blob: 4ef28c42d8fc06c338a1836ac98013f6a9db4e40 [file] [log] [blame]
/*
* Copyright © 2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <dirent.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <drm-uapi/i915_drm.h>
#include "common/gen_gem.h"
#include "gen_perf.h"
#include "perf/gen_perf_mdapi.h"
#include "perf/gen_perf_metrics.h"
#include "dev/gen_debug.h"
#include "dev/gen_device_info.h"
#include "util/bitscan.h"
#include "util/u_math.h"
#define FILE_DEBUG_FLAG DEBUG_PERFMON
#define MI_RPC_BO_SIZE 4096
#define MI_FREQ_START_OFFSET_BYTES (3072)
#define MI_RPC_BO_END_OFFSET_BYTES (MI_RPC_BO_SIZE / 2)
#define MI_FREQ_END_OFFSET_BYTES (3076)
#define INTEL_MASK(high, low) (((1u<<((high)-(low)+1))-1)<<(low))
#define GEN7_RPSTAT1 0xA01C
#define GEN7_RPSTAT1_CURR_GT_FREQ_SHIFT 7
#define GEN7_RPSTAT1_CURR_GT_FREQ_MASK INTEL_MASK(13, 7)
#define GEN7_RPSTAT1_PREV_GT_FREQ_SHIFT 0
#define GEN7_RPSTAT1_PREV_GT_FREQ_MASK INTEL_MASK(6, 0)
#define GEN9_RPSTAT0 0xA01C
#define GEN9_RPSTAT0_CURR_GT_FREQ_SHIFT 23
#define GEN9_RPSTAT0_CURR_GT_FREQ_MASK INTEL_MASK(31, 23)
#define GEN9_RPSTAT0_PREV_GT_FREQ_SHIFT 0
#define GEN9_RPSTAT0_PREV_GT_FREQ_MASK INTEL_MASK(8, 0)
#define GEN6_SO_PRIM_STORAGE_NEEDED 0x2280
#define GEN7_SO_PRIM_STORAGE_NEEDED(n) (0x5240 + (n) * 8)
#define GEN6_SO_NUM_PRIMS_WRITTEN 0x2288
#define GEN7_SO_NUM_PRIMS_WRITTEN(n) (0x5200 + (n) * 8)
#define MAP_READ (1 << 0)
#define MAP_WRITE (1 << 1)
/**
* Periodic OA samples are read() into these buffer structures via the
* i915 perf kernel interface and appended to the
* perf_ctx->sample_buffers linked list. When we process the
* results of an OA metrics query we need to consider all the periodic
* samples between the Begin and End MI_REPORT_PERF_COUNT command
* markers.
*
* 'Periodic' is a simplification as there are other automatic reports
* written by the hardware also buffered here.
*
* Considering three queries, A, B and C:
*
* Time ---->
* ________________A_________________
* | |
* | ________B_________ _____C___________
* | | | | | |
*
* And an illustration of sample buffers read over this time frame:
* [HEAD ][ ][ ][ ][ ][ ][ ][ ][TAIL ]
*
* These nodes may hold samples for query A:
* [ ][ ][ A ][ A ][ A ][ A ][ A ][ ][ ]
*
* These nodes may hold samples for query B:
* [ ][ ][ B ][ B ][ B ][ ][ ][ ][ ]
*
* These nodes may hold samples for query C:
* [ ][ ][ ][ ][ ][ C ][ C ][ C ][ ]
*
* The illustration assumes we have an even distribution of periodic
* samples so all nodes have the same size plotted against time:
*
* Note, to simplify code, the list is never empty.
*
* With overlapping queries we can see that periodic OA reports may
* relate to multiple queries and care needs to be take to keep
* track of sample buffers until there are no queries that might
* depend on their contents.
*
* We use a node ref counting system where a reference ensures that a
* node and all following nodes can't be freed/recycled until the
* reference drops to zero.
*
* E.g. with a ref of one here:
* [ 0 ][ 0 ][ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
*
* These nodes could be freed or recycled ("reaped"):
* [ 0 ][ 0 ]
*
* These must be preserved until the leading ref drops to zero:
* [ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
*
* When a query starts we take a reference on the current tail of
* the list, knowing that no already-buffered samples can possibly
* relate to the newly-started query. A pointer to this node is
* also saved in the query object's ->oa.samples_head.
*
* E.g. starting query A while there are two nodes in .sample_buffers:
* ________________A________
* |
*
* [ 0 ][ 1 ]
* ^_______ Add a reference and store pointer to node in
* A->oa.samples_head
*
* Moving forward to when the B query starts with no new buffer nodes:
* (for reference, i915 perf reads() are only done when queries finish)
* ________________A_______
* | ________B___
* | |
*
* [ 0 ][ 2 ]
* ^_______ Add a reference and store pointer to
* node in B->oa.samples_head
*
* Once a query is finished, after an OA query has become 'Ready',
* once the End OA report has landed and after we we have processed
* all the intermediate periodic samples then we drop the
* ->oa.samples_head reference we took at the start.
*
* So when the B query has finished we have:
* ________________A________
* | ______B___________
* | | |
* [ 0 ][ 1 ][ 0 ][ 0 ][ 0 ]
* ^_______ Drop B->oa.samples_head reference
*
* We still can't free these due to the A->oa.samples_head ref:
* [ 1 ][ 0 ][ 0 ][ 0 ]
*
* When the A query finishes: (note there's a new ref for C's samples_head)
* ________________A_________________
* | |
* | _____C_________
* | | |
* [ 0 ][ 0 ][ 0 ][ 0 ][ 1 ][ 0 ][ 0 ]
* ^_______ Drop A->oa.samples_head reference
*
* And we can now reap these nodes up to the C->oa.samples_head:
* [ X ][ X ][ X ][ X ]
* keeping -> [ 1 ][ 0 ][ 0 ]
*
* We reap old sample buffers each time we finish processing an OA
* query by iterating the sample_buffers list from the head until we
* find a referenced node and stop.
*
* Reaped buffers move to a perfquery.free_sample_buffers list and
* when we come to read() we first look to recycle a buffer from the
* free_sample_buffers list before allocating a new buffer.
*/
struct oa_sample_buf {
struct exec_node link;
int refcount;
int len;
uint8_t buf[I915_PERF_OA_SAMPLE_SIZE * 10];
uint32_t last_timestamp;
};
/**
* gen representation of a performance query object.
*
* NB: We want to keep this structure relatively lean considering that
* applications may expect to allocate enough objects to be able to
* query around all draw calls in a frame.
*/
struct gen_perf_query_object
{
const struct gen_perf_query_info *queryinfo;
/* See query->kind to know which state below is in use... */
union {
struct {
/**
* BO containing OA counter snapshots at query Begin/End time.
*/
void *bo;
/**
* Address of mapped of @bo
*/
void *map;
/**
* The MI_REPORT_PERF_COUNT command lets us specify a unique
* ID that will be reflected in the resulting OA report
* that's written by the GPU. This is the ID we're expecting
* in the begin report and the the end report should be
* @begin_report_id + 1.
*/
int begin_report_id;
/**
* Reference the head of the brw->perfquery.sample_buffers
* list at the time that the query started (so we only need
* to look at nodes after this point when looking for samples
* related to this query)
*
* (See struct brw_oa_sample_buf description for more details)
*/
struct exec_node *samples_head;
/**
* false while in the unaccumulated_elements list, and set to
* true when the final, end MI_RPC snapshot has been
* accumulated.
*/
bool results_accumulated;
/**
* Frequency of the GT at begin and end of the query.
*/
uint64_t gt_frequency[2];
/**
* Accumulated OA results between begin and end of the query.
*/
struct gen_perf_query_result result;
} oa;
struct {
/**
* BO containing starting and ending snapshots for the
* statistics counters.
*/
void *bo;
} pipeline_stats;
};
};
struct gen_perf_context {
struct gen_perf_config *perf;
void * ctx; /* driver context (eg, brw_context) */
void * bufmgr;
const struct gen_device_info *devinfo;
uint32_t hw_ctx;
int drm_fd;
/* The i915 perf stream we open to setup + enable the OA counters */
int oa_stream_fd;
/* An i915 perf stream fd gives exclusive access to the OA unit that will
* report counter snapshots for a specific counter set/profile in a
* specific layout/format so we can only start OA queries that are
* compatible with the currently open fd...
*/
int current_oa_metrics_set_id;
int current_oa_format;
/* List of buffers containing OA reports */
struct exec_list sample_buffers;
/* Cached list of empty sample buffers */
struct exec_list free_sample_buffers;
int n_active_oa_queries;
int n_active_pipeline_stats_queries;
/* The number of queries depending on running OA counters which
* extends beyond brw_end_perf_query() since we need to wait until
* the last MI_RPC command has parsed by the GPU.
*
* Accurate accounting is important here as emitting an
* MI_REPORT_PERF_COUNT command while the OA unit is disabled will
* effectively hang the gpu.
*/
int n_oa_users;
/* To help catch an spurious problem with the hardware or perf
* forwarding samples, we emit each MI_REPORT_PERF_COUNT command
* with a unique ID that we can explicitly check for...
*/
int next_query_start_report_id;
/**
* An array of queries whose results haven't yet been assembled
* based on the data in buffer objects.
*
* These may be active, or have already ended. However, the
* results have not been requested.
*/
struct gen_perf_query_object **unaccumulated;
int unaccumulated_elements;
int unaccumulated_array_size;
/* The total number of query objects so we can relinquish
* our exclusive access to perf if the application deletes
* all of its objects. (NB: We only disable perf while
* there are no active queries)
*/
int n_query_instances;
};
const struct gen_perf_query_info*
gen_perf_query_info(const struct gen_perf_query_object *query)
{
return query->queryinfo;
}
struct gen_perf_context *
gen_perf_new_context(void *parent)
{
struct gen_perf_context *ctx = rzalloc(parent, struct gen_perf_context);
if (! ctx)
fprintf(stderr, "%s: failed to alloc context\n", __func__);
return ctx;
}
struct gen_perf_config *
gen_perf_config(struct gen_perf_context *ctx)
{
return ctx->perf;
}
struct gen_perf_query_object *
gen_perf_new_query(struct gen_perf_context *perf_ctx, unsigned query_index)
{
const struct gen_perf_query_info *query =
&perf_ctx->perf->queries[query_index];
struct gen_perf_query_object *obj =
calloc(1, sizeof(struct gen_perf_query_object));
if (!obj)
return NULL;
obj->queryinfo = query;
perf_ctx->n_query_instances++;
return obj;
}
int
gen_perf_active_queries(struct gen_perf_context *perf_ctx,
const struct gen_perf_query_info *query)
{
assert(perf_ctx->n_active_oa_queries == 0 || perf_ctx->n_active_pipeline_stats_queries == 0);
switch (query->kind) {
case GEN_PERF_QUERY_TYPE_OA:
case GEN_PERF_QUERY_TYPE_RAW:
return perf_ctx->n_active_oa_queries;
break;
case GEN_PERF_QUERY_TYPE_PIPELINE:
return perf_ctx->n_active_pipeline_stats_queries;
break;
default:
unreachable("Unknown query type");
break;
}
}
static bool
get_sysfs_dev_dir(struct gen_perf_config *perf, int fd)
{
struct stat sb;
int min, maj;
DIR *drmdir;
struct dirent *drm_entry;
int len;
perf->sysfs_dev_dir[0] = '\0';
if (fstat(fd, &sb)) {
DBG("Failed to stat DRM fd\n");
return false;
}
maj = major(sb.st_rdev);
min = minor(sb.st_rdev);
if (!S_ISCHR(sb.st_mode)) {
DBG("DRM fd is not a character device as expected\n");
return false;
}
len = snprintf(perf->sysfs_dev_dir,
sizeof(perf->sysfs_dev_dir),
"/sys/dev/char/%d:%d/device/drm", maj, min);
if (len < 0 || len >= sizeof(perf->sysfs_dev_dir)) {
DBG("Failed to concatenate sysfs path to drm device\n");
return false;
}
drmdir = opendir(perf->sysfs_dev_dir);
if (!drmdir) {
DBG("Failed to open %s: %m\n", perf->sysfs_dev_dir);
return false;
}
while ((drm_entry = readdir(drmdir))) {
if ((drm_entry->d_type == DT_DIR ||
drm_entry->d_type == DT_LNK) &&
strncmp(drm_entry->d_name, "card", 4) == 0)
{
len = snprintf(perf->sysfs_dev_dir,
sizeof(perf->sysfs_dev_dir),
"/sys/dev/char/%d:%d/device/drm/%s",
maj, min, drm_entry->d_name);
closedir(drmdir);
if (len < 0 || len >= sizeof(perf->sysfs_dev_dir))
return false;
else
return true;
}
}
closedir(drmdir);
DBG("Failed to find cardX directory under /sys/dev/char/%d:%d/device/drm\n",
maj, min);
return false;
}
static bool
read_file_uint64(const char *file, uint64_t *val)
{
char buf[32];
int fd, n;
fd = open(file, 0);
if (fd < 0)
return false;
while ((n = read(fd, buf, sizeof (buf) - 1)) < 0 &&
errno == EINTR);
close(fd);
if (n < 0)
return false;
buf[n] = '\0';
*val = strtoull(buf, NULL, 0);
return true;
}
static bool
read_sysfs_drm_device_file_uint64(struct gen_perf_config *perf,
const char *file,
uint64_t *value)
{
char buf[512];
int len;
len = snprintf(buf, sizeof(buf), "%s/%s", perf->sysfs_dev_dir, file);
if (len < 0 || len >= sizeof(buf)) {
DBG("Failed to concatenate sys filename to read u64 from\n");
return false;
}
return read_file_uint64(buf, value);
}
static inline struct gen_perf_query_info *
append_query_info(struct gen_perf_config *perf, int max_counters)
{
struct gen_perf_query_info *query;
perf->queries = reralloc(perf, perf->queries,
struct gen_perf_query_info,
++perf->n_queries);
query = &perf->queries[perf->n_queries - 1];
memset(query, 0, sizeof(*query));
if (max_counters > 0) {
query->max_counters = max_counters;
query->counters =
rzalloc_array(perf, struct gen_perf_query_counter, max_counters);
}
return query;
}
static void
register_oa_config(struct gen_perf_config *perf,
const struct gen_perf_query_info *query,
uint64_t config_id)
{
struct gen_perf_query_info *registered_query = append_query_info(perf, 0);
*registered_query = *query;
registered_query->oa_metrics_set_id = config_id;
DBG("metric set registered: id = %" PRIu64", guid = %s\n",
registered_query->oa_metrics_set_id, query->guid);
}
static void
enumerate_sysfs_metrics(struct gen_perf_config *perf)
{
DIR *metricsdir = NULL;
struct dirent *metric_entry;
char buf[256];
int len;
len = snprintf(buf, sizeof(buf), "%s/metrics", perf->sysfs_dev_dir);
if (len < 0 || len >= sizeof(buf)) {
DBG("Failed to concatenate path to sysfs metrics/ directory\n");
return;
}
metricsdir = opendir(buf);
if (!metricsdir) {
DBG("Failed to open %s: %m\n", buf);
return;
}
while ((metric_entry = readdir(metricsdir))) {
struct hash_entry *entry;
if ((metric_entry->d_type != DT_DIR &&
metric_entry->d_type != DT_LNK) ||
metric_entry->d_name[0] == '.')
continue;
DBG("metric set: %s\n", metric_entry->d_name);
entry = _mesa_hash_table_search(perf->oa_metrics_table,
metric_entry->d_name);
if (entry) {
uint64_t id;
len = snprintf(buf, sizeof(buf), "%s/metrics/%s/id",
perf->sysfs_dev_dir, metric_entry->d_name);
if (len < 0 || len >= sizeof(buf)) {
DBG("Failed to concatenate path to sysfs metric id file\n");
continue;
}
if (!read_file_uint64(buf, &id)) {
DBG("Failed to read metric set id from %s: %m", buf);
continue;
}
register_oa_config(perf, (const struct gen_perf_query_info *)entry->data, id);
} else
DBG("metric set not known by mesa (skipping)\n");
}
closedir(metricsdir);
}
static bool
kernel_has_dynamic_config_support(struct gen_perf_config *perf, int fd)
{
uint64_t invalid_config_id = UINT64_MAX;
return gen_ioctl(fd, DRM_IOCTL_I915_PERF_REMOVE_CONFIG,
&invalid_config_id) < 0 && errno == ENOENT;
}
static bool
load_metric_id(struct gen_perf_config *perf, const char *guid,
uint64_t *metric_id)
{
char config_path[280];
snprintf(config_path, sizeof(config_path), "%s/metrics/%s/id",
perf->sysfs_dev_dir, guid);
/* Don't recreate already loaded configs. */
return read_file_uint64(config_path, metric_id);
}
static void
init_oa_configs(struct gen_perf_config *perf, int fd)
{
hash_table_foreach(perf->oa_metrics_table, entry) {
const struct gen_perf_query_info *query = entry->data;
struct drm_i915_perf_oa_config config;
uint64_t config_id;
int ret;
if (load_metric_id(perf, query->guid, &config_id)) {
DBG("metric set: %s (already loaded)\n", query->guid);
register_oa_config(perf, query, config_id);
continue;
}
memset(&config, 0, sizeof(config));
memcpy(config.uuid, query->guid, sizeof(config.uuid));
config.n_mux_regs = query->n_mux_regs;
config.mux_regs_ptr = (uintptr_t) query->mux_regs;
config.n_boolean_regs = query->n_b_counter_regs;
config.boolean_regs_ptr = (uintptr_t) query->b_counter_regs;
config.n_flex_regs = query->n_flex_regs;
config.flex_regs_ptr = (uintptr_t) query->flex_regs;
ret = gen_ioctl(fd, DRM_IOCTL_I915_PERF_ADD_CONFIG, &config);
if (ret < 0) {
DBG("Failed to load \"%s\" (%s) metrics set in kernel: %s\n",
query->name, query->guid, strerror(errno));
continue;
}
register_oa_config(perf, query, ret);
DBG("metric set: %s (added)\n", query->guid);
}
}
static void
compute_topology_builtins(struct gen_perf_config *perf,
const struct gen_device_info *devinfo)
{
perf->sys_vars.slice_mask = devinfo->slice_masks;
perf->sys_vars.n_eu_slices = devinfo->num_slices;
for (int i = 0; i < sizeof(devinfo->subslice_masks[i]); i++) {
perf->sys_vars.n_eu_sub_slices +=
__builtin_popcount(devinfo->subslice_masks[i]);
}
for (int i = 0; i < sizeof(devinfo->eu_masks); i++)
perf->sys_vars.n_eus += __builtin_popcount(devinfo->eu_masks[i]);
perf->sys_vars.eu_threads_count = devinfo->num_thread_per_eu;
/* The subslice mask builtin contains bits for all slices. Prior to Gen11
* it had groups of 3bits for each slice, on Gen11 it's 8bits for each
* slice.
*
* Ideally equations would be updated to have a slice/subslice query
* function/operator.
*/
perf->sys_vars.subslice_mask = 0;
int bits_per_subslice = devinfo->gen == 11 ? 8 : 3;
for (int s = 0; s < util_last_bit(devinfo->slice_masks); s++) {
for (int ss = 0; ss < (devinfo->subslice_slice_stride * 8); ss++) {
if (gen_device_info_subslice_available(devinfo, s, ss))
perf->sys_vars.subslice_mask |= 1ULL << (s * bits_per_subslice + ss);
}
}
}
static bool
init_oa_sys_vars(struct gen_perf_config *perf, const struct gen_device_info *devinfo)
{
uint64_t min_freq_mhz = 0, max_freq_mhz = 0;
if (!read_sysfs_drm_device_file_uint64(perf, "gt_min_freq_mhz", &min_freq_mhz))
return false;
if (!read_sysfs_drm_device_file_uint64(perf, "gt_max_freq_mhz", &max_freq_mhz))
return false;
memset(&perf->sys_vars, 0, sizeof(perf->sys_vars));
perf->sys_vars.gt_min_freq = min_freq_mhz * 1000000;
perf->sys_vars.gt_max_freq = max_freq_mhz * 1000000;
perf->sys_vars.timestamp_frequency = devinfo->timestamp_frequency;
perf->sys_vars.revision = devinfo->revision;
compute_topology_builtins(perf, devinfo);
return true;
}
typedef void (*perf_register_oa_queries_t)(struct gen_perf_config *);
static perf_register_oa_queries_t
get_register_queries_function(const struct gen_device_info *devinfo)
{
if (devinfo->is_haswell)
return gen_oa_register_queries_hsw;
if (devinfo->is_cherryview)
return gen_oa_register_queries_chv;
if (devinfo->is_broadwell)
return gen_oa_register_queries_bdw;
if (devinfo->is_broxton)
return gen_oa_register_queries_bxt;
if (devinfo->is_skylake) {
if (devinfo->gt == 2)
return gen_oa_register_queries_sklgt2;
if (devinfo->gt == 3)
return gen_oa_register_queries_sklgt3;
if (devinfo->gt == 4)
return gen_oa_register_queries_sklgt4;
}
if (devinfo->is_kabylake) {
if (devinfo->gt == 2)
return gen_oa_register_queries_kblgt2;
if (devinfo->gt == 3)
return gen_oa_register_queries_kblgt3;
}
if (devinfo->is_geminilake)
return gen_oa_register_queries_glk;
if (devinfo->is_coffeelake) {
if (devinfo->gt == 2)
return gen_oa_register_queries_cflgt2;
if (devinfo->gt == 3)
return gen_oa_register_queries_cflgt3;
}
if (devinfo->is_cannonlake)
return gen_oa_register_queries_cnl;
if (devinfo->gen == 11)
return gen_oa_register_queries_icl;
return NULL;
}
static inline void
add_stat_reg(struct gen_perf_query_info *query, uint32_t reg,
uint32_t numerator, uint32_t denominator,
const char *name, const char *description)
{
struct gen_perf_query_counter *counter;
assert(query->n_counters < query->max_counters);
counter = &query->counters[query->n_counters];
counter->name = name;
counter->desc = description;
counter->type = GEN_PERF_COUNTER_TYPE_RAW;
counter->data_type = GEN_PERF_COUNTER_DATA_TYPE_UINT64;
counter->offset = sizeof(uint64_t) * query->n_counters;
counter->pipeline_stat.reg = reg;
counter->pipeline_stat.numerator = numerator;
counter->pipeline_stat.denominator = denominator;
query->n_counters++;
}
static inline void
add_basic_stat_reg(struct gen_perf_query_info *query,
uint32_t reg, const char *name)
{
add_stat_reg(query, reg, 1, 1, name, name);
}
static void
load_pipeline_statistic_metrics(struct gen_perf_config *perf_cfg,
const struct gen_device_info *devinfo)
{
struct gen_perf_query_info *query =
append_query_info(perf_cfg, MAX_STAT_COUNTERS);
query->kind = GEN_PERF_QUERY_TYPE_PIPELINE;
query->name = "Pipeline Statistics Registers";
add_basic_stat_reg(query, IA_VERTICES_COUNT,
"N vertices submitted");
add_basic_stat_reg(query, IA_PRIMITIVES_COUNT,
"N primitives submitted");
add_basic_stat_reg(query, VS_INVOCATION_COUNT,
"N vertex shader invocations");
if (devinfo->gen == 6) {
add_stat_reg(query, GEN6_SO_PRIM_STORAGE_NEEDED, 1, 1,
"SO_PRIM_STORAGE_NEEDED",
"N geometry shader stream-out primitives (total)");
add_stat_reg(query, GEN6_SO_NUM_PRIMS_WRITTEN, 1, 1,
"SO_NUM_PRIMS_WRITTEN",
"N geometry shader stream-out primitives (written)");
} else {
add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(0), 1, 1,
"SO_PRIM_STORAGE_NEEDED (Stream 0)",
"N stream-out (stream 0) primitives (total)");
add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(1), 1, 1,
"SO_PRIM_STORAGE_NEEDED (Stream 1)",
"N stream-out (stream 1) primitives (total)");
add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(2), 1, 1,
"SO_PRIM_STORAGE_NEEDED (Stream 2)",
"N stream-out (stream 2) primitives (total)");
add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(3), 1, 1,
"SO_PRIM_STORAGE_NEEDED (Stream 3)",
"N stream-out (stream 3) primitives (total)");
add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(0), 1, 1,
"SO_NUM_PRIMS_WRITTEN (Stream 0)",
"N stream-out (stream 0) primitives (written)");
add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(1), 1, 1,
"SO_NUM_PRIMS_WRITTEN (Stream 1)",
"N stream-out (stream 1) primitives (written)");
add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(2), 1, 1,
"SO_NUM_PRIMS_WRITTEN (Stream 2)",
"N stream-out (stream 2) primitives (written)");
add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(3), 1, 1,
"SO_NUM_PRIMS_WRITTEN (Stream 3)",
"N stream-out (stream 3) primitives (written)");
}
add_basic_stat_reg(query, HS_INVOCATION_COUNT,
"N TCS shader invocations");
add_basic_stat_reg(query, DS_INVOCATION_COUNT,
"N TES shader invocations");
add_basic_stat_reg(query, GS_INVOCATION_COUNT,
"N geometry shader invocations");
add_basic_stat_reg(query, GS_PRIMITIVES_COUNT,
"N geometry shader primitives emitted");
add_basic_stat_reg(query, CL_INVOCATION_COUNT,
"N primitives entering clipping");
add_basic_stat_reg(query, CL_PRIMITIVES_COUNT,
"N primitives leaving clipping");
if (devinfo->is_haswell || devinfo->gen == 8) {
add_stat_reg(query, PS_INVOCATION_COUNT, 1, 4,
"N fragment shader invocations",
"N fragment shader invocations");
} else {
add_basic_stat_reg(query, PS_INVOCATION_COUNT,
"N fragment shader invocations");
}
add_basic_stat_reg(query, PS_DEPTH_COUNT,
"N z-pass fragments");
if (devinfo->gen >= 7) {
add_basic_stat_reg(query, CS_INVOCATION_COUNT,
"N compute shader invocations");
}
query->data_size = sizeof(uint64_t) * query->n_counters;
}
static bool
load_oa_metrics(struct gen_perf_config *perf, int fd,
const struct gen_device_info *devinfo)
{
perf_register_oa_queries_t oa_register = get_register_queries_function(devinfo);
bool i915_perf_oa_available = false;
struct stat sb;
/* The existence of this sysctl parameter implies the kernel supports
* the i915 perf interface.
*/
if (stat("/proc/sys/dev/i915/perf_stream_paranoid", &sb) == 0) {
/* If _paranoid == 1 then on Gen8+ we won't be able to access OA
* metrics unless running as root.
*/
if (devinfo->is_haswell)
i915_perf_oa_available = true;
else {
uint64_t paranoid = 1;
read_file_uint64("/proc/sys/dev/i915/perf_stream_paranoid", &paranoid);
if (paranoid == 0 || geteuid() == 0)
i915_perf_oa_available = true;
}
}
if (!i915_perf_oa_available ||
!oa_register ||
!get_sysfs_dev_dir(perf, fd) ||
!init_oa_sys_vars(perf, devinfo))
return false;
perf->oa_metrics_table =
_mesa_hash_table_create(perf, _mesa_key_hash_string,
_mesa_key_string_equal);
/* Index all the metric sets mesa knows about before looking to see what
* the kernel is advertising.
*/
oa_register(perf);
if (likely((INTEL_DEBUG & DEBUG_NO_OACONFIG) == 0) &&
kernel_has_dynamic_config_support(perf, fd))
init_oa_configs(perf, fd);
else
enumerate_sysfs_metrics(perf);
return true;
}
/* Accumulate 32bits OA counters */
static inline void
accumulate_uint32(const uint32_t *report0,
const uint32_t *report1,
uint64_t *accumulator)
{
*accumulator += (uint32_t)(*report1 - *report0);
}
/* Accumulate 40bits OA counters */
static inline void
accumulate_uint40(int a_index,
const uint32_t *report0,
const uint32_t *report1,
uint64_t *accumulator)
{
const uint8_t *high_bytes0 = (uint8_t *)(report0 + 40);
const uint8_t *high_bytes1 = (uint8_t *)(report1 + 40);
uint64_t high0 = (uint64_t)(high_bytes0[a_index]) << 32;
uint64_t high1 = (uint64_t)(high_bytes1[a_index]) << 32;
uint64_t value0 = report0[a_index + 4] | high0;
uint64_t value1 = report1[a_index + 4] | high1;
uint64_t delta;
if (value0 > value1)
delta = (1ULL << 40) + value1 - value0;
else
delta = value1 - value0;
*accumulator += delta;
}
static void
gen8_read_report_clock_ratios(const uint32_t *report,
uint64_t *slice_freq_hz,
uint64_t *unslice_freq_hz)
{
/* The lower 16bits of the RPT_ID field of the OA reports contains a
* snapshot of the bits coming from the RP_FREQ_NORMAL register and is
* divided this way :
*
* RPT_ID[31:25]: RP_FREQ_NORMAL[20:14] (low squashed_slice_clock_frequency)
* RPT_ID[10:9]: RP_FREQ_NORMAL[22:21] (high squashed_slice_clock_frequency)
* RPT_ID[8:0]: RP_FREQ_NORMAL[31:23] (squashed_unslice_clock_frequency)
*
* RP_FREQ_NORMAL[31:23]: Software Unslice Ratio Request
* Multiple of 33.33MHz 2xclk (16 MHz 1xclk)
*
* RP_FREQ_NORMAL[22:14]: Software Slice Ratio Request
* Multiple of 33.33MHz 2xclk (16 MHz 1xclk)
*/
uint32_t unslice_freq = report[0] & 0x1ff;
uint32_t slice_freq_low = (report[0] >> 25) & 0x7f;
uint32_t slice_freq_high = (report[0] >> 9) & 0x3;
uint32_t slice_freq = slice_freq_low | (slice_freq_high << 7);
*slice_freq_hz = slice_freq * 16666667ULL;
*unslice_freq_hz = unslice_freq * 16666667ULL;
}
static void
query_result_read_frequencies(struct gen_perf_query_result *result,
const struct gen_device_info *devinfo,
const uint32_t *start,
const uint32_t *end)
{
/* Slice/Unslice frequency is only available in the OA reports when the
* "Disable OA reports due to clock ratio change" field in
* OA_DEBUG_REGISTER is set to 1. This is how the kernel programs this
* global register (see drivers/gpu/drm/i915/i915_perf.c)
*
* Documentation says this should be available on Gen9+ but experimentation
* shows that Gen8 reports similar values, so we enable it there too.
*/
if (devinfo->gen < 8)
return;
gen8_read_report_clock_ratios(start,
&result->slice_frequency[0],
&result->unslice_frequency[0]);
gen8_read_report_clock_ratios(end,
&result->slice_frequency[1],
&result->unslice_frequency[1]);
}
static void
query_result_accumulate(struct gen_perf_query_result *result,
const struct gen_perf_query_info *query,
const uint32_t *start,
const uint32_t *end)
{
int i, idx = 0;
result->hw_id = start[2];
result->reports_accumulated++;
switch (query->oa_format) {
case I915_OA_FORMAT_A32u40_A4u32_B8_C8:
accumulate_uint32(start + 1, end + 1, result->accumulator + idx++); /* timestamp */
accumulate_uint32(start + 3, end + 3, result->accumulator + idx++); /* clock */
/* 32x 40bit A counters... */
for (i = 0; i < 32; i++)
accumulate_uint40(i, start, end, result->accumulator + idx++);
/* 4x 32bit A counters... */
for (i = 0; i < 4; i++)
accumulate_uint32(start + 36 + i, end + 36 + i, result->accumulator + idx++);
/* 8x 32bit B counters + 8x 32bit C counters... */
for (i = 0; i < 16; i++)
accumulate_uint32(start + 48 + i, end + 48 + i, result->accumulator + idx++);
break;
case I915_OA_FORMAT_A45_B8_C8:
accumulate_uint32(start + 1, end + 1, result->accumulator); /* timestamp */
for (i = 0; i < 61; i++)
accumulate_uint32(start + 3 + i, end + 3 + i, result->accumulator + 1 + i);
break;
default:
unreachable("Can't accumulate OA counters in unknown format");
}
}
static void
query_result_clear(struct gen_perf_query_result *result)
{
memset(result, 0, sizeof(*result));
result->hw_id = 0xffffffff; /* invalid */
}
static void
register_mdapi_statistic_query(struct gen_perf_config *perf_cfg,
const struct gen_device_info *devinfo)
{
if (!(devinfo->gen >= 7 && devinfo->gen <= 11))
return;
struct gen_perf_query_info *query =
append_query_info(perf_cfg, MAX_STAT_COUNTERS);
query->kind = GEN_PERF_QUERY_TYPE_PIPELINE;
query->name = "Intel_Raw_Pipeline_Statistics_Query";
/* The order has to match mdapi_pipeline_metrics. */
add_basic_stat_reg(query, IA_VERTICES_COUNT,
"N vertices submitted");
add_basic_stat_reg(query, IA_PRIMITIVES_COUNT,
"N primitives submitted");
add_basic_stat_reg(query, VS_INVOCATION_COUNT,
"N vertex shader invocations");
add_basic_stat_reg(query, GS_INVOCATION_COUNT,
"N geometry shader invocations");
add_basic_stat_reg(query, GS_PRIMITIVES_COUNT,
"N geometry shader primitives emitted");
add_basic_stat_reg(query, CL_INVOCATION_COUNT,
"N primitives entering clipping");
add_basic_stat_reg(query, CL_PRIMITIVES_COUNT,
"N primitives leaving clipping");
if (devinfo->is_haswell || devinfo->gen == 8) {
add_stat_reg(query, PS_INVOCATION_COUNT, 1, 4,
"N fragment shader invocations",
"N fragment shader invocations");
} else {
add_basic_stat_reg(query, PS_INVOCATION_COUNT,
"N fragment shader invocations");
}
add_basic_stat_reg(query, HS_INVOCATION_COUNT,
"N TCS shader invocations");
add_basic_stat_reg(query, DS_INVOCATION_COUNT,
"N TES shader invocations");
if (devinfo->gen >= 7) {
add_basic_stat_reg(query, CS_INVOCATION_COUNT,
"N compute shader invocations");
}
if (devinfo->gen >= 10) {
/* Reuse existing CS invocation register until we can expose this new
* one.
*/
add_basic_stat_reg(query, CS_INVOCATION_COUNT,
"Reserved1");
}
query->data_size = sizeof(uint64_t) * query->n_counters;
}
static void
fill_mdapi_perf_query_counter(struct gen_perf_query_info *query,
const char *name,
uint32_t data_offset,
uint32_t data_size,
enum gen_perf_counter_data_type data_type)
{
struct gen_perf_query_counter *counter = &query->counters[query->n_counters];
assert(query->n_counters <= query->max_counters);
counter->name = name;
counter->desc = "Raw counter value";
counter->type = GEN_PERF_COUNTER_TYPE_RAW;
counter->data_type = data_type;
counter->offset = data_offset;
query->n_counters++;
assert(counter->offset + gen_perf_query_counter_get_size(counter) <= query->data_size);
}
#define MDAPI_QUERY_ADD_COUNTER(query, struct_name, field_name, type_name) \
fill_mdapi_perf_query_counter(query, #field_name, \
(uint8_t *) &struct_name.field_name - \
(uint8_t *) &struct_name, \
sizeof(struct_name.field_name), \
GEN_PERF_COUNTER_DATA_TYPE_##type_name)
#define MDAPI_QUERY_ADD_ARRAY_COUNTER(ctx, query, struct_name, field_name, idx, type_name) \
fill_mdapi_perf_query_counter(query, \
ralloc_asprintf(ctx, "%s%i", #field_name, idx), \
(uint8_t *) &struct_name.field_name[idx] - \
(uint8_t *) &struct_name, \
sizeof(struct_name.field_name[0]), \
GEN_PERF_COUNTER_DATA_TYPE_##type_name)
static void
register_mdapi_oa_query(const struct gen_device_info *devinfo,
struct gen_perf_config *perf)
{
struct gen_perf_query_info *query = NULL;
/* MDAPI requires different structures for pretty much every generation
* (right now we have definitions for gen 7 to 11).
*/
if (!(devinfo->gen >= 7 && devinfo->gen <= 11))
return;
switch (devinfo->gen) {
case 7: {
query = append_query_info(perf, 1 + 45 + 16 + 7);
query->oa_format = I915_OA_FORMAT_A45_B8_C8;
struct gen7_mdapi_metrics metric_data;
query->data_size = sizeof(metric_data);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, TotalTime, UINT64);
for (int i = 0; i < ARRAY_SIZE(metric_data.ACounters); i++) {
MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
metric_data, ACounters, i, UINT64);
}
for (int i = 0; i < ARRAY_SIZE(metric_data.NOACounters); i++) {
MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
metric_data, NOACounters, i, UINT64);
}
MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter1, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter2, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, SplitOccured, BOOL32);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequencyChanged, BOOL32);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequency, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportId, UINT32);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportsCount, UINT32);
break;
}
case 8: {
query = append_query_info(perf, 2 + 36 + 16 + 16);
query->oa_format = I915_OA_FORMAT_A32u40_A4u32_B8_C8;
struct gen8_mdapi_metrics metric_data;
query->data_size = sizeof(metric_data);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, TotalTime, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, GPUTicks, UINT64);
for (int i = 0; i < ARRAY_SIZE(metric_data.OaCntr); i++) {
MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
metric_data, OaCntr, i, UINT64);
}
for (int i = 0; i < ARRAY_SIZE(metric_data.NoaCntr); i++) {
MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
metric_data, NoaCntr, i, UINT64);
}
MDAPI_QUERY_ADD_COUNTER(query, metric_data, BeginTimestamp, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved1, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved2, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved3, UINT32);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, OverrunOccured, BOOL32);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, MarkerUser, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, MarkerDriver, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, SliceFrequency, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, UnsliceFrequency, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter1, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter2, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, SplitOccured, BOOL32);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequencyChanged, BOOL32);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequency, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportId, UINT32);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportsCount, UINT32);
break;
}
case 9:
case 10:
case 11: {
query = append_query_info(perf, 2 + 36 + 16 + 16 + 16 + 2);
query->oa_format = I915_OA_FORMAT_A32u40_A4u32_B8_C8;
struct gen9_mdapi_metrics metric_data;
query->data_size = sizeof(metric_data);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, TotalTime, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, GPUTicks, UINT64);
for (int i = 0; i < ARRAY_SIZE(metric_data.OaCntr); i++) {
MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
metric_data, OaCntr, i, UINT64);
}
for (int i = 0; i < ARRAY_SIZE(metric_data.NoaCntr); i++) {
MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
metric_data, NoaCntr, i, UINT64);
}
MDAPI_QUERY_ADD_COUNTER(query, metric_data, BeginTimestamp, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved1, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved2, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved3, UINT32);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, OverrunOccured, BOOL32);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, MarkerUser, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, MarkerDriver, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, SliceFrequency, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, UnsliceFrequency, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter1, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter2, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, SplitOccured, BOOL32);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequencyChanged, BOOL32);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequency, UINT64);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportId, UINT32);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportsCount, UINT32);
for (int i = 0; i < ARRAY_SIZE(metric_data.UserCntr); i++) {
MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
metric_data, UserCntr, i, UINT64);
}
MDAPI_QUERY_ADD_COUNTER(query, metric_data, UserCntrCfgId, UINT32);
MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved4, UINT32);
break;
}
default:
unreachable("Unsupported gen");
break;
}
query->kind = GEN_PERF_QUERY_TYPE_RAW;
query->name = "Intel_Raw_Hardware_Counters_Set_0_Query";
query->guid = GEN_PERF_QUERY_GUID_MDAPI;
{
/* Accumulation buffer offsets copied from an actual query... */
const struct gen_perf_query_info *copy_query =
&perf->queries[0];
query->gpu_time_offset = copy_query->gpu_time_offset;
query->gpu_clock_offset = copy_query->gpu_clock_offset;
query->a_offset = copy_query->a_offset;
query->b_offset = copy_query->b_offset;
query->c_offset = copy_query->c_offset;
}
}
static uint64_t
get_metric_id(struct gen_perf_config *perf,
const struct gen_perf_query_info *query)
{
/* These queries are know not to ever change, their config ID has been
* loaded upon the first query creation. No need to look them up again.
*/
if (query->kind == GEN_PERF_QUERY_TYPE_OA)
return query->oa_metrics_set_id;
assert(query->kind == GEN_PERF_QUERY_TYPE_RAW);
/* Raw queries can be reprogrammed up by an external application/library.
* When a raw query is used for the first time it's id is set to a value !=
* 0. When it stops being used the id returns to 0. No need to reload the
* ID when it's already loaded.
*/
if (query->oa_metrics_set_id != 0) {
DBG("Raw query '%s' guid=%s using cached ID: %"PRIu64"\n",
query->name, query->guid, query->oa_metrics_set_id);
return query->oa_metrics_set_id;
}
struct gen_perf_query_info *raw_query = (struct gen_perf_query_info *)query;
if (!load_metric_id(perf, query->guid,
&raw_query->oa_metrics_set_id)) {
DBG("Unable to read query guid=%s ID, falling back to test config\n", query->guid);
raw_query->oa_metrics_set_id = 1ULL;
} else {
DBG("Raw query '%s'guid=%s loaded ID: %"PRIu64"\n",
query->name, query->guid, query->oa_metrics_set_id);
}
return query->oa_metrics_set_id;
}
static struct oa_sample_buf *
get_free_sample_buf(struct gen_perf_context *perf_ctx)
{
struct exec_node *node = exec_list_pop_head(&perf_ctx->free_sample_buffers);
struct oa_sample_buf *buf;
if (node)
buf = exec_node_data(struct oa_sample_buf, node, link);
else {
buf = ralloc_size(perf_ctx->perf, sizeof(*buf));
exec_node_init(&buf->link);
buf->refcount = 0;
buf->len = 0;
}
return buf;
}
static void
reap_old_sample_buffers(struct gen_perf_context *perf_ctx)
{
struct exec_node *tail_node =
exec_list_get_tail(&perf_ctx->sample_buffers);
struct oa_sample_buf *tail_buf =
exec_node_data(struct oa_sample_buf, tail_node, link);
/* Remove all old, unreferenced sample buffers walking forward from
* the head of the list, except always leave at least one node in
* the list so we always have a node to reference when we Begin
* a new query.
*/
foreach_list_typed_safe(struct oa_sample_buf, buf, link,
&perf_ctx->sample_buffers)
{
if (buf->refcount == 0 && buf != tail_buf) {
exec_node_remove(&buf->link);
exec_list_push_head(&perf_ctx->free_sample_buffers, &buf->link);
} else
return;
}
}
static void
free_sample_bufs(struct gen_perf_context *perf_ctx)
{
foreach_list_typed_safe(struct oa_sample_buf, buf, link,
&perf_ctx->free_sample_buffers)
ralloc_free(buf);
exec_list_make_empty(&perf_ctx->free_sample_buffers);
}
/******************************************************************************/
/**
* Emit MI_STORE_REGISTER_MEM commands to capture all of the
* pipeline statistics for the performance query object.
*/
static void
snapshot_statistics_registers(void *context,
struct gen_perf_config *perf,
struct gen_perf_query_object *obj,
uint32_t offset_in_bytes)
{
const struct gen_perf_query_info *query = obj->queryinfo;
const int n_counters = query->n_counters;
for (int i = 0; i < n_counters; i++) {
const struct gen_perf_query_counter *counter = &query->counters[i];
assert(counter->data_type == GEN_PERF_COUNTER_DATA_TYPE_UINT64);
perf->vtbl.store_register_mem64(context, obj->pipeline_stats.bo,
counter->pipeline_stat.reg,
offset_in_bytes + i * sizeof(uint64_t));
}
}
static void
gen_perf_close(struct gen_perf_context *perfquery,
const struct gen_perf_query_info *query)
{
if (perfquery->oa_stream_fd != -1) {
close(perfquery->oa_stream_fd);
perfquery->oa_stream_fd = -1;
}
if (query->kind == GEN_PERF_QUERY_TYPE_RAW) {
struct gen_perf_query_info *raw_query =
(struct gen_perf_query_info *) query;
raw_query->oa_metrics_set_id = 0;
}
}
static bool
gen_perf_open(struct gen_perf_context *perf_ctx,
int metrics_set_id,
int report_format,
int period_exponent,
int drm_fd,
uint32_t ctx_id)
{
uint64_t properties[] = {
/* Single context sampling */
DRM_I915_PERF_PROP_CTX_HANDLE, ctx_id,
/* Include OA reports in samples */
DRM_I915_PERF_PROP_SAMPLE_OA, true,
/* OA unit configuration */
DRM_I915_PERF_PROP_OA_METRICS_SET, metrics_set_id,
DRM_I915_PERF_PROP_OA_FORMAT, report_format,
DRM_I915_PERF_PROP_OA_EXPONENT, period_exponent,
};
struct drm_i915_perf_open_param param = {
.flags = I915_PERF_FLAG_FD_CLOEXEC |
I915_PERF_FLAG_FD_NONBLOCK |
I915_PERF_FLAG_DISABLED,
.num_properties = ARRAY_SIZE(properties) / 2,
.properties_ptr = (uintptr_t) properties,
};
int fd = gen_ioctl(drm_fd, DRM_IOCTL_I915_PERF_OPEN, &param);
if (fd == -1) {
DBG("Error opening gen perf OA stream: %m\n");
return false;
}
perf_ctx->oa_stream_fd = fd;
perf_ctx->current_oa_metrics_set_id = metrics_set_id;
perf_ctx->current_oa_format = report_format;
return true;
}
static bool
inc_n_users(struct gen_perf_context *perf_ctx)
{
if (perf_ctx->n_oa_users == 0 &&
gen_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_ENABLE, 0) < 0)
{
return false;
}
++perf_ctx->n_oa_users;
return true;
}
static void
dec_n_users(struct gen_perf_context *perf_ctx)
{
/* Disabling the i915 perf stream will effectively disable the OA
* counters. Note it's important to be sure there are no outstanding
* MI_RPC commands at this point since they could stall the CS
* indefinitely once OACONTROL is disabled.
*/
--perf_ctx->n_oa_users;
if (perf_ctx->n_oa_users == 0 &&
gen_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_DISABLE, 0) < 0)
{
DBG("WARNING: Error disabling gen perf stream: %m\n");
}
}
void
gen_perf_init_metrics(struct gen_perf_config *perf_cfg,
const struct gen_device_info *devinfo,
int drm_fd)
{
load_pipeline_statistic_metrics(perf_cfg, devinfo);
register_mdapi_statistic_query(perf_cfg, devinfo);
if (load_oa_metrics(perf_cfg, drm_fd, devinfo))
register_mdapi_oa_query(devinfo, perf_cfg);
}
void
gen_perf_init_context(struct gen_perf_context *perf_ctx,
struct gen_perf_config *perf_cfg,
void * ctx, /* driver context (eg, brw_context) */
void * bufmgr, /* eg brw_bufmgr */
const struct gen_device_info *devinfo,
uint32_t hw_ctx,
int drm_fd)
{
perf_ctx->perf = perf_cfg;
perf_ctx->ctx = ctx;
perf_ctx->bufmgr = bufmgr;
perf_ctx->drm_fd = drm_fd;
perf_ctx->hw_ctx = hw_ctx;
perf_ctx->devinfo = devinfo;
perf_ctx->unaccumulated =
ralloc_array(ctx, struct gen_perf_query_object *, 2);
perf_ctx->unaccumulated_elements = 0;
perf_ctx->unaccumulated_array_size = 2;
exec_list_make_empty(&perf_ctx->sample_buffers);
exec_list_make_empty(&perf_ctx->free_sample_buffers);
/* It's convenient to guarantee that this linked list of sample
* buffers is never empty so we add an empty head so when we
* Begin an OA query we can always take a reference on a buffer
* in this list.
*/
struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx);
exec_list_push_head(&perf_ctx->sample_buffers, &buf->link);
perf_ctx->oa_stream_fd = -1;
perf_ctx->next_query_start_report_id = 1000;
}
/**
* Add a query to the global list of "unaccumulated queries."
*
* Queries are tracked here until all the associated OA reports have
* been accumulated via accumulate_oa_reports() after the end
* MI_REPORT_PERF_COUNT has landed in query->oa.bo.
*/
static void
add_to_unaccumulated_query_list(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *obj)
{
if (perf_ctx->unaccumulated_elements >=
perf_ctx->unaccumulated_array_size)
{
perf_ctx->unaccumulated_array_size *= 1.5;
perf_ctx->unaccumulated =
reralloc(perf_ctx->ctx, perf_ctx->unaccumulated,
struct gen_perf_query_object *,
perf_ctx->unaccumulated_array_size);
}
perf_ctx->unaccumulated[perf_ctx->unaccumulated_elements++] = obj;
}
bool
gen_perf_begin_query(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query)
{
struct gen_perf_config *perf_cfg = perf_ctx->perf;
const struct gen_perf_query_info *queryinfo = query->queryinfo;
/* XXX: We have to consider that the command parser unit that parses batch
* buffer commands and is used to capture begin/end counter snapshots isn't
* implicitly synchronized with what's currently running across other GPU
* units (such as the EUs running shaders) that the performance counters are
* associated with.
*
* The intention of performance queries is to measure the work associated
* with commands between the begin/end delimiters and so for that to be the
* case we need to explicitly synchronize the parsing of commands to capture
* Begin/End counter snapshots with what's running across other parts of the
* GPU.
*
* When the command parser reaches a Begin marker it effectively needs to
* drain everything currently running on the GPU until the hardware is idle
* before capturing the first snapshot of counters - otherwise the results
* would also be measuring the effects of earlier commands.
*
* When the command parser reaches an End marker it needs to stall until
* everything currently running on the GPU has finished before capturing the
* end snapshot - otherwise the results won't be a complete representation
* of the work.
*
* Theoretically there could be opportunities to minimize how much of the
* GPU pipeline is drained, or that we stall for, when we know what specific
* units the performance counters being queried relate to but we don't
* currently attempt to be clever here.
*
* Note: with our current simple approach here then for back-to-back queries
* we will redundantly emit duplicate commands to synchronize the command
* streamer with the rest of the GPU pipeline, but we assume that in HW the
* second synchronization is effectively a NOOP.
*
* N.B. The final results are based on deltas of counters between (inside)
* Begin/End markers so even though the total wall clock time of the
* workload is stretched by larger pipeline bubbles the bubbles themselves
* are generally invisible to the query results. Whether that's a good or a
* bad thing depends on the use case. For a lower real-time impact while
* capturing metrics then periodic sampling may be a better choice than
* INTEL_performance_query.
*
*
* This is our Begin synchronization point to drain current work on the
* GPU before we capture our first counter snapshot...
*/
perf_cfg->vtbl.emit_mi_flush(perf_ctx->ctx);
switch (queryinfo->kind) {
case GEN_PERF_QUERY_TYPE_OA:
case GEN_PERF_QUERY_TYPE_RAW: {
/* Opening an i915 perf stream implies exclusive access to the OA unit
* which will generate counter reports for a specific counter set with a
* specific layout/format so we can't begin any OA based queries that
* require a different counter set or format unless we get an opportunity
* to close the stream and open a new one...
*/
uint64_t metric_id = get_metric_id(perf_ctx->perf, queryinfo);
if (perf_ctx->oa_stream_fd != -1 &&
perf_ctx->current_oa_metrics_set_id != metric_id) {
if (perf_ctx->n_oa_users != 0) {
DBG("WARNING: Begin failed already using perf config=%i/%"PRIu64"\n",
perf_ctx->current_oa_metrics_set_id, metric_id);
return false;
} else
gen_perf_close(perf_ctx, queryinfo);
}
/* If the OA counters aren't already on, enable them. */
if (perf_ctx->oa_stream_fd == -1) {
const struct gen_device_info *devinfo = perf_ctx->devinfo;
/* The period_exponent gives a sampling period as follows:
* sample_period = timestamp_period * 2^(period_exponent + 1)
*
* The timestamps increments every 80ns (HSW), ~52ns (GEN9LP) or
* ~83ns (GEN8/9).
*
* The counter overflow period is derived from the EuActive counter
* which reads a counter that increments by the number of clock
* cycles multiplied by the number of EUs. It can be calculated as:
*
* 2^(number of bits in A counter) / (n_eus * max_gen_freq * 2)
*
* (E.g. 40 EUs @ 1GHz = ~53ms)
*
* We select a sampling period inferior to that overflow period to
* ensure we cannot see more than 1 counter overflow, otherwise we
* could loose information.
*/
int a_counter_in_bits = 32;
if (devinfo->gen >= 8)
a_counter_in_bits = 40;
uint64_t overflow_period = pow(2, a_counter_in_bits) / (perf_cfg->sys_vars.n_eus *
/* drop 1GHz freq to have units in nanoseconds */
2);
DBG("A counter overflow period: %"PRIu64"ns, %"PRIu64"ms (n_eus=%"PRIu64")\n",
overflow_period, overflow_period / 1000000ul, perf_cfg->sys_vars.n_eus);
int period_exponent = 0;
uint64_t prev_sample_period, next_sample_period;
for (int e = 0; e < 30; e++) {
prev_sample_period = 1000000000ull * pow(2, e + 1) / devinfo->timestamp_frequency;
next_sample_period = 1000000000ull * pow(2, e + 2) / devinfo->timestamp_frequency;
/* Take the previous sampling period, lower than the overflow
* period.
*/
if (prev_sample_period < overflow_period &&
next_sample_period > overflow_period)
period_exponent = e + 1;
}
if (period_exponent == 0) {
DBG("WARNING: enable to find a sampling exponent\n");
return false;
}
DBG("OA sampling exponent: %i ~= %"PRIu64"ms\n", period_exponent,
prev_sample_period / 1000000ul);
if (!gen_perf_open(perf_ctx, metric_id, queryinfo->oa_format,
period_exponent, perf_ctx->drm_fd,
perf_ctx->hw_ctx))
return false;
} else {
assert(perf_ctx->current_oa_metrics_set_id == metric_id &&
perf_ctx->current_oa_format == queryinfo->oa_format);
}
if (!inc_n_users(perf_ctx)) {
DBG("WARNING: Error enabling i915 perf stream: %m\n");
return false;
}
if (query->oa.bo) {
perf_cfg->vtbl.bo_unreference(query->oa.bo);
query->oa.bo = NULL;
}
query->oa.bo = perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
"perf. query OA MI_RPC bo",
MI_RPC_BO_SIZE);
#ifdef DEBUG
/* Pre-filling the BO helps debug whether writes landed. */
void *map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_WRITE);
memset(map, 0x80, MI_RPC_BO_SIZE);
perf_cfg->vtbl.bo_unmap(query->oa.bo);
#endif
query->oa.begin_report_id = perf_ctx->next_query_start_report_id;
perf_ctx->next_query_start_report_id += 2;
/* We flush the batchbuffer here to minimize the chances that MI_RPC
* delimiting commands end up in different batchbuffers. If that's the
* case, the measurement will include the time it takes for the kernel
* scheduler to load a new request into the hardware. This is manifested in
* tools like frameretrace by spikes in the "GPU Core Clocks" counter.
*/
perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__);
/* Take a starting OA counter snapshot. */
perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo, 0,
query->oa.begin_report_id);
perf_cfg->vtbl.capture_frequency_stat_register(perf_ctx->ctx, query->oa.bo,
MI_FREQ_START_OFFSET_BYTES);
++perf_ctx->n_active_oa_queries;
/* No already-buffered samples can possibly be associated with this query
* so create a marker within the list of sample buffers enabling us to
* easily ignore earlier samples when processing this query after
* completion.
*/
assert(!exec_list_is_empty(&perf_ctx->sample_buffers));
query->oa.samples_head = exec_list_get_tail(&perf_ctx->sample_buffers);
struct oa_sample_buf *buf =
exec_node_data(struct oa_sample_buf, query->oa.samples_head, link);
/* This reference will ensure that future/following sample
* buffers (that may relate to this query) can't be freed until
* this drops to zero.
*/
buf->refcount++;
query_result_clear(&query->oa.result);
query->oa.results_accumulated = false;
add_to_unaccumulated_query_list(perf_ctx, query);
break;
}
case GEN_PERF_QUERY_TYPE_PIPELINE:
if (query->pipeline_stats.bo) {
perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo);
query->pipeline_stats.bo = NULL;
}
query->pipeline_stats.bo =
perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
"perf. query pipeline stats bo",
STATS_BO_SIZE);
/* Take starting snapshots. */
snapshot_statistics_registers(perf_ctx->ctx , perf_cfg, query, 0);
++perf_ctx->n_active_pipeline_stats_queries;
break;
default:
unreachable("Unknown query type");
break;
}
return true;
}
void
gen_perf_end_query(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query)
{
struct gen_perf_config *perf_cfg = perf_ctx->perf;
/* Ensure that the work associated with the queried commands will have
* finished before taking our query end counter readings.
*
* For more details see comment in brw_begin_perf_query for
* corresponding flush.
*/
perf_cfg->vtbl.emit_mi_flush(perf_ctx->ctx);
switch (query->queryinfo->kind) {
case GEN_PERF_QUERY_TYPE_OA:
case GEN_PERF_QUERY_TYPE_RAW:
/* NB: It's possible that the query will have already been marked
* as 'accumulated' if an error was seen while reading samples
* from perf. In this case we mustn't try and emit a closing
* MI_RPC command in case the OA unit has already been disabled
*/
if (!query->oa.results_accumulated) {
/* Take an ending OA counter snapshot. */
perf_cfg->vtbl.capture_frequency_stat_register(perf_ctx->ctx, query->oa.bo,
MI_FREQ_END_OFFSET_BYTES);
perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo,
MI_RPC_BO_END_OFFSET_BYTES,
query->oa.begin_report_id + 1);
}
--perf_ctx->n_active_oa_queries;
/* NB: even though the query has now ended, it can't be accumulated
* until the end MI_REPORT_PERF_COUNT snapshot has been written
* to query->oa.bo
*/
break;
case GEN_PERF_QUERY_TYPE_PIPELINE:
snapshot_statistics_registers(perf_ctx->ctx, perf_cfg, query,
STATS_BO_END_OFFSET_BYTES);
--perf_ctx->n_active_pipeline_stats_queries;
break;
default:
unreachable("Unknown query type");
break;
}
}
enum OaReadStatus {
OA_READ_STATUS_ERROR,
OA_READ_STATUS_UNFINISHED,
OA_READ_STATUS_FINISHED,
};
static enum OaReadStatus
read_oa_samples_until(struct gen_perf_context *perf_ctx,
uint32_t start_timestamp,
uint32_t end_timestamp)
{
struct exec_node *tail_node =
exec_list_get_tail(&perf_ctx->sample_buffers);
struct oa_sample_buf *tail_buf =
exec_node_data(struct oa_sample_buf, tail_node, link);
uint32_t last_timestamp = tail_buf->last_timestamp;
while (1) {
struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx);
uint32_t offset;
int len;
while ((len = read(perf_ctx->oa_stream_fd, buf->buf,
sizeof(buf->buf))) < 0 && errno == EINTR)
;
if (len <= 0) {
exec_list_push_tail(&perf_ctx->free_sample_buffers, &buf->link);
if (len < 0) {
if (errno == EAGAIN)
return ((last_timestamp - start_timestamp) >=
(end_timestamp - start_timestamp)) ?
OA_READ_STATUS_FINISHED :
OA_READ_STATUS_UNFINISHED;
else {
DBG("Error reading i915 perf samples: %m\n");
}
} else
DBG("Spurious EOF reading i915 perf samples\n");
return OA_READ_STATUS_ERROR;
}
buf->len = len;
exec_list_push_tail(&perf_ctx->sample_buffers, &buf->link);
/* Go through the reports and update the last timestamp. */
offset = 0;
while (offset < buf->len) {
const struct drm_i915_perf_record_header *header =
(const struct drm_i915_perf_record_header *) &buf->buf[offset];
uint32_t *report = (uint32_t *) (header + 1);
if (header->type == DRM_I915_PERF_RECORD_SAMPLE)
last_timestamp = report[1];
offset += header->size;
}
buf->last_timestamp = last_timestamp;
}
unreachable("not reached");
return OA_READ_STATUS_ERROR;
}
/**
* Try to read all the reports until either the delimiting timestamp
* or an error arises.
*/
static bool
read_oa_samples_for_query(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query,
void *current_batch)
{
uint32_t *start;
uint32_t *last;
uint32_t *end;
struct gen_perf_config *perf_cfg = perf_ctx->perf;
/* We need the MI_REPORT_PERF_COUNT to land before we can start
* accumulate. */
assert(!perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) &&
!perf_cfg->vtbl.bo_busy(query->oa.bo));
/* Map the BO once here and let accumulate_oa_reports() unmap
* it. */
if (query->oa.map == NULL)
query->oa.map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_READ);
start = last = query->oa.map;
end = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
if (start[0] != query->oa.begin_report_id) {
DBG("Spurious start report id=%"PRIu32"\n", start[0]);
return true;
}
if (end[0] != (query->oa.begin_report_id + 1)) {
DBG("Spurious end report id=%"PRIu32"\n", end[0]);
return true;
}
/* Read the reports until the end timestamp. */
switch (read_oa_samples_until(perf_ctx, start[1], end[1])) {
case OA_READ_STATUS_ERROR:
/* Fallthrough and let accumulate_oa_reports() deal with the
* error. */
case OA_READ_STATUS_FINISHED:
return true;
case OA_READ_STATUS_UNFINISHED:
return false;
}
unreachable("invalid read status");
return false;
}
void
gen_perf_wait_query(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query,
void *current_batch)
{
struct gen_perf_config *perf_cfg = perf_ctx->perf;
struct brw_bo *bo = NULL;
switch (query->queryinfo->kind) {
case GEN_PERF_QUERY_TYPE_OA:
case GEN_PERF_QUERY_TYPE_RAW:
bo = query->oa.bo;
break;
case GEN_PERF_QUERY_TYPE_PIPELINE:
bo = query->pipeline_stats.bo;
break;
default:
unreachable("Unknown query type");
break;
}
if (bo == NULL)
return;
/* If the current batch references our results bo then we need to
* flush first...
*/
if (perf_cfg->vtbl.batch_references(current_batch, bo))
perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__);
perf_cfg->vtbl.bo_wait_rendering(bo);
/* Due to a race condition between the OA unit signaling report
* availability and the report actually being written into memory,
* we need to wait for all the reports to come in before we can
* read them.
*/
if (query->queryinfo->kind == GEN_PERF_QUERY_TYPE_OA ||
query->queryinfo->kind == GEN_PERF_QUERY_TYPE_RAW) {
while (!read_oa_samples_for_query(perf_ctx, query, current_batch))
;
}
}
bool
gen_perf_is_query_ready(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query,
void *current_batch)
{
struct gen_perf_config *perf_cfg = perf_ctx->perf;
switch (query->queryinfo->kind) {
case GEN_PERF_QUERY_TYPE_OA:
case GEN_PERF_QUERY_TYPE_RAW:
return (query->oa.results_accumulated ||
(query->oa.bo &&
!perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) &&
!perf_cfg->vtbl.bo_busy(query->oa.bo) &&
read_oa_samples_for_query(perf_ctx, query, current_batch)));
case GEN_PERF_QUERY_TYPE_PIPELINE:
return (query->pipeline_stats.bo &&
!perf_cfg->vtbl.batch_references(current_batch, query->pipeline_stats.bo) &&
!perf_cfg->vtbl.bo_busy(query->pipeline_stats.bo));
default:
unreachable("Unknown query type");
break;
}
return false;
}
/**
* Remove a query from the global list of unaccumulated queries once
* after successfully accumulating the OA reports associated with the
* query in accumulate_oa_reports() or when discarding unwanted query
* results.
*/
static void
drop_from_unaccumulated_query_list(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query)
{
for (int i = 0; i < perf_ctx->unaccumulated_elements; i++) {
if (perf_ctx->unaccumulated[i] == query) {
int last_elt = --perf_ctx->unaccumulated_elements;
if (i == last_elt)
perf_ctx->unaccumulated[i] = NULL;
else {
perf_ctx->unaccumulated[i] =
perf_ctx->unaccumulated[last_elt];
}
break;
}
}
/* Drop our samples_head reference so that associated periodic
* sample data buffers can potentially be reaped if they aren't
* referenced by any other queries...
*/
struct oa_sample_buf *buf =
exec_node_data(struct oa_sample_buf, query->oa.samples_head, link);
assert(buf->refcount > 0);
buf->refcount--;
query->oa.samples_head = NULL;
reap_old_sample_buffers(perf_ctx);
}
/* In general if we see anything spurious while accumulating results,
* we don't try and continue accumulating the current query, hoping
* for the best, we scrap anything outstanding, and then hope for the
* best with new queries.
*/
static void
discard_all_queries(struct gen_perf_context *perf_ctx)
{
while (perf_ctx->unaccumulated_elements) {
struct gen_perf_query_object *query = perf_ctx->unaccumulated[0];
query->oa.results_accumulated = true;
drop_from_unaccumulated_query_list(perf_ctx, query);
dec_n_users(perf_ctx);
}
}
/**
* Accumulate raw OA counter values based on deltas between pairs of
* OA reports.
*
* Accumulation starts from the first report captured via
* MI_REPORT_PERF_COUNT (MI_RPC) by brw_begin_perf_query() until the
* last MI_RPC report requested by brw_end_perf_query(). Between these
* two reports there may also some number of periodically sampled OA
* reports collected via the i915 perf interface - depending on the
* duration of the query.
*
* These periodic snapshots help to ensure we handle counter overflow
* correctly by being frequent enough to ensure we don't miss multiple
* overflows of a counter between snapshots. For Gen8+ the i915 perf
* snapshots provide the extra context-switch reports that let us
* subtract out the progress of counters associated with other
* contexts running on the system.
*/
static void
accumulate_oa_reports(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query)
{
const struct gen_device_info *devinfo = perf_ctx->devinfo;
uint32_t *start;
uint32_t *last;
uint32_t *end;
struct exec_node *first_samples_node;
bool in_ctx = true;
int out_duration = 0;
assert(query->oa.map != NULL);
start = last = query->oa.map;
end = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
if (start[0] != query->oa.begin_report_id) {
DBG("Spurious start report id=%"PRIu32"\n", start[0]);
goto error;
}
if (end[0] != (query->oa.begin_report_id + 1)) {
DBG("Spurious end report id=%"PRIu32"\n", end[0]);
goto error;
}
/* See if we have any periodic reports to accumulate too... */
/* N.B. The oa.samples_head was set when the query began and
* pointed to the tail of the perf_ctx->sample_buffers list at
* the time the query started. Since the buffer existed before the
* first MI_REPORT_PERF_COUNT command was emitted we therefore know
* that no data in this particular node's buffer can possibly be
* associated with the query - so skip ahead one...
*/
first_samples_node = query->oa.samples_head->next;
foreach_list_typed_from(struct oa_sample_buf, buf, link,
&perf_ctx.sample_buffers,
first_samples_node)
{
int offset = 0;
while (offset < buf->len) {
const struct drm_i915_perf_record_header *header =
(const struct drm_i915_perf_record_header *)(buf->buf + offset);
assert(header->size != 0);
assert(header->size <= buf->len);
offset += header->size;
switch (header->type) {
case DRM_I915_PERF_RECORD_SAMPLE: {
uint32_t *report = (uint32_t *)(header + 1);
bool add = true;
/* Ignore reports that come before the start marker.
* (Note: takes care to allow overflow of 32bit timestamps)
*/
if (gen_device_info_timebase_scale(devinfo,
report[1] - start[1]) > 5000000000) {
continue;
}
/* Ignore reports that come after the end marker.
* (Note: takes care to allow overflow of 32bit timestamps)
*/
if (gen_device_info_timebase_scale(devinfo,
report[1] - end[1]) <= 5000000000) {
goto end;
}
/* For Gen8+ since the counters continue while other
* contexts are running we need to discount any unrelated
* deltas. The hardware automatically generates a report
* on context switch which gives us a new reference point
* to continuing adding deltas from.
*
* For Haswell we can rely on the HW to stop the progress
* of OA counters while any other context is acctive.
*/
if (devinfo->gen >= 8) {
if (in_ctx && report[2] != query->oa.result.hw_id) {
DBG("i915 perf: Switch AWAY (observed by ID change)\n");
in_ctx = false;
out_duration = 0;
} else if (in_ctx == false && report[2] == query->oa.result.hw_id) {
DBG("i915 perf: Switch TO\n");
in_ctx = true;
/* From experimentation in IGT, we found that the OA unit
* might label some report as "idle" (using an invalid
* context ID), right after a report for a given context.
* Deltas generated by those reports actually belong to the
* previous context, even though they're not labelled as
* such.
*
* We didn't *really* Switch AWAY in the case that we e.g.
* saw a single periodic report while idle...
*/
if (out_duration >= 1)
add = false;
} else if (in_ctx) {
assert(report[2] == query->oa.result.hw_id);
DBG("i915 perf: Continuation IN\n");
} else {
assert(report[2] != query->oa.result.hw_id);
DBG("i915 perf: Continuation OUT\n");
add = false;
out_duration++;
}
}
if (add) {
query_result_accumulate(&query->oa.result, query->queryinfo,
last, report);
}
last = report;
break;
}
case DRM_I915_PERF_RECORD_OA_BUFFER_LOST:
DBG("i915 perf: OA error: all reports lost\n");
goto error;
case DRM_I915_PERF_RECORD_OA_REPORT_LOST:
DBG("i915 perf: OA report lost\n");
break;
}
}
}
end:
query_result_accumulate(&query->oa.result, query->queryinfo,
last, end);
query->oa.results_accumulated = true;
drop_from_unaccumulated_query_list(perf_ctx, query);
dec_n_users(perf_ctx);
return;
error:
discard_all_queries(perf_ctx);
}
void
gen_perf_delete_query(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query)
{
struct gen_perf_config *perf_cfg = perf_ctx->perf;
/* We can assume that the frontend waits for a query to complete
* before ever calling into here, so we don't have to worry about
* deleting an in-flight query object.
*/
switch (query->queryinfo->kind) {
case GEN_PERF_QUERY_TYPE_OA:
case GEN_PERF_QUERY_TYPE_RAW:
if (query->oa.bo) {
if (!query->oa.results_accumulated) {
drop_from_unaccumulated_query_list(perf_ctx, query);
dec_n_users(perf_ctx);
}
perf_cfg->vtbl.bo_unreference(query->oa.bo);
query->oa.bo = NULL;
}
query->oa.results_accumulated = false;
break;
case GEN_PERF_QUERY_TYPE_PIPELINE:
if (query->pipeline_stats.bo) {
perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo);
query->pipeline_stats.bo = NULL;
}
break;
default:
unreachable("Unknown query type");
break;
}
/* As an indication that the INTEL_performance_query extension is no
* longer in use, it's a good time to free our cache of sample
* buffers and close any current i915-perf stream.
*/
if (--perf_ctx->n_query_instances == 0) {
free_sample_bufs(perf_ctx);
gen_perf_close(perf_ctx, query->queryinfo);
}
free(query);
}
#define GET_FIELD(word, field) (((word) & field ## _MASK) >> field ## _SHIFT)
static void
read_gt_frequency(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *obj)
{
const struct gen_device_info *devinfo = perf_ctx->devinfo;
uint32_t start = *((uint32_t *)(obj->oa.map + MI_FREQ_START_OFFSET_BYTES)),
end = *((uint32_t *)(obj->oa.map + MI_FREQ_END_OFFSET_BYTES));
switch (devinfo->gen) {
case 7:
case 8:
obj->oa.gt_frequency[0] = GET_FIELD(start, GEN7_RPSTAT1_CURR_GT_FREQ) * 50ULL;
obj->oa.gt_frequency[1] = GET_FIELD(end, GEN7_RPSTAT1_CURR_GT_FREQ) * 50ULL;
break;
case 9:
case 10:
case 11:
obj->oa.gt_frequency[0] = GET_FIELD(start, GEN9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL;
obj->oa.gt_frequency[1] = GET_FIELD(end, GEN9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL;
break;
default:
unreachable("unexpected gen");
}
/* Put the numbers into Hz. */
obj->oa.gt_frequency[0] *= 1000000ULL;
obj->oa.gt_frequency[1] *= 1000000ULL;
}
static int
get_oa_counter_data(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query,
size_t data_size,
uint8_t *data)
{
struct gen_perf_config *perf_cfg = perf_ctx->perf;
const struct gen_perf_query_info *queryinfo = query->queryinfo;
int n_counters = queryinfo->n_counters;
int written = 0;
for (int i = 0; i < n_counters; i++) {
const struct gen_perf_query_counter *counter = &queryinfo->counters[i];
uint64_t *out_uint64;
float *out_float;
size_t counter_size = gen_perf_query_counter_get_size(counter);
if (counter_size) {
switch (counter->data_type) {
case GEN_PERF_COUNTER_DATA_TYPE_UINT64:
out_uint64 = (uint64_t *)(data + counter->offset);
*out_uint64 =
counter->oa_counter_read_uint64(perf_cfg, queryinfo,
query->oa.result.accumulator);
break;
case GEN_PERF_COUNTER_DATA_TYPE_FLOAT:
out_float = (float *)(data + counter->offset);
*out_float =
counter->oa_counter_read_float(perf_cfg, queryinfo,
query->oa.result.accumulator);
break;
default:
/* So far we aren't using uint32, double or bool32... */
unreachable("unexpected counter data type");
}
written = counter->offset + counter_size;
}
}
return written;
}
static int
get_pipeline_stats_data(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query,
size_t data_size,
uint8_t *data)
{
struct gen_perf_config *perf_cfg = perf_ctx->perf;
const struct gen_perf_query_info *queryinfo = query->queryinfo;
int n_counters = queryinfo->n_counters;
uint8_t *p = data;
uint64_t *start = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->pipeline_stats.bo, MAP_READ);
uint64_t *end = start + (STATS_BO_END_OFFSET_BYTES / sizeof(uint64_t));
for (int i = 0; i < n_counters; i++) {
const struct gen_perf_query_counter *counter = &queryinfo->counters[i];
uint64_t value = end[i] - start[i];
if (counter->pipeline_stat.numerator !=
counter->pipeline_stat.denominator) {
value *= counter->pipeline_stat.numerator;
value /= counter->pipeline_stat.denominator;
}
*((uint64_t *)p) = value;
p += 8;
}
perf_cfg->vtbl.bo_unmap(query->pipeline_stats.bo);
return p - data;
}
void
gen_perf_get_query_data(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query,
int data_size,
unsigned *data,
unsigned *bytes_written)
{
struct gen_perf_config *perf_cfg = perf_ctx->perf;
int written = 0;
switch (query->queryinfo->kind) {
case GEN_PERF_QUERY_TYPE_OA:
case GEN_PERF_QUERY_TYPE_RAW:
if (!query->oa.results_accumulated) {
read_gt_frequency(perf_ctx, query);
uint32_t *begin_report = query->oa.map;
uint32_t *end_report = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
query_result_read_frequencies(&query->oa.result,
perf_ctx->devinfo,
begin_report,
end_report);
accumulate_oa_reports(perf_ctx, query);
assert(query->oa.results_accumulated);
perf_cfg->vtbl.bo_unmap(query->oa.bo);
query->oa.map = NULL;
}
if (query->queryinfo->kind == GEN_PERF_QUERY_TYPE_OA) {
written = get_oa_counter_data(perf_ctx, query, data_size, (uint8_t *)data);
} else {
const struct gen_device_info *devinfo = perf_ctx->devinfo;
written = gen_perf_query_result_write_mdapi((uint8_t *)data, data_size,
devinfo, &query->oa.result,
query->oa.gt_frequency[0],
query->oa.gt_frequency[1]);
}
break;
case GEN_PERF_QUERY_TYPE_PIPELINE:
written = get_pipeline_stats_data(perf_ctx, query, data_size, (uint8_t *)data);
break;
default:
unreachable("Unknown query type");
break;
}
if (bytes_written)
*bytes_written = written;
}
void
gen_perf_dump_query_count(struct gen_perf_context *perf_ctx)
{
DBG("Queries: (Open queries = %d, OA users = %d)\n",
perf_ctx->n_active_oa_queries, perf_ctx->n_oa_users);
}
void
gen_perf_dump_query(struct gen_perf_context *ctx,
struct gen_perf_query_object *obj,
void *current_batch)
{
switch (obj->queryinfo->kind) {
case GEN_PERF_QUERY_TYPE_OA:
case GEN_PERF_QUERY_TYPE_RAW:
DBG("BO: %-4s OA data: %-10s %-15s\n",
obj->oa.bo ? "yes," : "no,",
gen_perf_is_query_ready(ctx, obj, current_batch) ? "ready," : "not ready,",
obj->oa.results_accumulated ? "accumulated" : "not accumulated");
break;
case GEN_PERF_QUERY_TYPE_PIPELINE:
DBG("BO: %-4s\n",
obj->pipeline_stats.bo ? "yes" : "no");
break;
default:
unreachable("Unknown query type");
break;
}
}