blob: 0df5e8ab2d455d59d098fce3fdfcbaf905f78680 [file] [log] [blame]
/*
* Copyright © 2020 Valve Corporation
*
* SPDX-License-Identifier: MIT
*/
#include "aco_ir.h"
#include "util/crc32.h"
#include <algorithm>
#include <deque>
#include <set>
#include <vector>
namespace aco {
namespace {
class BlockCycleEstimator {
public:
enum resource {
null = 0,
scalar,
branch_sendmsg,
valu,
valu_complex,
lds,
export_gds,
vmem,
resource_count,
};
BlockCycleEstimator(Program* program_) : program(program_) {}
Program* program;
int32_t cur_cycle = 0;
int32_t res_available[(int)BlockCycleEstimator::resource_count] = {0};
unsigned res_usage[(int)BlockCycleEstimator::resource_count] = {0};
int32_t reg_available[512] = {0};
std::deque<int32_t> mem_ops[wait_type_num];
void add(aco_ptr<Instruction>& instr);
void join(const BlockCycleEstimator& other);
private:
unsigned get_waitcnt_cost(wait_imm imm);
unsigned get_dependency_cost(aco_ptr<Instruction>& instr);
void use_resources(aco_ptr<Instruction>& instr);
int32_t cycles_until_res_available(aco_ptr<Instruction>& instr);
};
struct perf_info {
int latency;
BlockCycleEstimator::resource rsrc0;
unsigned cost0;
BlockCycleEstimator::resource rsrc1;
unsigned cost1;
};
static bool
is_dual_issue_capable(const Program& program, const Instruction& instr)
{
if (program.gfx_level < GFX11 || !instr.isVALU() || instr.isDPP())
return false;
switch (instr.opcode) {
case aco_opcode::v_fma_f32:
case aco_opcode::v_fmac_f32:
case aco_opcode::v_fmaak_f32:
case aco_opcode::v_fmamk_f32:
case aco_opcode::v_mul_f32:
case aco_opcode::v_add_f32:
case aco_opcode::v_sub_f32:
case aco_opcode::v_subrev_f32:
case aco_opcode::v_mul_legacy_f32:
case aco_opcode::v_fma_legacy_f32:
case aco_opcode::v_fmac_legacy_f32:
case aco_opcode::v_fma_f16:
case aco_opcode::v_fmac_f16:
case aco_opcode::v_fmaak_f16:
case aco_opcode::v_fmamk_f16:
case aco_opcode::v_mul_f16:
case aco_opcode::v_add_f16:
case aco_opcode::v_sub_f16:
case aco_opcode::v_subrev_f16:
case aco_opcode::v_mov_b32:
case aco_opcode::v_movreld_b32:
case aco_opcode::v_movrels_b32:
case aco_opcode::v_movrelsd_b32:
case aco_opcode::v_movrelsd_2_b32:
case aco_opcode::v_cndmask_b32:
case aco_opcode::v_writelane_b32_e64:
case aco_opcode::v_mov_b16:
case aco_opcode::v_cndmask_b16:
case aco_opcode::v_max_f32:
case aco_opcode::v_min_f32:
case aco_opcode::v_max_f16:
case aco_opcode::v_min_f16:
case aco_opcode::v_max_i16_e64:
case aco_opcode::v_min_i16_e64:
case aco_opcode::v_max_u16_e64:
case aco_opcode::v_min_u16_e64:
case aco_opcode::v_add_i16:
case aco_opcode::v_sub_i16:
case aco_opcode::v_mad_i16:
case aco_opcode::v_add_u16_e64:
case aco_opcode::v_sub_u16_e64:
case aco_opcode::v_mad_u16:
case aco_opcode::v_mul_lo_u16_e64:
case aco_opcode::v_not_b16:
case aco_opcode::v_and_b16:
case aco_opcode::v_or_b16:
case aco_opcode::v_xor_b16:
case aco_opcode::v_lshrrev_b16_e64:
case aco_opcode::v_ashrrev_i16_e64:
case aco_opcode::v_lshlrev_b16_e64:
case aco_opcode::v_dot2_bf16_bf16:
case aco_opcode::v_dot2_f32_bf16:
case aco_opcode::v_dot2_f16_f16:
case aco_opcode::v_dot2_f32_f16:
case aco_opcode::v_dot2c_f32_f16: return true;
case aco_opcode::v_fma_mix_f32:
case aco_opcode::v_fma_mixlo_f16:
case aco_opcode::v_fma_mixhi_f16: {
/* dst and acc type must match */
if (instr.valu().opsel_hi[2] == (instr.opcode == aco_opcode::v_fma_mix_f32))
return false;
/* If all operands are vgprs, two must be the same. */
for (unsigned i = 0; i < 3; i++) {
if (instr.operands[i].isConstant() || instr.operands[i].isOfType(RegType::sgpr))
return true;
for (unsigned j = 0; j < i; j++) {
if (instr.operands[i].physReg() == instr.operands[j].physReg())
return true;
}
}
return false;
}
default:
if (instr.isVINTERP_INREG())
return program.gfx_level >= GFX11_5;
if (instr.isVOPC() && instr_info.classes[(int)instr.opcode] == instr_class::valu32)
return program.gfx_level == GFX11_5;
return false;
}
}
static perf_info
get_perf_info(const Program& program, const Instruction& instr)
{
instr_class cls = instr_info.classes[(int)instr.opcode];
#define WAIT(res) BlockCycleEstimator::res, 0
#define WAIT_USE(res, cnt) BlockCycleEstimator::res, cnt
if (program.gfx_level >= GFX10) {
/* fp64 might be incorrect */
switch (cls) {
case instr_class::valu32:
case instr_class::valu_convert32:
case instr_class::valu_fma: return {5, WAIT_USE(valu, 1)};
case instr_class::valu64: return {6, WAIT_USE(valu, 2), WAIT_USE(valu_complex, 2)};
case instr_class::valu_quarter_rate32:
return {8, WAIT_USE(valu, 4), WAIT_USE(valu_complex, 4)};
case instr_class::valu_transcendental32:
return {10, WAIT_USE(valu, 1), WAIT_USE(valu_complex, 4)};
case instr_class::valu_double: return {22, WAIT_USE(valu, 16), WAIT_USE(valu_complex, 16)};
case instr_class::valu_double_add:
return {22, WAIT_USE(valu, 16), WAIT_USE(valu_complex, 16)};
case instr_class::valu_double_convert:
return {22, WAIT_USE(valu, 16), WAIT_USE(valu_complex, 16)};
case instr_class::valu_double_transcendental:
return {24, WAIT_USE(valu, 16), WAIT_USE(valu_complex, 16)};
case instr_class::salu: return {2, WAIT_USE(scalar, 1)};
case instr_class::sfpu: return {4, WAIT_USE(scalar, 1)};
case instr_class::valu_pseudo_scalar_trans:
return {7, WAIT_USE(valu, 1), WAIT_USE(valu_complex, 1)};
case instr_class::smem: return {0, WAIT_USE(scalar, 1)};
case instr_class::branch:
case instr_class::sendmsg: return {0, WAIT_USE(branch_sendmsg, 3)};
case instr_class::ds:
return instr.isDS() && instr.ds().gds ? perf_info{0, WAIT_USE(export_gds, 1)}
: perf_info{0, WAIT_USE(lds, 1)};
case instr_class::exp: return {0, WAIT_USE(export_gds, 1)};
case instr_class::vmem: return {0, WAIT_USE(vmem, 1)};
case instr_class::wmma: {
/* int8 and (b)f16 have the same performance. */
uint8_t cost = instr.opcode == aco_opcode::v_wmma_i32_16x16x16_iu4 ? 16 : 32;
return {cost, WAIT_USE(valu, cost)};
}
case instr_class::barrier:
case instr_class::waitcnt:
case instr_class::other:
default: return {0};
}
} else {
switch (cls) {
case instr_class::valu32: return {4, WAIT_USE(valu, 4)};
case instr_class::valu_convert32: return {16, WAIT_USE(valu, 16)};
case instr_class::valu64: return {8, WAIT_USE(valu, 8)};
case instr_class::valu_quarter_rate32: return {16, WAIT_USE(valu, 16)};
case instr_class::valu_fma:
return program.dev.has_fast_fma32 ? perf_info{4, WAIT_USE(valu, 4)}
: perf_info{16, WAIT_USE(valu, 16)};
case instr_class::valu_transcendental32: return {16, WAIT_USE(valu, 16)};
case instr_class::valu_double: return {64, WAIT_USE(valu, 64)};
case instr_class::valu_double_add: return {32, WAIT_USE(valu, 32)};
case instr_class::valu_double_convert: return {16, WAIT_USE(valu, 16)};
case instr_class::valu_double_transcendental: return {64, WAIT_USE(valu, 64)};
case instr_class::salu: return {4, WAIT_USE(scalar, 4)};
case instr_class::smem: return {4, WAIT_USE(scalar, 4)};
case instr_class::branch: return {4, WAIT_USE(branch_sendmsg, 4)};
case instr_class::ds:
return instr.isDS() && instr.ds().gds ? perf_info{4, WAIT_USE(export_gds, 4)}
: perf_info{4, WAIT_USE(lds, 4)};
case instr_class::exp: return {16, WAIT_USE(export_gds, 16)};
case instr_class::vmem: return {4, WAIT_USE(vmem, 4)};
case instr_class::barrier:
case instr_class::waitcnt:
case instr_class::other:
default: return {4};
}
}
#undef WAIT_USE
#undef WAIT
}
void
BlockCycleEstimator::use_resources(aco_ptr<Instruction>& instr)
{
perf_info perf = get_perf_info(*program, *instr);
if (perf.rsrc0 != resource_count) {
res_available[(int)perf.rsrc0] = cur_cycle + perf.cost0;
res_usage[(int)perf.rsrc0] += perf.cost0;
}
if (perf.rsrc1 != resource_count) {
res_available[(int)perf.rsrc1] = cur_cycle + perf.cost1;
res_usage[(int)perf.rsrc1] += perf.cost1;
}
}
int32_t
BlockCycleEstimator::cycles_until_res_available(aco_ptr<Instruction>& instr)
{
perf_info perf = get_perf_info(*program, *instr);
int32_t cost = 0;
if (perf.rsrc0 != resource_count)
cost = MAX2(cost, res_available[(int)perf.rsrc0] - cur_cycle);
if (perf.rsrc1 != resource_count)
cost = MAX2(cost, res_available[(int)perf.rsrc1] - cur_cycle);
return cost;
}
static std::array<unsigned, wait_type_num>
get_wait_counter_info(Program* program, aco_ptr<Instruction>& instr)
{
/* These numbers are all a bit nonsense. LDS/VMEM/SMEM/EXP performance
* depends a lot on the situation. */
std::array<unsigned, wait_type_num> info{};
if (instr->isEXP()) {
info[wait_type_exp] = 16;
} else if (instr->isLDSDIR()) {
info[wait_type_exp] = 13;
} else if (instr->isFlatLike()) {
info[wait_type_lgkm] = instr->isFlat() ? 20 : 0;
if (!instr->definitions.empty() || program->gfx_level < GFX10)
info[wait_type_vm] = 320;
else
info[wait_type_vs] = 320;
} else if (instr->isSMEM()) {
wait_type type = program->gfx_level >= GFX12 ? wait_type_km : wait_type_lgkm;
if (instr->definitions.empty()) {
info[type] = 200;
} else if (instr->operands.empty()) { /* s_memtime and s_memrealtime */
info[type] = 1;
} else {
bool likely_desc_load = instr->operands[0].size() == 2;
bool soe = instr->operands.size() >= (!instr->definitions.empty() ? 3 : 4);
bool const_offset =
instr->operands[1].isConstant() && (!soe || instr->operands.back().isConstant());
if (likely_desc_load || const_offset)
info[type] = 30; /* likely to hit L0 cache */
else
info[type] = 200;
}
} else if (instr->isDS()) {
info[wait_type_lgkm] = 20;
} else if (instr->isVMEM() && instr->definitions.empty() && program->gfx_level >= GFX10) {
info[wait_type_vs] = 320;
} else if (instr->isVMEM()) {
uint8_t vm_type = get_vmem_type(program->gfx_level, program->family, instr.get());
wait_type type = wait_type_vm;
if (program->gfx_level >= GFX12 && vm_type == vmem_bvh)
type = wait_type_bvh;
else if (program->gfx_level >= GFX12 && vm_type == vmem_sampler)
type = wait_type_sample;
info[type] = 320;
}
return info;
}
static wait_imm
get_wait_imm(Program* program, aco_ptr<Instruction>& instr)
{
wait_imm imm;
if (instr->opcode == aco_opcode::s_endpgm) {
for (unsigned i = 0; i < wait_type_num; i++)
imm[i] = 0;
} else if (imm.unpack(program->gfx_level, instr.get())) {
} else if (instr->isVINTERP_INREG()) {
imm.exp = instr->vinterp_inreg().wait_exp;
if (imm.exp == 0x7)
imm.exp = wait_imm::unset_counter;
} else {
/* If an instruction increases a counter, it waits for it to be below maximum first. */
std::array<unsigned, wait_type_num> wait_info = get_wait_counter_info(program, instr);
wait_imm max = wait_imm::max(program->gfx_level);
for (unsigned i = 0; i < wait_type_num; i++) {
if (wait_info[i])
imm[i] = max[i] - 1;
}
}
return imm;
}
unsigned
BlockCycleEstimator::get_dependency_cost(aco_ptr<Instruction>& instr)
{
int deps_available = cur_cycle;
wait_imm imm = get_wait_imm(program, instr);
for (unsigned i = 0; i < wait_type_num; i++) {
if (imm[i] == wait_imm::unset_counter)
continue;
for (int j = 0; j < (int)mem_ops[i].size() - imm[i]; j++)
deps_available = MAX2(deps_available, mem_ops[i][j]);
}
if (instr->opcode == aco_opcode::s_endpgm) {
for (unsigned i = 0; i < 512; i++)
deps_available = MAX2(deps_available, reg_available[i]);
} else if (program->gfx_level >= GFX10) {
for (Operand& op : instr->operands) {
if (op.isConstant() || op.isUndefined())
continue;
for (unsigned i = 0; i < op.size(); i++)
deps_available = MAX2(deps_available, reg_available[op.physReg().reg() + i]);
}
}
if (program->gfx_level < GFX10)
deps_available = align(deps_available, 4);
return deps_available - cur_cycle;
}
static bool
is_vector(aco_opcode op)
{
switch (instr_info.classes[(int)op]) {
case instr_class::valu32:
case instr_class::valu_convert32:
case instr_class::valu_fma:
case instr_class::valu_double:
case instr_class::valu_double_add:
case instr_class::valu_double_convert:
case instr_class::valu_double_transcendental:
case instr_class::vmem:
case instr_class::ds:
case instr_class::exp:
case instr_class::valu64:
case instr_class::valu_quarter_rate32:
case instr_class::valu_transcendental32: return true;
default: return false;
}
}
void
BlockCycleEstimator::add(aco_ptr<Instruction>& instr)
{
perf_info perf = get_perf_info(*program, *instr);
cur_cycle += get_dependency_cost(instr);
unsigned start;
bool dual_issue = program->gfx_level >= GFX10 && program->wave_size == 64 &&
is_vector(instr->opcode) && !is_dual_issue_capable(*program, *instr) &&
program->workgroup_size > 32;
for (unsigned i = 0; i < (dual_issue ? 2 : 1); i++) {
cur_cycle += cycles_until_res_available(instr);
start = cur_cycle;
use_resources(instr);
/* GCN is in-order and doesn't begin the next instruction until the current one finishes */
cur_cycle += program->gfx_level >= GFX10 ? 1 : perf.latency;
}
wait_imm imm = get_wait_imm(program, instr);
for (unsigned i = 0; i < wait_type_num; i++) {
while (mem_ops[i].size() > imm[i])
mem_ops[i].pop_front();
}
std::array<unsigned, wait_type_num> wait_info = get_wait_counter_info(program, instr);
for (unsigned i = 0; i < wait_type_num; i++) {
if (wait_info[i])
mem_ops[i].push_back(cur_cycle + wait_info[i]);
}
/* This is inaccurate but shouldn't affect anything after waitcnt insertion.
* Before waitcnt insertion, this is necessary to consider memory operations.
*/
unsigned latency = 0;
for (unsigned i = 0; i < wait_type_num; i++)
latency = MAX2(latency, i == wait_type_vs ? 0 : wait_info[i]);
int32_t result_available = start + MAX2(perf.latency, (int32_t)latency);
for (Definition& def : instr->definitions) {
int32_t* available = &reg_available[def.physReg().reg()];
for (unsigned i = 0; i < def.size(); i++)
available[i] = MAX2(available[i], result_available);
}
}
void
BlockCycleEstimator::join(const BlockCycleEstimator& pred)
{
assert(cur_cycle == 0);
for (unsigned i = 0; i < (unsigned)resource_count; i++) {
assert(res_usage[i] == 0);
res_available[i] = MAX2(res_available[i], pred.res_available[i] - pred.cur_cycle);
}
for (unsigned i = 0; i < 512; i++)
reg_available[i] = MAX2(reg_available[i], pred.reg_available[i] - pred.cur_cycle + cur_cycle);
for (unsigned i = 0; i < wait_type_num; i++) {
std::deque<int32_t>& ops = mem_ops[i];
const std::deque<int32_t>& pred_ops = pred.mem_ops[i];
for (unsigned j = 0; j < MIN2(ops.size(), pred_ops.size()); j++)
ops.rbegin()[j] = MAX2(ops.rbegin()[j], pred_ops.rbegin()[j] - pred.cur_cycle);
for (int j = pred_ops.size() - ops.size() - 1; j >= 0; j--)
ops.push_front(pred_ops[j] - pred.cur_cycle);
}
}
} /* end namespace */
/* sgpr_presched/vgpr_presched */
void
collect_presched_stats(Program* program)
{
RegisterDemand presched_demand;
for (Block& block : program->blocks)
presched_demand.update(block.register_demand);
program->statistics.presgprs = presched_demand.sgpr;
program->statistics.prevgprs = presched_demand.vgpr;
}
/* instructions/branches/vmem_clauses/smem_clauses/cycles */
void
collect_preasm_stats(Program* program)
{
for (Block& block : program->blocks) {
std::set<Instruction*> vmem_clause;
std::set<Instruction*> smem_clause;
program->statistics.instrs += block.instructions.size();
for (aco_ptr<Instruction>& instr : block.instructions) {
const bool is_branch =
instr->isSOPP() && instr_info.classes[(int)instr->opcode] == instr_class::branch;
if (is_branch)
program->statistics.branches++;
if (instr->isVALU() || instr->isVINTRP())
program->statistics.valu++;
if (instr->isSALU() && !instr->isSOPP() &&
instr_info.classes[(int)instr->opcode] != instr_class::waitcnt)
program->statistics.salu++;
if (instr->isVOPD())
program->statistics.vopd++;
if ((instr->isVMEM() || instr->isFlatLike()) && !instr->operands.empty()) {
if (std::none_of(vmem_clause.begin(), vmem_clause.end(),
[&](Instruction* other)
{ return should_form_clause(instr.get(), other); }))
program->statistics.vclause++;
vmem_clause.insert(instr.get());
program->statistics.vmem++;
} else {
vmem_clause.clear();
}
if (instr->isSMEM() && !instr->operands.empty()) {
if (std::none_of(smem_clause.begin(), smem_clause.end(),
[&](Instruction* other)
{ return should_form_clause(instr.get(), other); }))
program->statistics.sclause++;
smem_clause.insert(instr.get());
program->statistics.smem++;
} else {
smem_clause.clear();
}
}
}
double latency = 0;
double usage[(int)BlockCycleEstimator::resource_count] = {0};
std::vector<BlockCycleEstimator> blocks(program->blocks.size(), program);
constexpr const unsigned vmem_latency = 320;
for (const Definition def : program->args_pending_vmem) {
blocks[0].mem_ops[wait_type_vm].push_back(vmem_latency);
for (unsigned i = 0; i < def.size(); i++)
blocks[0].reg_available[def.physReg().reg() + i] = vmem_latency;
}
for (Block& block : program->blocks) {
BlockCycleEstimator& block_est = blocks[block.index];
for (unsigned pred : block.linear_preds)
block_est.join(blocks[pred]);
for (aco_ptr<Instruction>& instr : block.instructions) {
unsigned before = block_est.cur_cycle;
block_est.add(instr);
instr->pass_flags = block_est.cur_cycle - before;
}
/* TODO: it would be nice to be able to consider estimated loop trip
* counts used for loop unrolling.
*/
/* TODO: estimate the trip_count of divergent loops (those which break
* divergent) higher than of uniform loops
*/
/* Assume loops execute 8-2 times, uniform branches are taken 50% the time,
* and any lane in the wave takes a side of a divergent branch 75% of the
* time.
*/
double iter = 1.0;
iter *= block.loop_nest_depth > 0 ? 8.0 : 1.0;
iter *= block.loop_nest_depth > 1 ? 4.0 : 1.0;
iter *= block.loop_nest_depth > 2 ? pow(2.0, block.loop_nest_depth - 2) : 1.0;
iter *= pow(0.5, block.uniform_if_depth);
iter *= pow(0.75, block.divergent_if_logical_depth);
bool divergent_if_linear_else =
block.logical_preds.empty() && block.linear_preds.size() == 1 &&
block.linear_succs.size() == 1 &&
program->blocks[block.linear_preds[0]].kind & (block_kind_branch | block_kind_invert);
if (divergent_if_linear_else)
iter *= 0.25;
latency += block_est.cur_cycle * iter;
for (unsigned i = 0; i < (unsigned)BlockCycleEstimator::resource_count; i++)
usage[i] += block_est.res_usage[i] * iter;
}
/* This likely exaggerates the effectiveness of parallelism because it
* ignores instruction ordering. It can assume there might be SALU/VALU/etc
* work to from other waves while one is idle but that might not be the case
* because those other waves have not reached such a point yet.
*/
double parallelism = program->num_waves;
for (unsigned i = 0; i < (unsigned)BlockCycleEstimator::resource_count; i++) {
if (usage[i] > 0.0)
parallelism = MIN2(parallelism, latency / usage[i]);
}
double waves_per_cycle = 1.0 / latency * parallelism;
double wave64_per_cycle = waves_per_cycle * (program->wave_size / 64.0);
double max_utilization = 1.0;
if (program->workgroup_size != UINT_MAX)
max_utilization =
program->workgroup_size / (double)align(program->workgroup_size, program->wave_size);
wave64_per_cycle *= max_utilization;
program->statistics.latency = round(latency);
program->statistics.invthroughput = round(1.0 / wave64_per_cycle);
if (debug_flags & DEBUG_PERF_INFO) {
aco_print_program(program, stderr, print_no_ssa | print_perf_info);
fprintf(stderr, "num_waves: %u\n", program->num_waves);
fprintf(stderr, "salu_smem_usage: %f\n", usage[(int)BlockCycleEstimator::scalar]);
fprintf(stderr, "branch_sendmsg_usage: %f\n",
usage[(int)BlockCycleEstimator::branch_sendmsg]);
fprintf(stderr, "valu_usage: %f\n", usage[(int)BlockCycleEstimator::valu]);
fprintf(stderr, "valu_complex_usage: %f\n", usage[(int)BlockCycleEstimator::valu_complex]);
fprintf(stderr, "lds_usage: %f\n", usage[(int)BlockCycleEstimator::lds]);
fprintf(stderr, "export_gds_usage: %f\n", usage[(int)BlockCycleEstimator::export_gds]);
fprintf(stderr, "vmem_usage: %f\n", usage[(int)BlockCycleEstimator::vmem]);
fprintf(stderr, "latency: %f\n", latency);
fprintf(stderr, "parallelism: %f\n", parallelism);
fprintf(stderr, "max_utilization: %f\n", max_utilization);
fprintf(stderr, "wave64_per_cycle: %f\n", wave64_per_cycle);
fprintf(stderr, "\n");
}
}
void
collect_postasm_stats(Program* program, const std::vector<uint32_t>& code)
{
program->statistics.hash = util_hash_crc32(code.data(), code.size() * 4);
}
Instruction_cycle_info
get_cycle_info(const Program& program, const Instruction& instr)
{
perf_info info = get_perf_info(program, instr);
return Instruction_cycle_info{(unsigned)info.latency, std::max(info.cost0, info.cost1)};
}
} // namespace aco