blob: 935710086f067339184927a9fab192dbbc75751d [file] [log] [blame]
/*
* Copyright © 2023 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "ac_nir.h"
#include "nir_builder.h"
/**
* Build a manual selection sequence for cube face sc/tc coordinates and
* major axis vector (multiplied by 2 for consistency) for the given
* vec3 \p coords, for the face implied by \p selcoords.
*
* For the major axis, we always adjust the sign to be in the direction of
* selcoords.ma; i.e., a positive out_ma means that coords is pointed towards
* the selcoords major axis.
*/
static void
build_cube_select(nir_builder *b, nir_def *ma, nir_def *id, nir_def *deriv,
nir_def **out_ma, nir_def **out_sc, nir_def **out_tc)
{
nir_def *deriv_x = nir_channel(b, deriv, 0);
nir_def *deriv_y = nir_channel(b, deriv, 1);
nir_def *deriv_z = nir_channel(b, deriv, 2);
nir_def *is_ma_positive = nir_fge_imm(b, ma, 0.0);
nir_def *sgn_ma =
nir_bcsel(b, is_ma_positive, nir_imm_float(b, 1.0), nir_imm_float(b, -1.0));
nir_def *neg_sgn_ma = nir_fneg(b, sgn_ma);
nir_def *is_ma_z = nir_fge_imm(b, id, 4.0);
nir_def *is_ma_y = nir_fge_imm(b, id, 2.0);
is_ma_y = nir_iand(b, is_ma_y, nir_inot(b, is_ma_z));
nir_def *is_not_ma_x = nir_ior(b, is_ma_z, is_ma_y);
/* Select sc */
nir_def *tmp = nir_bcsel(b, is_not_ma_x, deriv_x, deriv_z);
nir_def *sgn =
nir_bcsel(b, is_ma_y, nir_imm_float(b, 1.0), nir_bcsel(b, is_ma_z, sgn_ma, neg_sgn_ma));
*out_sc = nir_fmul(b, tmp, sgn);
/* Select tc */
tmp = nir_bcsel(b, is_ma_y, deriv_z, deriv_y);
sgn = nir_bcsel(b, is_ma_y, sgn_ma, nir_imm_float(b, -1.0));
*out_tc = nir_fmul(b, tmp, sgn);
/* Select ma */
tmp = nir_bcsel(b, is_ma_z, deriv_z, nir_bcsel(b, is_ma_y, deriv_y, deriv_x));
*out_ma = nir_fmul_imm(b, nir_fabs(b, tmp), 2.0);
}
static void
prepare_cube_coords(nir_builder *b, nir_tex_instr *tex, nir_def **coord, nir_src *ddx,
nir_src *ddy, const ac_nir_lower_tex_options *options)
{
nir_def *coords[NIR_MAX_VEC_COMPONENTS] = {0};
for (unsigned i = 0; i < (*coord)->num_components; i++)
coords[i] = nir_channel(b, *coord, i);
/* Section 8.9 (Texture Functions) of the GLSL 4.50 spec says:
*
* "For Array forms, the array layer used will be
*
* max(0, min(d−1, floor(layer+0.5)))
*
* where d is the depth of the texture array and layer
* comes from the component indicated in the tables below.
* Workaroudn for an issue where the layer is taken from a
* helper invocation which happens to fall on a different
* layer due to extrapolation."
*
* GFX8 and earlier attempt to implement this in hardware by
* clamping the value of coords[2] = (8 * layer) + face.
* Unfortunately, this means that the we end up with the wrong
* face when clamping occurs.
*
* Clamp the layer earlier to work around the issue.
*/
if (tex->is_array && options->gfx_level <= GFX8 && coords[3])
coords[3] = nir_fmax(b, coords[3], nir_imm_float(b, 0.0));
nir_def *cube_coords = nir_cube_amd(b, nir_vec(b, coords, 3));
nir_def *sc = nir_channel(b, cube_coords, 1);
nir_def *tc = nir_channel(b, cube_coords, 0);
nir_def *ma = nir_channel(b, cube_coords, 2);
nir_def *invma = nir_frcp(b, nir_fabs(b, ma));
nir_def *id = nir_channel(b, cube_coords, 3);
if (ddx || ddy) {
sc = nir_fmul(b, sc, invma);
tc = nir_fmul(b, tc, invma);
/* Convert cube derivatives to 2D derivatives. */
for (unsigned i = 0; i < 2; i++) {
/* Transform the derivative alongside the texture
* coordinate. Mathematically, the correct formula is
* as follows. Assume we're projecting onto the +Z face
* and denote by dx/dh the derivative of the (original)
* X texture coordinate with respect to horizontal
* window coordinates. The projection onto the +Z face
* plane is:
*
* f(x,z) = x/z
*
* Then df/dh = df/dx * dx/dh + df/dz * dz/dh
* = 1/z * dx/dh - x/z * 1/z * dz/dh.
*
* This motivatives the implementation below.
*
* Whether this actually gives the expected results for
* apps that might feed in derivatives obtained via
* finite differences is anyone's guess. The OpenGL spec
* seems awfully quiet about how textureGrad for cube
* maps should be handled.
*/
nir_def *deriv_ma, *deriv_sc, *deriv_tc;
build_cube_select(b, ma, id, i ? ddy->ssa : ddx->ssa, &deriv_ma, &deriv_sc, &deriv_tc);
deriv_ma = nir_fmul(b, deriv_ma, invma);
nir_def *x = nir_fsub(b, nir_fmul(b, deriv_sc, invma), nir_fmul(b, deriv_ma, sc));
nir_def *y = nir_fsub(b, nir_fmul(b, deriv_tc, invma), nir_fmul(b, deriv_ma, tc));
nir_src_rewrite(i ? ddy : ddx, nir_vec2(b, x, y));
}
sc = nir_fadd_imm(b, sc, 1.5);
tc = nir_fadd_imm(b, tc, 1.5);
} else {
sc = nir_ffma_imm2(b, sc, invma, 1.5);
tc = nir_ffma_imm2(b, tc, invma, 1.5);
}
if (tex->is_array && coords[3])
id = nir_ffma_imm1(b, coords[3], 8.0, id);
*coord = nir_vec3(b, sc, tc, id);
tex->is_array = true;
}
static bool
lower_array_layer_round_even(nir_builder *b, nir_tex_instr *tex, nir_def **coords)
{
int coord_index = nir_tex_instr_src_index(tex, nir_tex_src_coord);
if (coord_index < 0 || nir_tex_instr_src_type(tex, coord_index) != nir_type_float)
return false;
unsigned layer = tex->coord_components - 1;
nir_def *rounded_layer = nir_fround_even(b, nir_channel(b, *coords, layer));
*coords = nir_vector_insert_imm(b, *coords, rounded_layer, layer);
return true;
}
static bool
lower_tex_coords(nir_builder *b, nir_tex_instr *tex, nir_def **coords,
const ac_nir_lower_tex_options *options)
{
bool progress = false;
if ((options->lower_array_layer_round_even || tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE) &&
tex->is_array && tex->op != nir_texop_lod)
progress |= lower_array_layer_round_even(b, tex, coords);
if (tex->sampler_dim != GLSL_SAMPLER_DIM_CUBE)
return progress;
int ddx_idx = nir_tex_instr_src_index(tex, nir_tex_src_ddx);
int ddy_idx = nir_tex_instr_src_index(tex, nir_tex_src_ddy);
nir_src *ddx = ddx_idx >= 0 ? &tex->src[ddx_idx].src : NULL;
nir_src *ddy = ddy_idx >= 0 ? &tex->src[ddy_idx].src : NULL;
prepare_cube_coords(b, tex, coords, ddx, ddy, options);
return true;
}
static bool
lower_tex(nir_builder *b, nir_instr *instr, void *options_)
{
const ac_nir_lower_tex_options *options = options_;
if (instr->type != nir_instr_type_tex)
return false;
nir_tex_instr *tex = nir_instr_as_tex(instr);
int coord_idx = nir_tex_instr_src_index(tex, nir_tex_src_coord);
if (coord_idx < 0 || nir_tex_instr_src_index(tex, nir_tex_src_backend1) >= 0)
return false;
b->cursor = nir_before_instr(instr);
nir_def *coords = tex->src[coord_idx].src.ssa;
if (lower_tex_coords(b, tex, &coords, options)) {
tex->coord_components = coords->num_components;
nir_src_rewrite(&tex->src[coord_idx].src, coords);
return true;
}
return false;
}
typedef struct {
nir_intrinsic_instr *bary;
nir_intrinsic_instr *load;
} coord_info;
static bool
can_move_coord(nir_scalar scalar, coord_info *info)
{
if (scalar.def->bit_size != 32)
return false;
if (nir_scalar_is_const(scalar))
return true;
if (!nir_scalar_is_intrinsic(scalar))
return false;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(scalar.def->parent_instr);
if (intrin->intrinsic == nir_intrinsic_load_input ||
intrin->intrinsic == nir_intrinsic_load_per_primitive_input) {
info->bary = NULL;
info->load = intrin;
return true;
}
if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
return false;
nir_scalar coord_x = nir_scalar_resolved(intrin->src[0].ssa, 0);
nir_scalar coord_y = nir_scalar_resolved(intrin->src[0].ssa, 1);
if (!nir_scalar_is_intrinsic(coord_x) || coord_x.comp != 0 ||
!nir_scalar_is_intrinsic(coord_y) || coord_y.comp != 1)
return false;
nir_intrinsic_instr *intrin_x = nir_instr_as_intrinsic(coord_x.def->parent_instr);
nir_intrinsic_instr *intrin_y = nir_instr_as_intrinsic(coord_y.def->parent_instr);
if (intrin_x->intrinsic != intrin_y->intrinsic ||
(intrin_x->intrinsic != nir_intrinsic_load_barycentric_sample &&
intrin_x->intrinsic != nir_intrinsic_load_barycentric_pixel &&
intrin_x->intrinsic != nir_intrinsic_load_barycentric_centroid) ||
nir_intrinsic_interp_mode(intrin_x) != nir_intrinsic_interp_mode(intrin_y))
return false;
info->bary = intrin_x;
info->load = intrin;
return true;
}
struct move_tex_coords_state {
const ac_nir_lower_tex_options *options;
unsigned num_wqm_vgprs;
nir_builder toplevel_b;
};
static nir_def *
build_coordinate(struct move_tex_coords_state *state, nir_scalar scalar, coord_info info)
{
nir_builder *b = &state->toplevel_b;
if (nir_scalar_is_const(scalar))
return nir_imm_intN_t(b, nir_scalar_as_uint(scalar), scalar.def->bit_size);
ASSERTED nir_src offset = *nir_get_io_offset_src(info.load);
assert(nir_src_is_const(offset) && !nir_src_as_uint(offset));
nir_def *zero = nir_imm_int(b, 0);
nir_def *res;
if (info.bary) {
enum glsl_interp_mode interp_mode = nir_intrinsic_interp_mode(info.bary);
nir_def *bary = nir_load_system_value(b, info.bary->intrinsic, interp_mode, 2, 32);
res = nir_load_interpolated_input(b, 1, 32, bary, zero);
} else {
res = nir_load_input(b, 1, 32, zero);
}
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(res->parent_instr);
nir_intrinsic_set_base(intrin, nir_intrinsic_base(info.load));
nir_intrinsic_set_component(intrin, nir_intrinsic_component(info.load) + scalar.comp);
nir_intrinsic_set_dest_type(intrin, nir_intrinsic_dest_type(info.load));
nir_intrinsic_set_io_semantics(intrin, nir_intrinsic_io_semantics(info.load));
return res;
}
static bool
move_tex_coords(struct move_tex_coords_state *state, nir_function_impl *impl, nir_instr *instr)
{
nir_tex_instr *tex = nir_instr_as_tex(instr);
if (tex->op != nir_texop_tex && tex->op != nir_texop_txb && tex->op != nir_texop_lod)
return false;
switch (tex->sampler_dim) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
case GLSL_SAMPLER_DIM_EXTERNAL:
break;
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_BUF:
case GLSL_SAMPLER_DIM_MS:
case GLSL_SAMPLER_DIM_SUBPASS:
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return false; /* No LOD or can't be sampled. */
}
if (nir_tex_instr_src_index(tex, nir_tex_src_min_lod) != -1)
return false;
nir_tex_src *src = &tex->src[nir_tex_instr_src_index(tex, nir_tex_src_coord)];
nir_scalar components[NIR_MAX_VEC_COMPONENTS];
coord_info infos[NIR_MAX_VEC_COMPONENTS];
bool can_move_all = true;
for (unsigned i = 0; i < tex->coord_components; i++) {
components[i] = nir_scalar_resolved(src->src.ssa, i);
can_move_all &= can_move_coord(components[i], &infos[i]);
}
if (!can_move_all)
return false;
int coord_base = 0;
unsigned linear_vgpr_size = tex->coord_components;
if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE && tex->is_array)
linear_vgpr_size--; /* cube array layer and face are combined */
for (unsigned i = 0; i < tex->num_srcs; i++) {
switch (tex->src[i].src_type) {
case nir_tex_src_offset:
case nir_tex_src_bias:
case nir_tex_src_comparator:
coord_base++;
linear_vgpr_size++;
break;
default:
break;
}
}
if (state->num_wqm_vgprs + linear_vgpr_size > state->options->max_wqm_vgprs)
return false;
for (unsigned i = 0; i < tex->coord_components; i++)
components[i] = nir_get_scalar(build_coordinate(state, components[i], infos[i]), 0);
nir_def *linear_vgpr = nir_vec_scalars(&state->toplevel_b, components, tex->coord_components);
lower_tex_coords(&state->toplevel_b, tex, &linear_vgpr, state->options);
linear_vgpr = nir_strict_wqm_coord_amd(&state->toplevel_b, linear_vgpr, coord_base * 4);
nir_tex_instr_remove_src(tex, nir_tex_instr_src_index(tex, nir_tex_src_coord));
tex->coord_components = 0;
nir_tex_instr_add_src(tex, nir_tex_src_backend1, linear_vgpr);
int offset_src = nir_tex_instr_src_index(tex, nir_tex_src_offset);
if (offset_src >= 0) /* Workaround requirement in nir_tex_instr_src_size(). */
tex->src[offset_src].src_type = nir_tex_src_backend2;
state->num_wqm_vgprs += linear_vgpr_size;
return true;
}
static bool
move_ddxy(struct move_tex_coords_state *state, nir_function_impl *impl, nir_intrinsic_instr *instr)
{
unsigned num_components = instr->def.num_components;
nir_scalar components[NIR_MAX_VEC_COMPONENTS];
coord_info infos[NIR_MAX_VEC_COMPONENTS];
bool can_move_all = true;
for (unsigned i = 0; i < num_components; i++) {
components[i] = nir_scalar_resolved(instr->src[0].ssa, i);
can_move_all &= can_move_coord(components[i], &infos[i]);
}
if (!can_move_all || state->num_wqm_vgprs + num_components > state->options->max_wqm_vgprs)
return false;
for (unsigned i = 0; i < num_components; i++) {
nir_def *def = build_coordinate(state, components[i], infos[i]);
components[i] = nir_get_scalar(def, 0);
}
nir_def *def = nir_vec_scalars(&state->toplevel_b, components, num_components);
def = _nir_build_ddx(&state->toplevel_b, def->bit_size, def);
nir_instr_as_intrinsic(def->parent_instr)->intrinsic = instr->intrinsic;
nir_def_rewrite_uses(&instr->def, def);
state->num_wqm_vgprs += num_components;
return true;
}
static bool
move_coords_from_divergent_cf(struct move_tex_coords_state *state, nir_function_impl *impl,
struct exec_list *cf_list, bool *divergent_discard, bool divergent_cf)
{
bool progress = false;
foreach_list_typed (nir_cf_node, cf_node, node, cf_list) {
switch (cf_node->type) {
case nir_cf_node_block: {
nir_block *block = nir_cf_node_as_block(cf_node);
bool top_level = cf_list == &impl->body;
nir_foreach_instr (instr, block) {
if (top_level && !*divergent_discard)
state->toplevel_b.cursor = nir_before_instr(instr);
if (instr->type == nir_instr_type_tex && (divergent_cf || *divergent_discard)) {
progress |= move_tex_coords(state, impl, instr);
} else if (instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_terminate:
if (divergent_cf)
*divergent_discard = true;
break;
case nir_intrinsic_terminate_if:
if (divergent_cf || nir_src_is_divergent(&intrin->src[0]))
*divergent_discard = true;
break;
case nir_intrinsic_ddx:
case nir_intrinsic_ddy:
case nir_intrinsic_ddx_fine:
case nir_intrinsic_ddy_fine:
case nir_intrinsic_ddx_coarse:
case nir_intrinsic_ddy_coarse:
if (divergent_cf || *divergent_discard)
progress |= move_ddxy(state, impl, intrin);
break;
default:
break;
}
}
}
if (top_level && !*divergent_discard)
state->toplevel_b.cursor = nir_after_block_before_jump(block);
break;
}
case nir_cf_node_if: {
nir_if *nif = nir_cf_node_as_if(cf_node);
bool divergent_discard_then = *divergent_discard;
bool divergent_discard_else = *divergent_discard;
bool then_else_divergent = divergent_cf || nir_src_is_divergent(&nif->condition);
progress |= move_coords_from_divergent_cf(state, impl, &nif->then_list,
&divergent_discard_then, then_else_divergent);
progress |= move_coords_from_divergent_cf(state, impl, &nif->else_list,
&divergent_discard_else, then_else_divergent);
*divergent_discard |= divergent_discard_then || divergent_discard_else;
break;
}
case nir_cf_node_loop: {
nir_loop *loop = nir_cf_node_as_loop(cf_node);
assert(!nir_loop_has_continue_construct(loop));
progress |=
move_coords_from_divergent_cf(state, impl, &loop->body, divergent_discard, true);
break;
}
case nir_cf_node_function:
unreachable("Invalid cf type");
}
}
return progress;
}
bool
ac_nir_lower_tex(nir_shader *nir, const ac_nir_lower_tex_options *options)
{
bool progress = false;
if (options->fix_derivs_in_divergent_cf) {
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_metadata_require(impl, nir_metadata_divergence);
struct move_tex_coords_state state;
state.toplevel_b = nir_builder_create(impl);
state.options = options;
state.num_wqm_vgprs = 0;
bool divergent_discard = false;
bool impl_progress = move_coords_from_divergent_cf(&state, impl,
&impl->body,
&divergent_discard,
false);
nir_progress(impl_progress, impl, nir_metadata_control_flow);
}
progress |= nir_shader_instructions_pass(
nir, lower_tex, nir_metadata_control_flow, (void *)options);
return progress;
}