| /* |
| * Copyright © 2023 Valve Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include "ac_nir.h" |
| #include "nir_builder.h" |
| |
| /** |
| * Build a manual selection sequence for cube face sc/tc coordinates and |
| * major axis vector (multiplied by 2 for consistency) for the given |
| * vec3 \p coords, for the face implied by \p selcoords. |
| * |
| * For the major axis, we always adjust the sign to be in the direction of |
| * selcoords.ma; i.e., a positive out_ma means that coords is pointed towards |
| * the selcoords major axis. |
| */ |
| static void |
| build_cube_select(nir_builder *b, nir_def *ma, nir_def *id, nir_def *deriv, |
| nir_def **out_ma, nir_def **out_sc, nir_def **out_tc) |
| { |
| nir_def *deriv_x = nir_channel(b, deriv, 0); |
| nir_def *deriv_y = nir_channel(b, deriv, 1); |
| nir_def *deriv_z = nir_channel(b, deriv, 2); |
| |
| nir_def *is_ma_positive = nir_fge_imm(b, ma, 0.0); |
| nir_def *sgn_ma = |
| nir_bcsel(b, is_ma_positive, nir_imm_float(b, 1.0), nir_imm_float(b, -1.0)); |
| nir_def *neg_sgn_ma = nir_fneg(b, sgn_ma); |
| |
| nir_def *is_ma_z = nir_fge_imm(b, id, 4.0); |
| nir_def *is_ma_y = nir_fge_imm(b, id, 2.0); |
| is_ma_y = nir_iand(b, is_ma_y, nir_inot(b, is_ma_z)); |
| nir_def *is_not_ma_x = nir_ior(b, is_ma_z, is_ma_y); |
| |
| /* Select sc */ |
| nir_def *tmp = nir_bcsel(b, is_not_ma_x, deriv_x, deriv_z); |
| nir_def *sgn = |
| nir_bcsel(b, is_ma_y, nir_imm_float(b, 1.0), nir_bcsel(b, is_ma_z, sgn_ma, neg_sgn_ma)); |
| *out_sc = nir_fmul(b, tmp, sgn); |
| |
| /* Select tc */ |
| tmp = nir_bcsel(b, is_ma_y, deriv_z, deriv_y); |
| sgn = nir_bcsel(b, is_ma_y, sgn_ma, nir_imm_float(b, -1.0)); |
| *out_tc = nir_fmul(b, tmp, sgn); |
| |
| /* Select ma */ |
| tmp = nir_bcsel(b, is_ma_z, deriv_z, nir_bcsel(b, is_ma_y, deriv_y, deriv_x)); |
| *out_ma = nir_fmul_imm(b, nir_fabs(b, tmp), 2.0); |
| } |
| |
| static void |
| prepare_cube_coords(nir_builder *b, nir_tex_instr *tex, nir_def **coord, nir_src *ddx, |
| nir_src *ddy, const ac_nir_lower_tex_options *options) |
| { |
| nir_def *coords[NIR_MAX_VEC_COMPONENTS] = {0}; |
| for (unsigned i = 0; i < (*coord)->num_components; i++) |
| coords[i] = nir_channel(b, *coord, i); |
| |
| /* Section 8.9 (Texture Functions) of the GLSL 4.50 spec says: |
| * |
| * "For Array forms, the array layer used will be |
| * |
| * max(0, min(d−1, floor(layer+0.5))) |
| * |
| * where d is the depth of the texture array and layer |
| * comes from the component indicated in the tables below. |
| * Workaroudn for an issue where the layer is taken from a |
| * helper invocation which happens to fall on a different |
| * layer due to extrapolation." |
| * |
| * GFX8 and earlier attempt to implement this in hardware by |
| * clamping the value of coords[2] = (8 * layer) + face. |
| * Unfortunately, this means that the we end up with the wrong |
| * face when clamping occurs. |
| * |
| * Clamp the layer earlier to work around the issue. |
| */ |
| if (tex->is_array && options->gfx_level <= GFX8 && coords[3]) |
| coords[3] = nir_fmax(b, coords[3], nir_imm_float(b, 0.0)); |
| |
| nir_def *cube_coords = nir_cube_amd(b, nir_vec(b, coords, 3)); |
| nir_def *sc = nir_channel(b, cube_coords, 1); |
| nir_def *tc = nir_channel(b, cube_coords, 0); |
| nir_def *ma = nir_channel(b, cube_coords, 2); |
| nir_def *invma = nir_frcp(b, nir_fabs(b, ma)); |
| nir_def *id = nir_channel(b, cube_coords, 3); |
| |
| if (ddx || ddy) { |
| sc = nir_fmul(b, sc, invma); |
| tc = nir_fmul(b, tc, invma); |
| |
| /* Convert cube derivatives to 2D derivatives. */ |
| for (unsigned i = 0; i < 2; i++) { |
| /* Transform the derivative alongside the texture |
| * coordinate. Mathematically, the correct formula is |
| * as follows. Assume we're projecting onto the +Z face |
| * and denote by dx/dh the derivative of the (original) |
| * X texture coordinate with respect to horizontal |
| * window coordinates. The projection onto the +Z face |
| * plane is: |
| * |
| * f(x,z) = x/z |
| * |
| * Then df/dh = df/dx * dx/dh + df/dz * dz/dh |
| * = 1/z * dx/dh - x/z * 1/z * dz/dh. |
| * |
| * This motivatives the implementation below. |
| * |
| * Whether this actually gives the expected results for |
| * apps that might feed in derivatives obtained via |
| * finite differences is anyone's guess. The OpenGL spec |
| * seems awfully quiet about how textureGrad for cube |
| * maps should be handled. |
| */ |
| nir_def *deriv_ma, *deriv_sc, *deriv_tc; |
| build_cube_select(b, ma, id, i ? ddy->ssa : ddx->ssa, &deriv_ma, &deriv_sc, &deriv_tc); |
| |
| deriv_ma = nir_fmul(b, deriv_ma, invma); |
| |
| nir_def *x = nir_fsub(b, nir_fmul(b, deriv_sc, invma), nir_fmul(b, deriv_ma, sc)); |
| nir_def *y = nir_fsub(b, nir_fmul(b, deriv_tc, invma), nir_fmul(b, deriv_ma, tc)); |
| |
| nir_src_rewrite(i ? ddy : ddx, nir_vec2(b, x, y)); |
| } |
| |
| sc = nir_fadd_imm(b, sc, 1.5); |
| tc = nir_fadd_imm(b, tc, 1.5); |
| } else { |
| sc = nir_ffma_imm2(b, sc, invma, 1.5); |
| tc = nir_ffma_imm2(b, tc, invma, 1.5); |
| } |
| |
| if (tex->is_array && coords[3]) |
| id = nir_ffma_imm1(b, coords[3], 8.0, id); |
| |
| *coord = nir_vec3(b, sc, tc, id); |
| |
| tex->is_array = true; |
| } |
| |
| static bool |
| lower_array_layer_round_even(nir_builder *b, nir_tex_instr *tex, nir_def **coords) |
| { |
| int coord_index = nir_tex_instr_src_index(tex, nir_tex_src_coord); |
| if (coord_index < 0 || nir_tex_instr_src_type(tex, coord_index) != nir_type_float) |
| return false; |
| |
| unsigned layer = tex->coord_components - 1; |
| nir_def *rounded_layer = nir_fround_even(b, nir_channel(b, *coords, layer)); |
| *coords = nir_vector_insert_imm(b, *coords, rounded_layer, layer); |
| return true; |
| } |
| |
| static bool |
| lower_tex_coords(nir_builder *b, nir_tex_instr *tex, nir_def **coords, |
| const ac_nir_lower_tex_options *options) |
| { |
| bool progress = false; |
| if ((options->lower_array_layer_round_even || tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE) && |
| tex->is_array && tex->op != nir_texop_lod) |
| progress |= lower_array_layer_round_even(b, tex, coords); |
| |
| if (tex->sampler_dim != GLSL_SAMPLER_DIM_CUBE) |
| return progress; |
| |
| int ddx_idx = nir_tex_instr_src_index(tex, nir_tex_src_ddx); |
| int ddy_idx = nir_tex_instr_src_index(tex, nir_tex_src_ddy); |
| nir_src *ddx = ddx_idx >= 0 ? &tex->src[ddx_idx].src : NULL; |
| nir_src *ddy = ddy_idx >= 0 ? &tex->src[ddy_idx].src : NULL; |
| |
| prepare_cube_coords(b, tex, coords, ddx, ddy, options); |
| |
| return true; |
| } |
| |
| static bool |
| lower_tex(nir_builder *b, nir_instr *instr, void *options_) |
| { |
| const ac_nir_lower_tex_options *options = options_; |
| if (instr->type != nir_instr_type_tex) |
| return false; |
| |
| nir_tex_instr *tex = nir_instr_as_tex(instr); |
| int coord_idx = nir_tex_instr_src_index(tex, nir_tex_src_coord); |
| if (coord_idx < 0 || nir_tex_instr_src_index(tex, nir_tex_src_backend1) >= 0) |
| return false; |
| |
| b->cursor = nir_before_instr(instr); |
| nir_def *coords = tex->src[coord_idx].src.ssa; |
| if (lower_tex_coords(b, tex, &coords, options)) { |
| tex->coord_components = coords->num_components; |
| nir_src_rewrite(&tex->src[coord_idx].src, coords); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| typedef struct { |
| nir_intrinsic_instr *bary; |
| nir_intrinsic_instr *load; |
| } coord_info; |
| |
| static bool |
| can_move_coord(nir_scalar scalar, coord_info *info) |
| { |
| if (scalar.def->bit_size != 32) |
| return false; |
| |
| if (nir_scalar_is_const(scalar)) |
| return true; |
| |
| if (!nir_scalar_is_intrinsic(scalar)) |
| return false; |
| |
| nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(scalar.def->parent_instr); |
| if (intrin->intrinsic == nir_intrinsic_load_input || |
| intrin->intrinsic == nir_intrinsic_load_per_primitive_input) { |
| info->bary = NULL; |
| info->load = intrin; |
| return true; |
| } |
| |
| if (intrin->intrinsic != nir_intrinsic_load_interpolated_input) |
| return false; |
| |
| nir_scalar coord_x = nir_scalar_resolved(intrin->src[0].ssa, 0); |
| nir_scalar coord_y = nir_scalar_resolved(intrin->src[0].ssa, 1); |
| if (!nir_scalar_is_intrinsic(coord_x) || coord_x.comp != 0 || |
| !nir_scalar_is_intrinsic(coord_y) || coord_y.comp != 1) |
| return false; |
| |
| nir_intrinsic_instr *intrin_x = nir_instr_as_intrinsic(coord_x.def->parent_instr); |
| nir_intrinsic_instr *intrin_y = nir_instr_as_intrinsic(coord_y.def->parent_instr); |
| if (intrin_x->intrinsic != intrin_y->intrinsic || |
| (intrin_x->intrinsic != nir_intrinsic_load_barycentric_sample && |
| intrin_x->intrinsic != nir_intrinsic_load_barycentric_pixel && |
| intrin_x->intrinsic != nir_intrinsic_load_barycentric_centroid) || |
| nir_intrinsic_interp_mode(intrin_x) != nir_intrinsic_interp_mode(intrin_y)) |
| return false; |
| |
| info->bary = intrin_x; |
| info->load = intrin; |
| |
| return true; |
| } |
| |
| struct move_tex_coords_state { |
| const ac_nir_lower_tex_options *options; |
| unsigned num_wqm_vgprs; |
| nir_builder toplevel_b; |
| }; |
| |
| static nir_def * |
| build_coordinate(struct move_tex_coords_state *state, nir_scalar scalar, coord_info info) |
| { |
| nir_builder *b = &state->toplevel_b; |
| |
| if (nir_scalar_is_const(scalar)) |
| return nir_imm_intN_t(b, nir_scalar_as_uint(scalar), scalar.def->bit_size); |
| |
| ASSERTED nir_src offset = *nir_get_io_offset_src(info.load); |
| assert(nir_src_is_const(offset) && !nir_src_as_uint(offset)); |
| |
| nir_def *zero = nir_imm_int(b, 0); |
| nir_def *res; |
| if (info.bary) { |
| enum glsl_interp_mode interp_mode = nir_intrinsic_interp_mode(info.bary); |
| nir_def *bary = nir_load_system_value(b, info.bary->intrinsic, interp_mode, 2, 32); |
| res = nir_load_interpolated_input(b, 1, 32, bary, zero); |
| } else { |
| res = nir_load_input(b, 1, 32, zero); |
| } |
| nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(res->parent_instr); |
| nir_intrinsic_set_base(intrin, nir_intrinsic_base(info.load)); |
| nir_intrinsic_set_component(intrin, nir_intrinsic_component(info.load) + scalar.comp); |
| nir_intrinsic_set_dest_type(intrin, nir_intrinsic_dest_type(info.load)); |
| nir_intrinsic_set_io_semantics(intrin, nir_intrinsic_io_semantics(info.load)); |
| return res; |
| } |
| |
| static bool |
| move_tex_coords(struct move_tex_coords_state *state, nir_function_impl *impl, nir_instr *instr) |
| { |
| nir_tex_instr *tex = nir_instr_as_tex(instr); |
| if (tex->op != nir_texop_tex && tex->op != nir_texop_txb && tex->op != nir_texop_lod) |
| return false; |
| |
| switch (tex->sampler_dim) { |
| case GLSL_SAMPLER_DIM_1D: |
| case GLSL_SAMPLER_DIM_2D: |
| case GLSL_SAMPLER_DIM_3D: |
| case GLSL_SAMPLER_DIM_CUBE: |
| case GLSL_SAMPLER_DIM_EXTERNAL: |
| break; |
| case GLSL_SAMPLER_DIM_RECT: |
| case GLSL_SAMPLER_DIM_BUF: |
| case GLSL_SAMPLER_DIM_MS: |
| case GLSL_SAMPLER_DIM_SUBPASS: |
| case GLSL_SAMPLER_DIM_SUBPASS_MS: |
| return false; /* No LOD or can't be sampled. */ |
| } |
| |
| if (nir_tex_instr_src_index(tex, nir_tex_src_min_lod) != -1) |
| return false; |
| |
| nir_tex_src *src = &tex->src[nir_tex_instr_src_index(tex, nir_tex_src_coord)]; |
| nir_scalar components[NIR_MAX_VEC_COMPONENTS]; |
| coord_info infos[NIR_MAX_VEC_COMPONENTS]; |
| bool can_move_all = true; |
| for (unsigned i = 0; i < tex->coord_components; i++) { |
| components[i] = nir_scalar_resolved(src->src.ssa, i); |
| can_move_all &= can_move_coord(components[i], &infos[i]); |
| } |
| if (!can_move_all) |
| return false; |
| |
| int coord_base = 0; |
| unsigned linear_vgpr_size = tex->coord_components; |
| if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE && tex->is_array) |
| linear_vgpr_size--; /* cube array layer and face are combined */ |
| for (unsigned i = 0; i < tex->num_srcs; i++) { |
| switch (tex->src[i].src_type) { |
| case nir_tex_src_offset: |
| case nir_tex_src_bias: |
| case nir_tex_src_comparator: |
| coord_base++; |
| linear_vgpr_size++; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (state->num_wqm_vgprs + linear_vgpr_size > state->options->max_wqm_vgprs) |
| return false; |
| |
| for (unsigned i = 0; i < tex->coord_components; i++) |
| components[i] = nir_get_scalar(build_coordinate(state, components[i], infos[i]), 0); |
| |
| nir_def *linear_vgpr = nir_vec_scalars(&state->toplevel_b, components, tex->coord_components); |
| lower_tex_coords(&state->toplevel_b, tex, &linear_vgpr, state->options); |
| |
| linear_vgpr = nir_strict_wqm_coord_amd(&state->toplevel_b, linear_vgpr, coord_base * 4); |
| |
| nir_tex_instr_remove_src(tex, nir_tex_instr_src_index(tex, nir_tex_src_coord)); |
| tex->coord_components = 0; |
| |
| nir_tex_instr_add_src(tex, nir_tex_src_backend1, linear_vgpr); |
| |
| int offset_src = nir_tex_instr_src_index(tex, nir_tex_src_offset); |
| if (offset_src >= 0) /* Workaround requirement in nir_tex_instr_src_size(). */ |
| tex->src[offset_src].src_type = nir_tex_src_backend2; |
| |
| state->num_wqm_vgprs += linear_vgpr_size; |
| |
| return true; |
| } |
| |
| static bool |
| move_ddxy(struct move_tex_coords_state *state, nir_function_impl *impl, nir_intrinsic_instr *instr) |
| { |
| unsigned num_components = instr->def.num_components; |
| nir_scalar components[NIR_MAX_VEC_COMPONENTS]; |
| coord_info infos[NIR_MAX_VEC_COMPONENTS]; |
| bool can_move_all = true; |
| for (unsigned i = 0; i < num_components; i++) { |
| components[i] = nir_scalar_resolved(instr->src[0].ssa, i); |
| can_move_all &= can_move_coord(components[i], &infos[i]); |
| } |
| if (!can_move_all || state->num_wqm_vgprs + num_components > state->options->max_wqm_vgprs) |
| return false; |
| |
| for (unsigned i = 0; i < num_components; i++) { |
| nir_def *def = build_coordinate(state, components[i], infos[i]); |
| components[i] = nir_get_scalar(def, 0); |
| } |
| |
| nir_def *def = nir_vec_scalars(&state->toplevel_b, components, num_components); |
| def = _nir_build_ddx(&state->toplevel_b, def->bit_size, def); |
| nir_instr_as_intrinsic(def->parent_instr)->intrinsic = instr->intrinsic; |
| nir_def_rewrite_uses(&instr->def, def); |
| |
| state->num_wqm_vgprs += num_components; |
| |
| return true; |
| } |
| |
| static bool |
| move_coords_from_divergent_cf(struct move_tex_coords_state *state, nir_function_impl *impl, |
| struct exec_list *cf_list, bool *divergent_discard, bool divergent_cf) |
| { |
| bool progress = false; |
| foreach_list_typed (nir_cf_node, cf_node, node, cf_list) { |
| switch (cf_node->type) { |
| case nir_cf_node_block: { |
| nir_block *block = nir_cf_node_as_block(cf_node); |
| |
| bool top_level = cf_list == &impl->body; |
| |
| nir_foreach_instr (instr, block) { |
| if (top_level && !*divergent_discard) |
| state->toplevel_b.cursor = nir_before_instr(instr); |
| |
| if (instr->type == nir_instr_type_tex && (divergent_cf || *divergent_discard)) { |
| progress |= move_tex_coords(state, impl, instr); |
| } else if (instr->type == nir_instr_type_intrinsic) { |
| nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); |
| switch (intrin->intrinsic) { |
| case nir_intrinsic_terminate: |
| if (divergent_cf) |
| *divergent_discard = true; |
| break; |
| case nir_intrinsic_terminate_if: |
| if (divergent_cf || nir_src_is_divergent(&intrin->src[0])) |
| *divergent_discard = true; |
| break; |
| case nir_intrinsic_ddx: |
| case nir_intrinsic_ddy: |
| case nir_intrinsic_ddx_fine: |
| case nir_intrinsic_ddy_fine: |
| case nir_intrinsic_ddx_coarse: |
| case nir_intrinsic_ddy_coarse: |
| if (divergent_cf || *divergent_discard) |
| progress |= move_ddxy(state, impl, intrin); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| if (top_level && !*divergent_discard) |
| state->toplevel_b.cursor = nir_after_block_before_jump(block); |
| break; |
| } |
| case nir_cf_node_if: { |
| nir_if *nif = nir_cf_node_as_if(cf_node); |
| bool divergent_discard_then = *divergent_discard; |
| bool divergent_discard_else = *divergent_discard; |
| bool then_else_divergent = divergent_cf || nir_src_is_divergent(&nif->condition); |
| progress |= move_coords_from_divergent_cf(state, impl, &nif->then_list, |
| &divergent_discard_then, then_else_divergent); |
| progress |= move_coords_from_divergent_cf(state, impl, &nif->else_list, |
| &divergent_discard_else, then_else_divergent); |
| *divergent_discard |= divergent_discard_then || divergent_discard_else; |
| break; |
| } |
| case nir_cf_node_loop: { |
| nir_loop *loop = nir_cf_node_as_loop(cf_node); |
| assert(!nir_loop_has_continue_construct(loop)); |
| progress |= |
| move_coords_from_divergent_cf(state, impl, &loop->body, divergent_discard, true); |
| break; |
| } |
| case nir_cf_node_function: |
| unreachable("Invalid cf type"); |
| } |
| } |
| |
| return progress; |
| } |
| |
| bool |
| ac_nir_lower_tex(nir_shader *nir, const ac_nir_lower_tex_options *options) |
| { |
| bool progress = false; |
| if (options->fix_derivs_in_divergent_cf) { |
| nir_function_impl *impl = nir_shader_get_entrypoint(nir); |
| nir_metadata_require(impl, nir_metadata_divergence); |
| |
| struct move_tex_coords_state state; |
| state.toplevel_b = nir_builder_create(impl); |
| state.options = options; |
| state.num_wqm_vgprs = 0; |
| |
| bool divergent_discard = false; |
| bool impl_progress = move_coords_from_divergent_cf(&state, impl, |
| &impl->body, |
| &divergent_discard, |
| false); |
| nir_progress(impl_progress, impl, nir_metadata_control_flow); |
| } |
| |
| progress |= nir_shader_instructions_pass( |
| nir, lower_tex, nir_metadata_control_flow, (void *)options); |
| |
| return progress; |
| } |