blob: f3c9010865da9f2ee6194c08ae7e736e58af4446 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "vtn_private.h"
#include "nir/nir_vla.h"
static struct vtn_block *
vtn_block(struct vtn_builder *b, uint32_t value_id)
{
return vtn_value(b, value_id, vtn_value_type_block)->block;
}
static struct vtn_pointer *
vtn_load_param_pointer(struct vtn_builder *b,
struct vtn_type *param_type,
uint32_t param_idx)
{
struct vtn_type *ptr_type = param_type;
if (param_type->base_type != vtn_base_type_pointer) {
assert(param_type->base_type == vtn_base_type_image ||
param_type->base_type == vtn_base_type_sampler);
ptr_type = rzalloc(b, struct vtn_type);
ptr_type->base_type = vtn_base_type_pointer;
ptr_type->deref = param_type;
ptr_type->storage_class = SpvStorageClassUniformConstant;
}
return vtn_pointer_from_ssa(b, nir_load_param(&b->nb, param_idx), ptr_type);
}
static unsigned
vtn_type_count_function_params(struct vtn_type *type)
{
switch (type->base_type) {
case vtn_base_type_array:
case vtn_base_type_matrix:
return type->length * vtn_type_count_function_params(type->array_element);
case vtn_base_type_struct: {
unsigned count = 0;
for (unsigned i = 0; i < type->length; i++)
count += vtn_type_count_function_params(type->members[i]);
return count;
}
case vtn_base_type_sampled_image:
return 2;
default:
return 1;
}
}
static void
vtn_type_add_to_function_params(struct vtn_type *type,
nir_function *func,
unsigned *param_idx)
{
static const nir_parameter nir_deref_param = {
.num_components = 1,
.bit_size = 32,
};
switch (type->base_type) {
case vtn_base_type_array:
case vtn_base_type_matrix:
for (unsigned i = 0; i < type->length; i++)
vtn_type_add_to_function_params(type->array_element, func, param_idx);
break;
case vtn_base_type_struct:
for (unsigned i = 0; i < type->length; i++)
vtn_type_add_to_function_params(type->members[i], func, param_idx);
break;
case vtn_base_type_sampled_image:
func->params[(*param_idx)++] = nir_deref_param;
func->params[(*param_idx)++] = nir_deref_param;
break;
case vtn_base_type_image:
case vtn_base_type_sampler:
func->params[(*param_idx)++] = nir_deref_param;
break;
case vtn_base_type_pointer:
if (type->type) {
func->params[(*param_idx)++] = (nir_parameter) {
.num_components = glsl_get_vector_elements(type->type),
.bit_size = glsl_get_bit_size(type->type),
};
} else {
func->params[(*param_idx)++] = nir_deref_param;
}
break;
default:
func->params[(*param_idx)++] = (nir_parameter) {
.num_components = glsl_get_vector_elements(type->type),
.bit_size = glsl_get_bit_size(type->type),
};
}
}
static void
vtn_ssa_value_add_to_call_params(struct vtn_builder *b,
struct vtn_ssa_value *value,
struct vtn_type *type,
nir_call_instr *call,
unsigned *param_idx)
{
switch (type->base_type) {
case vtn_base_type_array:
case vtn_base_type_matrix:
for (unsigned i = 0; i < type->length; i++) {
vtn_ssa_value_add_to_call_params(b, value->elems[i],
type->array_element,
call, param_idx);
}
break;
case vtn_base_type_struct:
for (unsigned i = 0; i < type->length; i++) {
vtn_ssa_value_add_to_call_params(b, value->elems[i],
type->members[i],
call, param_idx);
}
break;
default:
call->params[(*param_idx)++] = nir_src_for_ssa(value->def);
break;
}
}
static void
vtn_ssa_value_load_function_param(struct vtn_builder *b,
struct vtn_ssa_value *value,
struct vtn_type *type,
unsigned *param_idx)
{
switch (type->base_type) {
case vtn_base_type_array:
case vtn_base_type_matrix:
for (unsigned i = 0; i < type->length; i++) {
vtn_ssa_value_load_function_param(b, value->elems[i],
type->array_element, param_idx);
}
break;
case vtn_base_type_struct:
for (unsigned i = 0; i < type->length; i++) {
vtn_ssa_value_load_function_param(b, value->elems[i],
type->members[i], param_idx);
}
break;
default:
value->def = nir_load_param(&b->nb, (*param_idx)++);
break;
}
}
void
vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
struct vtn_function *vtn_callee =
vtn_value(b, w[3], vtn_value_type_function)->func;
struct nir_function *callee = vtn_callee->impl->function;
vtn_callee->referenced = true;
nir_call_instr *call = nir_call_instr_create(b->nb.shader, callee);
unsigned param_idx = 0;
nir_deref_instr *ret_deref = NULL;
struct vtn_type *ret_type = vtn_callee->type->return_type;
if (ret_type->base_type != vtn_base_type_void) {
nir_variable *ret_tmp =
nir_local_variable_create(b->nb.impl,
glsl_get_bare_type(ret_type->type),
"return_tmp");
ret_deref = nir_build_deref_var(&b->nb, ret_tmp);
call->params[param_idx++] = nir_src_for_ssa(&ret_deref->dest.ssa);
}
for (unsigned i = 0; i < vtn_callee->type->length; i++) {
struct vtn_type *arg_type = vtn_callee->type->params[i];
unsigned arg_id = w[4 + i];
if (arg_type->base_type == vtn_base_type_sampled_image) {
struct vtn_sampled_image *sampled_image =
vtn_value(b, arg_id, vtn_value_type_sampled_image)->sampled_image;
call->params[param_idx++] =
nir_src_for_ssa(vtn_pointer_to_ssa(b, sampled_image->image));
call->params[param_idx++] =
nir_src_for_ssa(vtn_pointer_to_ssa(b, sampled_image->sampler));
} else if (arg_type->base_type == vtn_base_type_pointer ||
arg_type->base_type == vtn_base_type_image ||
arg_type->base_type == vtn_base_type_sampler) {
struct vtn_pointer *pointer =
vtn_value(b, arg_id, vtn_value_type_pointer)->pointer;
call->params[param_idx++] =
nir_src_for_ssa(vtn_pointer_to_ssa(b, pointer));
} else {
vtn_ssa_value_add_to_call_params(b, vtn_ssa_value(b, arg_id),
arg_type, call, &param_idx);
}
}
assert(param_idx == call->num_params);
nir_builder_instr_insert(&b->nb, &call->instr);
if (ret_type->base_type == vtn_base_type_void) {
vtn_push_value(b, w[2], vtn_value_type_undef);
} else {
vtn_push_ssa(b, w[2], res_type, vtn_local_load(b, ret_deref, 0));
}
}
static bool
vtn_cfg_handle_prepass_instruction(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
switch (opcode) {
case SpvOpFunction: {
vtn_assert(b->func == NULL);
b->func = rzalloc(b, struct vtn_function);
list_inithead(&b->func->body);
b->func->control = w[3];
UNUSED const struct glsl_type *result_type =
vtn_value(b, w[1], vtn_value_type_type)->type->type;
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_function);
val->func = b->func;
b->func->type = vtn_value(b, w[4], vtn_value_type_type)->type;
const struct vtn_type *func_type = b->func->type;
vtn_assert(func_type->return_type->type == result_type);
nir_function *func =
nir_function_create(b->shader, ralloc_strdup(b->shader, val->name));
unsigned num_params = 0;
for (unsigned i = 0; i < func_type->length; i++)
num_params += vtn_type_count_function_params(func_type->params[i]);
/* Add one parameter for the function return value */
if (func_type->return_type->base_type != vtn_base_type_void)
num_params++;
func->num_params = num_params;
func->params = ralloc_array(b->shader, nir_parameter, num_params);
unsigned idx = 0;
if (func_type->return_type->base_type != vtn_base_type_void) {
nir_address_format addr_format =
vtn_mode_to_address_format(b, vtn_variable_mode_function);
/* The return value is a regular pointer */
func->params[idx++] = (nir_parameter) {
.num_components = nir_address_format_num_components(addr_format),
.bit_size = nir_address_format_bit_size(addr_format),
};
}
for (unsigned i = 0; i < func_type->length; i++)
vtn_type_add_to_function_params(func_type->params[i], func, &idx);
assert(idx == num_params);
b->func->impl = nir_function_impl_create(func);
nir_builder_init(&b->nb, func->impl);
b->nb.cursor = nir_before_cf_list(&b->func->impl->body);
b->nb.exact = b->exact;
b->func_param_idx = 0;
/* The return value is the first parameter */
if (func_type->return_type->base_type != vtn_base_type_void)
b->func_param_idx++;
break;
}
case SpvOpFunctionEnd:
b->func->end = w;
b->func = NULL;
break;
case SpvOpFunctionParameter: {
struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
vtn_assert(b->func_param_idx < b->func->impl->function->num_params);
if (type->base_type == vtn_base_type_sampled_image) {
/* Sampled images are actually two parameters. The first is the
* image and the second is the sampler.
*/
struct vtn_value *val =
vtn_push_value(b, w[2], vtn_value_type_sampled_image);
val->sampled_image = ralloc(b, struct vtn_sampled_image);
struct vtn_type *image_type = rzalloc(b, struct vtn_type);
image_type->base_type = vtn_base_type_image;
image_type->type = type->type;
struct vtn_type *sampler_type = rzalloc(b, struct vtn_type);
sampler_type->base_type = vtn_base_type_sampler;
sampler_type->type = glsl_bare_sampler_type();
val->sampled_image->image =
vtn_load_param_pointer(b, image_type, b->func_param_idx++);
val->sampled_image->sampler =
vtn_load_param_pointer(b, sampler_type, b->func_param_idx++);
} else if (type->base_type == vtn_base_type_pointer &&
type->type != NULL) {
/* This is a pointer with an actual storage type */
nir_ssa_def *ssa_ptr = nir_load_param(&b->nb, b->func_param_idx++);
vtn_push_value_pointer(b, w[2], vtn_pointer_from_ssa(b, ssa_ptr, type));
} else if (type->base_type == vtn_base_type_pointer ||
type->base_type == vtn_base_type_image ||
type->base_type == vtn_base_type_sampler) {
vtn_push_value_pointer(b, w[2], vtn_load_param_pointer(b, type, b->func_param_idx++));
} else {
/* We're a regular SSA value. */
struct vtn_ssa_value *value = vtn_create_ssa_value(b, type->type);
vtn_ssa_value_load_function_param(b, value, type, &b->func_param_idx);
vtn_push_ssa(b, w[2], type, value);
}
break;
}
case SpvOpLabel: {
vtn_assert(b->block == NULL);
b->block = rzalloc(b, struct vtn_block);
b->block->node.type = vtn_cf_node_type_block;
b->block->label = w;
vtn_push_value(b, w[1], vtn_value_type_block)->block = b->block;
if (b->func->start_block == NULL) {
/* This is the first block encountered for this function. In this
* case, we set the start block and add it to the list of
* implemented functions that we'll walk later.
*/
b->func->start_block = b->block;
exec_list_push_tail(&b->functions, &b->func->node);
}
break;
}
case SpvOpSelectionMerge:
case SpvOpLoopMerge:
vtn_assert(b->block && b->block->merge == NULL);
b->block->merge = w;
break;
case SpvOpBranch:
case SpvOpBranchConditional:
case SpvOpSwitch:
case SpvOpKill:
case SpvOpReturn:
case SpvOpReturnValue:
case SpvOpUnreachable:
vtn_assert(b->block && b->block->branch == NULL);
b->block->branch = w;
b->block = NULL;
break;
default:
/* Continue on as per normal */
return true;
}
return true;
}
static void
vtn_add_case(struct vtn_builder *b, struct vtn_switch *swtch,
struct vtn_block *break_block,
uint32_t block_id, uint64_t val, bool is_default)
{
struct vtn_block *case_block = vtn_block(b, block_id);
/* Don't create dummy cases that just break */
if (case_block == break_block)
return;
if (case_block->switch_case == NULL) {
struct vtn_case *c = ralloc(b, struct vtn_case);
c->node.type = vtn_cf_node_type_case;
list_inithead(&c->body);
c->start_block = case_block;
c->fallthrough = NULL;
util_dynarray_init(&c->values, b);
c->is_default = false;
c->visited = false;
list_addtail(&c->node.link, &swtch->cases);
case_block->switch_case = c;
}
if (is_default) {
case_block->switch_case->is_default = true;
} else {
util_dynarray_append(&case_block->switch_case->values, uint64_t, val);
}
}
/* This function performs a depth-first search of the cases and puts them
* in fall-through order.
*/
static void
vtn_order_case(struct vtn_switch *swtch, struct vtn_case *cse)
{
if (cse->visited)
return;
cse->visited = true;
list_del(&cse->node.link);
if (cse->fallthrough) {
vtn_order_case(swtch, cse->fallthrough);
/* If we have a fall-through, place this case right before the case it
* falls through to. This ensures that fallthroughs come one after
* the other. These two can never get separated because that would
* imply something else falling through to the same case. Also, this
* can't break ordering because the DFS ensures that this case is
* visited before anything that falls through to it.
*/
list_addtail(&cse->node.link, &cse->fallthrough->node.link);
} else {
list_add(&cse->node.link, &swtch->cases);
}
}
static enum vtn_branch_type
vtn_get_branch_type(struct vtn_builder *b,
struct vtn_block *block,
struct vtn_case *swcase, struct vtn_block *switch_break,
struct vtn_block *loop_break, struct vtn_block *loop_cont)
{
if (block->switch_case) {
/* This branch is actually a fallthrough */
vtn_assert(swcase->fallthrough == NULL ||
swcase->fallthrough == block->switch_case);
swcase->fallthrough = block->switch_case;
return vtn_branch_type_switch_fallthrough;
} else if (block == loop_break) {
return vtn_branch_type_loop_break;
} else if (block == loop_cont) {
return vtn_branch_type_loop_continue;
} else if (block == switch_break) {
return vtn_branch_type_switch_break;
} else {
return vtn_branch_type_none;
}
}
static void
vtn_cfg_walk_blocks(struct vtn_builder *b, struct list_head *cf_list,
struct vtn_block *start, struct vtn_case *switch_case,
struct vtn_block *switch_break,
struct vtn_block *loop_break, struct vtn_block *loop_cont,
struct vtn_block *end)
{
struct vtn_block *block = start;
while (block != end) {
if (block->merge && (*block->merge & SpvOpCodeMask) == SpvOpLoopMerge &&
!block->loop) {
struct vtn_loop *loop = ralloc(b, struct vtn_loop);
loop->node.type = vtn_cf_node_type_loop;
list_inithead(&loop->body);
list_inithead(&loop->cont_body);
loop->control = block->merge[3];
list_addtail(&loop->node.link, cf_list);
block->loop = loop;
struct vtn_block *new_loop_break = vtn_block(b, block->merge[1]);
struct vtn_block *new_loop_cont = vtn_block(b, block->merge[2]);
/* Note: This recursive call will start with the current block as
* its start block. If we weren't careful, we would get here
* again and end up in infinite recursion. This is why we set
* block->loop above and check for it before creating one. This
* way, we only create the loop once and the second call that
* tries to handle this loop goes to the cases below and gets
* handled as a regular block.
*
* Note: When we make the recursive walk calls, we pass NULL for
* the switch break since you have to break out of the loop first.
* We do, however, still pass the current switch case because it's
* possible that the merge block for the loop is the start of
* another case.
*/
vtn_cfg_walk_blocks(b, &loop->body, block, switch_case, NULL,
new_loop_break, new_loop_cont, NULL );
vtn_cfg_walk_blocks(b, &loop->cont_body, new_loop_cont, NULL, NULL,
new_loop_break, NULL, block);
enum vtn_branch_type branch_type =
vtn_get_branch_type(b, new_loop_break, switch_case, switch_break,
loop_break, loop_cont);
if (branch_type != vtn_branch_type_none) {
/* Stop walking through the CFG when this inner loop's break block
* ends up as the same block as the outer loop's continue block
* because we are already going to visit it.
*/
vtn_assert(branch_type == vtn_branch_type_loop_continue);
return;
}
block = new_loop_break;
continue;
}
vtn_assert(block->node.link.next == NULL);
list_addtail(&block->node.link, cf_list);
switch (*block->branch & SpvOpCodeMask) {
case SpvOpBranch: {
struct vtn_block *branch_block = vtn_block(b, block->branch[1]);
block->branch_type = vtn_get_branch_type(b, branch_block,
switch_case, switch_break,
loop_break, loop_cont);
if (block->branch_type != vtn_branch_type_none)
return;
block = branch_block;
continue;
}
case SpvOpReturn:
case SpvOpReturnValue:
block->branch_type = vtn_branch_type_return;
return;
case SpvOpKill:
block->branch_type = vtn_branch_type_discard;
return;
case SpvOpBranchConditional: {
struct vtn_block *then_block = vtn_block(b, block->branch[2]);
struct vtn_block *else_block = vtn_block(b, block->branch[3]);
struct vtn_if *if_stmt = ralloc(b, struct vtn_if);
if_stmt->node.type = vtn_cf_node_type_if;
if_stmt->condition = block->branch[1];
list_inithead(&if_stmt->then_body);
list_inithead(&if_stmt->else_body);
list_addtail(&if_stmt->node.link, cf_list);
if (block->merge &&
(*block->merge & SpvOpCodeMask) == SpvOpSelectionMerge) {
if_stmt->control = block->merge[2];
} else {
if_stmt->control = SpvSelectionControlMaskNone;
}
if_stmt->then_type = vtn_get_branch_type(b, then_block,
switch_case, switch_break,
loop_break, loop_cont);
if_stmt->else_type = vtn_get_branch_type(b, else_block,
switch_case, switch_break,
loop_break, loop_cont);
if (then_block == else_block) {
block->branch_type = if_stmt->then_type;
if (block->branch_type == vtn_branch_type_none) {
block = then_block;
continue;
} else {
return;
}
} else if (if_stmt->then_type == vtn_branch_type_none &&
if_stmt->else_type == vtn_branch_type_none) {
/* Neither side of the if is something we can short-circuit. */
vtn_assert((*block->merge & SpvOpCodeMask) == SpvOpSelectionMerge);
struct vtn_block *merge_block = vtn_block(b, block->merge[1]);
vtn_cfg_walk_blocks(b, &if_stmt->then_body, then_block,
switch_case, switch_break,
loop_break, loop_cont, merge_block);
vtn_cfg_walk_blocks(b, &if_stmt->else_body, else_block,
switch_case, switch_break,
loop_break, loop_cont, merge_block);
enum vtn_branch_type merge_type =
vtn_get_branch_type(b, merge_block, switch_case, switch_break,
loop_break, loop_cont);
if (merge_type == vtn_branch_type_none) {
block = merge_block;
continue;
} else {
return;
}
} else if (if_stmt->then_type != vtn_branch_type_none &&
if_stmt->else_type != vtn_branch_type_none) {
/* Both sides were short-circuited. We're done here. */
return;
} else {
/* Exeactly one side of the branch could be short-circuited.
* We set the branch up as a predicated break/continue and we
* continue on with the other side as if it were what comes
* after the if.
*/
if (if_stmt->then_type == vtn_branch_type_none) {
block = then_block;
} else {
block = else_block;
}
continue;
}
vtn_fail("Should have returned or continued");
}
case SpvOpSwitch: {
vtn_assert((*block->merge & SpvOpCodeMask) == SpvOpSelectionMerge);
struct vtn_block *break_block = vtn_block(b, block->merge[1]);
struct vtn_switch *swtch = ralloc(b, struct vtn_switch);
swtch->node.type = vtn_cf_node_type_switch;
swtch->selector = block->branch[1];
list_inithead(&swtch->cases);
list_addtail(&swtch->node.link, cf_list);
/* First, we go through and record all of the cases. */
const uint32_t *branch_end =
block->branch + (block->branch[0] >> SpvWordCountShift);
struct vtn_value *cond_val = vtn_untyped_value(b, block->branch[1]);
vtn_fail_if(!cond_val->type ||
cond_val->type->base_type != vtn_base_type_scalar,
"Selector of OpSelect must have a type of OpTypeInt");
nir_alu_type cond_type =
nir_get_nir_type_for_glsl_type(cond_val->type->type);
vtn_fail_if(nir_alu_type_get_base_type(cond_type) != nir_type_int &&
nir_alu_type_get_base_type(cond_type) != nir_type_uint,
"Selector of OpSelect must have a type of OpTypeInt");
bool is_default = true;
const unsigned bitsize = nir_alu_type_get_type_size(cond_type);
for (const uint32_t *w = block->branch + 2; w < branch_end;) {
uint64_t literal = 0;
if (!is_default) {
if (bitsize <= 32) {
literal = *(w++);
} else {
assert(bitsize == 64);
literal = vtn_u64_literal(w);
w += 2;
}
}
uint32_t block_id = *(w++);
vtn_add_case(b, swtch, break_block, block_id, literal, is_default);
is_default = false;
}
/* Now, we go through and walk the blocks. While we walk through
* the blocks, we also gather the much-needed fall-through
* information.
*/
vtn_foreach_cf_node(case_node, &swtch->cases) {
struct vtn_case *cse = vtn_cf_node_as_case(case_node);
vtn_assert(cse->start_block != break_block);
vtn_cfg_walk_blocks(b, &cse->body, cse->start_block, cse,
break_block, loop_break, loop_cont, NULL);
}
/* Finally, we walk over all of the cases one more time and put
* them in fall-through order.
*/
for (const uint32_t *w = block->branch + 2; w < branch_end;) {
struct vtn_block *case_block = vtn_block(b, *w);
if (bitsize <= 32) {
w += 2;
} else {
assert(bitsize == 64);
w += 3;
}
if (case_block == break_block)
continue;
vtn_assert(case_block->switch_case);
vtn_order_case(swtch, case_block->switch_case);
}
enum vtn_branch_type branch_type =
vtn_get_branch_type(b, break_block, switch_case, NULL,
loop_break, loop_cont);
if (branch_type != vtn_branch_type_none) {
/* It is possible that the break is actually the continue block
* for the containing loop. In this case, we need to bail and let
* the loop parsing code handle the continue properly.
*/
vtn_assert(branch_type == vtn_branch_type_loop_continue);
return;
}
block = break_block;
continue;
}
case SpvOpUnreachable:
return;
default:
vtn_fail("Unhandled opcode");
}
}
}
void
vtn_build_cfg(struct vtn_builder *b, const uint32_t *words, const uint32_t *end)
{
vtn_foreach_instruction(b, words, end,
vtn_cfg_handle_prepass_instruction);
foreach_list_typed(struct vtn_function, func, node, &b->functions) {
vtn_cfg_walk_blocks(b, &func->body, func->start_block,
NULL, NULL, NULL, NULL, NULL);
}
}
static bool
vtn_handle_phis_first_pass(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
if (opcode == SpvOpLabel)
return true; /* Nothing to do */
/* If this isn't a phi node, stop. */
if (opcode != SpvOpPhi)
return false;
/* For handling phi nodes, we do a poor-man's out-of-ssa on the spot.
* For each phi, we create a variable with the appropreate type and
* do a load from that variable. Then, in a second pass, we add
* stores to that variable to each of the predecessor blocks.
*
* We could do something more intelligent here. However, in order to
* handle loops and things properly, we really need dominance
* information. It would end up basically being the into-SSA
* algorithm all over again. It's easier if we just let
* lower_vars_to_ssa do that for us instead of repeating it here.
*/
struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
nir_variable *phi_var =
nir_local_variable_create(b->nb.impl, type->type, "phi");
_mesa_hash_table_insert(b->phi_table, w, phi_var);
vtn_push_ssa(b, w[2], type,
vtn_local_load(b, nir_build_deref_var(&b->nb, phi_var), 0));
return true;
}
static bool
vtn_handle_phi_second_pass(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
if (opcode != SpvOpPhi)
return true;
struct hash_entry *phi_entry = _mesa_hash_table_search(b->phi_table, w);
vtn_assert(phi_entry);
nir_variable *phi_var = phi_entry->data;
for (unsigned i = 3; i < count; i += 2) {
struct vtn_block *pred = vtn_block(b, w[i + 1]);
/* If block does not have end_nop, that is because it is an unreacheable
* block, and hence it is not worth to handle it */
if (!pred->end_nop)
continue;
b->nb.cursor = nir_after_instr(&pred->end_nop->instr);
struct vtn_ssa_value *src = vtn_ssa_value(b, w[i]);
vtn_local_store(b, src, nir_build_deref_var(&b->nb, phi_var), 0);
}
return true;
}
static void
vtn_emit_branch(struct vtn_builder *b, enum vtn_branch_type branch_type,
nir_variable *switch_fall_var, bool *has_switch_break)
{
switch (branch_type) {
case vtn_branch_type_switch_break:
nir_store_var(&b->nb, switch_fall_var, nir_imm_false(&b->nb), 1);
*has_switch_break = true;
break;
case vtn_branch_type_switch_fallthrough:
break; /* Nothing to do */
case vtn_branch_type_loop_break:
nir_jump(&b->nb, nir_jump_break);
break;
case vtn_branch_type_loop_continue:
nir_jump(&b->nb, nir_jump_continue);
break;
case vtn_branch_type_return:
nir_jump(&b->nb, nir_jump_return);
break;
case vtn_branch_type_discard: {
nir_intrinsic_instr *discard =
nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_discard);
nir_builder_instr_insert(&b->nb, &discard->instr);
break;
}
default:
vtn_fail("Invalid branch type");
}
}
static nir_ssa_def *
vtn_switch_case_condition(struct vtn_builder *b, struct vtn_switch *swtch,
nir_ssa_def *sel, struct vtn_case *cse)
{
if (cse->is_default) {
nir_ssa_def *any = nir_imm_false(&b->nb);
vtn_foreach_cf_node(other_node, &swtch->cases) {
struct vtn_case *other = vtn_cf_node_as_case(other_node);
if (other->is_default)
continue;
any = nir_ior(&b->nb, any,
vtn_switch_case_condition(b, swtch, sel, other));
}
return nir_inot(&b->nb, any);
} else {
nir_ssa_def *cond = nir_imm_false(&b->nb);
util_dynarray_foreach(&cse->values, uint64_t, val) {
nir_ssa_def *imm = nir_imm_intN_t(&b->nb, *val, sel->bit_size);
cond = nir_ior(&b->nb, cond, nir_ieq(&b->nb, sel, imm));
}
return cond;
}
}
static nir_loop_control
vtn_loop_control(struct vtn_builder *b, struct vtn_loop *vtn_loop)
{
if (vtn_loop->control == SpvLoopControlMaskNone)
return nir_loop_control_none;
else if (vtn_loop->control & SpvLoopControlDontUnrollMask)
return nir_loop_control_dont_unroll;
else if (vtn_loop->control & SpvLoopControlUnrollMask)
return nir_loop_control_unroll;
else if (vtn_loop->control & SpvLoopControlDependencyInfiniteMask ||
vtn_loop->control & SpvLoopControlDependencyLengthMask ||
vtn_loop->control & SpvLoopControlMinIterationsMask ||
vtn_loop->control & SpvLoopControlMaxIterationsMask ||
vtn_loop->control & SpvLoopControlIterationMultipleMask ||
vtn_loop->control & SpvLoopControlPeelCountMask ||
vtn_loop->control & SpvLoopControlPartialCountMask) {
/* We do not do anything special with these yet. */
return nir_loop_control_none;
} else {
vtn_fail("Invalid loop control");
}
}
static nir_selection_control
vtn_selection_control(struct vtn_builder *b, struct vtn_if *vtn_if)
{
if (vtn_if->control == SpvSelectionControlMaskNone)
return nir_selection_control_none;
else if (vtn_if->control & SpvSelectionControlDontFlattenMask)
return nir_selection_control_dont_flatten;
else if (vtn_if->control & SpvSelectionControlFlattenMask)
return nir_selection_control_flatten;
else
vtn_fail("Invalid selection control");
}
static void
vtn_emit_cf_list(struct vtn_builder *b, struct list_head *cf_list,
nir_variable *switch_fall_var, bool *has_switch_break,
vtn_instruction_handler handler)
{
vtn_foreach_cf_node(node, cf_list) {
switch (node->type) {
case vtn_cf_node_type_block: {
struct vtn_block *block = vtn_cf_node_as_block(node);
const uint32_t *block_start = block->label;
const uint32_t *block_end = block->merge ? block->merge :
block->branch;
block_start = vtn_foreach_instruction(b, block_start, block_end,
vtn_handle_phis_first_pass);
vtn_foreach_instruction(b, block_start, block_end, handler);
block->end_nop = nir_intrinsic_instr_create(b->nb.shader,
nir_intrinsic_nop);
nir_builder_instr_insert(&b->nb, &block->end_nop->instr);
if ((*block->branch & SpvOpCodeMask) == SpvOpReturnValue) {
vtn_fail_if(b->func->type->return_type->base_type ==
vtn_base_type_void,
"Return with a value from a function returning void");
struct vtn_ssa_value *src = vtn_ssa_value(b, block->branch[1]);
const struct glsl_type *ret_type =
glsl_get_bare_type(b->func->type->return_type->type);
nir_deref_instr *ret_deref =
nir_build_deref_cast(&b->nb, nir_load_param(&b->nb, 0),
nir_var_function_temp, ret_type, 0);
vtn_local_store(b, src, ret_deref, 0);
}
if (block->branch_type != vtn_branch_type_none) {
vtn_emit_branch(b, block->branch_type,
switch_fall_var, has_switch_break);
return;
}
break;
}
case vtn_cf_node_type_if: {
struct vtn_if *vtn_if = vtn_cf_node_as_if(node);
bool sw_break = false;
nir_if *nif =
nir_push_if(&b->nb, vtn_ssa_value(b, vtn_if->condition)->def);
nif->control = vtn_selection_control(b, vtn_if);
if (vtn_if->then_type == vtn_branch_type_none) {
vtn_emit_cf_list(b, &vtn_if->then_body,
switch_fall_var, &sw_break, handler);
} else {
vtn_emit_branch(b, vtn_if->then_type, switch_fall_var, &sw_break);
}
nir_push_else(&b->nb, nif);
if (vtn_if->else_type == vtn_branch_type_none) {
vtn_emit_cf_list(b, &vtn_if->else_body,
switch_fall_var, &sw_break, handler);
} else {
vtn_emit_branch(b, vtn_if->else_type, switch_fall_var, &sw_break);
}
nir_pop_if(&b->nb, nif);
/* If we encountered a switch break somewhere inside of the if,
* then it would have been handled correctly by calling
* emit_cf_list or emit_branch for the interrior. However, we
* need to predicate everything following on wether or not we're
* still going.
*/
if (sw_break) {
*has_switch_break = true;
nir_push_if(&b->nb, nir_load_var(&b->nb, switch_fall_var));
}
break;
}
case vtn_cf_node_type_loop: {
struct vtn_loop *vtn_loop = vtn_cf_node_as_loop(node);
nir_loop *loop = nir_push_loop(&b->nb);
loop->control = vtn_loop_control(b, vtn_loop);
vtn_emit_cf_list(b, &vtn_loop->body, NULL, NULL, handler);
if (!list_is_empty(&vtn_loop->cont_body)) {
/* If we have a non-trivial continue body then we need to put
* it at the beginning of the loop with a flag to ensure that
* it doesn't get executed in the first iteration.
*/
nir_variable *do_cont =
nir_local_variable_create(b->nb.impl, glsl_bool_type(), "cont");
b->nb.cursor = nir_before_cf_node(&loop->cf_node);
nir_store_var(&b->nb, do_cont, nir_imm_false(&b->nb), 1);
b->nb.cursor = nir_before_cf_list(&loop->body);
nir_if *cont_if =
nir_push_if(&b->nb, nir_load_var(&b->nb, do_cont));
vtn_emit_cf_list(b, &vtn_loop->cont_body, NULL, NULL, handler);
nir_pop_if(&b->nb, cont_if);
nir_store_var(&b->nb, do_cont, nir_imm_true(&b->nb), 1);
b->has_loop_continue = true;
}
nir_pop_loop(&b->nb, loop);
break;
}
case vtn_cf_node_type_switch: {
struct vtn_switch *vtn_switch = vtn_cf_node_as_switch(node);
/* First, we create a variable to keep track of whether or not the
* switch is still going at any given point. Any switch breaks
* will set this variable to false.
*/
nir_variable *fall_var =
nir_local_variable_create(b->nb.impl, glsl_bool_type(), "fall");
nir_store_var(&b->nb, fall_var, nir_imm_false(&b->nb), 1);
nir_ssa_def *sel = vtn_ssa_value(b, vtn_switch->selector)->def;
/* Now we can walk the list of cases and actually emit code */
vtn_foreach_cf_node(case_node, &vtn_switch->cases) {
struct vtn_case *cse = vtn_cf_node_as_case(case_node);
/* Figure out the condition */
nir_ssa_def *cond =
vtn_switch_case_condition(b, vtn_switch, sel, cse);
/* Take fallthrough into account */
cond = nir_ior(&b->nb, cond, nir_load_var(&b->nb, fall_var));
nir_if *case_if = nir_push_if(&b->nb, cond);
bool has_break = false;
nir_store_var(&b->nb, fall_var, nir_imm_true(&b->nb), 1);
vtn_emit_cf_list(b, &cse->body, fall_var, &has_break, handler);
(void)has_break; /* We don't care */
nir_pop_if(&b->nb, case_if);
}
break;
}
default:
vtn_fail("Invalid CF node type");
}
}
}
void
vtn_function_emit(struct vtn_builder *b, struct vtn_function *func,
vtn_instruction_handler instruction_handler)
{
nir_builder_init(&b->nb, func->impl);
b->func = func;
b->nb.cursor = nir_after_cf_list(&func->impl->body);
b->nb.exact = b->exact;
b->has_loop_continue = false;
b->phi_table = _mesa_pointer_hash_table_create(b);
vtn_emit_cf_list(b, &func->body, NULL, NULL, instruction_handler);
vtn_foreach_instruction(b, func->start_block->label, func->end,
vtn_handle_phi_second_pass);
nir_rematerialize_derefs_in_use_blocks_impl(func->impl);
/* Continue blocks for loops get inserted before the body of the loop
* but instructions in the continue may use SSA defs in the loop body.
* Therefore, we need to repair SSA to insert the needed phi nodes.
*/
if (b->has_loop_continue)
nir_repair_ssa_impl(func->impl);
func->emitted = true;
}