blob: ace6b78373a0c09b4f5ea91f6f082f166b307cb3 [file] [log] [blame]
/*
* Copyright © 2020 Valve Corporation
*
* SPDX-License-Identifier: MIT
*/
#include "helpers.h"
using namespace aco;
BEGIN_TEST(regalloc.subdword_alloc.reuse_16bit_operands)
/* Registers of operands should be "recycled" for the output. But if the
* input is smaller than the output, that's not generally possible. The
* first v_cvt_f32_f16 instruction below uses the upper 16 bits of v0
* while the lower 16 bits are still live, so the output must be stored in
* a register other than v0. For the second v_cvt_f32_f16, the original
* value stored in v0 is no longer used and hence it's safe to store the
* result in v0, which might or might not happen.
*/
/* TODO: is this possible to do on GFX11? */
for (amd_gfx_level cc = GFX8; cc <= GFX10_3; cc = (amd_gfx_level)((unsigned)cc + 1)) {
for (bool pessimistic : {false, true}) {
const char* subvariant = pessimistic ? "/pessimistic" : "/optimistic";
//>> v1: %_:v[#a] = p_startpgm
if (!setup_cs("v1", (amd_gfx_level)cc, CHIP_UNKNOWN, subvariant))
return;
//! v2b: %_:v[#a][0:16], v2b: %res1:v[#a][16:32] = p_split_vector %_:v[#a]
Builder::Result tmp =
bld.pseudo(aco_opcode::p_split_vector, bld.def(v2b), bld.def(v2b), inputs[0]);
//! v1: %_:v[#b] = v_cvt_f32_f16 %_:v[#a][16:32] dst_sel:dword src0_sel:uword1
//! v1: %_:v[#_] = v_cvt_f32_f16 %_:v[#a][0:16]
//; success = (b != a)
auto result1 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), tmp.def(1).getTemp());
auto result2 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), tmp.def(0).getTemp());
writeout(0, result1);
writeout(1, result2);
finish_ra_test(ra_test_policy{pessimistic});
}
}
END_TEST
BEGIN_TEST(regalloc._32bit_partial_write)
//>> v1: %_:v[0] = p_startpgm
if (!setup_cs("v1", GFX10))
return;
/* ensure high 16 bits are occupied */
//! v2b: %_:v[0][0:16], v2b: %_:v[0][16:32] = p_split_vector %_:v[0]
Temp hi =
bld.pseudo(aco_opcode::p_split_vector, bld.def(v2b), bld.def(v2b), inputs[0]).def(1).getTemp();
/* This test checks if this instruction uses SDWA. */
//! v2b: %_:v[0][0:16] = v_not_b32 0 dst_sel:uword0 dst_preserve src0_sel:dword
Temp lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v2b), Operand::zero());
//! v1: %_:v[0] = p_create_vector %_:v[0][0:16], %_:v[0][16:32]
bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), lo, hi);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.precolor.swap)
//>> s2: %op0:s[0-1] = p_startpgm
if (!setup_cs("s2", GFX10))
return;
program->dev.sgpr_limit = 4;
//! s2: %op1:s[2-3] = p_unit_test
Temp op1 = bld.pseudo(aco_opcode::p_unit_test, bld.def(s2));
//! s2: %op0_2:s[2-3], s2: %op1_2:s[0-1] = p_parallelcopy %op0:s[0-1], %op1:s[2-3]
//! p_unit_test %op0_2:s[2-3], %op1_2:s[0-1]
Operand op(inputs[0]);
op.setPrecolored(PhysReg(2));
bld.pseudo(aco_opcode::p_unit_test, op, op1);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.precolor.blocking_vector)
//>> s2: %tmp0:s[0-1], s1: %tmp1:s[2] = p_startpgm
if (!setup_cs("s2 s1", GFX10))
return;
//! s1: %tmp1_2:s[1], s2: %tmp0_2:s[2-3] = p_parallelcopy %tmp1:s[2], %tmp0:s[0-1]
//! p_unit_test %tmp1_2:s[1]
Operand op(inputs[1]);
op.setPrecolored(PhysReg(1));
bld.pseudo(aco_opcode::p_unit_test, op);
//! p_unit_test %tmp0_2:s[2-3]
bld.pseudo(aco_opcode::p_unit_test, inputs[0]);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.precolor.vector.test)
//>> s2: %tmp0:s[0-1], s1: %tmp1:s[2], s1: %tmp2:s[3] = p_startpgm
if (!setup_cs("s2 s1 s1", GFX10))
return;
//! s2: %tmp0_2:s[2-3], s1: %tmp2_2:s[#t2] = p_parallelcopy %tmp0:s[0-1], %tmp2:s[3]
//! p_unit_test %tmp0_2:s[2-3]
Operand op(inputs[0]);
op.setPrecolored(PhysReg(2));
bld.pseudo(aco_opcode::p_unit_test, op);
//! p_unit_test %tmp2_2:s[#t2]
bld.pseudo(aco_opcode::p_unit_test, inputs[2]);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.precolor.vector.collect)
//>> s2: %tmp0:s[0-1], s1: %tmp1:s[2], s1: %tmp2:s[3] = p_startpgm
if (!setup_cs("s2 s1 s1", GFX10))
return;
//! s2: %tmp0_2:s[2-3], s1: %tmp1_2:s[#t1], s1: %tmp2_2:s[#t2] = p_parallelcopy %tmp0:s[0-1], %tmp1:s[2], %tmp2:s[3]
//! p_unit_test %tmp0_2:s[2-3]
Operand op(inputs[0]);
op.setPrecolored(PhysReg(2));
bld.pseudo(aco_opcode::p_unit_test, op);
//! p_unit_test %tmp1_2:s[#t1], %tmp2_2:s[#t2]
bld.pseudo(aco_opcode::p_unit_test, inputs[1], inputs[2]);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.precolor.vgpr_move)
//>> v1: %tmp0:v[0], v1: %tmp1:v[1] = p_startpgm
if (!setup_cs("v1 v1", GFX10))
return;
//! v1: %tmp1_2:v[0], v1: %tmp0_2:v[#t0] = p_parallelcopy %tmp1:v[1], %tmp0:v[0]
//! p_unit_test %tmp0_2:v[#t0], %tmp1_2:v[0]
bld.pseudo(aco_opcode::p_unit_test, inputs[0], Operand(inputs[1], PhysReg(256)));
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.precolor.multiple_operands)
//>> v1: %tmp0:v[0], v1: %tmp1:v[1], v1: %tmp2:v[2], v1: %tmp3:v[3] = p_startpgm
if (!setup_cs("v1 v1 v1 v1", GFX10))
return;
//! v1: %tmp3_2:v[0], v1: %tmp0_2:v[1], v1: %tmp1_2:v[2], v1: %tmp2_2:v[3] = p_parallelcopy %tmp3:v[3], %tmp0:v[0], %tmp1:v[1], %tmp2:v[2]
//! p_unit_test %tmp3_2:v[0], %tmp0_2:v[1], %tmp1_2:v[2], %tmp2_2:v[3]
bld.pseudo(aco_opcode::p_unit_test, Operand(inputs[3], PhysReg(256 + 0)),
Operand(inputs[0], PhysReg(256 + 1)), Operand(inputs[1], PhysReg(256 + 2)),
Operand(inputs[2], PhysReg(256 + 3)));
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.precolor.different_regs)
//>> v1: %tmp0:v[0] = p_startpgm
if (!setup_cs("v1", GFX10))
return;
//! v1: %tmp1:v[1], v1: %tmp2:v[2] = p_parallelcopy %tmp0:v[0], %tmp0:v[0]
//! p_unit_test %tmp0:v[0], %tmp1:v[1], %tmp2:v[2]
bld.pseudo(aco_opcode::p_unit_test, Operand(inputs[0], PhysReg(256 + 0)),
Operand(inputs[0], PhysReg(256 + 1)), Operand(inputs[0], PhysReg(256 + 2)));
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.precolor.different_regs_src)
//>> v1: %tmp0:v[0] = p_startpgm
if (!setup_cs("v1", GFX10))
return;
//! v1: %tmp1:v[1], v1: %tmp2:v[2] = p_parallelcopy %tmp0:v[0], %tmp0:v[0]
//! p_unit_test %tmp1:v[1], %tmp0:v[0], %tmp2:v[2]
bld.pseudo(aco_opcode::p_unit_test, Operand(inputs[0], PhysReg(256 + 1)),
Operand(inputs[0], PhysReg(256 + 0)), Operand(inputs[0], PhysReg(256 + 2)));
//! p_unit_test %tmp0:v[0]
bld.pseudo(aco_opcode::p_unit_test, Operand(inputs[0]));
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.precolor.different_regs_def_interference)
//>> v1: %tmp0:v[0] = p_startpgm
if (!setup_cs("v1", GFX10))
return;
Temp def = bld.tmp(v2);
//! v1: %tmp1:v[1], v1: %tmp2:v[2] = p_parallelcopy %tmp0:v[0], %tmp0:v[0]
//! v2: %tmp3:v[0-1] = p_unit_test %tmp0:v[0], %tmp1:v[1], %tmp2:v[2]
bld.pseudo(aco_opcode::p_unit_test, Definition(def, PhysReg(256 + 0)),
Operand(inputs[0], PhysReg(256 + 0)), Operand(inputs[0], PhysReg(256 + 1)),
Operand(inputs[0], PhysReg(256 + 2)));
//! p_unit_test %tmp2:v[2]
bld.pseudo(aco_opcode::p_unit_test, Operand(inputs[0]));
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.precolor.different_regs_def_all_clobbered)
//>> v1: %tmp0:v[0] = p_startpgm
if (!setup_cs("v1", GFX10))
return;
Temp def = bld.tmp(v3);
//! v1: %tmp1:v[1], v1: %tmp2:v[2], v1: %tmp3:v[3] = p_parallelcopy %tmp0:v[0], %tmp0:v[0], %tmp0:v[0]
//! v3: %tmp4:v[0-2] = p_unit_test %tmp0:v[0], %tmp1:v[1], %tmp2:v[2]
bld.pseudo(aco_opcode::p_unit_test, Definition(def, PhysReg(256 + 0)),
Operand(inputs[0], PhysReg(256 + 0)), Operand(inputs[0], PhysReg(256 + 1)),
Operand(inputs[0], PhysReg(256 + 2)));
//! p_unit_test %tmp3:v[3]
bld.pseudo(aco_opcode::p_unit_test, Operand(inputs[0]));
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.branch_def_phis_at_merge_block)
//>> p_startpgm
if (!setup_cs("", GFX10))
return;
program->blocks[0].kind &= ~block_kind_top_level;
//! p_branch
bld.branch(aco_opcode::p_branch);
//! BB1
//! /* logical preds: / linear preds: BB0, / kind: uniform, */
bld.reset(program->create_and_insert_block());
program->blocks[1].linear_preds.push_back(0);
//! s2: %tmp:s[0-1] = p_linear_phi 0
Temp tmp = bld.pseudo(aco_opcode::p_linear_phi, bld.def(s2), Operand::c64(0u));
//! p_unit_test %tmp:s[0-1]
bld.pseudo(aco_opcode::p_unit_test, tmp);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.branch_def_phis_at_branch_block)
//>> p_startpgm
if (!setup_cs("", GFX10))
return;
//! s2: %tmp:s[0-1] = p_unit_test
Temp tmp = bld.pseudo(aco_opcode::p_unit_test, bld.def(s2));
//! p_cbranch_z %0:scc
bld.branch(aco_opcode::p_cbranch_z, Operand(scc, s1));
//! BB1
//! /* logical preds: / linear preds: BB0, / kind: */
bld.reset(program->create_and_insert_block());
program->blocks[1].linear_preds.push_back(0);
//! p_unit_test %tmp:s[0-1]
bld.pseudo(aco_opcode::p_unit_test, tmp);
bld.branch(aco_opcode::p_branch);
bld.reset(program->create_and_insert_block());
program->blocks[2].linear_preds.push_back(0);
bld.branch(aco_opcode::p_branch);
bld.reset(program->create_and_insert_block());
program->blocks[3].linear_preds.push_back(1);
program->blocks[3].linear_preds.push_back(2);
program->blocks[3].kind |= block_kind_top_level;
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.vintrp_fp16)
//>> v1: %in0:v[0], s1: %in1:s[0], v1: %in2:v[1] = p_startpgm
if (!setup_cs("v1 s1 v1", GFX10))
return;
//! s1: %npm:m0 = p_parallelcopy %in1:s[0]
//! v2b: %lo:v[2][0:16] = v_interp_p2_f16 %in0:v[0], %npm:m0, %in2:v[1] attr0.x
Temp lo = bld.vintrp(aco_opcode::v_interp_p2_f16, bld.def(v2b), inputs[0], bld.m0(inputs[1]),
inputs[2], 0, 0, false);
//! v2b: %hi:v[2][16:32] = v_interp_p2_hi_f16 %in0:v[0], %npm:m0, %in2:v[1] attr0.x high
Temp hi = bld.vintrp(aco_opcode::v_interp_p2_f16, bld.def(v2b), inputs[0], bld.m0(inputs[1]),
inputs[2], 0, 0, true);
//! v1: %res:v[2] = p_create_vector %lo:v[2][0:16], %hi:v[2][16:32]
Temp res = bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), lo, hi);
//! p_unit_test %res:v[2]
bld.pseudo(aco_opcode::p_unit_test, res);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.vinterp_fp16)
//>> v1: %in0:v[0], v1: %in1:v[1], v1: %in2:v[2] = p_startpgm
if (!setup_cs("v1 v1 v1", GFX11))
return;
//! v2b: %lo:v[3][0:16], v2b: %hi:v[3][16:32] = p_split_vector %in0:v[0]
Temp lo = bld.tmp(v2b);
Temp hi = bld.tmp(v2b);
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), inputs[0]);
//! v1: %tmp0:v[1] = v_interp_p10_f16_f32_inreg %lo:v[3][0:16], %in1:v[1], hi(%hi:v[3][16:32])
//! p_unit_test %tmp0:v[1]
Temp tmp0 =
bld.vinterp_inreg(aco_opcode::v_interp_p10_f16_f32_inreg, bld.def(v1), lo, inputs[1], hi);
bld.pseudo(aco_opcode::p_unit_test, tmp0);
//! v2b: %tmp1:v[#r][16:32] = v_interp_p2_f16_f32_inreg %in0:v[0], %in2:v[2], %tmp0:v[1] opsel_hi
//! v1: %tmp2:v[#r] = p_create_vector 0, %tmp1:v[#r][16:32]
//! p_unit_test %tmp2:v[#r]
Temp tmp1 = bld.vinterp_inreg(aco_opcode::v_interp_p2_f16_f32_inreg, bld.def(v2b), inputs[0],
inputs[2], tmp0);
Temp tmp2 = bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), Operand::zero(2), tmp1);
bld.pseudo(aco_opcode::p_unit_test, tmp2);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.writelane)
//>> v1: %in0:v[0], s1: %in1:s[0], s1: %in2:s[1], s1: %in3:s[2] = p_startpgm
if (!setup_cs("v1 s1 s1 s1", GFX8))
return;
//! s1: %tmp:m0 = p_parallelcopy %int3:s[2]
Temp tmp = bld.copy(bld.def(s1, m0), inputs[3]);
//! s1: %in1_2:m0, s1: %tmp_2:s[#t2] = p_parallelcopy %in1:s[0], %tmp:m0
//! v1: %tmp2:v[0] = v_writelane_b32_e64 %in1_2:m0, %in2:s[1], %in0:v[0]
Temp tmp2 = bld.writelane(bld.def(v1), inputs[1], inputs[2], inputs[0]);
//! p_unit_test %tmp_2:s[#t2], %tmp2:v[0]
bld.pseudo(aco_opcode::p_unit_test, tmp, tmp2);
finish_ra_test(ra_test_policy());
END_TEST
static void
end_linear_vgpr(Temp tmp)
{
bld.pseudo(aco_opcode::p_end_linear_vgpr, tmp);
}
BEGIN_TEST(regalloc.linear_vgpr.alloc.basic)
if (!setup_cs("", GFX8))
return;
//>> lv1: %ltmp0:v[31] = p_start_linear_vgpr
//! lv1: %ltmp1:v[30] = p_start_linear_vgpr
//! p_end_linear_vgpr %ltmp0:v[31]
//! lv1: %ltmp2:v[31] = p_start_linear_vgpr
//! p_end_linear_vgpr %ltmp1:v[30]
//! p_end_linear_vgpr %ltmp2:v[31]
Temp ltmp0 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
Temp ltmp1 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
end_linear_vgpr(ltmp0);
Temp ltmp2 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
end_linear_vgpr(ltmp1);
end_linear_vgpr(ltmp2);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.linear_vgpr.alloc.compact_grow)
for (bool pessimistic : {false, true}) {
const char* subvariant = pessimistic ? "_pessimistic" : "_optimistic";
//>> v1: %in0:v[0] = p_startpgm
if (!setup_cs("v1", GFX8, CHIP_UNKNOWN, subvariant))
continue;
//! lv1: %ltmp0:v[31] = p_start_linear_vgpr
//! lv1: %ltmp1:v[30] = p_start_linear_vgpr
//! p_end_linear_vgpr %ltmp0:v[31]
Temp ltmp0 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
Temp ltmp1 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
end_linear_vgpr(ltmp0);
//! v1: %tmp:v[29] = p_parallelcopy %in0:v[0]
Temp tmp = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(v1, PhysReg(256 + 29)), inputs[0]);
/* When there's not enough space in the linear VGPR area for a new one, the area is compacted
* and the beginning is chosen. Any variables which are in the way, are moved.
*/
//! lv1: %ltmp1_2:v[31] = p_parallelcopy %ltmp1:v[30]
//! v1: %tmp_2:v[#_] = p_parallelcopy %tmp:v[29]
//! lv2: %ltmp2:v[29-30] = p_start_linear_vgpr
Temp ltmp2 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v2.as_linear()));
//! p_end_linear_vgpr %ltmp1_2:v[31]
//! p_end_linear_vgpr %ltmp2:v[29-30]
end_linear_vgpr(ltmp1);
end_linear_vgpr(ltmp2);
//! p_unit_test %tmp_2:v[#_]
bld.pseudo(aco_opcode::p_unit_test, tmp);
finish_ra_test(ra_test_policy{pessimistic});
}
END_TEST
BEGIN_TEST(regalloc.linear_vgpr.alloc.compact_shrink)
for (bool pessimistic : {false, true}) {
const char* subvariant = pessimistic ? "_pessimistic" : "_optimistic";
//>> v1: %in0:v[0] = p_startpgm
if (!setup_cs("v1", GFX8, CHIP_UNKNOWN, subvariant))
continue;
//! lv1: %ltmp0:v[31] = p_start_linear_vgpr
//! lv1: %ltmp1:v[30] = p_start_linear_vgpr
//! lv1: %ltmp2:v[29] = p_start_linear_vgpr
//! lv1: %ltmp3:v[28] = p_start_linear_vgpr
//! lv1: %ltmp4:v[27] = p_start_linear_vgpr
//! p_end_linear_vgpr %ltmp0:v[31]
//! p_end_linear_vgpr %ltmp2:v[29]
//! p_end_linear_vgpr %ltmp4:v[27]
Temp ltmp0 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
Temp ltmp1 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
Temp ltmp2 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
Temp ltmp3 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
Temp ltmp4 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
end_linear_vgpr(ltmp0);
end_linear_vgpr(ltmp2);
end_linear_vgpr(ltmp4);
/* Unlike regalloc.linear_vgpr.alloc.compact_grow, this shrinks the linear VGPR area. */
//! lv1: %ltmp3_2:v[30], lv1: %ltmp1_2:v[31] = p_parallelcopy %ltmp3:v[28], %ltmp1:v[30]
//! lv2: %ltmp5:v[28-29] = p_start_linear_vgpr
Temp ltmp5 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v2.as_linear()));
/* There should be enough space for 28 normal VGPRs. */
//! v28: %_:v[0-27] = p_unit_test
bld.pseudo(aco_opcode::p_unit_test, bld.def(RegClass::get(RegType::vgpr, 28 * 4)));
//! p_end_linear_vgpr %ltmp1_2:v[31]
//! p_end_linear_vgpr %ltmp3_2:v[30]
//! p_end_linear_vgpr %ltmp5:v[28-29]
end_linear_vgpr(ltmp1);
end_linear_vgpr(ltmp3);
end_linear_vgpr(ltmp5);
finish_ra_test(ra_test_policy{pessimistic});
}
END_TEST
BEGIN_TEST(regalloc.linear_vgpr.alloc.compact_for_normal)
for (bool pessimistic : {false, true}) {
const char* subvariant = pessimistic ? "_pessimistic" : "_optimistic";
//>> v1: %in0:v[0] = p_startpgm
if (!setup_cs("v1", GFX8, CHIP_UNKNOWN, subvariant))
continue;
//! lv1: %ltmp0:v[31] = p_start_linear_vgpr
//! lv1: %ltmp1:v[30] = p_start_linear_vgpr
//! p_end_linear_vgpr %ltmp0:v[31]
Temp ltmp0 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
Temp ltmp1 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
end_linear_vgpr(ltmp0);
//! lv1: %ltmp1_2:v[31] = p_parallelcopy %ltmp1:v[30]
//! v31: %_:v[0-30] = p_unit_test
bld.pseudo(aco_opcode::p_unit_test, bld.def(RegClass::get(RegType::vgpr, 31 * 4)));
//! p_end_linear_vgpr %ltmp1_2:v[31]
end_linear_vgpr(ltmp1);
finish_ra_test(ra_test_policy{pessimistic});
}
END_TEST
BEGIN_TEST(regalloc.linear_vgpr.alloc.compact_for_vec)
for (bool pessimistic : {false, true}) {
const char* subvariant = pessimistic ? "_pessimistic" : "_optimistic";
//>> v1: %in0:v[0] = p_startpgm
if (!setup_cs("v1", GFX8, CHIP_UNKNOWN, subvariant))
continue;
//! lv1: %ltmp0:v[31] = p_start_linear_vgpr
//! lv1: %ltmp1:v[30] = p_start_linear_vgpr
//! p_end_linear_vgpr %ltmp0:v[31]
Temp ltmp0 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
Temp ltmp1 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
end_linear_vgpr(ltmp0);
//! lv1: %ltmp1_2:v[31] = p_parallelcopy %ltmp1:v[30]
//! v31: %_:v[0-30] = p_create_vector v31: undef
RegClass v31 = RegClass::get(RegType::vgpr, 31 * 4);
bld.pseudo(aco_opcode::p_create_vector, bld.def(v31), Operand(v31));
//! p_end_linear_vgpr %ltmp1_2:v[31]
end_linear_vgpr(ltmp1);
finish_ra_test(ra_test_policy{pessimistic});
}
END_TEST
BEGIN_TEST(regalloc.linear_vgpr.alloc.killed_op)
for (bool pessimistic : {false, true}) {
const char* subvariant = pessimistic ? "_pessimistic" : "_optimistic";
if (!setup_cs("", GFX8, CHIP_UNKNOWN, subvariant))
continue;
//>> v31: %tmp0:v[0-30] = p_unit_test
//! v1: %tmp1:v[31] = p_unit_test
Temp tmp0 =
bld.pseudo(aco_opcode::p_unit_test, bld.def(RegClass::get(RegType::vgpr, 31 * 4)));
Temp tmp1 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1));
//! lv1: %ltmp0:v[31] = p_start_linear_vgpr %tmp1:v[31]
//! p_end_linear_vgpr %ltmp0:v[31]
Temp ltmp0 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()), tmp1);
end_linear_vgpr(ltmp0);
bld.pseudo(aco_opcode::p_unit_test, tmp0);
finish_ra_test(ra_test_policy{pessimistic});
}
END_TEST
BEGIN_TEST(regalloc.linear_vgpr.alloc.move_killed_op)
for (bool pessimistic : {false, true}) {
const char* subvariant = pessimistic ? "_pessimistic" : "_optimistic";
if (!setup_cs("", GFX8, CHIP_UNKNOWN, subvariant))
continue;
//>> v30: %tmp0:v[0-29] = p_unit_test
//! v1: %tmp1:v[30] = p_unit_test
//! v1: %tmp2:v[31] = p_unit_test
Temp tmp0 =
bld.pseudo(aco_opcode::p_unit_test, bld.def(RegClass::get(RegType::vgpr, 30 * 4)));
Temp tmp1 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1));
Temp tmp2 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1));
//~gfx8_optimistic! v1: %tmp1_2:v[31], v1: %tmp2_2:v[30] = p_parallelcopy %tmp1:v[30], %tmp2:v[31]
//~gfx8_pessimistic! v1: %tmp2_2:v[30], v1: %tmp1_2:v[31] = p_parallelcopy %tmp2:v[31], %tmp1:v[30]
//! lv1: %ltmp0:v[31] = p_start_linear_vgpr %tmp1_2:v[31]
//! p_end_linear_vgpr %ltmp0:v[31]
Temp ltmp0 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()), tmp1);
end_linear_vgpr(ltmp0);
//! p_unit_test %tmp0:v[0-29], %tmp2_2:v[30]
bld.pseudo(aco_opcode::p_unit_test, tmp0, tmp2);
finish_ra_test(ra_test_policy{pessimistic});
}
END_TEST
BEGIN_TEST(regalloc.linear_vgpr.compact_for_future_def)
for (bool cbr : {false, true}) {
const char* subvariant = cbr ? "_cbranch" : "_branch";
if (!setup_cs("", GFX8, CHIP_UNKNOWN, subvariant))
continue;
//>> lv2: %ltmp0:v[30-31] = p_start_linear_vgpr
//! lv1: %ltmp1:v[29] = p_start_linear_vgpr
//! lv1: %ltmp2:v[28] = p_start_linear_vgpr
//! p_end_linear_vgpr %ltmp1:v[29]
Temp ltmp0 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v2.as_linear()));
Temp ltmp1 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
Temp ltmp2 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
end_linear_vgpr(ltmp1);
//! s1: %scc_tmp:scc = p_unit_test
Temp scc_tmp = bld.pseudo(aco_opcode::p_unit_test, bld.def(s1, scc));
//! lv1: %ltmp2_2:v[29] = p_parallelcopy %ltmp2:v[28]
//~gfx8_cbranch! p_cbranch_z %scc_tmp:scc
//~gfx8_branch! p_branch
if (cbr)
bld.branch(aco_opcode::p_cbranch_z, bld.scc(scc_tmp));
else
bld.branch(aco_opcode::p_branch);
//! BB1
//! /* logical preds: BB0, / linear preds: BB0, / kind: */
bld.reset(program->create_and_insert_block());
program->blocks[1].linear_preds.push_back(0);
program->blocks[1].logical_preds.push_back(0);
//! v29: %_:v[0-28] = p_unit_test
//! p_branch
bld.pseudo(aco_opcode::p_unit_test, bld.def(RegClass::get(RegType::vgpr, 29 * 4)));
bld.branch(aco_opcode::p_branch);
//! BB2
//! /* logical preds: BB1, / linear preds: BB1, / kind: uniform, top-level, */
bld.reset(program->create_and_insert_block());
program->blocks[2].linear_preds.push_back(1);
program->blocks[2].logical_preds.push_back(1);
program->blocks[2].kind |= block_kind_top_level;
//! p_end_linear_vgpr %ltmp0_2:v[30-31]
//! p_end_linear_vgpr %ltmp2_2:v[29]
end_linear_vgpr(ltmp0);
end_linear_vgpr(ltmp2);
finish_ra_test(ra_test_policy());
//~gfx8_cbranch>> lv1: %ltmp2_2:v[29] = p_parallelcopy %ltmp2:v[28] needs_scratch:1 scratch:s0
//~gfx8_branch>> lv1: %ltmp2_2:v[29] = p_parallelcopy %ltmp2:v[28] needs_scratch:1 scratch:s253
aco_ptr<Instruction>& parallelcopy = program->blocks[0].instructions[6];
aco_print_instr(program->gfx_level, parallelcopy.get(), output);
if (parallelcopy->isPseudo()) {
fprintf(output, " needs_scratch:%d scratch:s%u\n",
parallelcopy->pseudo().needs_scratch_reg,
parallelcopy->pseudo().scratch_sgpr.reg());
} else {
fprintf(output, "\n");
}
}
END_TEST
BEGIN_TEST(regalloc.linear_vgpr.compact_for_future_phis)
for (bool cbr : {false, true}) {
const char* subvariant = cbr ? "_cbranch" : "_branch";
if (!setup_cs("", GFX8, CHIP_UNKNOWN, subvariant))
continue;
//>> lv1: %ltmp0:v[31] = p_start_linear_vgpr
//! lv1: %ltmp1:v[30] = p_start_linear_vgpr
//! lv1: %ltmp2:v[29] = p_start_linear_vgpr
//! p_end_linear_vgpr %ltmp1:v[30]
Temp ltmp0 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
Temp ltmp1 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
Temp ltmp2 = bld.pseudo(aco_opcode::p_start_linear_vgpr, bld.def(v1.as_linear()));
end_linear_vgpr(ltmp1);
//! lv1: %ltmp2_2:v[30] = p_parallelcopy %ltmp2:v[29]
//~gfx8_cbranch! p_cbranch_z %_:scc
//~gfx8_branch! p_branch
if (cbr)
bld.branch(aco_opcode::p_cbranch_z, Operand(scc, s1));
else
bld.branch(aco_opcode::p_branch);
//! BB1
//! /* logical preds: BB0, / linear preds: BB0, / kind: */
bld.reset(program->create_and_insert_block());
program->blocks[1].linear_preds.push_back(0);
program->blocks[1].logical_preds.push_back(0);
//! p_branch
bld.branch(aco_opcode::p_branch);
//! BB2
//! /* logical preds: BB1, / linear preds: BB1, / kind: uniform, top-level, */
bld.reset(program->create_and_insert_block());
program->blocks[2].linear_preds.push_back(1);
program->blocks[2].logical_preds.push_back(1);
program->blocks[2].kind |= block_kind_top_level;
RegClass v30 = RegClass::get(RegType::vgpr, 30 * 4);
//! v30: %tmp:v[0-29] = p_phi v30: undef
//! p_unit_test %tmp:v[0-29]
Temp tmp = bld.pseudo(aco_opcode::p_phi, bld.def(v30), Operand(v30));
bld.pseudo(aco_opcode::p_unit_test, tmp);
//! p_end_linear_vgpr %ltmp0_2:v[31]
//! p_end_linear_vgpr %ltmp2_2:v[30]
end_linear_vgpr(ltmp0);
end_linear_vgpr(ltmp2);
finish_ra_test(ra_test_policy());
}
END_TEST
// TODO: If get_reg_impl() didn't fail here, only one of the s1 temporaries would be moved
BEGIN_TEST(regalloc.pseudo_scalar_trans_vcc.get_reg_impl)
if (!setup_cs("", GFX12, CHIP_UNKNOWN))
return;
std::vector<Temp> tmps;
for (unsigned i = 0; i < 52; i++)
tmps.push_back(bld.pseudo(aco_opcode::p_unit_test, bld.def(s2)));
tmps.push_back(bld.pseudo(aco_opcode::p_unit_test, bld.def(s1)));
tmps.push_back(bld.pseudo(aco_opcode::p_unit_test, bld.def(s1)));
//>> s1: %_:s[0] = v_s_sqrt_f32 0
bld.vop3(aco_opcode::v_s_sqrt_f32, bld.def(s1), Operand::c32(0));
//; for i in range(51):
//; insert_pattern(f'p_unit_test %_:s[{4+i*2}-{5+i*2}]')
//! p_unit_test %_:vcc
//! p_unit_test %_:s[1]
//! p_unit_test %_:s[2]
for (Temp t : tmps)
bld.pseudo(aco_opcode::p_unit_test, t);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.pseudo_scalar_trans_vcc.compact_relocate)
for (unsigned subvariant = 0; subvariant <= 3; subvariant++) {
const char* names[] = {"_fiftythree_s2", "_fiftythree_s2_one_s1",
"_twentysix_s4_one_s2_one_s1", "_twentysix_s4_three_s1"};
if (!setup_cs("", GFX12, CHIP_UNKNOWN, names[subvariant]))
continue;
std::vector<Temp> tmps;
if (subvariant <= 1) {
for (unsigned i = 0; i < 53; i++)
tmps.push_back(bld.pseudo(aco_opcode::p_unit_test, bld.def(s2, PhysReg(i * 2))));
} else if (subvariant >= 2) {
for (unsigned i = 0; i < 26; i++)
tmps.push_back(bld.pseudo(aco_opcode::p_unit_test, bld.def(s4, PhysReg(i * 4))));
}
if (subvariant == 2) {
tmps.push_back(bld.pseudo(aco_opcode::p_unit_test, bld.def(s2, PhysReg(104))));
} else if (subvariant == 3) {
tmps.push_back(bld.pseudo(aco_opcode::p_unit_test, bld.def(s1, PhysReg(104))));
tmps.push_back(bld.pseudo(aco_opcode::p_unit_test, bld.def(s1, PhysReg(105))));
}
if (subvariant >= 1)
tmps.push_back(bld.pseudo(aco_opcode::p_unit_test, bld.def(s1, PhysReg(106))));
//~gfx12_twentysix_s4_one_s2_one_s1>> s1: %_:s[104] = v_s_sqrt_f32 0
//~gfx12_twentysix_s4_three_s1>> s1: %_:s[104] = v_s_sqrt_f32 0
//~gfx12_fiftythree_s2>> s1: %_:s[0] = v_s_sqrt_f32 0
//~gfx12_fiftythree_s2_one_s1>> s1: %_:s[0] = v_s_sqrt_f32 0
bld.vop3(aco_opcode::v_s_sqrt_f32, bld.def(s1), Operand::c32(0));
//; if variant in ['gfx12_fiftythree_s2', 'gfx12_fiftythree_s2_one_s1']:
//; for i in range(52):
//; insert_pattern(f'p_unit_test %_:s[{2+i*2}-{3+i*2}]')
//; insert_pattern('p_unit_test %_:vcc')
//~gfx12_fiftythree_s2_one_s1! p_unit_test %_:s[1]
//; if variant in ['gfx12_twentysix_s4_one_s2_one_s1', 'gfx12_twentysix_s4_three_s1']:
//; for i in range(26):
//; insert_pattern(f'p_unit_test %_:s[{0+i*4}-{3+i*4}]')
//~gfx12_twentysix_s4_one_s2_one_s1! p_unit_test %_:vcc
//~gfx12_twentysix_s4_one_s2_one_s1! p_unit_test %_:s[105]
//~gfx12_twentysix_s4_three_s1! p_unit_test %_:s[105]
//~gfx12_twentysix_s4_three_s1! p_unit_test %_:vcc_lo
//~gfx12_twentysix_s4_three_s1! p_unit_test %_:vcc_hi
for (Temp t : tmps)
bld.pseudo(aco_opcode::p_unit_test, t);
finish_ra_test(ra_test_policy{.use_compact_relocate = true});
}
END_TEST
/* Without some care, we can use too many registers when the definition/killed-operand space is a
* NPOT size.
*/
BEGIN_TEST(regalloc.compact_relocate.npot_space)
if (!setup_cs("", GFX12, CHIP_UNKNOWN))
return;
std::vector<Temp> tmps;
for (unsigned i = 0; i < 25; i++)
tmps.push_back(bld.pseudo(aco_opcode::p_unit_test, bld.def(s4, PhysReg(i * 4))));
tmps.push_back(bld.pseudo(aco_opcode::p_unit_test, bld.def(s2, PhysReg(100))));
tmps.push_back(bld.pseudo(aco_opcode::p_unit_test, bld.def(s1, PhysReg(102))));
Temp desc = bld.pseudo(aco_opcode::p_unit_test, bld.def(s4, PhysReg(103)));
Temp offset = bld.pseudo(aco_opcode::p_unit_test, bld.def(s1, PhysReg(104)));
//>> s4: %30:s[100-103] = s_buffer_load_dwordx4 %_:s[100-103], %_:s[104]
bld.smem(aco_opcode::s_buffer_load_dwordx4, bld.def(s4), desc, offset);
//; for i in range(25):
//; insert_pattern(f'p_unit_test %_:s[{i*4}-{3+i*4}]')
//! p_unit_test %_:vcc
//! p_unit_test %_:s[105]
for (Temp t : tmps)
bld.pseudo(aco_opcode::p_unit_test, t);
finish_ra_test(ra_test_policy{.use_compact_relocate = true});
END_TEST
BEGIN_TEST(regalloc.tied_defs.fmac.killed.from_fma)
if (!setup_cs("", GFX11))
return;
//>> v1: %src0:v[0] = p_unit_test
//! v1: %src1:v[1] = p_unit_test
//! v1: %src2:v[2] = p_unit_test
//! v1: %res:v[2] = v_fmac_f32 %src0:v[0], %src1:v[1], %src2:v[2]
//! v2: %_:v[2-3] = p_create_vector %res:v[2], %src1:v[1]
Temp src0 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 0)));
Temp src1 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 1)));
Temp src2 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 2)));
Temp res = bld.vop3(aco_opcode::v_fma_f32, bld.def(v1), src0, src1, src2);
/* Encourage the RA to use v0 for "res" */
bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), res, src1);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.tied_defs.fmac.killed.duplicate_ops)
if (!setup_cs("", GFX11))
return;
//>> v1: %src2:v[0] = p_unit_test
//! v1: %res:v[0] = v_fmac_f32 0, %src2:v[0], %src2:v[0]
//! p_unit_test %res:v[0]
Temp src2 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 0)));
Temp res = bld.vop2(aco_opcode::v_fmac_f32, bld.def(v1), Operand::zero(), src2, src2);
bld.pseudo(aco_opcode::p_unit_test, res);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.tied_defs.atomic64.killed.simple)
if (!setup_cs("s4", GFX11))
return;
//>> s4: %_:s[0-3] = p_startpgm
//! v2: %data:v[0-1] = p_unit_test
Temp data = bld.pseudo(aco_opcode::p_unit_test, bld.def(v2, PhysReg(256 + 0)));
//! v2: %_:v[0-1] = buffer_atomic_or_x2 %_:s[0-3], v1: undef, 0, %data:v[0-1] glc
Instruction* instr = bld.mubuf(aco_opcode::buffer_atomic_or_x2, bld.def(v2), inputs[0],
Operand(v1), Operand::c32(0), data, 0, false)
.instr;
instr->mubuf().cache.value = ac_glc;
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.tied_defs.atomic64.live_through.simple)
if (!setup_cs("s4", GFX11))
return;
//>> s4: %_:s[0-3] = p_startpgm
//! v2: %data:v[0-1] = p_unit_test
Temp data = bld.pseudo(aco_opcode::p_unit_test, bld.def(v2, PhysReg(256 + 0)));
//! v2: %data_copy:v[2-3] = p_parallelcopy %data:v[0-1]
//! v2: %_:v[2-3] = buffer_atomic_or_x2 %_:s[0-3], v1: undef, 0, %data_copy:v[2-3] glc
Instruction* instr = bld.mubuf(aco_opcode::buffer_atomic_or_x2, bld.def(v2), inputs[0],
Operand(v1), Operand::c32(0), data, 0, false)
.instr;
instr->mubuf().cache.value = ac_glc;
//! p_unit_test %data:v[0-1]
bld.pseudo(aco_opcode::p_unit_test, data);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.tied_defs.atomic64.live_through.get_reg_impl)
if (!setup_cs("s4", GFX11))
return;
program->dev.vgpr_limit = 5;
//>> s4: %_:s[0-3] = p_startpgm
//! v1: %tmp:v[3] = p_unit_test
//! v2: %data:v[0-1] = p_unit_test
Temp tmp = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 3)));
Temp data = bld.pseudo(aco_opcode::p_unit_test, bld.def(v2, PhysReg(256 + 0)));
//! v1: %tmp_copy:v[4], v2: %data_copy:v[2-3] = p_parallelcopy %tmp:v[3], %data:v[0-1]
//! v2: %_:v[2-3] = buffer_atomic_or_x2 %_:s[0-3], v1: undef, 0, %data_copy:v[2-3] glc
Instruction* instr = bld.mubuf(aco_opcode::buffer_atomic_or_x2, bld.def(v2), inputs[0],
Operand(v1), Operand::c32(0), data, 0, false)
.instr;
instr->mubuf().cache.value = ac_glc;
//! p_unit_test %data:v[0-1]
//! p_unit_test %tmp_copy:v[4]
bld.pseudo(aco_opcode::p_unit_test, data);
bld.pseudo(aco_opcode::p_unit_test, tmp);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.tied_defs.atomic64.live_through.move_op)
if (!setup_cs("s4", GFX11))
return;
program->dev.vgpr_limit = 4;
//>> s4: %_:s[0-3] = p_startpgm
//! v2: %data:v[1-2] = p_unit_test
Temp data = bld.pseudo(aco_opcode::p_unit_test, bld.def(v2, PhysReg(256 + 1)));
//! v2: %data_copy0:v[2-3], v2: %data_copy1:v[0-1] = p_parallelcopy %data:v[1-2], %data:v[1-2]
//! v2: %_:v[0-1] = buffer_atomic_or_x2 %_:s[0-3], v1: undef, 0, %data_copy1:v[0-1] glc
Instruction* instr = bld.mubuf(aco_opcode::buffer_atomic_or_x2, bld.def(v2), inputs[0],
Operand(v1), Operand::c32(0), data, 0, false)
.instr;
instr->mubuf().cache.value = ac_glc;
//! p_unit_test %data_copy0:v[2-3]
bld.pseudo(aco_opcode::p_unit_test, data);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.tied_defs.atomic64.live_through.compact_relocate)
if (!setup_cs("s4", GFX11))
return;
program->dev.vgpr_limit = 8;
//>> s4: %_:s[0-3] = p_startpgm
//! v2: %tmp0:v[1-2] = p_unit_test
//! v2: %tmp1:v[3-4] = p_unit_test
std::vector<Temp> tmps;
tmps.push_back(bld.pseudo(aco_opcode::p_unit_test, bld.def(v2, PhysReg(256 + 1))));
tmps.push_back(bld.pseudo(aco_opcode::p_unit_test, bld.def(v2, PhysReg(256 + 3))));
//! v2: %data:v[6-7] = p_unit_test
Temp data = bld.pseudo(aco_opcode::p_unit_test, bld.def(v2, PhysReg(256 + 6)));
//! v2: %tmp0_copy:v[2-3], v2: %tmp1_copy:v[4-5], v2: %data_copy:v[0-1] = p_parallelcopy %tmp0:v[1-2], %tmp1:v[3-4], %data:v[6-7]
//! v2: %_:v[0-1] = buffer_atomic_or_x2 %_:s[0-3], v1: undef, 0, %data_copy:v[0-1] glc
Instruction* instr = bld.mubuf(aco_opcode::buffer_atomic_or_x2, bld.def(v2), inputs[0],
Operand(v1), Operand::c32(0), data, 0, false)
.instr;
instr->mubuf().cache.value = ac_glc;
//! p_unit_test %data:v[6-7]
bld.pseudo(aco_opcode::p_unit_test, data);
//! p_unit_test %tmp0_copy:v[2-3]
//! p_unit_test %tmp1_copy:v[4-5]
for (auto tmp : tmps)
bld.pseudo(aco_opcode::p_unit_test, tmp);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.tied_defs.bvh8.killed.simple)
if (!setup_cs("s8", GFX12))
return;
//>> s8: %_:s[0-7] = p_startpgm
//! v1: %base_lo:v[0] = p_unit_test
//! v1: %base_hi:v[1] = p_unit_test
//! v1: %tmax:v[2] = p_unit_test
//! v1: %cull_mask:v[3] = p_unit_test
//! v1: %origin_x:v[4] = p_unit_test
//! v1: %origin_y:v[5] = p_unit_test
//! v1: %origin_z:v[6] = p_unit_test
//! v1: %dir_x:v[7] = p_unit_test
//! v1: %dir_y:v[8] = p_unit_test
//! v1: %dir_z:v[9] = p_unit_test
//! v1: %node:v[10] = p_unit_test
Temp base_lo = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 0)));
Temp base_hi = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 1)));
Temp tmax = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 2)));
Temp cull_mask = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 3)));
Temp origin_x = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 4)));
Temp origin_y = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 5)));
Temp origin_z = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 6)));
Temp dir_x = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 7)));
Temp dir_y = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 8)));
Temp dir_z = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 9)));
Temp node = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 10)));
Temp new_origin = bld.tmp(v3);
Temp new_dir = bld.tmp(v3);
Temp result = bld.tmp(v10);
//! v3: %new_origin:v[4-6], v3: %new_dir:v[7-9], v10: %_:v[10-19] = image_bvh8_intersect_ray %_:s[0-7], s4: undef, v1: undef, (%base_lo:v[0], %base_hi:v[1]), (%tmax:v[2], %cull_mask:v[3]), (%origin_x:v[4], %origin_y:v[5], %origin_z:v[6]), (%dir_x:v[7], %dir_y:v[8], %dir_z:v[9]), %node:v[10] 1d
Instruction* instr =
bld.mimg(aco_opcode::image_bvh8_intersect_ray, Definition(new_origin), Definition(new_dir),
Definition(result), inputs[0], Operand(s4), Operand(v1), base_lo, base_hi, tmax,
cull_mask, origin_x, origin_y, origin_z, dir_x, dir_y, dir_z, node)
.instr;
instr->operands[3].setVectorAligned(true);
instr->operands[5].setVectorAligned(true);
instr->operands[7].setVectorAligned(true);
instr->operands[8].setVectorAligned(true);
instr->operands[10].setVectorAligned(true);
instr->operands[11].setVectorAligned(true);
finish_ra_test(ra_test_policy());
END_TEST
#if 0
BEGIN_TEST(regalloc.tied_defs.bvh8.killed.move_ops)
if (!setup_cs("s8", GFX12))
return;
program->dev.vgpr_limit = 16;
//>> s8: %_:s[0-7] = p_startpgm
//! v1: %base_lo:v[0] = p_unit_test
//! v1: %base_hi:v[0] = p_unit_test
//! v1: %tmax:v[2] = p_unit_test
//! v1: %cull_mask:v[3] = p_unit_test
//! v1: %origin_x:v[4] = p_unit_test
//! v1: %origin_y:v[5] = p_unit_test
//! v1: %origin_z:v[6] = p_unit_test
//! v1: %dir_x:v[7] = p_unit_test
//! v1: %dir_y:v[8] = p_unit_test
//! v1: %dir_z:v[9] = p_unit_test
//! v1: %node:v[10] = p_unit_test
Temp base_lo = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 0)));
Temp base_hi = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 1)));
Temp tmax = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 2)));
Temp cull_mask = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 3)));
Temp origin_x = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 4)));
Temp origin_y = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 5)));
Temp origin_z = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 6)));
Temp dir_x = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 7)));
Temp dir_y = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 8)));
Temp dir_z = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 9)));
Temp node = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 10)));
Temp new_origin = bld.tmp(v3);
Temp new_dir = bld.tmp(v3);
Temp result = bld.tmp(v10);
/* When allocating the last definition, we need to move the origin/dir operands to make space. */
//! v3: %origin_copy:v[10-12], v3: %dir_copy:v[13-15], v1: %node_copy:v[4] = p_parallelcopy %origin:v[4-6], %dir:v[7-9], %node:v[10]
//! v3: %new_origin:v[10-12], v3: %new_dir:v[13-15], v10: %_:v[0-9] = image_bvh8_intersect_ray %_:s[0-7], s4: undef, v1: undef, %base:v[0-1], %tmax_mask:v[2-3], %origin_copy:v[10-12], %dir_copy:v[13-15], %node_copy:v[4] 1d
Instruction *instr = bld.mimg(aco_opcode::image_bvh8_intersect_ray, Definition(new_origin), Definition(new_dir), Definition(result),
inputs[0], Operand(s4), Operand(v1), base_lo, base_hi, tmax, cull_mask, origin_x, origin_y,
origin_z, dir_x, dir_y, dir_z, node).instr;
instr->operands[3].setVectorAligned(true);
instr->operands[5].setVectorAligned(true);
instr->operands[7].setVectorAligned(true);
instr->operands[8].setVectorAligned(true);
instr->operands[10].setVectorAligned(true);
instr->operands[11].setVectorAligned(true);
finish_ra_test(ra_test_policy());
END_TEST
#endif
BEGIN_TEST(regalloc.tied_defs.bvh8.killed.duplicate_ops)
if (!setup_cs("s8", GFX12))
return;
//>> s8: %_:s[0-7] = p_startpgm
//! v1: %origin_dir_x:v[0] = p_unit_test
//! v1: %origin_dir_y:v[1] = p_unit_test
//! v1: %origin_dir_z:v[2] = p_unit_test
//! v1: %base_lo:v[3] = p_unit_test
//! v1: %base_hi:v[4] = p_unit_test
//! v1: %tmax:v[5] = p_unit_test
//! v1: %cull_mask:v[6] = p_unit_test
//! v1: %node:v[7] = p_unit_test
Temp origin_dir_x = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 0)));
Temp origin_dir_y = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 1)));
Temp origin_dir_z = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 2)));
Temp base_lo = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 3)));
Temp base_hi = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 4)));
Temp tmax = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 5)));
Temp cull_mask = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 6)));
Temp node = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 7)));
Temp new_origin = bld.tmp(v3);
Temp new_dir = bld.tmp(v3);
Temp result = bld.tmp(v10);
//! v1: %origin_dir_copy_x:v[8], v1: %origin_dir_copy_y:v[9], v1: %origin_dir_copy_z:v[10] = p_parallelcopy %origin_dir_x:v[0], %origin_dir_y:v[1], %origin_dir_z:v[2]
//! v3: %new_origin:v[0-2], v3: %new_dir:v[8-10], v10: %_:v[12-21] = image_bvh8_intersect_ray %_:s[0-7], s4: undef, v1: undef, (%base_lo:v[3], %base_hi:v[4]), (%tmax:v[5], %cull_mask:v[6]), (%origin_dir_x:v[0], %origin_dir_y:v[1], %origin_dir_z:v[2]), (%origin_dir_copy_x:v[8], %origin_dir_copy_y:v[9], %origin_dir_copy_z:v[10]), %node:v[7] 1d
Instruction* instr =
bld.mimg(aco_opcode::image_bvh8_intersect_ray, Definition(new_origin), Definition(new_dir),
Definition(result), inputs[0], Operand(s4), Operand(v1), base_lo, base_hi, tmax,
cull_mask, origin_dir_x, origin_dir_y, origin_dir_z, origin_dir_x, origin_dir_y,
origin_dir_z, node)
.instr;
instr->operands[3].setVectorAligned(true);
instr->operands[5].setVectorAligned(true);
instr->operands[7].setVectorAligned(true);
instr->operands[8].setVectorAligned(true);
instr->operands[10].setVectorAligned(true);
instr->operands[11].setVectorAligned(true);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.tied_defs.bvh8.live_through.simple)
if (!setup_cs("s8", GFX12))
return;
//>> s8: %_:s[0-7] = p_startpgm
//! v1: %base_lo:v[0] = p_unit_test
//! v1: %base_hi:v[1] = p_unit_test
//! v1: %tmax:v[2] = p_unit_test
//! v1: %cull_mask:v[3] = p_unit_test
//! v1: %origin_x:v[4] = p_unit_test
//! v1: %origin_y:v[5] = p_unit_test
//! v1: %origin_z:v[6] = p_unit_test
//! v1: %dir_x:v[7] = p_unit_test
//! v1: %dir_y:v[8] = p_unit_test
//! v1: %dir_z:v[9] = p_unit_test
//! v1: %node:v[10] = p_unit_test
Temp base_lo = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 0)));
Temp base_hi = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 1)));
Temp tmax = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 2)));
Temp cull_mask = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 3)));
Temp origin_x = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 4)));
Temp origin_y = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 5)));
Temp origin_z = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 6)));
Temp dir_x = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 7)));
Temp dir_y = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 8)));
Temp dir_z = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 9)));
Temp node = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 10)));
Temp new_origin = bld.tmp(v3);
Temp new_dir = bld.tmp(v3);
Temp result = bld.tmp(v10);
//! v1: %origin_copy_x:v[11], v1: %origin_copy_y:v[12], v1: %origin_copy_z:v[13], v1: %dir_copy_x:v[14], v1: %dir_copy_y:v[15], v1: %dir_copy_z:v[16] = p_parallelcopy %origin_x:v[4], %origin_y:v[5], %origin_z:v[6], %dir_x:v[7], %dir_y:v[8], %dir_z:v[9]
//! v3: %new_origin:v[4-6], v3: %new_dir:v[7-9], v10: %_:v[18-27] = image_bvh8_intersect_ray %_:s[0-7], s4: undef, v1: undef, (%base_lo:v[0], %base_hi:v[1]), (%tmax:v[2], %cull_mask:v[3]), (%origin_x2:v[4], %origin_y2:v[5], %origin_z2:v[6]), (%dir_x2:v[7], %dir_y2:v[8], %dir_z2:v[9]), %node:v[10] 1d
Instruction* instr =
bld.mimg(aco_opcode::image_bvh8_intersect_ray, Definition(new_origin), Definition(new_dir),
Definition(result), inputs[0], Operand(s4), Operand(v1), base_lo, base_hi, tmax,
cull_mask, origin_x, origin_y, origin_z, dir_x, dir_y, dir_z, node)
.instr;
instr->operands[3].setVectorAligned(true);
instr->operands[5].setVectorAligned(true);
instr->operands[7].setVectorAligned(true);
instr->operands[8].setVectorAligned(true);
instr->operands[10].setVectorAligned(true);
instr->operands[11].setVectorAligned(true);
//! p_unit_test %origin_copy_x:v[11], %origin_copy_y:v[12], %origin_copy_z:v[13]
//! p_unit_test %dir_copy_x:v[14], %dir_copy_y:v[15], %dir_copy_z:v[16]
bld.pseudo(aco_opcode::p_unit_test, origin_x, origin_y, origin_z);
bld.pseudo(aco_opcode::p_unit_test, dir_x, dir_y, dir_z);
finish_ra_test(ra_test_policy());
END_TEST
#if 0
BEGIN_TEST(regalloc.tied_defs.bvh8.live_through.move_ops)
if (!setup_cs("s8", GFX12))
return;
program->dev.vgpr_limit = 22;
//>> s8: %_:s[0-7] = p_startpgm
//! v3: %origin:v[0-2] = p_unit_test
//! v3: %dir:v[3-5] = p_unit_test
//! v2: %base:v[6-7] = p_unit_test
//! v2: %tmax_mask:v[8-9] = p_unit_test
//! v1: %node:v[21] = p_unit_test
Temp origin = bld.pseudo(aco_opcode::p_unit_test, bld.def(v3, PhysReg(256 + 0)));
Temp dir = bld.pseudo(aco_opcode::p_unit_test, bld.def(v3, PhysReg(256 + 3)));
Temp base = bld.pseudo(aco_opcode::p_unit_test, bld.def(v2, PhysReg(256 + 6)));
Temp tmax_mask = bld.pseudo(aco_opcode::p_unit_test, bld.def(v2, PhysReg(256 + 8)));
Temp node = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 21)));
Temp new_origin = bld.tmp(v3);
Temp new_dir = bld.tmp(v3);
Temp result = bld.tmp(v10);
/* When allocating the last definition, we need to move the origin/dir operands to make space.
*/
//! v3: %origin_copy0:v[10-12], v3: %dir_copy0:v[13-15], v3: %origin_copy1:v[16-18], v1: %node_copy:v[0], v3: %dir_copy1:v[19-21] = p_parallelcopy %origin:v[0-2], %dir:v[3-5], %origin:v[0-2], %node:v[21], %dir:v[3-5]
//! v3: %new_origin:v[10-12], v3: %new_dir:v[13-15], v10: %_:v[0-9] = image_bvh8_intersect_ray %_:s[0-7], s4: undef, v1: undef, %base:v[6-7], %tmax_mask:v[8-9], %origin_copy0:v[10-12], %dir_copy0:v[13-15], %node_copy:v[0] 1d
bld.mimg(aco_opcode::image_bvh8_intersect_ray, Definition(new_origin), Definition(new_dir),
Definition(result), inputs[0], Operand(s4), Operand(v1), base, tmax_mask, origin, dir,
node);
//! p_unit_test %origin_copy1:v[16-18]
//! p_unit_test %dir_copy1:v[19-21]
bld.pseudo(aco_opcode::p_unit_test, origin);
bld.pseudo(aco_opcode::p_unit_test, dir);
finish_ra_test(ra_test_policy());
END_TEST
#endif
BEGIN_TEST(regalloc.vector_aligned.vec_overlaps_with_operand.first)
if (!setup_cs("", GFX11))
return;
/* The registers chosen for the first vector overlaps with the first operand for the second
* vector. We shouldn't skip handle_vector_operands() for the second vector in this case.
*/
//>> v1: %tmp0:v[0] = p_unit_test
//! v1: %tmp1:v[2] = p_unit_test
//! v1: %tmp2:v[1] = p_unit_test
//! v1: %tmp3:v[4] = p_unit_test
Temp tmp0 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 0)));
Temp tmp1 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 2)));
Temp tmp2 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 1)));
Temp tmp3 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 4)));
Operand op0(tmp0);
Operand op1(tmp1);
Operand op2(tmp2);
Operand op3(tmp3);
op0.setVectorAligned(true);
op2.setVectorAligned(true);
//! v1: %tmp1_copy:v[1], v1: %tmp2_copy:v[3] = p_parallelcopy %tmp1:v[2], %tmp2:v[1]
//! p_unit_test (%tmp0:v[0], %tmp1_copy:v[1]), (%tmp2_copy:v[3], %tmp3:v[4])
bld.pseudo(aco_opcode::p_unit_test, op0, op1, op2, op3);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.vector_aligned.vec_overlaps_with_operand.second)
if (!setup_cs("", GFX11))
return;
/* The registers chosen for the first vector overlaps with the second operand for the second
* vector. Ensure that a sensible parallel copy is created in this case.
*/
//>> v1: %tmp0:v[0] = p_unit_test
//! v1: %tmp1:v[2] = p_unit_test
//! v1: %tmp2:v[4] = p_unit_test
//! v1: %tmp3:v[1] = p_unit_test
Temp tmp0 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 0)));
Temp tmp1 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 2)));
Temp tmp2 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 4)));
Temp tmp3 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 1)));
Operand op0(tmp0);
Operand op1(tmp1);
Operand op2(tmp2);
Operand op3(tmp3);
op0.setVectorAligned(true);
op2.setVectorAligned(true);
//! v1: %tmp1_copy:v[1], v1: %tmp3_copy:v[5] = p_parallelcopy %tmp1:v[2], %tmp3:v[1]
//! p_unit_test (%tmp0:v[0], %tmp1_copy:v[1]), (%tmp2:v[4], %tmp3_copy:v[5])
bld.pseudo(aco_opcode::p_unit_test, op0, op1, op2, op3);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.vector_aligned.temp_in_multiple_vecs)
if (!setup_cs("", GFX11))
return;
//>> v1: %tmp0:v[0] = p_unit_test
//! v1: %tmp1:v[1] = p_unit_test
//! v1: %tmp2:v[2] = p_unit_test
Temp tmp0 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 0)));
Temp tmp1 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 1)));
Temp tmp2 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 2)));
Operand op0(tmp0);
Operand op1(tmp1);
Operand op2(tmp2);
Operand op3(tmp1);
op0.setVectorAligned(true);
op2.setVectorAligned(true);
//! v1: %tmp1_copy:v[3] = p_parallelcopy %tmp1:v[1]
//! p_unit_test (%tmp0:v[0], %tmp1:v[1]), (%tmp2:v[2], %tmp1_copy:v[3])
bld.pseudo(aco_opcode::p_unit_test, op0, op1, op2, op3);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.vector_aligned.scalar_operand)
if (!setup_cs("", GFX11))
return;
//>> v1: %tmp0:v[0] = p_unit_test
//! v1: %tmp1:v[1] = p_unit_test
Temp tmp0 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 0)));
Temp tmp1 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 1)));
Operand op0(tmp1);
Operand op1(tmp0);
Operand op2(tmp1);
op1.setVectorAligned(true);
//! p_unit_test %tmp1:v[1], (%tmp0:v[0], %tmp1:v[1])
bld.pseudo(aco_opcode::p_unit_test, op0, op1, op2);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.vector_aligned.moved_scalar_operand)
if (!setup_cs("", GFX11))
return;
/* Use tmp1 in both a vector operand and scalar operand. Then re-use the old register of tmp1
* in another vector operand: resolve_vector_operands() should rename the scalar operands.
*/
//>> v1: %tmp0:v[0] = p_unit_test
//! v1: %tmp1:v[2] = p_unit_test
//! v1: %tmp2:v[3] = p_unit_test
//! v1: %tmp3:v[5] = p_unit_test
//! v1: %tmp4:v[4] = p_unit_test
Temp tmp0 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 0)));
Temp tmp1 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 2)));
Temp tmp2 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 3)));
Temp tmp3 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 5)));
Temp tmp4 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 4)));
Operand op0(tmp0);
Operand op1(tmp1);
Operand op2(tmp1);
Operand op3(tmp3);
Operand op4(tmp2);
Operand op5(tmp4);
op0.setVectorAligned(true);
op3.setVectorAligned(true);
op4.setVectorAligned(true);
//>> v1: %tmp1_copy:v[1], v1: %tmp3_copy:v[2] = p_parallelcopy %tmp1:v[2], %tmp3:v[5]
//! p_unit_test %tmp1_copy:v[1], (%tmp0:v[0], %tmp1_copy:v[1]), (%tmp3_copy:v[2], %tmp2:v[3], %tmp4:v[4])
bld.pseudo(aco_opcode::p_unit_test, op2, op0, op1, op3, op4, op5);
//! p_unit_test %tmp1_copy:v[1]
bld.pseudo(aco_opcode::p_unit_test, tmp1);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.vector_aligned.reuse_temporaries)
if (!setup_cs("", GFX11))
return;
//>> v1: %tmp0:v[0] = p_unit_test
//! v1: %tmp1:v[2] = p_unit_test
//! v1: %tmp2:v[1] = p_unit_test
Temp tmp0 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 0)));
Temp tmp1 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 2)));
Temp tmp2 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 1)));
Operand op0(tmp0);
Operand op1(tmp1);
Operand op2(tmp2);
op0.setVectorAligned(true);
op1.setVectorAligned(true);
Operand op3(tmp0);
Operand op4(tmp2);
Operand op5(tmp1);
op3.setVectorAligned(true);
op4.setVectorAligned(true);
//! v1: %tmp1_copy1:v[1], v1: %tmp2_copy1:v[2], v1: %tmp0_copy:v[3], v1: %tmp2_copy0:v[4], v1: %tmp1_copy0:v[5] = p_parallelcopy %tmp1:v[2], %tmp2:v[1], %tmp0:v[0], %tmp2:v[1], %tmp1:v[2]
//! p_unit_test (%tmp0:v[0], %tmp1_copy1:v[1], %tmp2_copy1:v[2]), (%tmp0_copy:v[3], %tmp2_copy0:v[4], %tmp1_copy0:v[5])
bld.pseudo(aco_opcode::p_unit_test, op0, op1, op2, op3, op4, op5);
finish_ra_test(ra_test_policy());
END_TEST
BEGIN_TEST(regalloc.vector_aligned.reuse_operand_as_def)
if (!setup_cs("", GFX11))
return;
//>> v1: %tmp0:v[0] = p_unit_test
//! v1: %tmp1:v[2] = p_unit_test
//! v1: %tmp2:v[3] = p_unit_test
Temp tmp0 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 0)));
Temp tmp1 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 2)));
Temp tmp2 = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, PhysReg(256 + 3)));
Operand op0(tmp0);
Operand op1(tmp1);
Operand op2(tmp2);
op0.setVectorAligned(true);
op1.setVectorAligned(true);
/* tmp0 is moved from v0 in resolve_vector_operands(), while the definition uses v0. */
//! v1: %tmp0_copy:v[1] = p_parallelcopy %tmp0:v[0]
//! v1: %res:v[0] = p_unit_test (%tmp0_copy:v[1], %tmp1:v[2], %tmp2:v[3])
bld.pseudo(aco_opcode::p_unit_test, bld.def(v1), op0, op1, op2);
finish_ra_test(ra_test_policy());
END_TEST