| /* |
| * Copyright 2019 Advanced Micro Devices, Inc. |
| * Copyright 2021 Valve Corporation |
| * |
| * SPDX-License-Identifier: MIT |
| */ |
| |
| #include "ac_nir.h" |
| #include "ac_nir_helpers.h" |
| #include "nir_builder.h" |
| |
| /* This code is adapted from ac_llvm_cull.c, hence the copyright to AMD. */ |
| |
| typedef struct |
| { |
| nir_def *w_reflection; |
| nir_def *all_w_negative_or_zero_or_nan; |
| nir_def *any_w_negative; |
| } position_w_info; |
| |
| static void |
| analyze_position_w(nir_builder *b, nir_def *pos[][4], unsigned num_vertices, |
| position_w_info *w_info) |
| { |
| w_info->all_w_negative_or_zero_or_nan = nir_imm_true(b); |
| w_info->w_reflection = nir_imm_false(b); |
| w_info->any_w_negative = nir_imm_false(b); |
| |
| for (unsigned i = 0; i < num_vertices; ++i) { |
| nir_def *neg_w = nir_flt_imm(b, pos[i][3], 0.0f); |
| nir_def *neg_or_zero_or_nan_w = nir_fgeu(b, nir_imm_float(b, 0.0f), pos[i][3]); |
| |
| w_info->w_reflection = nir_ixor(b, neg_w, w_info->w_reflection); |
| w_info->any_w_negative = nir_ior(b, neg_w, w_info->any_w_negative); |
| w_info->all_w_negative_or_zero_or_nan = nir_iand(b, neg_or_zero_or_nan_w, w_info->all_w_negative_or_zero_or_nan); |
| } |
| } |
| |
| static nir_def * |
| cull_face_triangle(nir_builder *b, nir_def *pos[3][4], const position_w_info *w_info) |
| { |
| nir_def *det_t0 = nir_fsub(b, pos[2][0], pos[0][0]); |
| nir_def *det_t1 = nir_fsub(b, pos[1][1], pos[0][1]); |
| nir_def *det_t2 = nir_fsub(b, pos[0][0], pos[1][0]); |
| nir_def *det_t3 = nir_fsub(b, pos[0][1], pos[2][1]); |
| nir_def *det_p0 = nir_fmul(b, det_t0, det_t1); |
| nir_def *det_p1 = nir_fmul(b, det_t2, det_t3); |
| nir_def *det = nir_fsub(b, det_p0, det_p1); |
| |
| det = nir_bcsel(b, w_info->w_reflection, nir_fneg(b, det), det); |
| |
| nir_def *front_facing_ccw = nir_fgt_imm(b, det, 0.0f); |
| nir_def *zero_area = nir_feq_imm(b, det, 0.0f); |
| nir_def *ccw = nir_load_cull_ccw_amd(b); |
| nir_def *front_facing = nir_ieq(b, front_facing_ccw, ccw); |
| nir_def *cull_front = nir_load_cull_front_face_enabled_amd(b); |
| nir_def *cull_back = nir_load_cull_back_face_enabled_amd(b); |
| |
| nir_def *face_culled = nir_bcsel(b, front_facing, cull_front, cull_back); |
| face_culled = nir_ior(b, face_culled, zero_area); |
| |
| /* Don't reject NaN and +/-infinity, these are tricky. |
| * Just trust fixed-function HW to handle these cases correctly. |
| */ |
| return nir_iand(b, face_culled, nir_fisfinite(b, det)); |
| } |
| |
| static void |
| calc_bbox_triangle(nir_builder *b, nir_def *pos[3][4], nir_def *bbox_min[2], nir_def *bbox_max[2]) |
| { |
| for (unsigned chan = 0; chan < 2; ++chan) { |
| bbox_min[chan] = nir_fmin(b, pos[0][chan], nir_fmin(b, pos[1][chan], pos[2][chan])); |
| bbox_max[chan] = nir_fmax(b, pos[0][chan], nir_fmax(b, pos[1][chan], pos[2][chan])); |
| } |
| } |
| |
| static nir_def * |
| cull_frustrum(nir_builder *b, nir_def *bbox_min[2], nir_def *bbox_max[2]) |
| { |
| nir_def *prim_outside_view = nir_imm_false(b); |
| |
| for (unsigned chan = 0; chan < 2; ++chan) { |
| prim_outside_view = nir_ior(b, prim_outside_view, nir_flt_imm(b, bbox_max[chan], -1.0f)); |
| prim_outside_view = nir_ior(b, prim_outside_view, nir_fgt_imm(b, bbox_min[chan], 1.0f)); |
| } |
| |
| return prim_outside_view; |
| } |
| |
| static nir_def * |
| cross(nir_builder *b, nir_def *p[2], nir_def *q[2]) |
| { |
| nir_def *left = nir_fmul(b, p[0], q[1]); |
| nir_def *right = nir_fmul(b, q[0], p[1]); |
| return nir_fsub(b, left, right); |
| } |
| |
| /* Return whether the distance between the point and the triangle is greater than the given |
| * distance. |
| */ |
| static nir_def * |
| point_outside_triangle(nir_builder *b, nir_def *p[2], nir_def *pos[3][2], nir_def *distance) |
| { |
| nir_def **vtx_a = pos[0], **vtx_b = pos[1], **vtx_c = pos[2]; |
| nir_def *a_b[2] = { nir_fsub(b, vtx_b[0], vtx_a[0]), nir_fsub(b, vtx_b[1], vtx_a[1]) }; |
| nir_def *a_c[2] = { nir_fsub(b, vtx_c[0], vtx_a[0]), nir_fsub(b, vtx_c[1], vtx_a[1]) }; |
| nir_def *b_c[2] = { nir_fsub(b, vtx_c[0], vtx_b[0]), nir_fsub(b, vtx_c[1], vtx_b[1]) }; |
| nir_def *a_p[2] = { nir_fsub(b, p[0], vtx_a[0]), nir_fsub(b, p[1], vtx_a[1]) }; |
| nir_def *b_p[2] = { nir_fsub(b, p[0], vtx_b[0]), nir_fsub(b, p[1], vtx_b[1]) }; |
| |
| /* Compute 2D cross products, which we need for computing distances from lines. */ |
| nir_def *crosses[3] = { cross(b, a_p, a_c), cross(b, a_b, a_p), cross(b, b_c, b_p) }; |
| |
| /* These are distances from the 3 infinite lines going through triangle edges. |
| * |
| * A distance is positive if the point is on one side of the half space, and negative |
| * if the point is on the other side of the half space. That's because the distance is |
| * a normalized 2D cross product, which is always scalar and signed. |
| */ |
| nir_def *line_distances[3] = { |
| nir_fmul(b, crosses[0], nir_frsq(b, nir_fdot2(b, nir_vec(b, a_c, 2), nir_vec(b, a_c, 2)))), |
| nir_fmul(b, crosses[1], nir_frsq(b, nir_fdot2(b, nir_vec(b, a_b, 2), nir_vec(b, a_b, 2)))), |
| nir_fmul(b, crosses[2], nir_frsq(b, nir_fdot2(b, nir_vec(b, b_c, 2), nir_vec(b, b_c, 2)))), |
| }; |
| |
| nir_def *max_distance = |
| nir_fmax(b, line_distances[0], nir_fmax(b, line_distances[1], line_distances[2])); |
| nir_def *min_distance = |
| nir_fmin(b, line_distances[0], nir_fmin(b, line_distances[1], line_distances[2])); |
| |
| /* If max_distance > distance && min_distance < -distance, the point is outside the triangle. |
| * |
| * Explanation: |
| * |
| * If the point it outside the triangle, 2 distances are positive and 1 is negative, or 2 distances |
| * are negative and 1 is positive (depending on winding and where the point is). max_distance > distance |
| * will pass because at least 1 distance is positive, and min_distance < -distance will pass because at |
| * least 1 distance is negative. |
| * |
| * However, if the point is inside the triangle, either all distances are positive (min_distance < -distance |
| * will fail) or all distances are negative (max_distance > distance will fail), depending on winding. |
| * |
| * Note that min/max_distance are not distances from the triangle, but they are distances from |
| * the lines. This can falsely return that the distance between the point and the triangle is |
| * less than than the given distance if 2 infinite lines are sticking out of 1 vertex, are |
| * pointing in the direction of the point, and there is a very small angle between them. |
| * Most of these cases should be eliminated by the rounding-based small prim culling. |
| */ |
| return nir_iand(b, nir_flt(b, distance, max_distance), |
| nir_flt(b, min_distance, nir_fneg(b, distance))); |
| } |
| |
| static nir_def * |
| cull_small_primitive_triangle(nir_builder *b, bool use_point_tri_intersection, |
| nir_def *bbox_min[2], nir_def *bbox_max[2], nir_def *pos[3][4]) |
| { |
| nir_def *vp = nir_load_cull_triangle_viewport_xy_scale_and_offset_amd(b); |
| nir_def *small_prim_precision = nir_load_cull_small_triangle_precision_amd(b); |
| nir_def *rejected = nir_imm_false(b); |
| |
| nir_def *bbox_pixel_min[2], *bbox_pixel_max[2], *vp_scale[2], *vp_translate[2]; |
| |
| for (unsigned chan = 0; chan < 2; ++chan) { |
| vp_scale[chan] = nir_channel(b, vp, chan); |
| vp_translate[chan] = nir_channel(b, vp, 2 + chan); |
| |
| /* Convert the position to screen-space coordinates. */ |
| nir_def *min = nir_ffma(b, bbox_min[chan], vp_scale[chan], vp_translate[chan]); |
| nir_def *max = nir_ffma(b, bbox_max[chan], vp_scale[chan], vp_translate[chan]); |
| |
| /* Scale the bounding box according to precision. */ |
| min = nir_fsub(b, min, small_prim_precision); |
| max = nir_fadd(b, max, small_prim_precision); |
| |
| /* Determine if the bbox intersects the sample point, by checking if the min and max round to the same int. */ |
| bbox_pixel_min[chan] = nir_fround_even(b, min); |
| bbox_pixel_max[chan] = nir_fround_even(b, max); |
| |
| nir_def *rounded_to_eq = nir_feq(b, bbox_pixel_min[chan], bbox_pixel_max[chan]); |
| rejected = nir_ior(b, rejected, rounded_to_eq); |
| } |
| |
| /* If the triangle hasn't been filtered out yet, try another way. |
| * Only execute this code if this subgroup has culled at least 1 small triangle, which indicates |
| * that there are probably more small triangles that could be culled. |
| */ |
| if (use_point_tri_intersection) { |
| nir_def *outside_center = NULL; |
| nir_if *if_passed = nir_push_if(b, nir_inot(b, rejected)); |
| { |
| /* Calculate rounded bounding box dimensions. */ |
| nir_def *bbox_pixel_w = nir_fsub(b, bbox_pixel_max[0], bbox_pixel_min[0]); |
| nir_def *bbox_pixel_h = nir_fsub(b, bbox_pixel_max[1], bbox_pixel_min[1]); |
| |
| /* The largest bounding box (rounded to integer coordinates) that contains the triangle |
| * that we accept has 1x1 pixel area and looks like this: |
| * |
| * X X X |
| * |
| * ┌─────────┐ |
| * │ │ |
| * X │ X │ X |
| * │ │ |
| * └─────────┘ |
| * |
| * X X X |
| * |
| * However, the largest bounding box before the rounding that contains the triangle can be |
| * this: |
| * |
| * X X X |
| * ┌─────────────────┐ |
| * │ │ |
| * │ │ |
| * X│ X │X |
| * │ │ |
| * │ │ |
| * └─────────────────┘ |
| * X X X |
| * |
| * which is the largest area that has 1 pixel center in the middle and 8 pixel centers |
| * outside. Therefore, a 1x1 pixels-large rounded bounding box represents an area that's |
| * slightly smaller than 2x2 pixels and has only a single pixel in the center. Thanks to |
| * that and given that the triangle is always inside the bounding box, we only have to |
| * compute a single point-triangle intersection. |
| * |
| * Check if the triangle's rounded bounding box is a single pixel, which means the triangle |
| * can only potentially affect this pixel. |
| * |
| * 1.01 is used to prevent possible FP precision issues. |
| */ |
| nir_def *w_1px = nir_flt_imm(b, bbox_pixel_w, 1.01); |
| nir_def *h_1px = nir_flt_imm(b, bbox_pixel_h, 1.01); |
| nir_def *fals = nir_imm_false(b); |
| nir_if *if_tri_1px = nir_push_if(b, nir_iand(b, w_1px, h_1px)); |
| { |
| /* The coordinates of the pixel center in screen space. */ |
| nir_def *pix_center[] = { |
| nir_fadd_imm(b, bbox_pixel_min[0], 0.5), |
| nir_fadd_imm(b, bbox_pixel_min[1], 0.5), |
| }; |
| |
| /* These are the X, Y coordinates of the 3 points of the triangle. */ |
| nir_def *screen_pos[3][2] = {{0}}; |
| |
| /* Transform the coordinates to screen space. */ |
| for (unsigned vtx = 0; vtx < 3; ++vtx) { |
| for (unsigned chan = 0; chan < 2; ++chan) |
| screen_pos[vtx][chan] = nir_ffma(b, pos[vtx][chan], vp_scale[chan], vp_translate[chan]); |
| } |
| |
| /* small_prim_precision is the rasterization precision in X an Y axes, meaning it's the size of |
| * one cell in the fixed-point grid that vertex positions are snapped to. When floating-point |
| * coordinates are snapped (rounded) to fixed-point, vertex positions can be shifted by |
| * +-small_prim_precision. |
| * |
| * We need a precision value that works in all directions. Compute the worst-case |
| * omnidirectional precision, which is the length of the hypotenuse where |
| * small_prim_precision is the length of the catheti. |
| * |
| * x = small_prim_precision |
| * sqrt(x*x + x*x) = sqrt(x*x*2) = x * sqrt(2) |
| */ |
| nir_def *precision_distance = nir_fmul_imm(b, small_prim_precision, sqrt(2)); |
| |
| /* Check if the pixel center is outside the triangle. If it is, the triangle can be |
| * safely removed. |
| */ |
| outside_center = point_outside_triangle(b, pix_center, screen_pos, precision_distance); |
| } |
| nir_pop_if(b, if_tri_1px); |
| |
| outside_center = nir_if_phi(b, outside_center, fals); |
| } |
| nir_pop_if(b, if_passed); |
| rejected = nir_if_phi(b, outside_center, rejected); |
| } |
| |
| return rejected; |
| } |
| |
| static void |
| call_accept_func(nir_builder *b, nir_def *accepted, ac_nir_cull_accepted accept_func, |
| void *state) |
| { |
| if (!accept_func) |
| return; |
| |
| nir_if *if_accepted = nir_push_if(b, accepted); |
| if_accepted->control = nir_selection_control_divergent_always_taken; |
| { |
| accept_func(b, state); |
| } |
| nir_pop_if(b, if_accepted); |
| } |
| |
| static nir_def * |
| ac_nir_cull_triangle(nir_builder *b, |
| bool skip_viewport_state_culling, |
| bool use_point_tri_intersection, |
| nir_def *initially_accepted, |
| nir_def *pos[3][4], |
| position_w_info *w_info, |
| ac_nir_cull_accepted accept_func, |
| void *state) |
| { |
| nir_def *accepted = initially_accepted; |
| accepted = nir_iand(b, accepted, nir_inot(b, w_info->all_w_negative_or_zero_or_nan)); |
| accepted = nir_iand(b, accepted, nir_inot(b, cull_face_triangle(b, pos, w_info))); |
| |
| nir_def *bbox_accepted = NULL; |
| |
| nir_if *if_accepted = nir_push_if(b, accepted); |
| { |
| nir_def *bbox_min[2] = {0}, *bbox_max[2] = {0}; |
| calc_bbox_triangle(b, pos, bbox_min, bbox_max); |
| |
| nir_def *prim_outside_view = cull_frustrum(b, bbox_min, bbox_max); |
| nir_def *bbox_rejected = prim_outside_view; |
| |
| if (!skip_viewport_state_culling) { |
| nir_if *if_cull_small_prims = nir_push_if(b, nir_load_cull_small_triangles_enabled_amd(b)); |
| { |
| nir_def *small_prim_rejected = cull_small_primitive_triangle(b, use_point_tri_intersection, |
| bbox_min, bbox_max, pos); |
| bbox_rejected = nir_ior(b, bbox_rejected, small_prim_rejected); |
| } |
| nir_pop_if(b, if_cull_small_prims); |
| |
| bbox_rejected = nir_if_phi(b, bbox_rejected, prim_outside_view); |
| } |
| |
| bbox_accepted = nir_ior(b, nir_inot(b, bbox_rejected), w_info->any_w_negative); |
| call_accept_func(b, bbox_accepted, accept_func, state); |
| } |
| nir_pop_if(b, if_accepted); |
| |
| return nir_if_phi(b, bbox_accepted, accepted); |
| } |
| |
| static void |
| rotate_45degrees(nir_builder *b, nir_def *v[2]) |
| { |
| /* Rotating a triangle by 45 degrees: |
| * |
| * x2 = x*cos(45) - y*sin(45) |
| * y2 = x*sin(45) + y*cos(45) |
| * |
| * Since sin(45) == cos(45), we can write: |
| * |
| * x2 = x*cos(45) - y*cos(45) = (x - y) * cos(45) |
| * y2 = x*cos(45) + y*cos(45) = (x + y) * cos(45) |
| * |
| * The width of each square (rotated diamond) is sqrt(0.5), so we have to scale it to 1 |
| * by multiplying by 1/sqrt(0.5) = sqrt(2) because we want round() to give us the position |
| * of the closest center of the square (rotated diamond). After scaling, we get: |
| * |
| * x2 = (x - y) * cos(45) * sqrt(2) |
| * y2 = (x + y) * cos(45) * sqrt(2) |
| * |
| * Since cos(45) * sqrt(2) = 1, we get: |
| * |
| * x2 = x - y |
| * y2 = x + y |
| */ |
| nir_def *result[2]; |
| result[0] = nir_fsub(b, v[0], v[1]); |
| result[1] = nir_fadd(b, v[0], v[1]); |
| |
| memcpy(v, result, sizeof(result)); |
| } |
| |
| static void |
| calc_bbox_line(nir_builder *b, nir_def *pos[3][4], nir_def *bbox_min[2], nir_def *bbox_max[2]) |
| { |
| nir_def *clip_half_line_width = nir_load_clip_half_line_width_amd(b); |
| |
| for (unsigned chan = 0; chan < 2; ++chan) { |
| bbox_min[chan] = nir_fmin(b, pos[0][chan], pos[1][chan]); |
| bbox_max[chan] = nir_fmax(b, pos[0][chan], pos[1][chan]); |
| |
| nir_def *width = nir_channel(b, clip_half_line_width, chan); |
| bbox_min[chan] = nir_fsub(b, bbox_min[chan], width); |
| bbox_max[chan] = nir_fadd(b, bbox_max[chan], width); |
| } |
| } |
| |
| static nir_def * |
| cull_small_primitive_line(nir_builder *b, nir_def *pos[3][4], |
| nir_def *bbox_min[2], nir_def *bbox_max[2], |
| nir_def *prim_is_small_else) |
| { |
| nir_def *prim_is_small = NULL; |
| |
| /* Small primitive filter - eliminate lines that are too small to affect a sample. */ |
| nir_if *if_cull_small_prims = nir_push_if(b, nir_load_cull_small_lines_enabled_amd(b)); |
| { |
| /* This only works with lines without perpendicular end caps (lines with perpendicular |
| * end caps are rasterized as quads and thus can't be culled as small prims in 99% of |
| * cases because line_width >= 1). |
| * |
| * This takes advantage of the diamond exit rule, which says that every pixel |
| * has a diamond inside it touching the pixel boundary and only if a line exits |
| * the diamond, that pixel is filled. If a line enters the diamond or stays |
| * outside the diamond, the pixel isn't filled. |
| * |
| * This algorithm is a little simpler than that. The space outside all diamonds also |
| * has the same diamond shape, which we'll call corner diamonds. |
| * |
| * The idea is to cull all lines that are entirely inside a diamond, including |
| * corner diamonds. If a line is entirely inside a diamond, it can be culled because |
| * it doesn't exit it. If a line is entirely inside a corner diamond, it can be culled |
| * because it doesn't enter any diamond and thus can't exit any diamond. |
| * |
| * The viewport is rotated by 45 degrees to turn diamonds into squares, and a bounding |
| * box test is used to determine whether a line is entirely inside any square (diamond). |
| * |
| * The line width doesn't matter. Wide lines only duplicate filled pixels in either X or |
| * Y direction from the filled pixels. MSAA also doesn't matter. MSAA should ideally use |
| * perpendicular end caps that enable quad rasterization for lines. Thus, this should |
| * always use non-MSAA viewport transformation and non-MSAA small prim precision. |
| * |
| * A good test is piglit/lineloop because it draws 10k subpixel lines in a circle. |
| * It should contain no holes if this matches hw behavior. |
| */ |
| nir_def *v0[2], *v1[2]; |
| nir_def *vp = nir_load_cull_line_viewport_xy_scale_and_offset_amd(b); |
| |
| /* Get vertex positions in pixels. */ |
| for (unsigned chan = 0; chan < 2; chan++) { |
| nir_def *vp_scale = nir_channel(b, vp, chan); |
| nir_def *vp_translate = nir_channel(b, vp, 2 + chan); |
| |
| v0[chan] = nir_ffma(b, pos[0][chan], vp_scale, vp_translate); |
| v1[chan] = nir_ffma(b, pos[1][chan], vp_scale, vp_translate); |
| } |
| |
| /* Rotate the viewport by 45 degrees, so that diamonds become squares. */ |
| rotate_45degrees(b, v0); |
| rotate_45degrees(b, v1); |
| |
| nir_def *small_prim_precision = nir_load_cull_small_line_precision_amd(b); |
| |
| nir_def *rounded_to_eq[2]; |
| for (unsigned chan = 0; chan < 2; chan++) { |
| /* Compute the bounding box around both vertices. We do this because we must |
| * enlarge the line area by the precision of the rasterizer. |
| */ |
| nir_def *min = nir_fmin(b, v0[chan], v1[chan]); |
| nir_def *max = nir_fmax(b, v0[chan], v1[chan]); |
| |
| /* Enlarge the bounding box by the precision of the rasterizer. */ |
| min = nir_fsub(b, min, small_prim_precision); |
| max = nir_fadd(b, max, small_prim_precision); |
| |
| /* Round the bounding box corners. If both rounded corners are equal, |
| * the bounding box is entirely inside a square (diamond). |
| */ |
| min = nir_fround_even(b, min); |
| max = nir_fround_even(b, max); |
| |
| rounded_to_eq[chan] = nir_feq(b, min, max); |
| } |
| |
| prim_is_small = nir_iand(b, rounded_to_eq[0], rounded_to_eq[1]); |
| prim_is_small = nir_ior(b, prim_is_small, prim_is_small_else); |
| } |
| nir_pop_if(b, if_cull_small_prims); |
| |
| return nir_if_phi(b, prim_is_small, prim_is_small_else); |
| } |
| |
| static nir_def * |
| ac_nir_cull_line(nir_builder *b, |
| bool skip_viewport_state_culling, |
| nir_def *initially_accepted, |
| nir_def *pos[3][4], |
| position_w_info *w_info, |
| ac_nir_cull_accepted accept_func, |
| void *state) |
| { |
| nir_def *accepted = initially_accepted; |
| accepted = nir_iand(b, accepted, nir_inot(b, w_info->all_w_negative_or_zero_or_nan)); |
| |
| if (skip_viewport_state_culling) { |
| call_accept_func(b, accepted, accept_func, state); |
| return accepted; |
| } |
| |
| nir_def *bbox_accepted = NULL; |
| |
| nir_if *if_accepted = nir_push_if(b, accepted); |
| { |
| nir_def *bbox_min[2] = {0}, *bbox_max[2] = {0}; |
| calc_bbox_line(b, pos, bbox_min, bbox_max); |
| |
| /* Frustrum culling - eliminate lines that are fully outside the view. */ |
| nir_def *prim_outside_view = cull_frustrum(b, bbox_min, bbox_max); |
| nir_def *prim_invisible = |
| cull_small_primitive_line(b, pos, bbox_min, bbox_max, prim_outside_view); |
| |
| bbox_accepted = nir_ior(b, nir_inot(b, prim_invisible), w_info->any_w_negative); |
| call_accept_func(b, bbox_accepted, accept_func, state); |
| } |
| nir_pop_if(b, if_accepted); |
| |
| return nir_if_phi(b, bbox_accepted, accepted); |
| } |
| |
| nir_def * |
| ac_nir_cull_primitive(nir_builder *b, |
| bool skip_viewport_state_culling, |
| bool use_point_tri_intersection, |
| nir_def *initially_accepted, |
| nir_def *pos[3][4], |
| unsigned num_vertices, |
| ac_nir_cull_accepted accept_func, |
| void *state) |
| { |
| position_w_info w_info = {0}; |
| analyze_position_w(b, pos, num_vertices, &w_info); |
| |
| if (num_vertices == 3) { |
| return ac_nir_cull_triangle(b, skip_viewport_state_culling, use_point_tri_intersection, |
| initially_accepted, pos, &w_info, accept_func, state); |
| } else if (num_vertices == 2) { |
| return ac_nir_cull_line(b, skip_viewport_state_culling, initially_accepted, pos, &w_info, |
| accept_func, state); |
| } else { |
| unreachable("point culling not implemented"); |
| } |
| |
| return NULL; |
| } |