blob: abc89fb2f497824cb803c66cb0d9767635b0bc08 [file] [log] [blame]
/*
* Copyright © 2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir.h"
#include "nir_builder.h"
#include "nir_deref.h"
/** @file nir_lower_io_to_vector.c
*
* Merges compatible input/output variables residing in different components
* of the same location. It's expected that further passes such as
* nir_lower_io_to_temporaries will combine loads and stores of the merged
* variables, producing vector nir_load_input/nir_store_output instructions
* when all is said and done.
*/
static const struct glsl_type *
resize_array_vec_type(const struct glsl_type *type, unsigned num_components)
{
if (glsl_type_is_array(type)) {
const struct glsl_type *arr_elem =
resize_array_vec_type(glsl_get_array_element(type), num_components);
return glsl_array_type(arr_elem, glsl_get_length(type), 0);
} else {
assert(glsl_type_is_vector_or_scalar(type));
return glsl_vector_type(glsl_get_base_type(type), num_components);
}
}
static bool
variable_can_rewrite(const nir_variable *var)
{
/* Only touch user defined varyings as these are the only ones we split */
if (var->data.location < VARYING_SLOT_VAR0)
return false;
/* Skip complex types we don't split in the first place */
if (!glsl_type_is_vector_or_scalar(glsl_without_array(var->type)))
return false;
/* TODO: add 64/16bit support ? */
if (glsl_get_bit_size(glsl_without_array(var->type)) != 32)
return false;
return true;
}
static bool
variables_can_merge(nir_shader *shader,
const nir_variable *a, const nir_variable *b)
{
const struct glsl_type *a_type_tail = a->type;
const struct glsl_type *b_type_tail = b->type;
/* They must have the same array structure */
while (glsl_type_is_array(a_type_tail)) {
if (!glsl_type_is_array(b_type_tail))
return false;
if (glsl_get_length(a_type_tail) != glsl_get_length(b_type_tail))
return false;
a_type_tail = glsl_get_array_element(a_type_tail);
b_type_tail = glsl_get_array_element(b_type_tail);
}
if (!glsl_type_is_vector_or_scalar(a_type_tail) ||
!glsl_type_is_vector_or_scalar(b_type_tail))
return false;
if (glsl_get_base_type(a->type) != glsl_get_base_type(b->type))
return false;
assert(a->data.mode == b->data.mode);
if (shader->info.stage == MESA_SHADER_FRAGMENT &&
a->data.mode == nir_var_shader_in &&
a->data.interpolation != b->data.interpolation)
return false;
return true;
}
static bool
create_new_io_vars(nir_shader *shader, struct exec_list *io_list,
nir_variable *old_vars[MAX_VARYINGS_INCL_PATCH][4],
nir_variable *new_vars[MAX_VARYINGS_INCL_PATCH][4])
{
if (exec_list_is_empty(io_list))
return false;
nir_foreach_variable(var, io_list) {
if (variable_can_rewrite(var)) {
unsigned loc = var->data.location - VARYING_SLOT_VAR0;
unsigned frac = var->data.location_frac;
old_vars[loc][frac] = var;
}
}
bool merged_any_vars = false;
/* We don't handle combining vars of different type e.g. different array
* lengths.
*/
for (unsigned loc = 0; loc < MAX_VARYINGS_INCL_PATCH; loc++) {
unsigned frac = 0;
while (frac < 4) {
nir_variable *first_var = old_vars[loc][frac];
if (!first_var) {
frac++;
continue;
}
int first = frac;
bool found_merge = false;
while (frac < 4) {
nir_variable *var = old_vars[loc][frac];
if (!var)
break;
if (var != first_var) {
if (!variables_can_merge(shader, first_var, var))
break;
found_merge = true;
}
const unsigned num_components =
glsl_get_components(glsl_without_array(var->type));
/* We had better not have any overlapping vars */
for (unsigned i = 1; i < num_components; i++)
assert(old_vars[loc][frac + i] == NULL);
frac += num_components;
}
if (!found_merge)
continue;
merged_any_vars = true;
nir_variable *var = nir_variable_clone(old_vars[loc][first], shader);
var->data.location_frac = first;
var->type = resize_array_vec_type(var->type, frac - first);
nir_shader_add_variable(shader, var);
for (unsigned i = first; i < frac; i++)
new_vars[loc][i] = var;
}
}
return merged_any_vars;
}
static nir_deref_instr *
build_array_deref_of_new_var(nir_builder *b, nir_variable *new_var,
nir_deref_instr *leader)
{
if (leader->deref_type == nir_deref_type_var)
return nir_build_deref_var(b, new_var);
nir_deref_instr *parent =
build_array_deref_of_new_var(b, new_var, nir_deref_instr_parent(leader));
return nir_build_deref_follower(b, parent, leader);
}
static bool
nir_lower_io_to_vector_impl(nir_function_impl *impl, nir_variable_mode modes)
{
assert(!(modes & ~(nir_var_shader_in | nir_var_shader_out)));
nir_builder b;
nir_builder_init(&b, impl);
nir_metadata_require(impl, nir_metadata_dominance);
nir_shader *shader = impl->function->shader;
nir_variable *old_inputs[MAX_VARYINGS_INCL_PATCH][4] = {{0}};
nir_variable *new_inputs[MAX_VARYINGS_INCL_PATCH][4] = {{0}};
nir_variable *old_outputs[MAX_VARYINGS_INCL_PATCH][4] = {{0}};
nir_variable *new_outputs[MAX_VARYINGS_INCL_PATCH][4] = {{0}};
if (modes & nir_var_shader_in) {
/* Vertex shaders support overlapping inputs. We don't do those */
assert(b.shader->info.stage != MESA_SHADER_VERTEX);
/* If we don't actually merge any variables, remove that bit from modes
* so we don't bother doing extra non-work.
*/
if (!create_new_io_vars(shader, &shader->inputs,
old_inputs, new_inputs))
modes &= ~nir_var_shader_in;
}
if (modes & nir_var_shader_out) {
/* Fragment shader outputs are always vec4. You shouldn't have
* scalarized them and it doesn't make sense to vectorize them.
*/
assert(b.shader->info.stage != MESA_SHADER_FRAGMENT);
/* If we don't actually merge any variables, remove that bit from modes
* so we don't bother doing extra non-work.
*/
if (!create_new_io_vars(shader, &shader->outputs,
old_outputs, new_outputs))
modes &= ~nir_var_shader_out;
}
if (!modes)
return false;
bool progress = false;
/* Actually lower all the IO load/store intrinsics. Load instructions are
* lowered to a vector load and an ALU instruction to grab the channels we
* want. Outputs are lowered to a write-masked store of the vector output.
* For non-TCS outputs, we then run nir_lower_io_to_temporaries at the end
* to clean up the partial writes.
*/
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_deref:
case nir_intrinsic_interp_deref_at_centroid:
case nir_intrinsic_interp_deref_at_sample:
case nir_intrinsic_interp_deref_at_offset: {
nir_deref_instr *old_deref = nir_src_as_deref(intrin->src[0]);
if (!(old_deref->mode & modes))
break;
if (old_deref->mode == nir_var_shader_out)
assert(b.shader->info.stage == MESA_SHADER_TESS_CTRL);
nir_variable *old_var = nir_deref_instr_get_variable(old_deref);
if (old_var->data.location < VARYING_SLOT_VAR0)
break;
const unsigned loc = old_var->data.location - VARYING_SLOT_VAR0;
const unsigned old_frac = old_var->data.location_frac;
nir_variable *new_var = old_deref->mode == nir_var_shader_in ?
new_inputs[loc][old_frac] :
new_outputs[loc][old_frac];
if (!new_var)
break;
assert(new_var->data.location == VARYING_SLOT_VAR0 + loc);
const unsigned new_frac = new_var->data.location_frac;
nir_component_mask_t vec4_comp_mask =
((1 << intrin->num_components) - 1) << old_frac;
b.cursor = nir_before_instr(&intrin->instr);
/* Rewrite the load to use the new variable and only select a
* portion of the result.
*/
nir_deref_instr *new_deref =
build_array_deref_of_new_var(&b, new_var, old_deref);
assert(glsl_type_is_vector(new_deref->type));
nir_instr_rewrite_src(&intrin->instr, &intrin->src[0],
nir_src_for_ssa(&new_deref->dest.ssa));
intrin->num_components =
glsl_get_components(new_deref->type);
intrin->dest.ssa.num_components = intrin->num_components;
b.cursor = nir_after_instr(&intrin->instr);
nir_ssa_def *new_vec = nir_channels(&b, &intrin->dest.ssa,
vec4_comp_mask >> new_frac);
nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa,
nir_src_for_ssa(new_vec),
new_vec->parent_instr);
progress = true;
break;
}
case nir_intrinsic_store_deref: {
nir_deref_instr *old_deref = nir_src_as_deref(intrin->src[0]);
if (old_deref->mode != nir_var_shader_out)
break;
nir_variable *old_var = nir_deref_instr_get_variable(old_deref);
if (old_var->data.location < VARYING_SLOT_VAR0)
break;
const unsigned loc = old_var->data.location - VARYING_SLOT_VAR0;
const unsigned old_frac = old_var->data.location_frac;
nir_variable *new_var = new_outputs[loc][old_frac];
if (!new_var)
break;
assert(new_var->data.location == VARYING_SLOT_VAR0 + loc);
const unsigned new_frac = new_var->data.location_frac;
b.cursor = nir_before_instr(&intrin->instr);
/* Rewrite the store to be a masked store to the new variable */
nir_deref_instr *new_deref =
build_array_deref_of_new_var(&b, new_var, old_deref);
assert(glsl_type_is_vector(new_deref->type));
nir_instr_rewrite_src(&intrin->instr, &intrin->src[0],
nir_src_for_ssa(&new_deref->dest.ssa));
intrin->num_components =
glsl_get_components(new_deref->type);
nir_component_mask_t old_wrmask = nir_intrinsic_write_mask(intrin);
assert(intrin->src[1].is_ssa);
nir_ssa_def *old_value = intrin->src[1].ssa;
nir_ssa_def *comps[4];
for (unsigned c = 0; c < intrin->num_components; c++) {
if (new_frac + c >= old_frac &&
(old_wrmask & 1 << (new_frac + c - old_frac))) {
comps[c] = nir_channel(&b, old_value,
new_frac + c - old_frac);
} else {
comps[c] = nir_ssa_undef(&b, old_value->num_components,
old_value->bit_size);
}
}
nir_ssa_def *new_value = nir_vec(&b, comps, intrin->num_components);
nir_instr_rewrite_src(&intrin->instr, &intrin->src[1],
nir_src_for_ssa(new_value));
nir_intrinsic_set_write_mask(intrin,
old_wrmask << (old_frac - new_frac));
progress = true;
break;
}
default:
break;
}
}
}
if (progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
}
return progress;
}
bool
nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode modes)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (function->impl)
progress |= nir_lower_io_to_vector_impl(function->impl, modes);
}
return progress;
}