blob: caf527fe5d04a23f328df1123e8e618729ae3b32 [file] [log] [blame]
/*
* Copyright © 2016 Bas Nieuwenhuizen
*
* SPDX-License-Identifier: MIT
*/
#include "ac_gpu_info.h"
#include "ac_nir.h"
#include "ac_nir_helpers.h"
#include "nir_builder.h"
/* Set NIR options shared by ACO, LLVM, RADV, and radeonsi. */
void ac_nir_set_options(struct radeon_info *info, bool use_llvm,
nir_shader_compiler_options *options)
{
/* |---------------------------------- Performance & Availability --------------------------------|
* |MAD/MAC/MADAK/MADMK|MAD_LEGACY|MAC_LEGACY| FMA |FMAC/FMAAK/FMAMK|FMA_LEGACY|PK_FMA_F16,|Best choice
* Arch | F32,F16,F64 | F32,F16 | F32,F16 |F32,F16,F64 | F32,F16 | F32 |PK_FMAC_F16|F16,F32,F64
* ------------------------------------------------------------------------------------------------------------------
* gfx6,7 | 1 , - , - | 1 , - | 1 , - |1/4, - ,1/16| - , - | - | - , - | - ,MAD,FMA
* gfx8 | 1 , 1 , - | 1 , - | - , - |1/4, 1 ,1/16| - , - | - | - , - |MAD,MAD,FMA
* gfx9 | 1 ,1|0, - | 1 , - | - , - | 1 , 1 ,1/16| 0|1, - | - | 2 , - |FMA,MAD,FMA
* gfx10 | 1 , - , - | 1 , - | 1 , - | 1 , 1 ,1/16| 1 , 1 | - | 2 , 2 |FMA,MAD,FMA
* gfx10.3| - , - , - | - , - | - , - | 1 , 1 ,1/16| 1 , 1 | 1 | 2 , 2 | all FMA
* gfx11 | - , - , - | - , - | - , - | 2 , 2 ,1/16| 2 , 2 | 2 | 2 , 2 | all FMA
*
* Tahiti, Hawaii, Carrizo, Vega20: FMA_F32 is full rate, FMA_F64 is 1/4
* gfx9 supports MAD_F16 only on Vega10, Raven, Raven2, Renoir.
* gfx9 supports FMAC_F32 only on Vega20, but doesn't support FMAAK and FMAMK.
*
* gfx8 prefers MAD for F16 because of MAC/MADAK/MADMK.
* gfx9 and newer prefer FMA for F16 because of the packed instruction.
* gfx10 and older prefer MAD for F32 because of the legacy instruction.
*/
memset(options, 0, sizeof(*options));
options->vertex_id_zero_based = true;
options->lower_scmp = true;
options->lower_flrp16 = true;
options->lower_flrp32 = true;
options->lower_flrp64 = true;
options->lower_device_index_to_zero = true;
options->lower_fdiv = true;
options->lower_fmod = true;
options->lower_ineg = true;
options->lower_bitfield_insert = true;
options->lower_bitfield_extract = true;
options->lower_bitfield_extract16 = use_llvm;
options->lower_bitfield_extract8 = use_llvm;
options->lower_pack_snorm_4x8 = true;
options->lower_pack_unorm_4x8 = true;
options->lower_pack_half_2x16 = true;
options->lower_pack_64_2x32 = true;
options->lower_pack_64_4x16 = true;
options->lower_pack_32_2x16 = true;
options->lower_unpack_snorm_2x16 = true;
options->lower_unpack_snorm_4x8 = true;
options->lower_unpack_unorm_2x16 = true;
options->lower_unpack_unorm_4x8 = true;
options->lower_unpack_half_2x16 = true;
options->lower_fpow = true;
options->lower_mul_high16 = true;
options->lower_mul_2x32_64 = true;
options->lower_iadd_sat = info->gfx_level <= GFX8;
options->lower_hadd = true;
options->lower_mul_32x16 = true;
options->lower_bfloat16_conversions = true,
options->has_bfe = true;
options->has_bfm = true;
options->has_bitfield_select = true;
options->has_fneo_fcmpu = true;
options->has_ford_funord = true;
options->has_fsub = true;
options->has_isub = true;
options->has_sdot_4x8 = info->has_accelerated_dot_product;
options->has_sudot_4x8 = info->has_accelerated_dot_product && info->gfx_level >= GFX11;
options->has_udot_4x8 = info->has_accelerated_dot_product;
options->has_sdot_4x8_sat = info->has_accelerated_dot_product;
options->has_sudot_4x8_sat = info->has_accelerated_dot_product && info->gfx_level >= GFX11;
options->has_udot_4x8_sat = info->has_accelerated_dot_product;
options->has_dot_2x16 = info->has_accelerated_dot_product && info->gfx_level < GFX11;
options->has_bfdot2_bfadd = info->gfx_level >= GFX12;
options->has_find_msb_rev = true;
options->has_pack_32_4x8 = true;
options->has_pack_half_2x16_rtz = true;
options->has_bit_test = !use_llvm;
options->has_fmulz = true;
options->has_msad = true;
options->has_shfr32 = true;
options->has_mul24_relaxed = true;
options->has_f2e4m3fn_satfn = !use_llvm && info->gfx_level >= GFX12;
options->lower_int64_options = nir_lower_imul64 | nir_lower_imul_high64 | nir_lower_imul_2x32_64 | nir_lower_divmod64 |
nir_lower_minmax64 | nir_lower_iabs64 | nir_lower_iadd_sat64 | nir_lower_conv64 |
nir_lower_bitfield_extract64;
options->divergence_analysis_options = nir_divergence_view_index_uniform;
options->optimize_quad_vote_to_reduce = !use_llvm;
options->lower_fisnormal = true;
options->support_16bit_alu = info->gfx_level >= GFX8;
options->vectorize_vec2_16bit = info->has_packed_math_16bit;
options->discard_is_demote = true;
options->optimize_sample_mask_in = true;
options->optimize_load_front_face_fsign = true;
options->io_options = nir_io_has_flexible_input_interpolation_except_flat |
(info->gfx_level >= GFX8 ? nir_io_16bit_input_output_support : 0) |
nir_io_prefer_scalar_fs_inputs |
nir_io_mix_convergent_flat_with_interpolated |
nir_io_vectorizer_ignores_types |
nir_io_compaction_rotates_color_channels;
options->lower_layer_fs_input_to_sysval = true;
options->scalarize_ddx = true;
options->skip_lower_packing_ops =
BITFIELD_BIT(nir_lower_packing_op_unpack_64_2x32) |
BITFIELD_BIT(nir_lower_packing_op_unpack_64_4x16) |
BITFIELD_BIT(nir_lower_packing_op_unpack_32_2x16) |
BITFIELD_BIT(nir_lower_packing_op_pack_32_4x8) |
BITFIELD_BIT(nir_lower_packing_op_unpack_32_4x8);
}
/* Sleep for the given number of clock cycles. */
void
ac_nir_sleep(nir_builder *b, unsigned num_cycles)
{
/* s_sleep can only sleep for N*64 cycles. */
if (num_cycles >= 64) {
nir_sleep_amd(b, num_cycles / 64);
num_cycles &= 63;
}
/* Use s_nop to sleep for the remaining cycles. */
while (num_cycles) {
unsigned nop_cycles = MIN2(num_cycles, 16);
nir_nop_amd(b, nop_cycles - 1);
num_cycles -= nop_cycles;
}
}
/* Load argument with index start from arg plus relative_index. */
nir_def *
ac_nir_load_arg_at_offset(nir_builder *b, const struct ac_shader_args *ac_args,
struct ac_arg arg, unsigned relative_index)
{
unsigned arg_index = arg.arg_index + relative_index;
unsigned num_components = ac_args->args[arg_index].size;
if (ac_args->args[arg_index].skip)
return nir_undef(b, num_components, 32);
if (ac_args->args[arg_index].file == AC_ARG_SGPR)
return nir_load_scalar_arg_amd(b, num_components, .base = arg_index);
else
return nir_load_vector_arg_amd(b, num_components, .base = arg_index);
}
nir_def *
ac_nir_load_arg(nir_builder *b, const struct ac_shader_args *ac_args, struct ac_arg arg)
{
return ac_nir_load_arg_at_offset(b, ac_args, arg, 0);
}
nir_def *
ac_nir_load_arg_upper_bound(nir_builder *b, const struct ac_shader_args *ac_args, struct ac_arg arg,
unsigned upper_bound)
{
nir_def *value = ac_nir_load_arg_at_offset(b, ac_args, arg, 0);
nir_intrinsic_set_arg_upper_bound_u32_amd(nir_instr_as_intrinsic(value->parent_instr),
upper_bound);
return value;
}
void
ac_nir_store_arg(nir_builder *b, const struct ac_shader_args *ac_args, struct ac_arg arg,
nir_def *val)
{
assert(nir_cursor_current_block(b->cursor)->cf_node.parent->type == nir_cf_node_function);
if (ac_args->args[arg.arg_index].file == AC_ARG_SGPR)
nir_store_scalar_arg_amd(b, val, .base = arg.arg_index);
else
nir_store_vector_arg_amd(b, val, .base = arg.arg_index);
}
nir_def *
ac_nir_unpack_value(nir_builder *b, nir_def *value, unsigned rshift, unsigned bitwidth)
{
if (rshift == 0 && bitwidth == 32)
return value;
else if (rshift == 0)
return nir_iand_imm(b, value, BITFIELD_MASK(bitwidth));
else if ((32 - rshift) <= bitwidth)
return nir_ushr_imm(b, value, rshift);
else
return nir_ubfe_imm(b, value, rshift, bitwidth);
}
nir_def *
ac_nir_unpack_arg(nir_builder *b, const struct ac_shader_args *ac_args, struct ac_arg arg,
unsigned rshift, unsigned bitwidth)
{
nir_def *value = ac_nir_load_arg(b, ac_args, arg);
return ac_nir_unpack_value(b, value, rshift, bitwidth);
}
bool
ac_nir_lower_indirect_derefs(nir_shader *shader,
enum amd_gfx_level gfx_level)
{
bool progress = false;
/* TODO: Don't lower convergent VGPR indexing because the hw can do it. */
/* Lower large variables to scratch first so that we won't bloat the
* shader by generating large if ladders for them.
*/
NIR_PASS(progress, shader, nir_lower_vars_to_scratch, nir_var_function_temp, 256,
glsl_get_natural_size_align_bytes, glsl_get_natural_size_align_bytes);
/* This lowers indirect indexing to if-else ladders. */
NIR_PASS(progress, shader, nir_lower_indirect_derefs, nir_var_function_temp, UINT32_MAX);
return progress;
}
/* Shader logging function for printing nir_def values. The driver prints this after
* command submission.
*
* Ring buffer layout: {uint32_t num_dwords; vec4; vec4; vec4; ... }
* - The buffer size must be 2^N * 16 + 4
* - num_dwords is incremented atomically and the ring wraps around, removing
* the oldest entries.
*/
void
ac_nir_store_debug_log_amd(nir_builder *b, nir_def *uvec4)
{
nir_def *buf = nir_load_debug_log_desc_amd(b);
nir_def *zero = nir_imm_int(b, 0);
nir_def *max_index =
nir_iadd_imm(b, nir_ushr_imm(b, nir_iadd_imm(b, nir_channel(b, buf, 2), -4), 4), -1);
nir_def *index = nir_ssbo_atomic(b, 32, buf, zero, nir_imm_int(b, 1),
.atomic_op = nir_atomic_op_iadd);
index = nir_iand(b, index, max_index);
nir_def *offset = nir_iadd_imm(b, nir_imul_imm(b, index, 16), 4);
nir_store_buffer_amd(b, uvec4, buf, offset, zero, zero);
}
nir_def *
ac_average_samples(nir_builder *b, nir_def **samples, unsigned num_samples)
{
/* This works like add-reduce by computing the sum of each pair independently, and then
* computing the sum of each pair of sums, and so on, to get better instruction-level
* parallelism.
*/
if (num_samples == 16) {
for (unsigned i = 0; i < 8; i++)
samples[i] = nir_fadd(b, samples[i * 2], samples[i * 2 + 1]);
}
if (num_samples >= 8) {
for (unsigned i = 0; i < 4; i++)
samples[i] = nir_fadd(b, samples[i * 2], samples[i * 2 + 1]);
}
if (num_samples >= 4) {
for (unsigned i = 0; i < 2; i++)
samples[i] = nir_fadd(b, samples[i * 2], samples[i * 2 + 1]);
}
if (num_samples >= 2)
samples[0] = nir_fadd(b, samples[0], samples[1]);
return nir_fmul_imm(b, samples[0], 1.0 / num_samples); /* average the sum */
}
void
ac_optimization_barrier_vgpr_array(const struct radeon_info *info, nir_builder *b,
nir_def **array, unsigned num_elements,
unsigned num_components)
{
/* We use the optimization barrier to force LLVM to form VMEM clauses by constraining its
* instruction scheduling options.
*
* VMEM clauses are supported since GFX10. It's not recommended to use the optimization
* barrier in the compute blit for GFX6-8 because the lack of A16 combined with optimization
* barriers would unnecessarily increase VGPR usage for MSAA resources.
*/
if (!b->shader->info.use_aco_amd && info->gfx_level >= GFX10) {
for (unsigned i = 0; i < num_elements; i++) {
unsigned prev_num = array[i]->num_components;
array[i] = nir_trim_vector(b, array[i], num_components);
array[i] = nir_optimization_barrier_vgpr_amd(b, array[i]->bit_size, array[i]);
array[i] = nir_pad_vector(b, array[i], prev_num);
}
}
}
nir_def *
ac_get_global_ids(nir_builder *b, unsigned num_components, unsigned bit_size)
{
unsigned mask = BITFIELD_MASK(num_components);
nir_def *local_ids = nir_channels(b, nir_load_local_invocation_id(b), mask);
nir_def *block_ids = nir_channels(b, nir_load_workgroup_id(b), mask);
nir_def *block_size = nir_channels(b, nir_load_workgroup_size(b), mask);
assert(bit_size == 32 || bit_size == 16);
if (bit_size == 16) {
local_ids = nir_i2iN(b, local_ids, bit_size);
block_ids = nir_i2iN(b, block_ids, bit_size);
block_size = nir_i2iN(b, block_size, bit_size);
}
return nir_iadd(b, nir_imul(b, block_ids, block_size), local_ids);
}
unsigned
ac_nir_varying_expression_max_cost(nir_shader *producer, nir_shader *consumer)
{
switch (consumer->info.stage) {
case MESA_SHADER_TESS_CTRL:
/* VS->TCS
* Non-amplifying shaders can always have their varying expressions
* moved into later shaders.
*/
return UINT_MAX;
case MESA_SHADER_GEOMETRY:
/* VS->GS, TES->GS */
return consumer->info.gs.vertices_in == 1 ? UINT_MAX :
consumer->info.gs.vertices_in == 2 ? 20 : 14;
case MESA_SHADER_TESS_EVAL:
/* TCS->TES and VS->TES (OpenGL only) */
case MESA_SHADER_FRAGMENT:
/* Up to 3 uniforms and 5 ALUs. */
return 12;
default:
unreachable("unexpected shader stage");
}
}
bool
ac_nir_optimize_uniform_atomics(nir_shader *nir)
{
bool progress = false;
NIR_PASS(progress, nir, ac_nir_opt_shared_append);
NIR_PASS(progress, nir, nir_opt_uniform_atomics, false);
return progress;
}
static unsigned
lower_bit_size_callback(const nir_instr *instr, enum amd_gfx_level chip, bool divergence_known)
{
if (instr->type != nir_instr_type_alu)
return 0;
nir_alu_instr *alu = nir_instr_as_alu(instr);
/* If an instruction is not scalarized by this point,
* it can be emitted as packed instruction */
if (alu->def.num_components > 1)
return 0;
if (alu->def.bit_size & (8 | 16)) {
unsigned bit_size = alu->def.bit_size;
switch (alu->op) {
case nir_op_bitfield_select:
case nir_op_imul_high:
case nir_op_umul_high:
case nir_op_uadd_carry:
case nir_op_usub_borrow:
return 32;
case nir_op_iabs:
case nir_op_imax:
case nir_op_umax:
case nir_op_imin:
case nir_op_umin:
case nir_op_ishr:
case nir_op_ushr:
case nir_op_ishl:
case nir_op_isign:
case nir_op_uadd_sat:
case nir_op_usub_sat:
return (!divergence_known || bit_size == 8 || !(chip >= GFX8 && alu->def.divergent)) ? 32 : 0;
case nir_op_iadd_sat:
case nir_op_isub_sat:
return !divergence_known || bit_size == 8 || !alu->def.divergent ? 32 : 0;
case nir_op_extract_u8:
case nir_op_extract_i8:
return !divergence_known || !alu->def.divergent ? 32 : 0;
default:
return 0;
}
}
if (nir_src_bit_size(alu->src[0].src) & (8 | 16)) {
unsigned bit_size = nir_src_bit_size(alu->src[0].src);
switch (alu->op) {
case nir_op_bit_count:
case nir_op_find_lsb:
case nir_op_ufind_msb:
return 32;
case nir_op_ilt:
case nir_op_ige:
case nir_op_ieq:
case nir_op_ine:
case nir_op_ult:
case nir_op_uge:
case nir_op_bitz:
case nir_op_bitnz:
return (!divergence_known || bit_size == 8 || !(chip >= GFX8 && alu->def.divergent)) ? 32 : 0;
default:
return 0;
}
}
return 0;
}
unsigned
ac_nir_lower_bit_size_callback(const nir_instr *instr, void *data)
{
enum amd_gfx_level chip = *(enum amd_gfx_level *)data;
return lower_bit_size_callback(instr, chip, true);
}
bool
ac_nir_might_lower_bit_size(const nir_shader *shader)
{
nir_foreach_function_impl(impl, shader) {
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (lower_bit_size_callback(instr, CLASS_UNKNOWN, false))
return true;
}
}
}
return false;
}
static unsigned
align_load_store_size(enum amd_gfx_level gfx_level, unsigned size, bool uses_smem, bool is_shared)
{
/* LDS can't overfetch because accesses that are partially out of range would be dropped
* entirely, so all unaligned LDS accesses are always split.
*/
if (is_shared)
return size;
/* Align the size to what the hw supports. Out of range access due to alignment is OK because
* range checking is per dword for untyped instructions. This assumes that the compiler backend
* overfetches due to load size alignment instead of splitting the load.
*
* GFX6-11 don't have 96-bit SMEM loads.
* GFX6 doesn't have 96-bit untyped VMEM loads.
*/
if (gfx_level >= (uses_smem ? GFX12 : GFX7) && size == 96)
return size;
else
return util_next_power_of_two(size);
}
bool
ac_nir_mem_vectorize_callback(unsigned align_mul, unsigned align_offset, unsigned bit_size,
unsigned num_components, int64_t hole_size, nir_intrinsic_instr *low,
nir_intrinsic_instr *high, void *data)
{
struct ac_nir_config *config = (struct ac_nir_config *)data;
bool uses_smem = (nir_intrinsic_has_access(low) &&
nir_intrinsic_access(low) & ACCESS_SMEM_AMD) ||
/* These don't have the "access" field. */
low->intrinsic == nir_intrinsic_load_smem_amd ||
low->intrinsic == nir_intrinsic_load_push_constant;
bool is_store = !nir_intrinsic_infos[low->intrinsic].has_dest;
bool swizzled = low->intrinsic == nir_intrinsic_load_stack ||
low->intrinsic == nir_intrinsic_store_stack ||
low->intrinsic == nir_intrinsic_load_scratch ||
low->intrinsic == nir_intrinsic_store_scratch ||
(nir_intrinsic_has_access(low) &&
nir_intrinsic_access(low) & ACCESS_IS_SWIZZLED_AMD);
bool is_shared = low->intrinsic == nir_intrinsic_load_shared ||
low->intrinsic == nir_intrinsic_store_shared ||
low->intrinsic == nir_intrinsic_load_deref ||
low->intrinsic == nir_intrinsic_store_deref;
unsigned swizzle_element_size = config->gfx_level <= GFX8 ? 4 : 16;
assert(!is_store || hole_size <= 0);
/* If we get derefs here, only shared memory derefs are expected. */
assert((low->intrinsic != nir_intrinsic_load_deref &&
low->intrinsic != nir_intrinsic_store_deref) ||
nir_deref_mode_is(nir_src_as_deref(low->src[0]), nir_var_mem_shared));
/* Don't vectorize descriptor loads for LLVM due to excessive SGPR and VGPR spilling. */
if (!config->uses_aco && low->intrinsic == nir_intrinsic_load_smem_amd)
return false;
/* Reject opcodes we don't vectorize. */
switch (low->intrinsic) {
case nir_intrinsic_load_smem_amd:
case nir_intrinsic_load_push_constant:
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_stack:
case nir_intrinsic_store_stack:
case nir_intrinsic_load_scratch:
case nir_intrinsic_store_scratch:
case nir_intrinsic_load_global_constant:
case nir_intrinsic_load_global:
case nir_intrinsic_store_global:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_store_ssbo:
case nir_intrinsic_load_deref:
case nir_intrinsic_store_deref:
case nir_intrinsic_load_shared:
case nir_intrinsic_store_shared:
case nir_intrinsic_load_buffer_amd:
case nir_intrinsic_store_buffer_amd:
break;
default:
return false;
}
/* Align the size to what the hw supports. */
unsigned unaligned_new_size = num_components * bit_size;
unsigned aligned_new_size = align_load_store_size(config->gfx_level, unaligned_new_size,
uses_smem, is_shared);
if (uses_smem) {
/* Maximize SMEM vectorization except for LLVM, which suffers from SGPR and VGPR spilling.
* GFX6-7 have fewer hw SGPRs, so merge only up to 128 bits to limit SGPR usage.
*/
if (aligned_new_size > (config->gfx_level >= GFX8 ? (config->uses_aco ? 512 : 256) : 128))
return false;
} else {
if (aligned_new_size > 128)
return false;
/* GFX6-8 only support 32-bit scratch loads/stores. */
if (swizzled && aligned_new_size > (swizzle_element_size * 8))
return false;
}
if (!is_store) {
/* Non-descriptor loads. */
if (low->intrinsic != nir_intrinsic_load_ubo &&
low->intrinsic != nir_intrinsic_load_ssbo) {
/* Only increase the size of loads if doing so doesn't extend into a new page.
* Here we set alignment to MAX because we don't know the alignment of global
* pointers before adding the offset.
*/
uint32_t resource_align = low->intrinsic == nir_intrinsic_load_global_constant ||
low->intrinsic == nir_intrinsic_load_global ? NIR_ALIGN_MUL_MAX : 4;
uint32_t page_size = 4096;
uint32_t mul = MIN3(align_mul, page_size, resource_align);
unsigned end = (align_offset + unaligned_new_size / 8u) & (mul - 1);
if ((aligned_new_size - unaligned_new_size) / 8u > (mul - end))
return false;
}
/* Only allow SMEM loads to overfetch by 32 bits:
*
* Examples (the hole is indicated by parentheses, the numbers are in bytes, the maximum
* overfetch size is 4):
* 4 | (4) | 4 -> hw loads 12 : ALLOWED (4 over)
* 4 | (4) | 4 -> hw loads 16 : DISALLOWED (8 over)
* 4 | 4 | 4 -> hw loads 16 : ALLOWED (4 over)
* 4 | (4) | 8 -> hw loads 16 : ALLOWED (4 over)
* 16 | 4 -> hw loads 32 : DISALLOWED (12 over)
* 16 | 8 -> hw loads 32 : DISALLOWED (8 over)
* 16 | 12 -> hw loads 32 : ALLOWED (4 over)
* 16 | (4) | 12 -> hw loads 32 : ALLOWED (4 over)
* 32 | 16 -> hw loads 64 : DISALLOWED (16 over)
* 32 | 28 -> hw loads 64 : ALLOWED (4 over)
* 32 | (4) | 28 -> hw loads 64 : ALLOWED (4 over)
*
* Note that we can overfetch by more than 4 bytes if we merge more than 2 loads, e.g.:
* 4 | (4) | 8 | (4) | 12 -> hw loads 32 : ALLOWED (4 + 4 over)
*
* That's because this callback is called twice in that case, each time allowing only 4 over.
*
* This is only enabled for ACO. LLVM spills SGPRs and VGPRs too much.
*/
unsigned overfetch_size = 0;
if (config->uses_aco && uses_smem && aligned_new_size >= 128)
overfetch_size = 32;
/* Allow overfetching from 8/16 bits to 32 bits. */
int64_t aligned_unvectorized_size =
ALIGN_POT(align_load_store_size(config->gfx_level, low->num_components * low->def.bit_size,
uses_smem, is_shared), 32) +
ALIGN_POT(align_load_store_size(config->gfx_level, high->num_components * high->def.bit_size,
uses_smem, is_shared), 32);
if (ALIGN_POT(aligned_new_size, 32) > aligned_unvectorized_size + overfetch_size)
return false;
}
uint32_t align;
if (align_offset)
align = 1 << (ffs(align_offset) - 1);
else
align = align_mul;
/* Don't cross swizzle elements. stack/scratch intrinsics use scratch_* instructions, which
* seem to work fine.
*/
if ((low->intrinsic == nir_intrinsic_load_buffer_amd ||
low->intrinsic == nir_intrinsic_store_buffer_amd) && swizzled &&
(align_offset % swizzle_element_size + unaligned_new_size / 8u) > MIN2(align_mul, swizzle_element_size)) {
return false;
}
/* Validate the alignment and number of components. */
if (!is_shared) {
return (align % (bit_size / 8u)) == 0 && num_components <= NIR_MAX_VEC_COMPONENTS;
} else {
if (bit_size >= 32 && num_components == 3) {
/* AMD hardware can't do 3-component loads except for 96-bit loads. */
return bit_size == 32 && align % 16 == 0;
}
unsigned req = bit_size >= 32 ? bit_size * num_components : bit_size;
if (req == 64 || req == 128) /* 64-bit and 128-bit loads can use ds_read2_b{32,64} */
req /= 2u;
return align % (req / 8u) == 0;
}
return false;
}
bool ac_nir_scalarize_overfetching_loads_callback(const nir_instr *instr, const void *data)
{
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
/* Reject opcodes we don't scalarize. */
switch (intr->intrinsic) {
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_global:
case nir_intrinsic_load_global_constant:
case nir_intrinsic_load_shared:
break;
default:
return false;
}
bool uses_smem = nir_intrinsic_has_access(intr) &&
nir_intrinsic_access(intr) & ACCESS_SMEM_AMD;
bool is_shared = intr->intrinsic == nir_intrinsic_load_shared;
enum amd_gfx_level gfx_level = *(enum amd_gfx_level *)data;
unsigned comp_size = intr->def.bit_size / 8;
unsigned load_size = intr->def.num_components * comp_size;
unsigned used_load_size = util_bitcount(nir_def_components_read(&intr->def)) * comp_size;
/* Scalarize if the load overfetches. That includes loads that overfetch due to load size
* alignment, e.g. when only a power-of-two load is available. The scalarized loads are expected
* to be later vectorized to optimal sizes.
*/
return used_load_size < align_load_store_size(gfx_level, load_size, uses_smem, is_shared);
}
/* Get chip-agnostic memory instruction access flags (as opposed to chip-specific GLC/DLC/SLC)
* from a NIR memory intrinsic.
*/
enum gl_access_qualifier ac_nir_get_mem_access_flags(const nir_intrinsic_instr *instr)
{
enum gl_access_qualifier access =
nir_intrinsic_has_access(instr) ? nir_intrinsic_access(instr) : 0;
/* Determine ACCESS_MAY_STORE_SUBDWORD. (for the GFX6 TC L1 bug workaround) */
if (!nir_intrinsic_infos[instr->intrinsic].has_dest) {
switch (instr->intrinsic) {
case nir_intrinsic_bindless_image_store:
access |= ACCESS_MAY_STORE_SUBDWORD;
break;
case nir_intrinsic_store_ssbo:
case nir_intrinsic_store_buffer_amd:
case nir_intrinsic_store_global:
case nir_intrinsic_store_global_amd:
if (access & ACCESS_USES_FORMAT_AMD ||
(nir_intrinsic_has_align_offset(instr) && nir_intrinsic_align(instr) % 4 != 0) ||
((instr->src[0].ssa->bit_size / 8) * instr->src[0].ssa->num_components) % 4 != 0)
access |= ACCESS_MAY_STORE_SUBDWORD;
break;
default:
unreachable("unexpected store instruction");
}
}
return access;
}
/**
* Computes a horizontal sum of 8-bit packed values loaded from LDS.
*
* Each lane N will sum packed bytes 0 to N.
* We only care about the results from up to wave_id lanes.
* (Other lanes are not deactivated but their calculation is not used.)
*/
static nir_def *
summarize_repack(nir_builder *b, nir_def *packed_counts, bool mask_lane_id, unsigned num_lds_dwords)
{
/* We'll use shift to filter out the bytes not needed by the current lane.
*
* For each row:
* Need to shift by: `num_lds_dwords * 4 - 1 - lane_id_in_row` (in bytes)
* in order to implement an inclusive scan.
*
* When v_dot4_u32_u8 is available, we right-shift a series of 0x01 bytes.
* This will yield 0x01 at wanted byte positions and 0x00 at unwanted positions,
* therefore v_dot can get rid of the unneeded values.
*
* If the v_dot instruction can't be used, we left-shift the packed bytes
* in order to shift out the unneeded bytes and shift in zeroes instead,
* then we sum them using v_msad_u8.
*/
nir_def *lane_id = nir_load_subgroup_invocation(b);
/* Mask lane ID so that lanes 16...31 also have the ID 0...15,
* in order to perform a second horizontal sum in parallel when needed.
*/
if (mask_lane_id)
lane_id = nir_iand_imm(b, lane_id, 0xf);
nir_def *shift = nir_iadd_imm(b, nir_imul_imm(b, lane_id, -8u), num_lds_dwords * 32 - 8);
assert(b->shader->options->has_msad || b->shader->options->has_udot_4x8);
bool use_dot = b->shader->options->has_udot_4x8;
if (num_lds_dwords == 1) {
/* Broadcast the packed data we read from LDS
* (to the first 16 lanes of the row, but we only care up to num_waves).
*/
nir_def *packed = nir_lane_permute_16_amd(b, packed_counts, nir_imm_int(b, 0), nir_imm_int(b, 0));
/* Horizontally add the packed bytes. */
if (use_dot) {
nir_def *dot_op = nir_ushr(b, nir_imm_int(b, 0x01010101), shift);
return nir_udot_4x8_uadd(b, packed, dot_op, nir_imm_int(b, 0));
} else {
nir_def *sad_op = nir_ishl(b, packed, shift);
return nir_msad_4x8(b, sad_op, nir_imm_int(b, 0), nir_imm_int(b, 0));
}
} else if (num_lds_dwords == 2) {
/* Broadcast the packed data we read from LDS
* (to the first 16 lanes of the row, but we only care up to num_waves).
*/
nir_def *packed_dw0 = nir_lane_permute_16_amd(b, nir_unpack_64_2x32_split_x(b, packed_counts), nir_imm_int(b, 0), nir_imm_int(b, 0));
nir_def *packed_dw1 = nir_lane_permute_16_amd(b, nir_unpack_64_2x32_split_y(b, packed_counts), nir_imm_int(b, 0), nir_imm_int(b, 0));
/* Horizontally add the packed bytes. */
if (use_dot) {
nir_def *dot_op = nir_ushr(b, nir_imm_int64(b, 0x0101010101010101), shift);
nir_def *sum = nir_udot_4x8_uadd(b, packed_dw0, nir_unpack_64_2x32_split_x(b, dot_op), nir_imm_int(b, 0));
return nir_udot_4x8_uadd(b, packed_dw1, nir_unpack_64_2x32_split_y(b, dot_op), sum);
} else {
nir_def *sad_op = nir_ishl(b, nir_pack_64_2x32_split(b, packed_dw0, packed_dw1), shift);
nir_def *sum = nir_msad_4x8(b, nir_unpack_64_2x32_split_x(b, sad_op), nir_imm_int(b, 0), nir_imm_int(b, 0));
return nir_msad_4x8(b, nir_unpack_64_2x32_split_y(b, sad_op), nir_imm_int(b, 0), sum);
}
} else {
unreachable("Unimplemented NGG wave count");
}
}
/**
* Repacks invocations in the current workgroup to eliminate gaps between them.
*
* Uses 1 dword of LDS per 4 waves (1 byte of LDS per wave) for each repack.
* Assumes that all invocations in the workgroup are active (exec = -1).
*/
void
ac_nir_repack_invocations_in_workgroup(nir_builder *b, nir_def **input_bool,
ac_nir_wg_repack_result *results, const unsigned num_repacks,
nir_def *lds_addr_base, unsigned max_num_waves,
unsigned wave_size)
{
/* We can currently only do up to 2 repacks at a time. */
assert(num_repacks <= 2);
/* STEP 1. Count surviving invocations in the current wave.
*
* Implemented by a scalar instruction that simply counts the number of bits set in a 32/64-bit mask.
*/
nir_def *input_mask[2];
nir_def *surviving_invocations_in_current_wave[2];
for (unsigned i = 0; i < num_repacks; ++i) {
/* Input should be boolean: 1 if the current invocation should survive the repack. */
assert(input_bool[i]->bit_size == 1);
input_mask[i] = nir_ballot(b, 1, wave_size, input_bool[i]);
surviving_invocations_in_current_wave[i] = nir_bit_count(b, input_mask[i]);
}
/* If we know at compile time that the workgroup has only 1 wave, no further steps are necessary. */
if (max_num_waves == 1) {
for (unsigned i = 0; i < num_repacks; ++i) {
results[i].num_repacked_invocations = surviving_invocations_in_current_wave[i];
results[i].repacked_invocation_index = nir_mbcnt_amd(b, input_mask[i], nir_imm_int(b, 0));
}
return;
}
/* STEP 2. Waves tell each other their number of surviving invocations.
*
* Row 0 (lanes 0-15) performs the first repack, and Row 1 (lanes 16-31) the second in parallel.
* Each wave activates only its first lane per row, which stores the number of surviving
* invocations in that wave into the LDS for that repack, then reads the numbers from every wave.
*
* The workgroup size of NGG shaders is at most 256, which means
* the maximum number of waves is 4 in Wave64 mode and 8 in Wave32 mode.
* For each repack:
* Each wave writes 1 byte, so it's up to 8 bytes, so at most 2 dwords are necessary.
* (The maximum is 4 dwords for 2 repacks in Wave32 mode.)
*/
const unsigned num_lds_dwords = DIV_ROUND_UP(max_num_waves, 4);
assert(num_lds_dwords <= 2);
/* The first lane of each row (per repack) needs to access the LDS. */
const unsigned ballot = num_repacks == 1 ? 1 : 0x10001;
nir_def *wave_id = nir_load_subgroup_id(b);
nir_def *dont_care = nir_undef(b, 1, num_lds_dwords * 32);
nir_def *packed_counts = NULL;
nir_if *if_use_lds = nir_push_if(b, nir_inverse_ballot(b, 1, nir_imm_intN_t(b, ballot, wave_size)));
{
nir_def *store_val = surviving_invocations_in_current_wave[0];
if (num_repacks == 2) {
nir_def *lane_id_0 = nir_inverse_ballot(b, 1, nir_imm_intN_t(b, 1, wave_size));
nir_def *off = nir_bcsel(b, lane_id_0, nir_imm_int(b, 0), nir_imm_int(b, num_lds_dwords * 4));
lds_addr_base = nir_iadd_nuw(b, lds_addr_base, off);
store_val = nir_bcsel(b, lane_id_0, store_val, surviving_invocations_in_current_wave[1]);
}
nir_def *store_byte = nir_u2u8(b, store_val);
nir_def *lds_offset = nir_iadd(b, lds_addr_base, wave_id);
nir_store_shared(b, store_byte, lds_offset);
nir_barrier(b, .execution_scope = SCOPE_WORKGROUP, .memory_scope = SCOPE_WORKGROUP,
.memory_semantics = NIR_MEMORY_ACQ_REL, .memory_modes = nir_var_mem_shared);
packed_counts = nir_load_shared(b, 1, num_lds_dwords * 32, lds_addr_base, .align_mul = 8u);
}
nir_pop_if(b, if_use_lds);
packed_counts = nir_if_phi(b, packed_counts, dont_care);
/* STEP 3. Compute the repacked invocation index and the total number of surviving invocations.
*
* By now, every wave knows the number of surviving invocations in all waves.
* Each number is 1 byte, and they are packed into up to 2 dwords.
*
* For each row (of 16 lanes):
* Each lane N (in the row) will sum the number of surviving invocations inclusively from waves 0 to N.
* If the workgroup has M waves, then each row will use only its first M lanes for this.
* (Other lanes are not deactivated but their calculation is not used.)
*
* - We read the sum from the lane whose id (in the row) is the current wave's id,
* and subtract the number of its own surviving invocations.
* Add the masked bitcount to this, and we get the repacked invocation index.
* - We read the sum from the lane whose id (in the row) is the number of waves in the workgroup minus 1.
* This is the total number of surviving invocations in the workgroup.
*/
nir_def *num_waves = nir_load_num_subgroups(b);
nir_def *sum = summarize_repack(b, packed_counts, num_repacks == 2, num_lds_dwords);
for (unsigned i = 0; i < num_repacks; ++i) {
nir_def *index_base_lane = nir_iadd_imm_nuw(b, wave_id, i * 16);
nir_def *num_invocartions_lane = nir_iadd_imm(b, num_waves, i * 16 - 1);
nir_def *wg_repacked_index_base =
nir_isub(b, nir_read_invocation(b, sum, index_base_lane), surviving_invocations_in_current_wave[i]);
results[i].num_repacked_invocations =
nir_read_invocation(b, sum, num_invocartions_lane);
results[i].repacked_invocation_index =
nir_mbcnt_amd(b, input_mask[i], wg_repacked_index_base);
}
}
uint8_t
ac_nir_lower_phis_to_scalar_cb(const nir_instr *instr, const void *_)
{
nir_phi_instr *phi = nir_instr_as_phi(instr);
if (phi->def.bit_size == 1 || phi->def.bit_size >= 32)
return 1;
return 32 / phi->def.bit_size;
}