->gsvs_ring_bo) {
radv_rmv_log_command_buffer_bo_destroy(device, queue->gsvs_ring_bo);
radv_bo_destroy(device, NULL, queue->gsvs_ring_bo);
}
queue->gsvs_ring_bo = gsvs_ring_bo;
}
if (descriptor_bo != queue->descriptor_bo) {
if (queue->descriptor_bo)
radv_bo_destroy(device, NULL, queue->descriptor_bo);
queue->descriptor_bo = descriptor_bo;
}
queue->tess_rings_bo = tess_rings_bo;
queue->task_rings_bo = task_rings_bo;
queue->mesh_scratch_ring_bo = mesh_scratch_ring_bo;
queue->ge_rings_bo = ge_rings_bo;
queue->gds_bo = gds_bo;
queue->gds_oa_bo = gds_oa_bo;
queue->ring_info = *needs;
return VK_SUCCESS;
fail:
for (int i = 0; i < ARRAY_SIZE(dest_cs); ++i)
if (dest_cs[i])
ws->cs_destroy(dest_cs[i]);
if (descriptor_bo && descriptor_bo != queue->descriptor_bo)
radv_bo_destroy(device, NULL, descriptor_bo);
if (scratch_bo && scratch_bo != queue->scratch_bo)
radv_bo_destroy(device, NULL, scratch_bo);
if (compute_scratch_bo && compute_scratch_bo != queue->compute_scratch_bo)
radv_bo_destroy(device, NULL, compute_scratch_bo);
if (esgs_ring_bo && esgs_ring_bo != queue->esgs_ring_bo)
radv_bo_destroy(device, NULL, esgs_ring_bo);
if (gsvs_ring_bo && gsvs_ring_bo != queue->gsvs_ring_bo)
radv_bo_destroy(device, NULL, gsvs_ring_bo);
if (tess_rings_bo && tess_rings_bo != queue->tess_rings_bo)
radv_bo_destroy(device, NULL, tess_rings_bo);
if (task_rings_bo && task_rings_bo != queue->task_rings_bo)
radv_bo_destroy(device, NULL, task_rings_bo);
if (ge_rings_bo && ge_rings_bo != queue->ge_rings_bo)
radv_bo_destroy(device, NULL, ge_rings_bo);
if (gds_bo && gds_bo != queue->gds_bo) {
ws->buffer_make_resident(ws, queue->gds_bo, false);
radv_bo_destroy(device, NULL, gds_bo);
}
if (gds_oa_bo && gds_oa_bo != queue->gds_oa_bo) {
ws->buffer_make_resident(ws, queue->gds_oa_bo, false);
radv_bo_destroy(device, NULL, gds_oa_bo);
}
return vk_error(device, result);
}
static VkResult
radv_update_preambles(struct radv_queue_state *queue, struct radv_device *device,
struct vk_command_buffer *const *cmd_buffers, uint32_t cmd_buffer_count, bool *use_perf_counters,
bool *has_follower)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
if (queue->qf != RADV_QUEUE_GENERAL && queue->qf != RADV_QUEUE_COMPUTE) {
for (uint32_t j = 0; j < cmd_buffer_count; j++) {
struct radv_cmd_buffer *cmd_buffer = container_of(cmd_buffers[j], struct radv_cmd_buffer, vk);
*has_follower |= !!cmd_buffer->gang.cs;
}
return VK_SUCCESS;
}
/* Figure out the needs of the current submission.
* Start by copying the queue's current info.
* This is done because we only allow two possible behaviours for these buffers:
* - Grow when the newly needed amount is larger than what we had
* - Allocate the max size and reuse it, but don't free it until the queue is destroyed
*/
struct radv_queue_ring_info needs = queue->ring_info;
*use_perf_counters = false;
*has_follower = false;
for (uint32_t j = 0; j < cmd_buffer_count; j++) {
struct radv_cmd_buffer *cmd_buffer = container_of(cmd_buffers[j], struct radv_cmd_buffer, vk);
needs.scratch_size_per_wave = MAX2(needs.scratch_size_per_wave, cmd_buffer->scratch_size_per_wave_needed);
needs.scratch_waves = MAX2(needs.scratch_waves, cmd_buffer->scratch_waves_wanted);
needs.compute_scratch_size_per_wave =
MAX2(needs.compute_scratch_size_per_wave, cmd_buffer->compute_scratch_size_per_wave_needed);
needs.compute_scratch_waves = MAX2(needs.compute_scratch_waves, cmd_buffer->compute_scratch_waves_wanted);
needs.esgs_ring_size = MAX2(needs.esgs_ring_size, cmd_buffer->esgs_ring_size_needed);
needs.gsvs_ring_size = MAX2(needs.gsvs_ring_size, cmd_buffer->gsvs_ring_size_needed);
needs.tess_rings |= cmd_buffer->tess_rings_needed;
needs.task_rings |= cmd_buffer->task_rings_needed;
needs.mesh_scratch_ring |= cmd_buffer->mesh_scratch_ring_needed;
needs.gds |= cmd_buffer->gds_needed;
needs.gds_oa |= cmd_buffer->gds_oa_needed;
needs.sample_positions |= cmd_buffer->sample_positions_needed;
*use_perf_counters |= cmd_buffer->state.uses_perf_counters;
*has_follower |= !!cmd_buffer->gang.cs;
}
/* Sanitize scratch size information. */
needs.scratch_waves =
needs.scratch_size_per_wave ? MIN2(needs.scratch_waves, UINT32_MAX / needs.scratch_size_per_wave) : 0;
needs.compute_scratch_waves =
needs.compute_scratch_size_per_wave
? MIN2(needs.compute_scratch_waves, UINT32_MAX / needs.compute_scratch_size_per_wave)
: 0;
/* Compute the optimal scratch wavesize. */
needs.scratch_size_per_wave = ac_compute_scratch_wavesize(&pdev->info, needs.scratch_size_per_wave);
needs.compute_scratch_size_per_wave = ac_compute_scratch_wavesize(&pdev->info, needs.compute_scratch_size_per_wave);
if (pdev->info.gfx_level >= GFX11 && queue->qf == RADV_QUEUE_GENERAL) {
needs.ge_rings = true;
}
/* Return early if we already match these needs.
* Note that it's not possible for any of the needed values to be less
* than what the queue already had, because we only ever increase the allocated size.
*/
if (queue->initial_full_flush_preamble_cs && queue->ring_info.scratch_size_per_wave == needs.scratch_size_per_wave &&
queue->ring_info.scratch_waves == needs.scratch_waves &&
queue->ring_info.compute_scratch_size_per_wave == needs.compute_scratch_size_per_wave &&
queue->ring_info.compute_scratch_waves == needs.compute_scratch_waves &&
queue->ring_info.esgs_ring_size == needs.esgs_ring_size &&
queue->ring_info.gsvs_ring_size == needs.gsvs_ring_size && queue->ring_info.tess_rings == needs.tess_rings &&
queue->ring_info.task_rings == needs.task_rings &&
queue->ring_info.mesh_scratch_ring == needs.mesh_scratch_ring && queue->ring_info.ge_rings == needs.ge_rings &&
queue->ring_info.gds == needs.gds && queue->ring_info.gds_oa == needs.gds_oa &&
queue->ring_info.sample_positions == needs.sample_positions)
return VK_SUCCESS;
return radv_update_preamble_cs(queue, device, &needs);
}
/**
* Creates a postamble CS that executes cache flush commands
* that we can use at the end of each submission.
*/
static VkResult
radv_create_flush_postamble(struct radv_queue *queue)
{
const struct radv_device *device = radv_queue_device(queue);
const struct radv_physical_device *pdev = radv_device_physical(device);
const enum amd_ip_type ip = radv_queue_family_to_ring(pdev, queue->state.qf);
struct radeon_winsys *ws = device->ws;
struct radeon_cmdbuf *cs = ws->cs_create(ws, ip, false);
if (!cs)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
radeon_check_space(ws, cs, 256);
const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
enum radv_cmd_flush_bits flush_bits = 0;
if (gfx_level == GFX6) {
/* GFX6: The kernel flushes L2 before shaders are finished. */
flush_bits = RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_WB_L2;
if (ip == AMD_IP_GFX)
flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH;
} else {
/* Improves stability on Hawaii. */
flush_bits =
RADV_CMD_FLAG_INV_ICACHE | RADV_CMD_FLAG_INV_SCACHE | RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_L2;
}
enum rgp_flush_bits sqtt_flush_bits = 0;
radv_cs_emit_cache_flush(ws, cs, gfx_level, NULL, 0, queue->state.qf, flush_bits, &sqtt_flush_bits, 0);
VkResult r = ws->cs_finalize(cs);
if (r != VK_SUCCESS) {
ws->cs_destroy(cs);
return r;
}
queue->state.flush_postamble_cs = cs;
return VK_SUCCESS;
}
static VkResult
radv_create_gang_wait_preambles_postambles(struct radv_queue *queue)
{
struct radv_device *device = radv_queue_device(queue);
const struct radv_physical_device *pdev = radv_device_physical(device);
if (queue->gang_sem_bo)
return VK_SUCCESS;
VkResult r = VK_SUCCESS;
struct radeon_winsys *ws = device->ws;
const enum amd_ip_type leader_ip = radv_queue_family_to_ring(pdev, queue->state.qf);
struct radeon_winsys_bo *gang_sem_bo = NULL;
/* Gang semaphores BO.
* DWORD 0: used in preambles, gang leader writes, gang members wait.
* DWORD 1: used in postambles, gang leader waits, gang members write.
*/
r = radv_bo_create(device, NULL, 8, 4, RADEON_DOMAIN_VRAM,
RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_ZERO_VRAM, RADV_BO_PRIORITY_SCRATCH, 0, true,
&gang_sem_bo);
if (r != VK_SUCCESS)
return r;
struct radeon_cmdbuf *leader_pre_cs = ws->cs_create(ws, leader_ip, false);
struct radeon_cmdbuf *leader_post_cs = ws->cs_create(ws, leader_ip, false);
struct radeon_cmdbuf *ace_pre_cs = ws->cs_create(ws, AMD_IP_COMPUTE, false);
struct radeon_cmdbuf *ace_post_cs = ws->cs_create(ws, AMD_IP_COMPUTE, false);
if (!leader_pre_cs || !leader_post_cs || !ace_pre_cs || !ace_post_cs) {
r = VK_ERROR_OUT_OF_DEVICE_MEMORY;
goto fail;
}
radeon_check_space(ws, leader_pre_cs, 256);
radeon_check_space(ws, leader_post_cs, 256);
radeon_check_space(ws, ace_pre_cs, 256);
radeon_check_space(ws, ace_post_cs, 256);
radv_cs_add_buffer(ws, leader_pre_cs, gang_sem_bo);
radv_cs_add_buffer(ws, leader_post_cs, gang_sem_bo);
radv_cs_add_buffer(ws, ace_pre_cs, gang_sem_bo);
radv_cs_add_buffer(ws, ace_post_cs, gang_sem_bo);
const uint64_t ace_wait_va = radv_buffer_get_va(gang_sem_bo);
const uint64_t leader_wait_va = ace_wait_va + 4;
const uint32_t zero = 0;
const uint32_t one = 1;
/* Preambles for gang submission.
* Make gang members wait until the gang leader starts.
* Userspace is required to emit this wait to make sure it behaves correctly
* in a multi-process environment, because task shader dispatches are not
* meant to be executed on multiple compute engines at the same time.
*/
radv_cp_wait_mem(ace_pre_cs, RADV_QUEUE_COMPUTE, WAIT_REG_MEM_GREATER_OR_EQUAL, ace_wait_va, 1, 0xffffffff);
radv_cs_write_data(device, ace_pre_cs, RADV_QUEUE_COMPUTE, V_370_ME, ace_wait_va, 1, &zero, false);
radv_cs_write_data(device, leader_pre_cs, queue->state.qf, V_370_ME, ace_wait_va, 1, &one, false);
/* Create postambles for gang submission.
* This ensures that the gang leader waits for the whole gang,
* which is necessary because the kernel signals the userspace fence
* as soon as the gang leader is done, which may lead to bugs because the
* same command buffers could be submitted again while still being executed.
*/
radv_cp_wait_mem(leader_post_cs, queue->state.qf, WAIT_REG_MEM_GREATER_OR_EQUAL, leader_wait_va, 1, 0xffffffff);
radv_cs_write_data(device, leader_post_cs, queue->state.qf, V_370_ME, leader_wait_va, 1, &zero, false);
radv_cs_emit_write_event_eop(ace_post_cs, pdev->info.gfx_level, RADV_QUEUE_COMPUTE, V_028A90_BOTTOM_OF_PIPE_TS, 0,
EOP_DST_SEL_MEM, EOP_DATA_SEL_VALUE_32BIT, leader_wait_va, 1, 0);
r = ws->cs_finalize(leader_pre_cs);
if (r != VK_SUCCESS)
goto fail;
r = ws->cs_finalize(leader_post_cs);
if (r != VK_SUCCESS)
goto fail;
r = ws->cs_finalize(ace_pre_cs);
if (r != VK_SUCCESS)
goto fail;
r = ws->cs_finalize(ace_post_cs);
if (r != VK_SUCCESS)
goto fail;
queue->gang_sem_bo = gang_sem_bo;
queue->state.gang_wait_preamble_cs = leader_pre_cs;
queue->state.gang_wait_postamble_cs = leader_post_cs;
queue->follower_state->gang_wait_preamble_cs = ace_pre_cs;
queue->follower_state->gang_wait_postamble_cs = ace_post_cs;
return VK_SUCCESS;
fail:
if (leader_pre_cs)
ws->cs_destroy(leader_pre_cs);
if (leader_post_cs)
ws->cs_destroy(leader_post_cs);
if (ace_pre_cs)
ws->cs_destroy(ace_pre_cs);
if (ace_post_cs)
ws->cs_destroy(ace_post_cs);
if (gang_sem_bo)
radv_bo_destroy(device, &queue->vk.base, gang_sem_bo);
return r;
}
static bool
radv_queue_init_follower_state(struct radv_queue *queue)
{
if (queue->follower_state)
return true;
queue->follower_state = calloc(1, sizeof(struct radv_queue_state));
if (!queue->follower_state)
return false;
queue->follower_state->qf = RADV_QUEUE_COMPUTE;
return true;
}
static VkResult
radv_update_gang_preambles(struct radv_queue *queue)
{
struct radv_device *device = radv_queue_device(queue);
if (!radv_queue_init_follower_state(queue))
return VK_ERROR_OUT_OF_HOST_MEMORY;
VkResult r = VK_SUCCESS;
/* Copy task rings state.
* Task shaders that are submitted on the ACE queue need to share
* their ring buffers with the mesh shaders on the GFX queue.
*/
queue->follower_state->ring_info.task_rings = queue->state.ring_info.task_rings;
queue->follower_state->task_rings_bo = queue->state.task_rings_bo;
/* Copy some needed states from the parent queue state.
* These can only increase so it's okay to copy them as-is without checking.
* Note, task shaders use the scratch size from their graphics pipeline.
*/
struct radv_queue_ring_info needs = queue->follower_state->ring_info;
needs.compute_scratch_size_per_wave = queue->state.ring_info.scratch_size_per_wave;
needs.compute_scratch_waves = queue->state.ring_info.scratch_waves;
needs.task_rings = queue->state.ring_info.task_rings;
r = radv_update_preamble_cs(queue->follower_state, device, &needs);
if (r != VK_SUCCESS)
return r;
r = radv_create_gang_wait_preambles_postambles(queue);
if (r != VK_SUCCESS)
return r;
return VK_SUCCESS;
}
static struct radeon_cmdbuf *
radv_create_perf_counter_lock_cs(struct radv_device *device, unsigned pass, bool unlock)
{
struct radeon_cmdbuf **cs_ref = &device->perf_counter_lock_cs[pass * 2 + (unlock ? 1 : 0)];
struct radeon_cmdbuf *cs;
if (*cs_ref)
return *cs_ref;
cs = device->ws->cs_create(device->ws, AMD_IP_GFX, false);
if (!cs)
return NULL;
ASSERTED unsigned cdw = radeon_check_space(device->ws, cs, 21);
radv_cs_add_buffer(device->ws, cs, device->perf_counter_bo);
radeon_begin(cs);
if (!unlock) {
uint64_t mutex_va = radv_buffer_get_va(device->perf_counter_bo) + PERF_CTR_BO_LOCK_OFFSET;
radeon_emit(PKT3(PKT3_ATOMIC_MEM, 7, 0));
radeon_emit(ATOMIC_OP(TC_OP_ATOMIC_CMPSWAP_32) | ATOMIC_COMMAND(ATOMIC_COMMAND_LOOP));
radeon_emit(mutex_va); /* addr lo */
radeon_emit(mutex_va >> 32); /* addr hi */
radeon_emit(1); /* data lo */
radeon_emit(0); /* data hi */
radeon_emit(0); /* compare data lo */
radeon_emit(0); /* compare data hi */
radeon_emit(10); /* loop interval */
}
uint64_t va = radv_buffer_get_va(device->perf_counter_bo) + PERF_CTR_BO_PASS_OFFSET;
uint64_t unset_va = va + (unlock ? 8 * pass : 0);
uint64_t set_va = va + (unlock ? 0 : 8 * pass);
radeon_emit(PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_COUNT_SEL |
COPY_DATA_WR_CONFIRM);
radeon_emit(0); /* immediate */
radeon_emit(0);
radeon_emit(unset_va);
radeon_emit(unset_va >> 32);
radeon_emit(PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_COUNT_SEL |
COPY_DATA_WR_CONFIRM);
radeon_emit(1); /* immediate */
radeon_emit(0);
radeon_emit(set_va);
radeon_emit(set_va >> 32);
if (unlock) {
uint64_t mutex_va = radv_buffer_get_va(device->perf_counter_bo) + PERF_CTR_BO_LOCK_OFFSET;
radeon_emit(PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) | COPY_DATA_COUNT_SEL |
COPY_DATA_WR_CONFIRM);
radeon_emit(0); /* immediate */
radeon_emit(0);
radeon_emit(mutex_va);
radeon_emit(mutex_va >> 32);
}
radeon_end();
assert(cs->cdw <= cdw);
VkResult result = device->ws->cs_finalize(cs);
if (result != VK_SUCCESS) {
device->ws->cs_destroy(cs);
return NULL;
}
/* All the casts are to avoid MSVC errors around pointer truncation in a non-taken
* alternative.
*/
if (p_atomic_cmpxchg((uintptr_t *)cs_ref, 0, (uintptr_t)cs) != 0) {
device->ws->cs_destroy(cs);
}
return *cs_ref;
}
static void
radv_get_shader_upload_sync_wait(struct radv_device *device, uint64_t shader_upload_seq,
struct vk_sync_wait *out_sync_wait)
{
struct vk_semaphore *semaphore = vk_semaphore_from_handle(device->shader_upload_sem);
struct vk_sync *sync = vk_semaphore_get_active_sync(semaphore);
*out_sync_wait = (struct vk_sync_wait){
.sync = sync,
.wait_value = shader_upload_seq,
.stage_mask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
};
}
static VkResult
radv_queue_submit_normal(struct radv_queue *queue, struct vk_queue_submit *submission)
{
struct radv_device *device = radv_queue_device(queue);
struct radeon_winsys_ctx *ctx = queue->hw_ctx;
bool use_ace = false;
bool use_perf_counters = false;
VkResult result;
uint64_t shader_upload_seq = 0;
uint32_t wait_count = submission->wait_count;
struct vk_sync_wait *waits = submission->waits;
result = radv_update_preambles(&queue->state, device, submission->command_buffers, submission->command_buffer_count,
&use_perf_counters, &use_ace);
if (result != VK_SUCCESS)
return result;
if (use_ace) {
result = radv_update_gang_preambles(queue);
if (result != VK_SUCCESS)
return result;
}
const unsigned cmd_buffer_count = submission->command_buffer_count;
const unsigned max_cs_submission = radv_device_fault_detection_enabled(device) ? 1 : cmd_buffer_count;
const unsigned cs_array_size = (use_ace ? 2 : 1) * MIN2(max_cs_submission, cmd_buffer_count);
struct radeon_cmdbuf **cs_array = malloc(sizeof(struct radeon_cmdbuf *) * cs_array_size);
if (!cs_array)
return VK_ERROR_OUT_OF_HOST_MEMORY;
if (radv_device_fault_detection_enabled(device))
simple_mtx_lock(&device->trace_mtx);
for (uint32_t j = 0; j < submission->command_buffer_count; j++) {
struct radv_cmd_buffer *cmd_buffer = (struct radv_cmd_buffer *)submission->command_buffers[j];
shader_upload_seq = MAX2(shader_upload_seq, cmd_buffer->shader_upload_seq);
}
if (shader_upload_seq > queue->last_shader_upload_seq) {
/* Patch the wait array to add waiting for referenced shaders to upload. */
struct vk_sync_wait *new_waits = malloc(sizeof(struct vk_sync_wait) * (wait_count + 1));
if (!new_waits) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
memcpy(new_waits, submission->waits, sizeof(struct vk_sync_wait) * submission->wait_count);
radv_get_shader_upload_sync_wait(device, shader_upload_seq, &new_waits[submission->wait_count]);
waits = new_waits;
wait_count += 1;
}
/* For fences on the same queue/vm amdgpu doesn't wait till all processing is finished
* before starting the next cmdbuffer, so we need to do it here.
*/
const bool need_wait = wait_count > 0;
unsigned num_initial_preambles = 0;
unsigned num_continue_preambles = 0;
unsigned num_postambles = 0;
struct radeon_cmdbuf *initial_preambles[5] = {0};
struct radeon_cmdbuf *continue_preambles[5] = {0};
struct radeon_cmdbuf *postambles[4] = {0};
if (queue->state.qf == RADV_QUEUE_GENERAL || queue->state.qf == RADV_QUEUE_COMPUTE) {
initial_preambles[num_initial_preambles++] =
need_wait ? queue->state.initial_full_flush_preamble_cs : queue->state.initial_preamble_cs;
continue_preambles[num_continue_preambles++] = queue->state.continue_preamble_cs;
if (use_perf_counters) {
/* RADV only supports perf counters on the GFX queue currently. */
assert(queue->state.qf == RADV_QUEUE_GENERAL);
/* Create the lock/unlock CS. */
struct radeon_cmdbuf *perf_ctr_lock_cs =
radv_create_perf_counter_lock_cs(device, submission->perf_pass_index, false);
struct radeon_cmdbuf *perf_ctr_unlock_cs =
radv_create_perf_counter_lock_cs(device, submission->perf_pass_index, true);
if (!perf_ctr_lock_cs || !perf_ctr_unlock_cs) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
initial_preambles[num_initial_preambles++] = perf_ctr_lock_cs;
continue_preambles[num_continue_preambles++] = perf_ctr_lock_cs;
postambles[num_postambles++] = perf_ctr_unlock_cs;
}
}
if (queue->state.flush_postamble_cs) {
postambles[num_postambles++] = queue->state.flush_postamble_cs;
}
const unsigned num_1q_initial_preambles = num_initial_preambles;
const unsigned num_1q_continue_preambles = num_continue_preambles;
const unsigned num_1q_postambles = num_postambles;
if (use_ace) {
initial_preambles[num_initial_preambles++] = queue->state.gang_wait_preamble_cs;
initial_preambles[num_initial_preambles++] = queue->follower_state->gang_wait_preamble_cs;
initial_preambles[num_initial_preambles++] =
need_wait ? queue->follower_state->initial_full_flush_preamble_cs : queue->follower_state->initial_preamble_cs;
continue_preambles[num_continue_preambles++] = queue->state.gang_wait_preamble_cs;
continue_preambles[num_continue_preambles++] = queue->follower_state->gang_wait_preamble_cs;
continue_preambles[num_continue_preambles++] = queue->follower_state->continue_preamble_cs;
postambles[num_postambles++] = queue->follower_state->gang_wait_postamble_cs;
postambles[num_postambles++] = queue->state.gang_wait_postamble_cs;
}
struct radv_winsys_submit_info submit = {
.ip_type = radv_queue_ring(queue),
.queue_index = queue->vk.index_in_family,
.cs_array = cs_array,
.cs_count = 0,
.initial_preamble_count = num_1q_initial_preambles,
.continue_preamble_count = num_1q_continue_preambles,
.postamble_count = num_1q_postambles,
.initial_preamble_cs = initial_preambles,
.continue_preamble_cs = continue_preambles,
.postamble_cs = postambles,
.uses_shadow_regs = queue->state.uses_shadow_regs,
};
for (uint32_t j = 0, advance; j < cmd_buffer_count; j += advance) {
advance = MIN2(max_cs_submission, cmd_buffer_count - j);
const bool last_submit = j + advance == cmd_buffer_count;
bool submit_ace = false;
unsigned num_submitted_cs = 0;
if (radv_device_fault_detection_enabled(device))
device->trace_data->primary_id = 0;
struct radeon_cmdbuf *chainable = NULL;
struct radeon_cmdbuf *chainable_ace = NULL;
/* Add CS from submitted command buffers. */
for (unsigned c = 0; c < advance; ++c) {
struct radv_cmd_buffer *cmd_buffer = (struct radv_cmd_buffer *)submission->command_buffers[j + c];
assert(cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
const bool can_chain_next = !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT);
/* Follower needs to be before the gang leader because the last CS must match the queue's IP type. */
if (cmd_buffer->gang.cs) {
device->ws->cs_unchain(cmd_buffer->gang.cs);
if (!chainable_ace || !device->ws->cs_chain(chainable_ace, cmd_buffer->gang.cs, false)) {
cs_array[num_submitted_cs++] = cmd_buffer->gang.cs;
/* Prevent chaining the gang leader when the follower couldn't be chained.
* Otherwise, they would be in the wrong order.
*/
chainable = NULL;
}
chainable_ace = can_chain_next ? cmd_buffer->gang.cs : NULL;
submit_ace = true;
}
device->ws->cs_unchain(cmd_buffer->cs);
if (!chainable || !device->ws->cs_chain(chainable, cmd_buffer->cs, queue->state.uses_shadow_regs)) {
/* don't submit empty command buffers to the kernel. */
if ((radv_queue_ring(queue) != AMD_IP_VCN_ENC && radv_queue_ring(queue) != AMD_IP_UVD) ||
cmd_buffer->cs->cdw != 0)
cs_array[num_submitted_cs++] = cmd_buffer->cs;
}
chainable = can_chain_next ? cmd_buffer->cs : NULL;
}
submit.cs_count = num_submitted_cs;
submit.initial_preamble_count = submit_ace ? num_initial_preambles : num_1q_initial_preambles;
submit.continue_preamble_count = submit_ace ? num_continue_preambles : num_1q_continue_preambles;
submit.postamble_count = submit_ace ? num_postambles : num_1q_postambles;
result = device->ws->cs_submit(ctx, &submit, j == 0 ? wait_count : 0, waits,
last_submit ? submission->signal_count : 0, submission->signals);
if (result != VK_SUCCESS)
goto fail;
if (radv_device_fault_detection_enabled(device)) {
result = radv_check_gpu_hangs(queue, &submit);
}
if (device->tma_bo) {
radv_check_trap_handler(queue);
}
initial_preambles[0] = queue->state.initial_preamble_cs;
initial_preambles[1] = !use_ace ? NULL : queue->follower_state->initial_preamble_cs;
}
queue->last_shader_upload_seq = MAX2(queue->last_shader_upload_seq, shader_upload_seq);
radv_dump_printf_data(device, stdout);
fail:
free(cs_array);
if (waits != submission->waits)
free(waits);
if (radv_device_fault_detection_enabled(device))
simple_mtx_unlock(&device->trace_mtx);
return result;
}
static void
radv_report_gpuvm_fault(struct radv_device *device)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
struct radv_winsys_gpuvm_fault_info fault_info = {0};
if (!radv_vm_fault_occurred(device, &fault_info))
return;
fprintf(stderr, "radv: GPUVM fault detected at address 0x%08" PRIx64 ".\n", fault_info.addr);
ac_print_gpuvm_fault_status(stderr, pdev->info.gfx_level, fault_info.status);
}
static VkResult
radv_queue_sparse_submit(struct vk_queue *vqueue, struct vk_queue_submit *submission)
{
struct radv_queue *queue = (struct radv_queue *)vqueue;
struct radv_device *device = radv_queue_device(queue);
VkResult result;
result = radv_queue_submit_bind_sparse_memory(device, submission);
if (result != VK_SUCCESS)
goto fail;
/* We do a CPU wait here, in part to avoid more winsys mechanisms. In the likely kernel explicit
* sync mechanism, we'd need to do a CPU wait anyway. Haven't seen this be a perf issue yet, but
* we have to make sure the queue always has its submission thread enabled. */
result = vk_sync_wait_many(&device->vk, submission->wait_count, submission->waits, 0, UINT64_MAX);
if (result != VK_SUCCESS)
goto fail;
/* Ignore all the commandbuffers. They're necessarily empty anyway. */
for (unsigned i = 0; i < submission->signal_count; ++i) {
result = vk_sync_signal(&device->vk, submission->signals[i].sync, submission->signals[i].signal_value);
if (result != VK_SUCCESS)
goto fail;
}
fail:
if (result != VK_SUCCESS) {
/* When something bad happened during the submission, such as
* an out of memory issue, it might be hard to recover from
* this inconsistent state. To avoid this sort of problem, we
* assume that we are in a really bad situation and return
* VK_ERROR_DEVICE_LOST to ensure the clients do not attempt
* to submit the same job again to this device.
*/
radv_report_gpuvm_fault(device);
result = vk_device_set_lost(&device->vk, "vkQueueSubmit() failed");
}
return result;
}
static VkResult
radv_queue_submit(struct vk_queue *vqueue, struct vk_queue_submit *submission)
{
struct radv_queue *queue = (struct radv_queue *)vqueue;
struct radv_device *device = radv_queue_device(queue);
VkResult result = radv_queue_submit_bind_sparse_memory(device, submission);
if (result != VK_SUCCESS)
goto fail;
if (!submission->command_buffer_count && !submission->wait_count && !submission->signal_count)
return VK_SUCCESS;
if (!submission->command_buffer_count) {
result = radv_queue_submit_empty(queue, submission);
} else {
result = radv_queue_submit_normal(queue, submission);
}
fail:
if (result != VK_SUCCESS) {
/* When something bad happened during the submission, such as
* an out of memory issue, it might be hard to recover from
* this inconsistent state. To avoid this sort of problem, we
* assume that we are in a really bad situation and return
* VK_ERROR_DEVICE_LOST to ensure the clients do not attempt
* to submit the same job again to this device.
*/
radv_report_gpuvm_fault(device);
result = vk_device_set_lost(&device->vk, "vkQueueSubmit() failed");
}
return result;
}
bool
radv_queue_internal_submit(struct radv_queue *queue, struct radeon_cmdbuf *cs)
{
struct radv_device *device = radv_queue_device(queue);
struct radeon_winsys_ctx *ctx = queue->hw_ctx;
struct radv_winsys_submit_info submit = {
.ip_type = radv_queue_ring(queue),
.queue_index = queue->vk.index_in_family,
.cs_array = &cs,
.cs_count = 1,
};
VkResult result = device->ws->cs_submit(ctx, &submit, 0, NULL, 0, NULL);
if (result != VK_SUCCESS)
return false;
return true;
}
int
radv_queue_init(struct radv_device *device, struct radv_queue *queue, int idx,
const VkDeviceQueueCreateInfo *create_info,
const VkDeviceQueueGlobalPriorityCreateInfo *global_priority)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
queue->priority = radv_get_queue_global_priority(global_priority);
queue->hw_ctx = device->hw_ctx[queue->priority];
queue->state.qf = vk_queue_to_radv(pdev, create_info->queueFamilyIndex);
VkResult result = vk_queue_init(&queue->vk, &device->vk, create_info, idx);
if (result != VK_SUCCESS)
return result;
queue->state.uses_shadow_regs = device->uses_shadow_regs && queue->state.qf == RADV_QUEUE_GENERAL;
if (queue->state.uses_shadow_regs) {
result = radv_create_shadow_regs_preamble(device, &queue->state);
if (result != VK_SUCCESS)
goto fail;
result = radv_init_shadowed_regs_buffer_state(device, queue);
if (result != VK_SUCCESS)
goto fail;
}
if (pdev->info.gfx_level <= GFX7 &&
(queue->state.qf == RADV_QUEUE_GENERAL || queue->state.qf == RADV_QUEUE_COMPUTE)) {
result = radv_create_flush_postamble(queue);
if (result != VK_SUCCESS)
goto fail;
}
if (queue->state.qf == RADV_QUEUE_SPARSE) {
queue->vk.driver_submit = radv_queue_sparse_submit;
vk_queue_enable_submit_thread(&queue->vk);
} else {
queue->vk.driver_submit = radv_queue_submit;
}
return VK_SUCCESS;
fail:
vk_queue_finish(&queue->vk);
return result;
}
static void
radv_queue_state_finish(struct radv_queue_state *queue, struct radv_device *device)
{
radv_destroy_shadow_regs_preamble(device, queue, device->ws);
if (queue->initial_full_flush_preamble_cs)
device->ws->cs_destroy(queue->initial_full_flush_preamble_cs);
if (queue->initial_preamble_cs)
device->ws->cs_destroy(queue->initial_preamble_cs);
if (queue->continue_preamble_cs)
device->ws->cs_destroy(queue->continue_preamble_cs);
if (queue->gang_wait_preamble_cs)
device->ws->cs_destroy(queue->gang_wait_preamble_cs);
if (queue->gang_wait_postamble_cs)
device->ws->cs_destroy(queue->gang_wait_postamble_cs);
if (queue->flush_postamble_cs)
device->ws->cs_destroy(queue->flush_postamble_cs);
if (queue->descriptor_bo)
radv_bo_destroy(device, NULL, queue->descriptor_bo);
if (queue->scratch_bo) {
radv_rmv_log_command_buffer_bo_destroy(device, queue->scratch_bo);
radv_bo_destroy(device, NULL, queue->scratch_bo);
}
if (queue->esgs_ring_bo) {
radv_rmv_log_command_buffer_bo_destroy(device, queue->esgs_ring_bo);
radv_bo_destroy(device, NULL, queue->esgs_ring_bo);
}
if (queue->gsvs_ring_bo) {
radv_rmv_log_command_buffer_bo_destroy(device, queue->gsvs_ring_bo);
radv_bo_destroy(device, NULL, queue->gsvs_ring_bo);
}
if (queue->tess_rings_bo) {
radv_rmv_log_command_buffer_bo_destroy(device, queue->tess_rings_bo);
radv_bo_destroy(device, NULL, queue->tess_rings_bo);
}
if (queue->task_rings_bo) {
radv_rmv_log_command_buffer_bo_destroy(device, queue->task_rings_bo);
radv_bo_destroy(device, NULL, queue->task_rings_bo);
}
if (queue->mesh_scratch_ring_bo) {
radv_rmv_log_command_buffer_bo_destroy(device, queue->mesh_scratch_ring_bo);
radv_bo_destroy(device, NULL, queue->mesh_scratch_ring_bo);
}
if (queue->ge_rings_bo) {
radv_rmv_log_command_buffer_bo_destroy(device, queue->ge_rings_bo);
radv_bo_destroy(device, NULL, queue->ge_rings_bo);
}
if (queue->gds_bo) {
device->ws->buffer_make_resident(device->ws, queue->gds_bo, false);
radv_bo_destroy(device, NULL, queue->gds_bo);
}
if (queue->gds_oa_bo) {
device->ws->buffer_make_resident(device->ws, queue->gds_oa_bo, false);
radv_bo_destroy(device, NULL, queue->gds_oa_bo);
}
if (queue->compute_scratch_bo) {
radv_rmv_log_command_buffer_bo_destroy(device, queue->compute_scratch_bo);
radv_bo_destroy(device, NULL, queue->compute_scratch_bo);
}
}
void
radv_queue_finish(struct radv_queue *queue)
{
struct radv_device *device = radv_queue_device(queue);
if (queue->follower_state) {
/* Prevent double free */
queue->follower_state->task_rings_bo = NULL;
/* Clean up the internal ACE queue state. */
radv_queue_state_finish(queue->follower_state, device);
free(queue->follower_state);
}
if (queue->gang_sem_bo)
radv_bo_destroy(device, &queue->vk.base, queue->gang_sem_bo);
radv_queue_state_finish(&queue->state, device);
vk_queue_finish(&queue->vk);
}
enum amd_ip_type
radv_queue_ring(const struct radv_queue *queue)
{
struct radv_device *device = radv_queue_device(queue);
const struct radv_physical_device *pdev = radv_device_physical(device);
return radv_queue_family_to_ring(pdev, queue->state.qf);
}
enum amd_ip_type
radv_queue_family_to_ring(const struct radv_physical_device *pdev, enum radv_queue_family f)
{
switch (f) {
case RADV_QUEUE_GENERAL:
return AMD_IP_GFX;
case RADV_QUEUE_COMPUTE:
return AMD_IP_COMPUTE;
case RADV_QUEUE_TRANSFER:
return AMD_IP_SDMA;
case RADV_QUEUE_VIDEO_DEC:
return pdev->vid_decode_ip;
case RADV_QUEUE_VIDEO_ENC:
return AMD_IP_VCN_ENC;
default:
unreachable("Unknown queue family");
}
}