| /* |
| * Copyright © 2019 Valve Corporation |
| * |
| * SPDX-License-Identifier: MIT |
| */ |
| |
| #include "aco_builder.h" |
| #include "aco_ir.h" |
| |
| #include "util/enum_operators.h" |
| |
| #include <algorithm> |
| #include <map> |
| #include <vector> |
| |
| namespace aco { |
| |
| namespace { |
| |
| enum class pred_defined : uint8_t { |
| undef = 0, |
| const_1 = 1, |
| const_0 = 2, |
| temp = 3, |
| zero = 4, /* all disabled lanes are zero'd out */ |
| }; |
| MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(pred_defined); |
| |
| struct ssa_state { |
| unsigned loop_nest_depth; |
| RegClass rc; |
| |
| std::vector<pred_defined> any_pred_defined; |
| std::vector<bool> visited; |
| std::vector<Operand> outputs; /* the output per block */ |
| }; |
| |
| Operand get_output(Program* program, unsigned block_idx, ssa_state* state); |
| |
| void |
| init_outputs(Program* program, ssa_state* state, unsigned start, unsigned end) |
| { |
| for (unsigned i = start; i <= end; ++i) { |
| if (state->visited[i]) |
| continue; |
| state->outputs[i] = get_output(program, i, state); |
| state->visited[i] = true; |
| } |
| } |
| |
| Operand |
| get_output(Program* program, unsigned block_idx, ssa_state* state) |
| { |
| Block& block = program->blocks[block_idx]; |
| |
| if (state->any_pred_defined[block_idx] == pred_defined::undef) |
| return Operand(state->rc); |
| |
| if (block.loop_nest_depth < state->loop_nest_depth) |
| /* loop-carried value for loop exit phis */ |
| return Operand::zero(state->rc.bytes()); |
| |
| size_t num_preds = block.linear_preds.size(); |
| |
| if (block.loop_nest_depth > state->loop_nest_depth || num_preds == 1 || |
| block.kind & block_kind_loop_exit) |
| return state->outputs[block.linear_preds[0]]; |
| |
| Operand output; |
| |
| /* Loop headers can contain back edges, in which case the predecessor |
| * outputs aren't yet determined because the predecessor is after the block. |
| * The predecessor outputs also depend on the output of the loop header, |
| * so allocate a temporary that will store this block's output and use that |
| * to calculate the predecessor block output. In this case, we always emit a phi |
| * to ensure the allocated temporary is defined. */ |
| if (block.kind & block_kind_loop_header) { |
| unsigned start_idx = block_idx + 1; |
| unsigned end_idx = block.linear_preds.back(); |
| |
| state->outputs[block_idx] = Operand(Temp(program->allocateTmp(state->rc))); |
| init_outputs(program, state, start_idx, end_idx); |
| output = state->outputs[block_idx]; |
| } else if (std::all_of(block.linear_preds.begin() + 1, block.linear_preds.end(), |
| [&](unsigned pred) { |
| return state->outputs[pred] == state->outputs[block.linear_preds[0]]; |
| })) { |
| return state->outputs[block.linear_preds[0]]; |
| } else { |
| output = Operand(Temp(program->allocateTmp(state->rc))); |
| } |
| |
| /* create phi */ |
| aco_ptr<Instruction> phi{ |
| create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)}; |
| for (unsigned i = 0; i < num_preds; i++) |
| phi->operands[i] = state->outputs[block.linear_preds[i]]; |
| phi->definitions[0] = Definition(output.getTemp()); |
| block.instructions.emplace(block.instructions.begin(), std::move(phi)); |
| |
| assert(output.size() == state->rc.size()); |
| |
| return output; |
| } |
| |
| void |
| insert_before_logical_end(Block* block, aco_ptr<Instruction> instr) |
| { |
| auto IsLogicalEnd = [](const aco_ptr<Instruction>& inst) -> bool |
| { return inst->opcode == aco_opcode::p_logical_end; }; |
| auto it = std::find_if(block->instructions.crbegin(), block->instructions.crend(), IsLogicalEnd); |
| |
| if (it == block->instructions.crend()) { |
| assert(block->instructions.back()->isBranch()); |
| block->instructions.insert(std::prev(block->instructions.end()), std::move(instr)); |
| } else { |
| block->instructions.insert(std::prev(it.base()), std::move(instr)); |
| } |
| } |
| |
| void |
| build_merge_code(Program* program, ssa_state* state, Block* block, Operand cur) |
| { |
| unsigned block_idx = block->index; |
| Definition dst = Definition(state->outputs[block_idx].getTemp()); |
| Operand prev = get_output(program, block_idx, state); |
| if (cur.isUndefined()) |
| return; |
| |
| Builder bld(program); |
| auto IsLogicalEnd = [](const aco_ptr<Instruction>& instr) -> bool |
| { return instr->opcode == aco_opcode::p_logical_end; }; |
| auto it = std::find_if(block->instructions.rbegin(), block->instructions.rend(), IsLogicalEnd); |
| assert(it != block->instructions.rend()); |
| bld.reset(&block->instructions, std::prev(it.base())); |
| |
| pred_defined defined = state->any_pred_defined[block_idx]; |
| if (defined == pred_defined::undef) { |
| return; |
| } else if (defined == pred_defined::const_0) { |
| bld.sop2(Builder::s_and, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm)); |
| return; |
| } else if (defined == pred_defined::const_1) { |
| bld.sop2(Builder::s_orn2, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm)); |
| return; |
| } |
| |
| assert(prev.isTemp()); |
| /* simpler sequence in case prev has only zeros in disabled lanes */ |
| if ((defined & pred_defined::zero) == pred_defined::zero) { |
| if (cur.isConstant()) { |
| if (!cur.constantValue()) { |
| bld.copy(dst, prev); |
| return; |
| } |
| cur = Operand(exec, bld.lm); |
| } else { |
| cur = |
| bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cur, Operand(exec, bld.lm)); |
| } |
| bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, cur); |
| return; |
| } |
| |
| if (cur.isConstant()) { |
| if (cur.constantValue()) |
| bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm)); |
| else |
| bld.sop2(Builder::s_andn2, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm)); |
| return; |
| } |
| prev = |
| bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), prev, Operand(exec, bld.lm)); |
| cur = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cur, Operand(exec, bld.lm)); |
| bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, cur); |
| return; |
| } |
| |
| void |
| build_const_else_merge_code(Program* program, Block& invert_block, aco_ptr<Instruction>& phi) |
| { |
| /* When the else-side operand of a binary merge phi is constant, |
| * we can use a simpler way to lower the phi by emitting some |
| * instructions to the invert block instead. |
| * This allows us to actually delete the else block when it's empty. |
| */ |
| Builder bld(program); |
| Operand then = phi->operands[0]; |
| const Operand els = phi->operands[1]; |
| |
| /* Only -1 (all lanes true) and 0 (all lanes false) constants are supported here. */ |
| assert(!then.isConstant() || then.constantEquals(0) || then.constantEquals(-1)); |
| assert(els.constantEquals(0) || els.constantEquals(-1)); |
| |
| if (!then.isConstant()) { |
| /* Left-hand operand is not constant, so we need to emit a phi to access it. */ |
| bld.reset(&invert_block.instructions, invert_block.instructions.begin()); |
| then = bld.pseudo(aco_opcode::p_linear_phi, bld.def(bld.lm), then, Operand(bld.lm)); |
| } |
| |
| auto after_phis = |
| std::find_if(invert_block.instructions.begin(), invert_block.instructions.end(), |
| [](const aco_ptr<Instruction>& instr) -> bool { return !is_phi(instr.get()); }); |
| bld.reset(&invert_block.instructions, after_phis); |
| |
| Temp tmp; |
| if (then.constantEquals(-1) && els.constantEquals(0)) { |
| tmp = bld.copy(bld.def(bld.lm), Operand(exec, bld.lm)); |
| } else { |
| Builder::WaveSpecificOpcode opc = els.constantEquals(0) ? Builder::s_and : Builder::s_orn2; |
| tmp = bld.sop2(opc, bld.def(bld.lm), bld.def(s1, scc), then, Operand(exec, bld.lm)); |
| } |
| |
| /* We can't delete the original phi because that'd invalidate the iterator in lower_phis, |
| * so just make it a trivial phi instead. |
| */ |
| phi->opcode = aco_opcode::p_linear_phi; |
| phi->operands[0] = Operand(tmp); |
| phi->operands[1] = Operand(tmp); |
| } |
| |
| bool |
| block_is_empty(Block& block) |
| { |
| for (auto& instr : block.instructions) { |
| if (instr->opcode != aco_opcode::p_logical_start && |
| instr->opcode != aco_opcode::p_logical_end && instr->opcode != aco_opcode::p_branch) |
| return false; |
| } |
| return true; |
| } |
| |
| void |
| build_empty_else_merge_code(Program* program, Block& merge_block, Block& invert_block, |
| aco_ptr<Instruction>& phi) |
| { |
| /* If the else block is empty, we know that the else phi operand dominates the |
| * then block, so we can handle the phi only in the then block. |
| */ |
| Builder bld(program); |
| Block& then_block = program->blocks[merge_block.logical_preds[0]]; |
| Operand then_op = phi->operands[0]; |
| Operand else_op = phi->operands[1]; |
| |
| auto before_logical_end = |
| std::find_if(then_block.instructions.begin(), then_block.instructions.end(), |
| [](const aco_ptr<Instruction>& instr) -> bool |
| { return instr->opcode == aco_opcode::p_logical_end; }); |
| bld.reset(&then_block.instructions, before_logical_end); |
| |
| Operand new_op; |
| |
| if (then_op.constantEquals(-1)) { |
| new_op = |
| bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), else_op, Operand(exec, bld.lm)); |
| } else if (then_op.constantEquals(0)) { |
| new_op = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), else_op, |
| Operand(exec, bld.lm)); |
| } else { |
| new_op = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), else_op, |
| Operand(exec, bld.lm)); |
| then_op = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), then_op, |
| Operand(exec, bld.lm)); |
| new_op = bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), then_op, new_op); |
| } |
| |
| /* Insert new linear phi in the invert block, make merge block phi trivial to not invalidate |
| * iterators. */ |
| bld.reset(&invert_block.instructions, invert_block.instructions.begin()); |
| Temp tmp = bld.pseudo(aco_opcode::p_linear_phi, bld.def(bld.lm), new_op, else_op); |
| |
| phi->opcode = aco_opcode::p_linear_phi; |
| phi->operands[0] = Operand(tmp); |
| phi->operands[1] = Operand(tmp); |
| } |
| |
| void |
| init_state(Program* program, Block* block, ssa_state* state, aco_ptr<Instruction>& phi) |
| { |
| Builder bld(program); |
| |
| /* do this here to avoid resizing in case of no boolean phis */ |
| state->rc = phi->definitions[0].regClass(); |
| state->visited.resize(program->blocks.size()); |
| state->outputs.resize(program->blocks.size()); |
| state->any_pred_defined.resize(program->blocks.size()); |
| state->loop_nest_depth = block->loop_nest_depth; |
| if (block->kind & block_kind_loop_exit) |
| state->loop_nest_depth += 1; |
| std::fill(state->visited.begin(), state->visited.end(), false); |
| std::fill(state->any_pred_defined.begin(), state->any_pred_defined.end(), pred_defined::undef); |
| |
| for (unsigned i = 0; i < block->logical_preds.size(); i++) { |
| if (phi->operands[i].isUndefined()) |
| continue; |
| pred_defined defined = pred_defined::temp; |
| if (phi->operands[i].isConstant() && phi->opcode == aco_opcode::p_boolean_phi) |
| defined = phi->operands[i].constantValue() ? pred_defined::const_1 : pred_defined::const_0; |
| for (unsigned succ : program->blocks[block->logical_preds[i]].linear_succs) |
| state->any_pred_defined[succ] |= defined; |
| } |
| |
| unsigned start = block->logical_preds[0]; |
| unsigned end = block->linear_preds.back(); |
| |
| /* The value might not be loop-invariant if the loop has a divergent break and |
| * - this is a boolean phi, which must be combined with logical exits from previous iterations |
| * - or the loop also has an additional linear exit (continue_or_break), which might be taken in |
| * a different iteration than the logical exit |
| */ |
| bool continue_or_break = block->linear_preds.size() > block->logical_preds.size(); |
| bool has_divergent_break = std::any_of( |
| block->logical_preds.begin(), block->logical_preds.end(), |
| [&](unsigned pred) { return !(program->blocks[pred].kind & block_kind_uniform); }); |
| if (block->kind & block_kind_loop_exit && has_divergent_break && |
| (phi->opcode == aco_opcode::p_boolean_phi || continue_or_break)) { |
| /* Start at the loop pre-header as we need the value from previous iterations. */ |
| while (program->blocks[start].loop_nest_depth >= state->loop_nest_depth) |
| start--; |
| end = block->index - 1; |
| /* If the loop-header has a back-edge, we need to insert a phi. |
| * This will contain a defined value */ |
| if (program->blocks[start + 1].linear_preds.size() > 1) { |
| if (phi->opcode == aco_opcode::p_boolean_phi) { |
| state->any_pred_defined[start + 1] = pred_defined::temp | pred_defined::zero; |
| /* add dominating zero: this allows to emit simpler merge sequences |
| * if we can ensure that all disabled lanes are always zero on incoming values |
| */ |
| state->any_pred_defined[start] = pred_defined::const_0; |
| } else { |
| state->any_pred_defined[start + 1] = pred_defined::temp; |
| } |
| } |
| } |
| |
| /* For loop header phis, don't propagate the incoming value */ |
| if (block->kind & block_kind_loop_header) { |
| state->any_pred_defined[block->index] = pred_defined::undef; |
| } |
| |
| for (unsigned j = start; j <= end; j++) { |
| if (state->any_pred_defined[j] == pred_defined::undef) |
| continue; |
| for (unsigned succ : program->blocks[j].linear_succs) |
| state->any_pred_defined[succ] |= state->any_pred_defined[j]; |
| } |
| |
| state->any_pred_defined[block->index] = pred_defined::undef; |
| |
| for (unsigned i = 0; i < phi->operands.size(); i++) { |
| /* If the Operand is undefined, just propagate the previous value. */ |
| if (phi->operands[i].isUndefined()) |
| continue; |
| |
| unsigned pred = block->logical_preds[i]; |
| if (phi->opcode == aco_opcode::p_boolean_phi && |
| state->any_pred_defined[pred] != pred_defined::undef) { |
| /* Needs merge code sequence. */ |
| state->outputs[pred] = Operand(bld.tmp(state->rc)); |
| } else { |
| state->outputs[pred] = phi->operands[i]; |
| } |
| assert(state->outputs[pred].size() == state->rc.size()); |
| state->visited[pred] = true; |
| } |
| |
| init_outputs(program, state, start, end); |
| } |
| |
| void |
| lower_phi_to_linear(Program* program, ssa_state* state, Block* block, aco_ptr<Instruction>& phi) |
| { |
| if (phi->opcode == aco_opcode::p_phi) { |
| /* Insert p_as_uniform for VGPR->SGPR phis. */ |
| Builder bld(program); |
| for (unsigned i = 0; i < phi->operands.size(); i++) { |
| if (phi->operands[i].isOfType(RegType::vgpr)) { |
| Block* pred = &program->blocks[block->logical_preds[i]]; |
| Temp new_phi_src = bld.tmp(phi->definitions[0].regClass()); |
| insert_before_logical_end( |
| pred, bld.pseudo(aco_opcode::p_as_uniform, Definition(new_phi_src), phi->operands[i]) |
| .get_ptr()); |
| phi->operands[i].setTemp(new_phi_src); |
| } |
| } |
| } |
| |
| if (block->linear_preds == block->logical_preds) { |
| phi->opcode = aco_opcode::p_linear_phi; |
| return; |
| } |
| |
| if ((block->kind & block_kind_merge) && phi->opcode == aco_opcode::p_boolean_phi && |
| phi->operands.size() == 2) { |
| Block& invert_block = program->blocks[block->linear_idom]; |
| Block& els_block = program->blocks[block->logical_preds[1]]; |
| assert(invert_block.kind & block_kind_invert); |
| if (phi->operands[1].isConstant()) { |
| build_const_else_merge_code(program, invert_block, phi); |
| return; |
| } else if (phi->operands[1].isTemp() && block_is_empty(els_block) && |
| els_block.linear_preds[0] == invert_block.index) { |
| build_empty_else_merge_code(program, *block, invert_block, phi); |
| return; |
| } |
| } |
| |
| init_state(program, block, state, phi); |
| |
| if (phi->opcode == aco_opcode::p_boolean_phi) { |
| /* Divergent boolean phis are lowered to logical arithmetic and linear phis. */ |
| for (unsigned i = 0; i < phi->operands.size(); i++) |
| build_merge_code(program, state, &program->blocks[block->logical_preds[i]], |
| phi->operands[i]); |
| } |
| |
| unsigned num_preds = block->linear_preds.size(); |
| if (phi->operands.size() != num_preds) { |
| Instruction* new_phi{ |
| create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)}; |
| new_phi->definitions[0] = phi->definitions[0]; |
| phi.reset(new_phi); |
| } else { |
| phi->opcode = aco_opcode::p_linear_phi; |
| } |
| assert(phi->operands.size() == num_preds); |
| |
| for (unsigned i = 0; i < num_preds; i++) |
| phi->operands[i] = state->outputs[block->linear_preds[i]]; |
| |
| return; |
| } |
| |
| void |
| lower_subdword_phis(Program* program, Block* block, aco_ptr<Instruction>& phi) |
| { |
| Builder bld(program); |
| for (unsigned i = 0; i < phi->operands.size(); i++) { |
| if (!phi->operands[i].isTemp()) |
| continue; |
| if (phi->operands[i].regClass() == phi->definitions[0].regClass()) |
| continue; |
| |
| assert(phi->operands[i].isTemp()); |
| Block* pred = &program->blocks[block->logical_preds[i]]; |
| Temp phi_src = phi->operands[i].getTemp(); |
| |
| assert(phi_src.regClass().type() == RegType::sgpr); |
| Temp tmp = bld.tmp(RegClass(RegType::vgpr, phi_src.size())); |
| insert_before_logical_end(pred, bld.copy(Definition(tmp), phi_src).get_ptr()); |
| Temp new_phi_src = bld.tmp(phi->definitions[0].regClass()); |
| insert_before_logical_end(pred, bld.pseudo(aco_opcode::p_extract_vector, |
| Definition(new_phi_src), tmp, Operand::zero()) |
| .get_ptr()); |
| |
| phi->operands[i].setTemp(new_phi_src); |
| } |
| return; |
| } |
| |
| } /* end namespace */ |
| |
| void |
| lower_phis(Program* program) |
| { |
| ssa_state state; |
| |
| for (Block& block : program->blocks) { |
| for (aco_ptr<Instruction>& phi : block.instructions) { |
| if (phi->opcode == aco_opcode::p_boolean_phi) { |
| assert(program->wave_size == 64 ? phi->definitions[0].regClass() == s2 |
| : phi->definitions[0].regClass() == s1); |
| lower_phi_to_linear(program, &state, &block, phi); |
| } else if (phi->opcode == aco_opcode::p_phi) { |
| if (phi->definitions[0].regClass().type() == RegType::sgpr) |
| lower_phi_to_linear(program, &state, &block, phi); |
| else if (phi->definitions[0].regClass().is_subdword()) |
| lower_subdword_phis(program, &block, phi); |
| } else if (!is_phi(phi)) { |
| break; |
| } |
| } |
| } |
| } |
| |
| } // namespace aco |