blob: c7d872e9eb8f14cc3b5bff6130959b939a8ea51a [file] [log] [blame]
/*
* Copyright © 2019 Valve Corporation
*
* SPDX-License-Identifier: MIT
*/
#include "aco_builder.h"
#include "aco_ir.h"
#include "util/enum_operators.h"
#include <algorithm>
#include <map>
#include <vector>
namespace aco {
namespace {
enum class pred_defined : uint8_t {
undef = 0,
const_1 = 1,
const_0 = 2,
temp = 3,
zero = 4, /* all disabled lanes are zero'd out */
};
MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(pred_defined);
struct ssa_state {
unsigned loop_nest_depth;
RegClass rc;
std::vector<pred_defined> any_pred_defined;
std::vector<bool> visited;
std::vector<Operand> outputs; /* the output per block */
};
Operand get_output(Program* program, unsigned block_idx, ssa_state* state);
void
init_outputs(Program* program, ssa_state* state, unsigned start, unsigned end)
{
for (unsigned i = start; i <= end; ++i) {
if (state->visited[i])
continue;
state->outputs[i] = get_output(program, i, state);
state->visited[i] = true;
}
}
Operand
get_output(Program* program, unsigned block_idx, ssa_state* state)
{
Block& block = program->blocks[block_idx];
if (state->any_pred_defined[block_idx] == pred_defined::undef)
return Operand(state->rc);
if (block.loop_nest_depth < state->loop_nest_depth)
/* loop-carried value for loop exit phis */
return Operand::zero(state->rc.bytes());
size_t num_preds = block.linear_preds.size();
if (block.loop_nest_depth > state->loop_nest_depth || num_preds == 1 ||
block.kind & block_kind_loop_exit)
return state->outputs[block.linear_preds[0]];
Operand output;
/* Loop headers can contain back edges, in which case the predecessor
* outputs aren't yet determined because the predecessor is after the block.
* The predecessor outputs also depend on the output of the loop header,
* so allocate a temporary that will store this block's output and use that
* to calculate the predecessor block output. In this case, we always emit a phi
* to ensure the allocated temporary is defined. */
if (block.kind & block_kind_loop_header) {
unsigned start_idx = block_idx + 1;
unsigned end_idx = block.linear_preds.back();
state->outputs[block_idx] = Operand(Temp(program->allocateTmp(state->rc)));
init_outputs(program, state, start_idx, end_idx);
output = state->outputs[block_idx];
} else if (std::all_of(block.linear_preds.begin() + 1, block.linear_preds.end(),
[&](unsigned pred) {
return state->outputs[pred] == state->outputs[block.linear_preds[0]];
})) {
return state->outputs[block.linear_preds[0]];
} else {
output = Operand(Temp(program->allocateTmp(state->rc)));
}
/* create phi */
aco_ptr<Instruction> phi{
create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)};
for (unsigned i = 0; i < num_preds; i++)
phi->operands[i] = state->outputs[block.linear_preds[i]];
phi->definitions[0] = Definition(output.getTemp());
block.instructions.emplace(block.instructions.begin(), std::move(phi));
assert(output.size() == state->rc.size());
return output;
}
void
insert_before_logical_end(Block* block, aco_ptr<Instruction> instr)
{
auto IsLogicalEnd = [](const aco_ptr<Instruction>& inst) -> bool
{ return inst->opcode == aco_opcode::p_logical_end; };
auto it = std::find_if(block->instructions.crbegin(), block->instructions.crend(), IsLogicalEnd);
if (it == block->instructions.crend()) {
assert(block->instructions.back()->isBranch());
block->instructions.insert(std::prev(block->instructions.end()), std::move(instr));
} else {
block->instructions.insert(std::prev(it.base()), std::move(instr));
}
}
void
build_merge_code(Program* program, ssa_state* state, Block* block, Operand cur)
{
unsigned block_idx = block->index;
Definition dst = Definition(state->outputs[block_idx].getTemp());
Operand prev = get_output(program, block_idx, state);
if (cur.isUndefined())
return;
Builder bld(program);
auto IsLogicalEnd = [](const aco_ptr<Instruction>& instr) -> bool
{ return instr->opcode == aco_opcode::p_logical_end; };
auto it = std::find_if(block->instructions.rbegin(), block->instructions.rend(), IsLogicalEnd);
assert(it != block->instructions.rend());
bld.reset(&block->instructions, std::prev(it.base()));
pred_defined defined = state->any_pred_defined[block_idx];
if (defined == pred_defined::undef) {
return;
} else if (defined == pred_defined::const_0) {
bld.sop2(Builder::s_and, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm));
return;
} else if (defined == pred_defined::const_1) {
bld.sop2(Builder::s_orn2, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm));
return;
}
assert(prev.isTemp());
/* simpler sequence in case prev has only zeros in disabled lanes */
if ((defined & pred_defined::zero) == pred_defined::zero) {
if (cur.isConstant()) {
if (!cur.constantValue()) {
bld.copy(dst, prev);
return;
}
cur = Operand(exec, bld.lm);
} else {
cur =
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cur, Operand(exec, bld.lm));
}
bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, cur);
return;
}
if (cur.isConstant()) {
if (cur.constantValue())
bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm));
else
bld.sop2(Builder::s_andn2, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm));
return;
}
prev =
bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), prev, Operand(exec, bld.lm));
cur = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cur, Operand(exec, bld.lm));
bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, cur);
return;
}
void
build_const_else_merge_code(Program* program, Block& invert_block, aco_ptr<Instruction>& phi)
{
/* When the else-side operand of a binary merge phi is constant,
* we can use a simpler way to lower the phi by emitting some
* instructions to the invert block instead.
* This allows us to actually delete the else block when it's empty.
*/
Builder bld(program);
Operand then = phi->operands[0];
const Operand els = phi->operands[1];
/* Only -1 (all lanes true) and 0 (all lanes false) constants are supported here. */
assert(!then.isConstant() || then.constantEquals(0) || then.constantEquals(-1));
assert(els.constantEquals(0) || els.constantEquals(-1));
if (!then.isConstant()) {
/* Left-hand operand is not constant, so we need to emit a phi to access it. */
bld.reset(&invert_block.instructions, invert_block.instructions.begin());
then = bld.pseudo(aco_opcode::p_linear_phi, bld.def(bld.lm), then, Operand(bld.lm));
}
auto after_phis =
std::find_if(invert_block.instructions.begin(), invert_block.instructions.end(),
[](const aco_ptr<Instruction>& instr) -> bool { return !is_phi(instr.get()); });
bld.reset(&invert_block.instructions, after_phis);
Temp tmp;
if (then.constantEquals(-1) && els.constantEquals(0)) {
tmp = bld.copy(bld.def(bld.lm), Operand(exec, bld.lm));
} else {
Builder::WaveSpecificOpcode opc = els.constantEquals(0) ? Builder::s_and : Builder::s_orn2;
tmp = bld.sop2(opc, bld.def(bld.lm), bld.def(s1, scc), then, Operand(exec, bld.lm));
}
/* We can't delete the original phi because that'd invalidate the iterator in lower_phis,
* so just make it a trivial phi instead.
*/
phi->opcode = aco_opcode::p_linear_phi;
phi->operands[0] = Operand(tmp);
phi->operands[1] = Operand(tmp);
}
bool
block_is_empty(Block& block)
{
for (auto& instr : block.instructions) {
if (instr->opcode != aco_opcode::p_logical_start &&
instr->opcode != aco_opcode::p_logical_end && instr->opcode != aco_opcode::p_branch)
return false;
}
return true;
}
void
build_empty_else_merge_code(Program* program, Block& merge_block, Block& invert_block,
aco_ptr<Instruction>& phi)
{
/* If the else block is empty, we know that the else phi operand dominates the
* then block, so we can handle the phi only in the then block.
*/
Builder bld(program);
Block& then_block = program->blocks[merge_block.logical_preds[0]];
Operand then_op = phi->operands[0];
Operand else_op = phi->operands[1];
auto before_logical_end =
std::find_if(then_block.instructions.begin(), then_block.instructions.end(),
[](const aco_ptr<Instruction>& instr) -> bool
{ return instr->opcode == aco_opcode::p_logical_end; });
bld.reset(&then_block.instructions, before_logical_end);
Operand new_op;
if (then_op.constantEquals(-1)) {
new_op =
bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), else_op, Operand(exec, bld.lm));
} else if (then_op.constantEquals(0)) {
new_op = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), else_op,
Operand(exec, bld.lm));
} else {
new_op = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), else_op,
Operand(exec, bld.lm));
then_op = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), then_op,
Operand(exec, bld.lm));
new_op = bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), then_op, new_op);
}
/* Insert new linear phi in the invert block, make merge block phi trivial to not invalidate
* iterators. */
bld.reset(&invert_block.instructions, invert_block.instructions.begin());
Temp tmp = bld.pseudo(aco_opcode::p_linear_phi, bld.def(bld.lm), new_op, else_op);
phi->opcode = aco_opcode::p_linear_phi;
phi->operands[0] = Operand(tmp);
phi->operands[1] = Operand(tmp);
}
void
init_state(Program* program, Block* block, ssa_state* state, aco_ptr<Instruction>& phi)
{
Builder bld(program);
/* do this here to avoid resizing in case of no boolean phis */
state->rc = phi->definitions[0].regClass();
state->visited.resize(program->blocks.size());
state->outputs.resize(program->blocks.size());
state->any_pred_defined.resize(program->blocks.size());
state->loop_nest_depth = block->loop_nest_depth;
if (block->kind & block_kind_loop_exit)
state->loop_nest_depth += 1;
std::fill(state->visited.begin(), state->visited.end(), false);
std::fill(state->any_pred_defined.begin(), state->any_pred_defined.end(), pred_defined::undef);
for (unsigned i = 0; i < block->logical_preds.size(); i++) {
if (phi->operands[i].isUndefined())
continue;
pred_defined defined = pred_defined::temp;
if (phi->operands[i].isConstant() && phi->opcode == aco_opcode::p_boolean_phi)
defined = phi->operands[i].constantValue() ? pred_defined::const_1 : pred_defined::const_0;
for (unsigned succ : program->blocks[block->logical_preds[i]].linear_succs)
state->any_pred_defined[succ] |= defined;
}
unsigned start = block->logical_preds[0];
unsigned end = block->linear_preds.back();
/* The value might not be loop-invariant if the loop has a divergent break and
* - this is a boolean phi, which must be combined with logical exits from previous iterations
* - or the loop also has an additional linear exit (continue_or_break), which might be taken in
* a different iteration than the logical exit
*/
bool continue_or_break = block->linear_preds.size() > block->logical_preds.size();
bool has_divergent_break = std::any_of(
block->logical_preds.begin(), block->logical_preds.end(),
[&](unsigned pred) { return !(program->blocks[pred].kind & block_kind_uniform); });
if (block->kind & block_kind_loop_exit && has_divergent_break &&
(phi->opcode == aco_opcode::p_boolean_phi || continue_or_break)) {
/* Start at the loop pre-header as we need the value from previous iterations. */
while (program->blocks[start].loop_nest_depth >= state->loop_nest_depth)
start--;
end = block->index - 1;
/* If the loop-header has a back-edge, we need to insert a phi.
* This will contain a defined value */
if (program->blocks[start + 1].linear_preds.size() > 1) {
if (phi->opcode == aco_opcode::p_boolean_phi) {
state->any_pred_defined[start + 1] = pred_defined::temp | pred_defined::zero;
/* add dominating zero: this allows to emit simpler merge sequences
* if we can ensure that all disabled lanes are always zero on incoming values
*/
state->any_pred_defined[start] = pred_defined::const_0;
} else {
state->any_pred_defined[start + 1] = pred_defined::temp;
}
}
}
/* For loop header phis, don't propagate the incoming value */
if (block->kind & block_kind_loop_header) {
state->any_pred_defined[block->index] = pred_defined::undef;
}
for (unsigned j = start; j <= end; j++) {
if (state->any_pred_defined[j] == pred_defined::undef)
continue;
for (unsigned succ : program->blocks[j].linear_succs)
state->any_pred_defined[succ] |= state->any_pred_defined[j];
}
state->any_pred_defined[block->index] = pred_defined::undef;
for (unsigned i = 0; i < phi->operands.size(); i++) {
/* If the Operand is undefined, just propagate the previous value. */
if (phi->operands[i].isUndefined())
continue;
unsigned pred = block->logical_preds[i];
if (phi->opcode == aco_opcode::p_boolean_phi &&
state->any_pred_defined[pred] != pred_defined::undef) {
/* Needs merge code sequence. */
state->outputs[pred] = Operand(bld.tmp(state->rc));
} else {
state->outputs[pred] = phi->operands[i];
}
assert(state->outputs[pred].size() == state->rc.size());
state->visited[pred] = true;
}
init_outputs(program, state, start, end);
}
void
lower_phi_to_linear(Program* program, ssa_state* state, Block* block, aco_ptr<Instruction>& phi)
{
if (phi->opcode == aco_opcode::p_phi) {
/* Insert p_as_uniform for VGPR->SGPR phis. */
Builder bld(program);
for (unsigned i = 0; i < phi->operands.size(); i++) {
if (phi->operands[i].isOfType(RegType::vgpr)) {
Block* pred = &program->blocks[block->logical_preds[i]];
Temp new_phi_src = bld.tmp(phi->definitions[0].regClass());
insert_before_logical_end(
pred, bld.pseudo(aco_opcode::p_as_uniform, Definition(new_phi_src), phi->operands[i])
.get_ptr());
phi->operands[i].setTemp(new_phi_src);
}
}
}
if (block->linear_preds == block->logical_preds) {
phi->opcode = aco_opcode::p_linear_phi;
return;
}
if ((block->kind & block_kind_merge) && phi->opcode == aco_opcode::p_boolean_phi &&
phi->operands.size() == 2) {
Block& invert_block = program->blocks[block->linear_idom];
Block& els_block = program->blocks[block->logical_preds[1]];
assert(invert_block.kind & block_kind_invert);
if (phi->operands[1].isConstant()) {
build_const_else_merge_code(program, invert_block, phi);
return;
} else if (phi->operands[1].isTemp() && block_is_empty(els_block) &&
els_block.linear_preds[0] == invert_block.index) {
build_empty_else_merge_code(program, *block, invert_block, phi);
return;
}
}
init_state(program, block, state, phi);
if (phi->opcode == aco_opcode::p_boolean_phi) {
/* Divergent boolean phis are lowered to logical arithmetic and linear phis. */
for (unsigned i = 0; i < phi->operands.size(); i++)
build_merge_code(program, state, &program->blocks[block->logical_preds[i]],
phi->operands[i]);
}
unsigned num_preds = block->linear_preds.size();
if (phi->operands.size() != num_preds) {
Instruction* new_phi{
create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)};
new_phi->definitions[0] = phi->definitions[0];
phi.reset(new_phi);
} else {
phi->opcode = aco_opcode::p_linear_phi;
}
assert(phi->operands.size() == num_preds);
for (unsigned i = 0; i < num_preds; i++)
phi->operands[i] = state->outputs[block->linear_preds[i]];
return;
}
void
lower_subdword_phis(Program* program, Block* block, aco_ptr<Instruction>& phi)
{
Builder bld(program);
for (unsigned i = 0; i < phi->operands.size(); i++) {
if (!phi->operands[i].isTemp())
continue;
if (phi->operands[i].regClass() == phi->definitions[0].regClass())
continue;
assert(phi->operands[i].isTemp());
Block* pred = &program->blocks[block->logical_preds[i]];
Temp phi_src = phi->operands[i].getTemp();
assert(phi_src.regClass().type() == RegType::sgpr);
Temp tmp = bld.tmp(RegClass(RegType::vgpr, phi_src.size()));
insert_before_logical_end(pred, bld.copy(Definition(tmp), phi_src).get_ptr());
Temp new_phi_src = bld.tmp(phi->definitions[0].regClass());
insert_before_logical_end(pred, bld.pseudo(aco_opcode::p_extract_vector,
Definition(new_phi_src), tmp, Operand::zero())
.get_ptr());
phi->operands[i].setTemp(new_phi_src);
}
return;
}
} /* end namespace */
void
lower_phis(Program* program)
{
ssa_state state;
for (Block& block : program->blocks) {
for (aco_ptr<Instruction>& phi : block.instructions) {
if (phi->opcode == aco_opcode::p_boolean_phi) {
assert(program->wave_size == 64 ? phi->definitions[0].regClass() == s2
: phi->definitions[0].regClass() == s1);
lower_phi_to_linear(program, &state, &block, phi);
} else if (phi->opcode == aco_opcode::p_phi) {
if (phi->definitions[0].regClass().type() == RegType::sgpr)
lower_phi_to_linear(program, &state, &block, phi);
else if (phi->definitions[0].regClass().is_subdword())
lower_subdword_phis(program, &block, phi);
} else if (!is_phi(phi)) {
break;
}
}
}
}
} // namespace aco