blob: b79c3eccc2fc7812b54dda584180354ae8c7489a [file] [log] [blame]
/*
* Copyright © 2023 Valve Corporation
*
* SPDX-License-Identifier: MIT
*/
#version 460
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
#extension GL_EXT_scalar_block_layout : require
#extension GL_EXT_buffer_reference : require
#extension GL_EXT_buffer_reference2 : require
#extension GL_KHR_memory_scope_semantics : require
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
#include "build_interface.h"
#include "update.h"
layout(push_constant) uniform CONSTS {
update_args args;
};
uint32_t fetch_parent_node(VOID_REF bvh, uint32_t node)
{
uint64_t addr = bvh - node / 8 * 4 - 4;
return DEREF(REF(uint32_t)(addr));
}
void main() {
uint32_t bvh_offset = DEREF(args.src).bvh_offset;
VOID_REF src_bvh = OFFSET(args.src, bvh_offset);
VOID_REF dst_bvh = OFFSET(args.dst, bvh_offset);
uint32_t leaf_node_size;
if (args.geom_data.geometry_type == VK_GEOMETRY_TYPE_TRIANGLES_KHR)
leaf_node_size = SIZEOF(radv_bvh_triangle_node);
else if (args.geom_data.geometry_type == VK_GEOMETRY_TYPE_AABBS_KHR)
leaf_node_size = SIZEOF(radv_bvh_aabb_node);
else
leaf_node_size = SIZEOF(radv_bvh_instance_node);
uint32_t leaf_node_id = args.geom_data.first_id + gl_GlobalInvocationID.x;
uint32_t first_leaf_offset = id_to_offset(RADV_BVH_ROOT_NODE) + SIZEOF(radv_bvh_box32_node);
uint32_t dst_offset = leaf_node_id * leaf_node_size + first_leaf_offset;
VOID_REF dst_ptr = OFFSET(dst_bvh, dst_offset);
uint32_t src_offset = gl_GlobalInvocationID.x * args.geom_data.stride;
vk_aabb bounds;
bool is_active;
if (args.geom_data.geometry_type == VK_GEOMETRY_TYPE_TRIANGLES_KHR) {
is_active = radv_build_triangle(bounds, dst_ptr, args.geom_data, gl_GlobalInvocationID.x, false);
} else {
VOID_REF src_ptr = OFFSET(args.geom_data.data, src_offset);
is_active = radv_build_aabb(bounds, src_ptr, dst_ptr, args.geom_data.geometry_id, gl_GlobalInvocationID.x, false);
}
if (!is_active)
return;
DEREF(INDEX(vk_aabb, args.leaf_bounds, leaf_node_id)) = bounds;
memoryBarrier(gl_ScopeDevice,
gl_StorageSemanticsBuffer,
gl_SemanticsAcquireRelease | gl_SemanticsMakeAvailable | gl_SemanticsMakeVisible);
uint32_t node_id = pack_node_id(dst_offset, 0);
uint32_t parent_id = fetch_parent_node(src_bvh, node_id);
uint32_t internal_nodes_offset = first_leaf_offset + args.leaf_node_count * leaf_node_size;
while (parent_id != RADV_BVH_INVALID_NODE) {
uint32_t offset = id_to_offset(parent_id);
uint32_t parent_index = (offset - internal_nodes_offset) / SIZEOF(radv_bvh_box32_node) + 1;
if (parent_id == RADV_BVH_ROOT_NODE)
parent_index = 0;
/* Make accesses to internal nodes in dst_bvh available and visible */
memoryBarrier(gl_ScopeDevice,
gl_StorageSemanticsBuffer,
gl_SemanticsAcquireRelease | gl_SemanticsMakeAvailable | gl_SemanticsMakeVisible);
REF(radv_bvh_box32_node) src_node = REF(radv_bvh_box32_node)OFFSET(src_bvh, offset);
REF(radv_bvh_box32_node) dst_node = REF(radv_bvh_box32_node)OFFSET(dst_bvh, offset);
uint32_t children[4];
for (uint32_t i = 0; i < 4; ++i)
children[i] = DEREF(src_node).children[i];
uint32_t valid_child_count = 0;
for (uint32_t i = 0; i < 4; ++valid_child_count, ++i)
if (children[i] == RADV_BVH_INVALID_NODE)
break;
/* Check if all children have been processed. As this is an atomic the last path coming from
* a child will pass here, while earlier paths break.
*/
uint32_t ready_child_count = atomicAdd(
DEREF(INDEX(uint32_t, args.internal_ready_count, parent_index)), 1, gl_ScopeDevice,
gl_StorageSemanticsBuffer,
gl_SemanticsAcquireRelease | gl_SemanticsMakeAvailable | gl_SemanticsMakeVisible);
if (ready_child_count != valid_child_count - 1)
break;
if (!VK_BUILD_FLAG(RADV_BUILD_FLAG_UPDATE_IN_PLACE)) {
for (uint32_t i = 0; i < 4; ++i)
DEREF(dst_node).children[i] = children[i];
}
for (uint32_t i = 0; i < valid_child_count; ++i) {
uint32_t child_offset = id_to_offset(children[i]);
vk_aabb child_bounds;
if (child_offset == dst_offset)
child_bounds = bounds;
else if (child_offset >= internal_nodes_offset) {
child_bounds = vk_aabb(vec3(INFINITY), vec3(-INFINITY));
REF(radv_bvh_box32_node) child_node = REF(radv_bvh_box32_node)OFFSET(dst_bvh, child_offset);
for (uint32_t j = 0; j < 4; ++j) {
if (DEREF(child_node).children[j] == RADV_BVH_INVALID_NODE)
break;
child_bounds.min = min(child_bounds.min, DEREF(child_node).coords[j].min);
child_bounds.max = max(child_bounds.max, DEREF(child_node).coords[j].max);
}
} else {
uint32_t child_index = (child_offset - first_leaf_offset) / leaf_node_size;
child_bounds = DEREF(INDEX(vk_aabb, args.leaf_bounds, child_index));
}
DEREF(dst_node).coords[i] = child_bounds;
}
if (parent_id == RADV_BVH_ROOT_NODE) {
vk_aabb root_bounds = vk_aabb(vec3(INFINITY), vec3(-INFINITY));
for (uint32_t i = 0; i < valid_child_count; ++i) {
vk_aabb bounds = DEREF(dst_node).coords[i];
root_bounds.min = min(root_bounds.min, bounds.min);
root_bounds.max = max(root_bounds.max, bounds.max);
}
DEREF(args.dst).aabb = root_bounds;
}
parent_id = fetch_parent_node(src_bvh, parent_id);
}
}