blob: 525fd8dd75aedbc84c1d84bd491855e9045a48ae [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef RADV_PRIVATE_H
#define RADV_PRIVATE_H
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <pthread.h>
#include <assert.h>
#include <stdint.h>
#include <string.h>
#ifdef HAVE_VALGRIND
#include <valgrind.h>
#include <memcheck.h>
#define VG(x) x
#else
#define VG(x)
#endif
#include <amdgpu.h>
#include "compiler/shader_enums.h"
#include "util/macros.h"
#include "util/list.h"
#include "main/macros.h"
#include "vk_alloc.h"
#include "radv_radeon_winsys.h"
#include "ac_binary.h"
#include "ac_nir_to_llvm.h"
#include "ac_gpu_info.h"
#include "ac_surface.h"
#include "radv_descriptor_set.h"
#include <llvm-c/TargetMachine.h>
/* Pre-declarations needed for WSI entrypoints */
struct wl_surface;
struct wl_display;
typedef struct xcb_connection_t xcb_connection_t;
typedef uint32_t xcb_visualid_t;
typedef uint32_t xcb_window_t;
#include <vulkan/vulkan.h>
#include <vulkan/vulkan_intel.h>
#include <vulkan/vk_icd.h>
#include "radv_entrypoints.h"
#include "wsi_common.h"
#define ATI_VENDOR_ID 0x1002
#define MAX_VBS 32
#define MAX_VERTEX_ATTRIBS 32
#define MAX_RTS 8
#define MAX_VIEWPORTS 16
#define MAX_SCISSORS 16
#define MAX_PUSH_CONSTANTS_SIZE 128
#define MAX_PUSH_DESCRIPTORS 32
#define MAX_DYNAMIC_UNIFORM_BUFFERS 16
#define MAX_DYNAMIC_STORAGE_BUFFERS 8
#define MAX_DYNAMIC_BUFFERS (MAX_DYNAMIC_UNIFORM_BUFFERS + MAX_DYNAMIC_STORAGE_BUFFERS)
#define MAX_SAMPLES_LOG2 4
#define NUM_META_FS_KEYS 13
#define RADV_MAX_DRM_DEVICES 8
#define MAX_VIEWS 8
#define NUM_DEPTH_CLEAR_PIPELINES 3
enum radv_mem_heap {
RADV_MEM_HEAP_VRAM,
RADV_MEM_HEAP_VRAM_CPU_ACCESS,
RADV_MEM_HEAP_GTT,
RADV_MEM_HEAP_COUNT
};
enum radv_mem_type {
RADV_MEM_TYPE_VRAM,
RADV_MEM_TYPE_GTT_WRITE_COMBINE,
RADV_MEM_TYPE_VRAM_CPU_ACCESS,
RADV_MEM_TYPE_GTT_CACHED,
RADV_MEM_TYPE_COUNT
};
enum radv_mem_flags_bits {
/* enable implicit synchronization when accessing the underlying bo */
RADV_MEM_IMPLICIT_SYNC = 1 << 0,
};
#define radv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
static inline uint32_t
align_u32(uint32_t v, uint32_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
static inline uint32_t
align_u32_npot(uint32_t v, uint32_t a)
{
return (v + a - 1) / a * a;
}
static inline uint64_t
align_u64(uint64_t v, uint64_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
static inline int32_t
align_i32(int32_t v, int32_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
/** Alignment must be a power of 2. */
static inline bool
radv_is_aligned(uintmax_t n, uintmax_t a)
{
assert(a == (a & -a));
return (n & (a - 1)) == 0;
}
static inline uint32_t
round_up_u32(uint32_t v, uint32_t a)
{
return (v + a - 1) / a;
}
static inline uint64_t
round_up_u64(uint64_t v, uint64_t a)
{
return (v + a - 1) / a;
}
static inline uint32_t
radv_minify(uint32_t n, uint32_t levels)
{
if (unlikely(n == 0))
return 0;
else
return MAX2(n >> levels, 1);
}
static inline float
radv_clamp_f(float f, float min, float max)
{
assert(min < max);
if (f > max)
return max;
else if (f < min)
return min;
else
return f;
}
static inline bool
radv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
{
if (*inout_mask & clear_mask) {
*inout_mask &= ~clear_mask;
return true;
} else {
return false;
}
}
#define for_each_bit(b, dword) \
for (uint32_t __dword = (dword); \
(b) = __builtin_ffs(__dword) - 1, __dword; \
__dword &= ~(1 << (b)))
#define typed_memcpy(dest, src, count) ({ \
STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
memcpy((dest), (src), (count) * sizeof(*(src))); \
})
/* Whenever we generate an error, pass it through this function. Useful for
* debugging, where we can break on it. Only call at error site, not when
* propagating errors. Might be useful to plug in a stack trace here.
*/
VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
#ifdef DEBUG
#define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
#define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
#else
#define vk_error(error) error
#define vk_errorf(error, format, ...) error
#endif
void __radv_finishme(const char *file, int line, const char *format, ...)
radv_printflike(3, 4);
void radv_loge(const char *format, ...) radv_printflike(1, 2);
void radv_loge_v(const char *format, va_list va);
/**
* Print a FINISHME message, including its source location.
*/
#define radv_finishme(format, ...) \
do { \
static bool reported = false; \
if (!reported) { \
__radv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
reported = true; \
} \
} while (0)
/* A non-fatal assert. Useful for debugging. */
#ifdef DEBUG
#define radv_assert(x) ({ \
if (unlikely(!(x))) \
fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
})
#else
#define radv_assert(x)
#endif
#define stub_return(v) \
do { \
radv_finishme("stub %s", __func__); \
return (v); \
} while (0)
#define stub() \
do { \
radv_finishme("stub %s", __func__); \
return; \
} while (0)
void *radv_lookup_entrypoint(const char *name);
struct radv_physical_device {
VK_LOADER_DATA _loader_data;
struct radv_instance * instance;
struct radeon_winsys *ws;
struct radeon_info rad_info;
char path[20];
char name[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];
uint8_t driver_uuid[VK_UUID_SIZE];
uint8_t device_uuid[VK_UUID_SIZE];
uint8_t cache_uuid[VK_UUID_SIZE];
int local_fd;
struct wsi_device wsi_device;
bool has_rbplus; /* if RB+ register exist */
bool rbplus_allowed; /* if RB+ is allowed */
bool has_clear_state;
/* This is the drivers on-disk cache used as a fallback as opposed to
* the pipeline cache defined by apps.
*/
struct disk_cache * disk_cache;
VkPhysicalDeviceMemoryProperties memory_properties;
enum radv_mem_type mem_type_indices[RADV_MEM_TYPE_COUNT];
};
struct radv_instance {
VK_LOADER_DATA _loader_data;
VkAllocationCallbacks alloc;
uint32_t apiVersion;
int physicalDeviceCount;
struct radv_physical_device physicalDevices[RADV_MAX_DRM_DEVICES];
uint64_t debug_flags;
uint64_t perftest_flags;
};
VkResult radv_init_wsi(struct radv_physical_device *physical_device);
void radv_finish_wsi(struct radv_physical_device *physical_device);
bool radv_instance_extension_supported(const char *name);
uint32_t radv_physical_device_api_version(struct radv_physical_device *dev);
bool radv_physical_device_extension_supported(struct radv_physical_device *dev,
const char *name);
struct cache_entry;
struct radv_pipeline_cache {
struct radv_device * device;
pthread_mutex_t mutex;
uint32_t total_size;
uint32_t table_size;
uint32_t kernel_count;
struct cache_entry ** hash_table;
bool modified;
VkAllocationCallbacks alloc;
};
void
radv_pipeline_cache_init(struct radv_pipeline_cache *cache,
struct radv_device *device);
void
radv_pipeline_cache_finish(struct radv_pipeline_cache *cache);
void
radv_pipeline_cache_load(struct radv_pipeline_cache *cache,
const void *data, size_t size);
struct radv_shader_variant;
bool
radv_create_shader_variants_from_pipeline_cache(struct radv_device *device,
struct radv_pipeline_cache *cache,
const unsigned char *sha1,
struct radv_shader_variant **variants);
void
radv_pipeline_cache_insert_shaders(struct radv_device *device,
struct radv_pipeline_cache *cache,
const unsigned char *sha1,
struct radv_shader_variant **variants,
const void *const *codes,
const unsigned *code_sizes);
enum radv_blit_ds_layout {
RADV_BLIT_DS_LAYOUT_TILE_ENABLE,
RADV_BLIT_DS_LAYOUT_TILE_DISABLE,
RADV_BLIT_DS_LAYOUT_COUNT,
};
static inline enum radv_blit_ds_layout radv_meta_blit_ds_to_type(VkImageLayout layout)
{
return (layout == VK_IMAGE_LAYOUT_GENERAL) ? RADV_BLIT_DS_LAYOUT_TILE_DISABLE : RADV_BLIT_DS_LAYOUT_TILE_ENABLE;
}
static inline VkImageLayout radv_meta_blit_ds_to_layout(enum radv_blit_ds_layout ds_layout)
{
return ds_layout == RADV_BLIT_DS_LAYOUT_TILE_ENABLE ? VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL : VK_IMAGE_LAYOUT_GENERAL;
}
struct radv_meta_state {
VkAllocationCallbacks alloc;
struct radv_pipeline_cache cache;
/**
* Use array element `i` for images with `2^i` samples.
*/
struct {
VkRenderPass render_pass[NUM_META_FS_KEYS];
VkPipeline color_pipelines[NUM_META_FS_KEYS];
VkRenderPass depthstencil_rp;
VkPipeline depth_only_pipeline[NUM_DEPTH_CLEAR_PIPELINES];
VkPipeline stencil_only_pipeline[NUM_DEPTH_CLEAR_PIPELINES];
VkPipeline depthstencil_pipeline[NUM_DEPTH_CLEAR_PIPELINES];
} clear[1 + MAX_SAMPLES_LOG2];
VkPipelineLayout clear_color_p_layout;
VkPipelineLayout clear_depth_p_layout;
struct {
VkRenderPass render_pass[NUM_META_FS_KEYS];
/** Pipeline that blits from a 1D image. */
VkPipeline pipeline_1d_src[NUM_META_FS_KEYS];
/** Pipeline that blits from a 2D image. */
VkPipeline pipeline_2d_src[NUM_META_FS_KEYS];
/** Pipeline that blits from a 3D image. */
VkPipeline pipeline_3d_src[NUM_META_FS_KEYS];
VkRenderPass depth_only_rp[RADV_BLIT_DS_LAYOUT_COUNT];
VkPipeline depth_only_1d_pipeline;
VkPipeline depth_only_2d_pipeline;
VkPipeline depth_only_3d_pipeline;
VkRenderPass stencil_only_rp[RADV_BLIT_DS_LAYOUT_COUNT];
VkPipeline stencil_only_1d_pipeline;
VkPipeline stencil_only_2d_pipeline;
VkPipeline stencil_only_3d_pipeline;
VkPipelineLayout pipeline_layout;
VkDescriptorSetLayout ds_layout;
} blit;
struct {
VkRenderPass render_passes[NUM_META_FS_KEYS];
VkPipelineLayout p_layouts[3];
VkDescriptorSetLayout ds_layouts[3];
VkPipeline pipelines[3][NUM_META_FS_KEYS];
VkRenderPass depth_only_rp[RADV_BLIT_DS_LAYOUT_COUNT];
VkPipeline depth_only_pipeline[3];
VkRenderPass stencil_only_rp[RADV_BLIT_DS_LAYOUT_COUNT];
VkPipeline stencil_only_pipeline[3];
} blit2d;
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline;
VkPipeline pipeline_3d;
} itob;
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline;
VkPipeline pipeline_3d;
} btoi;
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline;
VkPipeline pipeline_3d;
} itoi;
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline;
VkPipeline pipeline_3d;
} cleari;
struct {
VkPipelineLayout p_layout;
VkPipeline pipeline[NUM_META_FS_KEYS];
VkRenderPass pass[NUM_META_FS_KEYS];
} resolve;
struct {
VkDescriptorSetLayout ds_layout;
VkPipelineLayout p_layout;
struct {
VkPipeline pipeline;
VkPipeline i_pipeline;
VkPipeline srgb_pipeline;
} rc[MAX_SAMPLES_LOG2];
} resolve_compute;
struct {
VkDescriptorSetLayout ds_layout;
VkPipelineLayout p_layout;
struct {
VkRenderPass render_pass[NUM_META_FS_KEYS];
VkPipeline pipeline[NUM_META_FS_KEYS];
} rc[MAX_SAMPLES_LOG2];
} resolve_fragment;
struct {
VkPipelineLayout p_layout;
VkPipeline decompress_pipeline;
VkPipeline resummarize_pipeline;
VkRenderPass pass;
} depth_decomp[1 + MAX_SAMPLES_LOG2];
struct {
VkPipelineLayout p_layout;
VkPipeline cmask_eliminate_pipeline;
VkPipeline fmask_decompress_pipeline;
VkRenderPass pass;
} fast_clear_flush;
struct {
VkPipelineLayout fill_p_layout;
VkPipelineLayout copy_p_layout;
VkDescriptorSetLayout fill_ds_layout;
VkDescriptorSetLayout copy_ds_layout;
VkPipeline fill_pipeline;
VkPipeline copy_pipeline;
} buffer;
struct {
VkDescriptorSetLayout ds_layout;
VkPipelineLayout p_layout;
VkPipeline occlusion_query_pipeline;
VkPipeline pipeline_statistics_query_pipeline;
} query;
};
/* queue types */
#define RADV_QUEUE_GENERAL 0
#define RADV_QUEUE_COMPUTE 1
#define RADV_QUEUE_TRANSFER 2
#define RADV_MAX_QUEUE_FAMILIES 3
enum ring_type radv_queue_family_to_ring(int f);
struct radv_queue {
VK_LOADER_DATA _loader_data;
struct radv_device * device;
struct radeon_winsys_ctx *hw_ctx;
enum radeon_ctx_priority priority;
int queue_family_index;
int queue_idx;
uint32_t scratch_size;
uint32_t compute_scratch_size;
uint32_t esgs_ring_size;
uint32_t gsvs_ring_size;
bool has_tess_rings;
bool has_sample_positions;
struct radeon_winsys_bo *scratch_bo;
struct radeon_winsys_bo *descriptor_bo;
struct radeon_winsys_bo *compute_scratch_bo;
struct radeon_winsys_bo *esgs_ring_bo;
struct radeon_winsys_bo *gsvs_ring_bo;
struct radeon_winsys_bo *tess_factor_ring_bo;
struct radeon_winsys_bo *tess_offchip_ring_bo;
struct radeon_winsys_cs *initial_preamble_cs;
struct radeon_winsys_cs *initial_full_flush_preamble_cs;
struct radeon_winsys_cs *continue_preamble_cs;
};
struct radv_device {
VK_LOADER_DATA _loader_data;
VkAllocationCallbacks alloc;
struct radv_instance * instance;
struct radeon_winsys *ws;
struct radv_meta_state meta_state;
struct radv_queue *queues[RADV_MAX_QUEUE_FAMILIES];
int queue_count[RADV_MAX_QUEUE_FAMILIES];
struct radeon_winsys_cs *empty_cs[RADV_MAX_QUEUE_FAMILIES];
bool llvm_supports_spill;
bool has_distributed_tess;
uint32_t tess_offchip_block_dw_size;
uint32_t scratch_waves;
uint32_t gs_table_depth;
/* MSAA sample locations.
* The first index is the sample index.
* The second index is the coordinate: X, Y. */
float sample_locations_1x[1][2];
float sample_locations_2x[2][2];
float sample_locations_4x[4][2];
float sample_locations_8x[8][2];
float sample_locations_16x[16][2];
/* CIK and later */
uint32_t gfx_init_size_dw;
struct radeon_winsys_bo *gfx_init;
struct radeon_winsys_bo *trace_bo;
uint32_t *trace_id_ptr;
struct radv_physical_device *physical_device;
/* Backup in-memory cache to be used if the app doesn't provide one */
struct radv_pipeline_cache * mem_cache;
/*
* use different counters so MSAA MRTs get consecutive surface indices,
* even if MASK is allocated in between.
*/
uint32_t image_mrt_offset_counter;
uint32_t fmask_mrt_offset_counter;
struct list_head shader_slabs;
mtx_t shader_slab_mutex;
/* For detecting VM faults reported by dmesg. */
uint64_t dmesg_timestamp;
};
struct radv_device_memory {
struct radeon_winsys_bo *bo;
/* for dedicated allocations */
struct radv_image *image;
struct radv_buffer *buffer;
uint32_t type_index;
VkDeviceSize map_size;
void * map;
};
struct radv_descriptor_range {
uint64_t va;
uint32_t size;
};
struct radv_descriptor_set {
const struct radv_descriptor_set_layout *layout;
uint32_t size;
struct radeon_winsys_bo *bo;
uint64_t va;
uint32_t *mapped_ptr;
struct radv_descriptor_range *dynamic_descriptors;
struct list_head vram_list;
struct radeon_winsys_bo *descriptors[0];
};
struct radv_push_descriptor_set
{
struct radv_descriptor_set set;
uint32_t capacity;
};
struct radv_descriptor_pool {
struct radeon_winsys_bo *bo;
uint8_t *mapped_ptr;
uint64_t current_offset;
uint64_t size;
struct list_head vram_list;
uint8_t *host_memory_base;
uint8_t *host_memory_ptr;
uint8_t *host_memory_end;
};
struct radv_descriptor_update_template_entry {
VkDescriptorType descriptor_type;
/* The number of descriptors to update */
uint32_t descriptor_count;
/* Into mapped_ptr or dynamic_descriptors, in units of the respective array */
uint32_t dst_offset;
/* In dwords. Not valid/used for dynamic descriptors */
uint32_t dst_stride;
uint32_t buffer_offset;
/* Only valid for combined image samplers and samplers */
uint16_t has_sampler;
/* In bytes */
size_t src_offset;
size_t src_stride;
/* For push descriptors */
const uint32_t *immutable_samplers;
};
struct radv_descriptor_update_template {
uint32_t entry_count;
struct radv_descriptor_update_template_entry entry[0];
};
struct radv_buffer {
struct radv_device * device;
VkDeviceSize size;
VkBufferUsageFlags usage;
VkBufferCreateFlags flags;
/* Set when bound */
struct radeon_winsys_bo * bo;
VkDeviceSize offset;
};
enum radv_cmd_dirty_bits {
RADV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
RADV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
RADV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
RADV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
RADV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
RADV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
RADV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
RADV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
RADV_CMD_DIRTY_PIPELINE = 1 << 9,
RADV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
RADV_CMD_DIRTY_FRAMEBUFFER = 1 << 11,
};
typedef uint32_t radv_cmd_dirty_mask_t;
enum radv_cmd_flush_bits {
RADV_CMD_FLAG_INV_ICACHE = 1 << 0,
/* SMEM L1, other names: KCACHE, constant cache, DCACHE, data cache */
RADV_CMD_FLAG_INV_SMEM_L1 = 1 << 1,
/* VMEM L1 can optionally be bypassed (GLC=1). Other names: TC L1 */
RADV_CMD_FLAG_INV_VMEM_L1 = 1 << 2,
/* Used by everything except CB/DB, can be bypassed (SLC=1). Other names: TC L2 */
RADV_CMD_FLAG_INV_GLOBAL_L2 = 1 << 3,
/* Same as above, but only writes back and doesn't invalidate */
RADV_CMD_FLAG_WRITEBACK_GLOBAL_L2 = 1 << 4,
/* Framebuffer caches */
RADV_CMD_FLAG_FLUSH_AND_INV_CB_META = 1 << 5,
RADV_CMD_FLAG_FLUSH_AND_INV_DB_META = 1 << 6,
RADV_CMD_FLAG_FLUSH_AND_INV_DB = 1 << 7,
RADV_CMD_FLAG_FLUSH_AND_INV_CB = 1 << 8,
/* Engine synchronization. */
RADV_CMD_FLAG_VS_PARTIAL_FLUSH = 1 << 9,
RADV_CMD_FLAG_PS_PARTIAL_FLUSH = 1 << 10,
RADV_CMD_FLAG_CS_PARTIAL_FLUSH = 1 << 11,
RADV_CMD_FLAG_VGT_FLUSH = 1 << 12,
RADV_CMD_FLUSH_AND_INV_FRAMEBUFFER = (RADV_CMD_FLAG_FLUSH_AND_INV_CB |
RADV_CMD_FLAG_FLUSH_AND_INV_CB_META |
RADV_CMD_FLAG_FLUSH_AND_INV_DB |
RADV_CMD_FLAG_FLUSH_AND_INV_DB_META)
};
struct radv_vertex_binding {
struct radv_buffer * buffer;
VkDeviceSize offset;
};
struct radv_viewport_state {
uint32_t count;
VkViewport viewports[MAX_VIEWPORTS];
};
struct radv_scissor_state {
uint32_t count;
VkRect2D scissors[MAX_SCISSORS];
};
struct radv_dynamic_state {
struct radv_viewport_state viewport;
struct radv_scissor_state scissor;
float line_width;
struct {
float bias;
float clamp;
float slope;
} depth_bias;
float blend_constants[4];
struct {
float min;
float max;
} depth_bounds;
struct {
uint32_t front;
uint32_t back;
} stencil_compare_mask;
struct {
uint32_t front;
uint32_t back;
} stencil_write_mask;
struct {
uint32_t front;
uint32_t back;
} stencil_reference;
};
extern const struct radv_dynamic_state default_dynamic_state;
const char *
radv_get_debug_option_name(int id);
const char *
radv_get_perftest_option_name(int id);
/**
* Attachment state when recording a renderpass instance.
*
* The clear value is valid only if there exists a pending clear.
*/
struct radv_attachment_state {
VkImageAspectFlags pending_clear_aspects;
uint32_t cleared_views;
VkClearValue clear_value;
VkImageLayout current_layout;
};
struct radv_cmd_state {
bool vb_dirty;
radv_cmd_dirty_mask_t dirty;
bool push_descriptors_dirty;
bool predicating;
struct radv_pipeline * pipeline;
struct radv_pipeline * emitted_pipeline;
struct radv_pipeline * compute_pipeline;
struct radv_pipeline * emitted_compute_pipeline;
struct radv_framebuffer * framebuffer;
struct radv_render_pass * pass;
const struct radv_subpass * subpass;
struct radv_dynamic_state dynamic;
struct radv_vertex_binding vertex_bindings[MAX_VBS];
struct radv_descriptor_set * descriptors[MAX_SETS];
struct radv_attachment_state * attachments;
VkRect2D render_area;
uint32_t index_type;
uint32_t max_index_count;
uint64_t index_va;
int32_t last_primitive_reset_en;
uint32_t last_primitive_reset_index;
enum radv_cmd_flush_bits flush_bits;
unsigned active_occlusion_queries;
float offset_scale;
uint32_t descriptors_dirty;
uint32_t trace_id;
uint32_t last_ia_multi_vgt_param;
};
struct radv_cmd_pool {
VkAllocationCallbacks alloc;
struct list_head cmd_buffers;
struct list_head free_cmd_buffers;
uint32_t queue_family_index;
};
struct radv_cmd_buffer_upload {
uint8_t *map;
unsigned offset;
uint64_t size;
struct radeon_winsys_bo *upload_bo;
struct list_head list;
};
struct radv_cmd_buffer {
VK_LOADER_DATA _loader_data;
struct radv_device * device;
struct radv_cmd_pool * pool;
struct list_head pool_link;
VkCommandBufferUsageFlags usage_flags;
VkCommandBufferLevel level;
struct radeon_winsys_cs *cs;
struct radv_cmd_state state;
uint32_t queue_family_index;
uint8_t push_constants[MAX_PUSH_CONSTANTS_SIZE];
uint32_t dynamic_buffers[4 * MAX_DYNAMIC_BUFFERS];
VkShaderStageFlags push_constant_stages;
struct radv_push_descriptor_set push_descriptors;
struct radv_descriptor_set meta_push_descriptors;
struct radv_cmd_buffer_upload upload;
uint32_t scratch_size_needed;
uint32_t compute_scratch_size_needed;
uint32_t esgs_ring_size_needed;
uint32_t gsvs_ring_size_needed;
bool tess_rings_needed;
bool sample_positions_needed;
VkResult record_result;
int ring_offsets_idx; /* just used for verification */
uint32_t gfx9_fence_offset;
struct radeon_winsys_bo *gfx9_fence_bo;
uint32_t gfx9_fence_idx;
};
struct radv_image;
bool radv_cmd_buffer_uses_mec(struct radv_cmd_buffer *cmd_buffer);
void si_init_compute(struct radv_cmd_buffer *cmd_buffer);
void si_init_config(struct radv_cmd_buffer *cmd_buffer);
void cik_create_gfx_config(struct radv_device *device);
void si_write_viewport(struct radeon_winsys_cs *cs, int first_vp,
int count, const VkViewport *viewports);
void si_write_scissors(struct radeon_winsys_cs *cs, int first,
int count, const VkRect2D *scissors,
const VkViewport *viewports, bool can_use_guardband);
uint32_t si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer,
bool instanced_draw, bool indirect_draw,
uint32_t draw_vertex_count);
void si_cs_emit_write_event_eop(struct radeon_winsys_cs *cs,
bool predicated,
enum chip_class chip_class,
bool is_mec,
unsigned event, unsigned event_flags,
unsigned data_sel,
uint64_t va,
uint32_t old_fence,
uint32_t new_fence);
void si_emit_wait_fence(struct radeon_winsys_cs *cs,
bool predicated,
uint64_t va, uint32_t ref,
uint32_t mask);
void si_cs_emit_cache_flush(struct radeon_winsys_cs *cs,
enum chip_class chip_class,
uint32_t *fence_ptr, uint64_t va,
bool is_mec,
enum radv_cmd_flush_bits flush_bits);
void si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer);
void si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer, uint64_t va);
void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer,
uint64_t src_va, uint64_t dest_va,
uint64_t size);
void si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
unsigned size);
void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
uint64_t size, unsigned value);
void radv_set_db_count_control(struct radv_cmd_buffer *cmd_buffer);
void radv_bind_descriptor_set(struct radv_cmd_buffer *cmd_buffer,
struct radv_descriptor_set *set,
unsigned idx);
bool
radv_cmd_buffer_upload_alloc(struct radv_cmd_buffer *cmd_buffer,
unsigned size,
unsigned alignment,
unsigned *out_offset,
void **ptr);
void
radv_cmd_buffer_set_subpass(struct radv_cmd_buffer *cmd_buffer,
const struct radv_subpass *subpass,
bool transitions);
bool
radv_cmd_buffer_upload_data(struct radv_cmd_buffer *cmd_buffer,
unsigned size, unsigned alignmnet,
const void *data, unsigned *out_offset);
void
radv_emit_framebuffer_state(struct radv_cmd_buffer *cmd_buffer);
void radv_cmd_buffer_clear_subpass(struct radv_cmd_buffer *cmd_buffer);
void radv_cmd_buffer_resolve_subpass(struct radv_cmd_buffer *cmd_buffer);
void radv_cmd_buffer_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer);
void radv_cmd_buffer_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer);
void radv_cayman_emit_msaa_sample_locs(struct radeon_winsys_cs *cs, int nr_samples);
unsigned radv_cayman_get_maxdist(int log_samples);
void radv_device_init_msaa(struct radv_device *device);
void radv_set_depth_clear_regs(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
VkClearDepthStencilValue ds_clear_value,
VkImageAspectFlags aspects);
void radv_set_color_clear_regs(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
int idx,
uint32_t color_values[2]);
void radv_set_dcc_need_cmask_elim_pred(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
bool value);
void radv_fill_buffer(struct radv_cmd_buffer *cmd_buffer,
struct radeon_winsys_bo *bo,
uint64_t offset, uint64_t size, uint32_t value);
void radv_cmd_buffer_trace_emit(struct radv_cmd_buffer *cmd_buffer);
bool radv_get_memory_fd(struct radv_device *device,
struct radv_device_memory *memory,
int *pFD);
VkResult radv_alloc_memory(VkDevice _device,
const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator,
enum radv_mem_flags_bits flags,
VkDeviceMemory* pMem);
/*
* Takes x,y,z as exact numbers of invocations, instead of blocks.
*
* Limitations: Can't call normal dispatch functions without binding or rebinding
* the compute pipeline.
*/
void radv_unaligned_dispatch(
struct radv_cmd_buffer *cmd_buffer,
uint32_t x,
uint32_t y,
uint32_t z);
struct radv_event {
struct radeon_winsys_bo *bo;
uint64_t *map;
};
struct radv_shader_module;
struct ac_shader_variant_key;
#define RADV_HASH_SHADER_IS_GEOM_COPY_SHADER (1 << 0)
#define RADV_HASH_SHADER_SISCHED (1 << 1)
#define RADV_HASH_SHADER_UNSAFE_MATH (1 << 2)
void
radv_hash_shaders(unsigned char *hash,
const VkPipelineShaderStageCreateInfo **stages,
const struct radv_pipeline_layout *layout,
const struct ac_shader_variant_key *keys,
uint32_t flags);
static inline gl_shader_stage
vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
{
assert(__builtin_popcount(vk_stage) == 1);
return ffs(vk_stage) - 1;
}
static inline VkShaderStageFlagBits
mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
{
return (1 << mesa_stage);
}
#define RADV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
#define radv_foreach_stage(stage, stage_bits) \
for (gl_shader_stage stage, \
__tmp = (gl_shader_stage)((stage_bits) & RADV_STAGE_MASK); \
stage = __builtin_ffs(__tmp) - 1, __tmp; \
__tmp &= ~(1 << (stage)))
struct radv_depth_stencil_state {
uint32_t db_depth_control;
uint32_t db_stencil_control;
uint32_t db_render_control;
uint32_t db_render_override2;
};
struct radv_blend_state {
uint32_t cb_color_control;
uint32_t cb_target_mask;
uint32_t sx_mrt_blend_opt[8];
uint32_t cb_blend_control[8];
uint32_t spi_shader_col_format;
uint32_t cb_shader_mask;
uint32_t db_alpha_to_mask;
};
unsigned radv_format_meta_fs_key(VkFormat format);
struct radv_raster_state {
uint32_t pa_cl_clip_cntl;
uint32_t spi_interp_control;
uint32_t pa_su_vtx_cntl;
uint32_t pa_su_sc_mode_cntl;
};
struct radv_multisample_state {
uint32_t db_eqaa;
uint32_t pa_sc_line_cntl;
uint32_t pa_sc_mode_cntl_0;
uint32_t pa_sc_mode_cntl_1;
uint32_t pa_sc_aa_config;
uint32_t pa_sc_aa_mask[2];
unsigned num_samples;
};
struct radv_prim_vertex_count {
uint8_t min;
uint8_t incr;
};
struct radv_tessellation_state {
uint32_t ls_hs_config;
uint32_t tcs_in_layout;
uint32_t tcs_out_layout;
uint32_t tcs_out_offsets;
uint32_t offchip_layout;
unsigned num_patches;
unsigned lds_size;
unsigned num_tcs_input_cp;
uint32_t tf_param;
};
struct radv_gs_state {
uint32_t vgt_gs_onchip_cntl;
uint32_t vgt_gs_max_prims_per_subgroup;
uint32_t vgt_esgs_ring_itemsize;
uint32_t lds_size;
};
struct radv_vertex_elements_info {
uint32_t rsrc_word3[MAX_VERTEX_ATTRIBS];
uint32_t format_size[MAX_VERTEX_ATTRIBS];
uint32_t binding[MAX_VERTEX_ATTRIBS];
uint32_t offset[MAX_VERTEX_ATTRIBS];
uint32_t count;
};
#define SI_GS_PER_ES 128
struct radv_pipeline {
struct radv_device * device;
uint32_t dynamic_state_mask;
struct radv_dynamic_state dynamic_state;
struct radv_pipeline_layout * layout;
bool needs_data_cache;
bool need_indirect_descriptor_sets;
struct radv_shader_variant * shaders[MESA_SHADER_STAGES];
struct radv_shader_variant *gs_copy_shader;
VkShaderStageFlags active_stages;
struct radv_vertex_elements_info vertex_elements;
uint32_t binding_stride[MAX_VBS];
union {
struct {
struct radv_blend_state blend;
struct radv_depth_stencil_state ds;
struct radv_raster_state raster;
struct radv_multisample_state ms;
struct radv_tessellation_state tess;
struct radv_gs_state gs;
uint32_t db_shader_control;
uint32_t shader_z_format;
uint32_t spi_baryc_cntl;
unsigned prim;
unsigned gs_out;
uint32_t vgt_gs_mode;
bool vgt_primitiveid_en;
bool prim_restart_enable;
bool partial_es_wave;
uint8_t primgroup_size;
unsigned esgs_ring_size;
unsigned gsvs_ring_size;
uint32_t ps_input_cntl[32];
uint32_t ps_input_cntl_num;
uint32_t pa_cl_vs_out_cntl;
uint32_t vgt_shader_stages_en;
uint32_t vtx_base_sgpr;
uint32_t base_ia_multi_vgt_param;
bool wd_switch_on_eop;
bool ia_switch_on_eoi;
bool partial_vs_wave;
uint8_t vtx_emit_num;
uint32_t vtx_reuse_depth;
struct radv_prim_vertex_count prim_vertex_count;
bool can_use_guardband;
} graphics;
};
unsigned max_waves;
unsigned scratch_bytes_per_wave;
};
static inline bool radv_pipeline_has_gs(struct radv_pipeline *pipeline)
{
return pipeline->shaders[MESA_SHADER_GEOMETRY] ? true : false;
}
static inline bool radv_pipeline_has_tess(struct radv_pipeline *pipeline)
{
return pipeline->shaders[MESA_SHADER_TESS_CTRL] ? true : false;
}
struct ac_userdata_info *radv_lookup_user_sgpr(struct radv_pipeline *pipeline,
gl_shader_stage stage,
int idx);
struct radv_shader_variant *radv_get_vertex_shader(struct radv_pipeline *pipeline);
struct radv_graphics_pipeline_create_info {
bool use_rectlist;
bool db_depth_clear;
bool db_stencil_clear;
bool db_depth_disable_expclear;
bool db_stencil_disable_expclear;
bool db_flush_depth_inplace;
bool db_flush_stencil_inplace;
bool db_resummarize;
uint32_t custom_blend_mode;
};
VkResult
radv_graphics_pipeline_create(VkDevice device,
VkPipelineCache cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *alloc,
VkPipeline *pPipeline);
struct vk_format_description;
uint32_t radv_translate_buffer_dataformat(const struct vk_format_description *desc,
int first_non_void);
uint32_t radv_translate_buffer_numformat(const struct vk_format_description *desc,
int first_non_void);
uint32_t radv_translate_colorformat(VkFormat format);
uint32_t radv_translate_color_numformat(VkFormat format,
const struct vk_format_description *desc,
int first_non_void);
uint32_t radv_colorformat_endian_swap(uint32_t colorformat);
unsigned radv_translate_colorswap(VkFormat format, bool do_endian_swap);
uint32_t radv_translate_dbformat(VkFormat format);
uint32_t radv_translate_tex_dataformat(VkFormat format,
const struct vk_format_description *desc,
int first_non_void);
uint32_t radv_translate_tex_numformat(VkFormat format,
const struct vk_format_description *desc,
int first_non_void);
bool radv_format_pack_clear_color(VkFormat format,
uint32_t clear_vals[2],
VkClearColorValue *value);
bool radv_is_colorbuffer_format_supported(VkFormat format, bool *blendable);
bool radv_dcc_formats_compatible(VkFormat format1,
VkFormat format2);
struct radv_fmask_info {
uint64_t offset;
uint64_t size;
unsigned alignment;
unsigned pitch_in_pixels;
unsigned bank_height;
unsigned slice_tile_max;
unsigned tile_mode_index;
unsigned tile_swizzle;
};
struct radv_cmask_info {
uint64_t offset;
uint64_t size;
unsigned alignment;
unsigned slice_tile_max;
unsigned base_address_reg;
};
struct radv_image {
VkImageType type;
/* The original VkFormat provided by the client. This may not match any
* of the actual surface formats.
*/
VkFormat vk_format;
VkImageAspectFlags aspects;
VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
struct ac_surf_info info;
VkImageTiling tiling; /** VkImageCreateInfo::tiling */
VkImageCreateFlags flags; /** VkImageCreateInfo::flags */
VkDeviceSize size;
uint32_t alignment;
unsigned queue_family_mask;
bool exclusive;
bool shareable;
/* Set when bound */
struct radeon_winsys_bo *bo;
VkDeviceSize offset;
uint64_t dcc_offset;
uint64_t htile_offset;
bool tc_compatible_htile;
struct radeon_surf surface;
struct radv_fmask_info fmask;
struct radv_cmask_info cmask;
uint64_t clear_value_offset;
uint64_t dcc_pred_offset;
};
/* Whether the image has a htile that is known consistent with the contents of
* the image. */
bool radv_layout_has_htile(const struct radv_image *image,
VkImageLayout layout,
unsigned queue_mask);
/* Whether the image has a htile that is known consistent with the contents of
* the image and is allowed to be in compressed form.
*
* If this is false reads that don't use the htile should be able to return
* correct results.
*/
bool radv_layout_is_htile_compressed(const struct radv_image *image,
VkImageLayout layout,
unsigned queue_mask);
bool radv_layout_can_fast_clear(const struct radv_image *image,
VkImageLayout layout,
unsigned queue_mask);
static inline bool
radv_vi_dcc_enabled(const struct radv_image *image, unsigned level)
{
return image->surface.dcc_size && level < image->surface.num_dcc_levels;
}
static inline bool
radv_htile_enabled(const struct radv_image *image, unsigned level)
{
return image->surface.htile_size && level == 0;
}
unsigned radv_image_queue_family_mask(const struct radv_image *image, uint32_t family, uint32_t queue_family);
static inline uint32_t
radv_get_layerCount(const struct radv_image *image,
const VkImageSubresourceRange *range)
{
return range->layerCount == VK_REMAINING_ARRAY_LAYERS ?
image->info.array_size - range->baseArrayLayer : range->layerCount;
}
static inline uint32_t
radv_get_levelCount(const struct radv_image *image,
const VkImageSubresourceRange *range)
{
return range->levelCount == VK_REMAINING_MIP_LEVELS ?
image->info.levels - range->baseMipLevel : range->levelCount;
}
struct radeon_bo_metadata;
void
radv_init_metadata(struct radv_device *device,
struct radv_image *image,
struct radeon_bo_metadata *metadata);
struct radv_image_view {
struct radv_image *image; /**< VkImageViewCreateInfo::image */
struct radeon_winsys_bo *bo;
VkImageViewType type;
VkImageAspectFlags aspect_mask;
VkFormat vk_format;
uint32_t base_layer;
uint32_t layer_count;
uint32_t base_mip;
uint32_t level_count;
VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
uint32_t descriptor[8];
uint32_t fmask_descriptor[8];
/* Descriptor for use as a storage image as opposed to a sampled image.
* This has a few differences for cube maps (e.g. type).
*/
uint32_t storage_descriptor[8];
uint32_t storage_fmask_descriptor[8];
};
struct radv_image_create_info {
const VkImageCreateInfo *vk_info;
bool scanout;
};
VkResult radv_image_create(VkDevice _device,
const struct radv_image_create_info *info,
const VkAllocationCallbacks* alloc,
VkImage *pImage);
void radv_image_view_init(struct radv_image_view *view,
struct radv_device *device,
const VkImageViewCreateInfo* pCreateInfo);
struct radv_buffer_view {
struct radeon_winsys_bo *bo;
VkFormat vk_format;
uint64_t range; /**< VkBufferViewCreateInfo::range */
uint32_t state[4];
};
void radv_buffer_view_init(struct radv_buffer_view *view,
struct radv_device *device,
const VkBufferViewCreateInfo* pCreateInfo);
static inline struct VkExtent3D
radv_sanitize_image_extent(const VkImageType imageType,
const struct VkExtent3D imageExtent)
{
switch (imageType) {
case VK_IMAGE_TYPE_1D:
return (VkExtent3D) { imageExtent.width, 1, 1 };
case VK_IMAGE_TYPE_2D:
return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
case VK_IMAGE_TYPE_3D:
return imageExtent;
default:
unreachable("invalid image type");
}
}
static inline struct VkOffset3D
radv_sanitize_image_offset(const VkImageType imageType,
const struct VkOffset3D imageOffset)
{
switch (imageType) {
case VK_IMAGE_TYPE_1D:
return (VkOffset3D) { imageOffset.x, 0, 0 };
case VK_IMAGE_TYPE_2D:
return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
case VK_IMAGE_TYPE_3D:
return imageOffset;
default:
unreachable("invalid image type");
}
}
static inline bool
radv_image_extent_compare(const struct radv_image *image,
const VkExtent3D *extent)
{
if (extent->width != image->info.width ||
extent->height != image->info.height ||
extent->depth != image->info.depth)
return false;
return true;
}
struct radv_sampler {
uint32_t state[4];
};
struct radv_color_buffer_info {
uint64_t cb_color_base;
uint64_t cb_color_cmask;
uint64_t cb_color_fmask;
uint64_t cb_dcc_base;
uint32_t cb_color_pitch;
uint32_t cb_color_slice;
uint32_t cb_color_view;
uint32_t cb_color_info;
uint32_t cb_color_attrib;
uint32_t cb_color_attrib2;
uint32_t cb_dcc_control;
uint32_t cb_color_cmask_slice;
uint32_t cb_color_fmask_slice;
uint32_t cb_clear_value0;
uint32_t cb_clear_value1;
uint32_t micro_tile_mode;
uint32_t gfx9_epitch;
};
struct radv_ds_buffer_info {
uint64_t db_z_read_base;
uint64_t db_stencil_read_base;
uint64_t db_z_write_base;
uint64_t db_stencil_write_base;
uint64_t db_htile_data_base;
uint32_t db_depth_info;
uint32_t db_z_info;
uint32_t db_stencil_info;
uint32_t db_depth_view;
uint32_t db_depth_size;
uint32_t db_depth_slice;
uint32_t db_htile_surface;
uint32_t pa_su_poly_offset_db_fmt_cntl;
uint32_t db_z_info2;
uint32_t db_stencil_info2;
float offset_scale;
};
struct radv_attachment_info {
union {
struct radv_color_buffer_info cb;
struct radv_ds_buffer_info ds;
};
struct radv_image_view *attachment;
};
struct radv_framebuffer {
uint32_t width;
uint32_t height;
uint32_t layers;
uint32_t attachment_count;
struct radv_attachment_info attachments[0];
};
struct radv_subpass_barrier {
VkPipelineStageFlags src_stage_mask;
VkAccessFlags src_access_mask;
VkAccessFlags dst_access_mask;
};
struct radv_subpass {
uint32_t input_count;
uint32_t color_count;
VkAttachmentReference * input_attachments;
VkAttachmentReference * color_attachments;
VkAttachmentReference * resolve_attachments;
VkAttachmentReference depth_stencil_attachment;
/** Subpass has at least one resolve attachment */
bool has_resolve;
struct radv_subpass_barrier start_barrier;
uint32_t view_mask;
};
struct radv_render_pass_attachment {
VkFormat format;
uint32_t samples;
VkAttachmentLoadOp load_op;
VkAttachmentLoadOp stencil_load_op;
VkImageLayout initial_layout;
VkImageLayout final_layout;
uint32_t view_mask;
};
struct radv_render_pass {
uint32_t attachment_count;
uint32_t subpass_count;
VkAttachmentReference * subpass_attachments;
struct radv_render_pass_attachment * attachments;
struct radv_subpass_barrier end_barrier;
struct radv_subpass subpasses[0];
};
VkResult radv_device_init_meta(struct radv_device *device);
void radv_device_finish_meta(struct radv_device *device);
struct radv_query_pool {
struct radeon_winsys_bo *bo;
uint32_t stride;
uint32_t availability_offset;
char *ptr;
VkQueryType type;
uint32_t pipeline_stats_mask;
};
struct radv_semaphore {
/* use a winsys sem for non-exportable */
struct radeon_winsys_sem *sem;
uint32_t syncobj;
uint32_t temp_syncobj;
};
VkResult radv_alloc_sem_info(struct radv_winsys_sem_info *sem_info,
int num_wait_sems,
const VkSemaphore *wait_sems,
int num_signal_sems,
const VkSemaphore *signal_sems);
void radv_free_sem_info(struct radv_winsys_sem_info *sem_info);
void
radv_update_descriptor_sets(struct radv_device *device,
struct radv_cmd_buffer *cmd_buffer,
VkDescriptorSet overrideSet,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites,
uint32_t descriptorCopyCount,
const VkCopyDescriptorSet *pDescriptorCopies);
void
radv_update_descriptor_set_with_template(struct radv_device *device,
struct radv_cmd_buffer *cmd_buffer,
struct radv_descriptor_set *set,
VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate,
const void *pData);
void radv_meta_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout,
uint32_t set,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites);
void radv_initialise_cmask(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image, uint32_t value);
void radv_initialize_dcc(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image, uint32_t value);
struct radv_fence {
struct radeon_winsys_fence *fence;
bool submitted;
bool signalled;
};
struct radeon_winsys_sem;
#define RADV_DEFINE_HANDLE_CASTS(__radv_type, __VkType) \
\
static inline struct __radv_type * \
__radv_type ## _from_handle(__VkType _handle) \
{ \
return (struct __radv_type *) _handle; \
} \
\
static inline __VkType \
__radv_type ## _to_handle(struct __radv_type *_obj) \
{ \
return (__VkType) _obj; \
}
#define RADV_DEFINE_NONDISP_HANDLE_CASTS(__radv_type, __VkType) \
\
static inline struct __radv_type * \
__radv_type ## _from_handle(__VkType _handle) \
{ \
return (struct __radv_type *)(uintptr_t) _handle; \
} \
\
static inline __VkType \
__radv_type ## _to_handle(struct __radv_type *_obj) \
{ \
return (__VkType)(uintptr_t) _obj; \
}
#define RADV_FROM_HANDLE(__radv_type, __name, __handle) \
struct __radv_type *__name = __radv_type ## _from_handle(__handle)
RADV_DEFINE_HANDLE_CASTS(radv_cmd_buffer, VkCommandBuffer)
RADV_DEFINE_HANDLE_CASTS(radv_device, VkDevice)
RADV_DEFINE_HANDLE_CASTS(radv_instance, VkInstance)
RADV_DEFINE_HANDLE_CASTS(radv_physical_device, VkPhysicalDevice)
RADV_DEFINE_HANDLE_CASTS(radv_queue, VkQueue)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_cmd_pool, VkCommandPool)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_buffer, VkBuffer)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_buffer_view, VkBufferView)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_pool, VkDescriptorPool)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_set, VkDescriptorSet)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_set_layout, VkDescriptorSetLayout)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_update_template, VkDescriptorUpdateTemplateKHR)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_device_memory, VkDeviceMemory)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_fence, VkFence)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_event, VkEvent)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_framebuffer, VkFramebuffer)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_image, VkImage)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_image_view, VkImageView);
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_pipeline_cache, VkPipelineCache)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_pipeline, VkPipeline)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_pipeline_layout, VkPipelineLayout)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_query_pool, VkQueryPool)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_render_pass, VkRenderPass)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_sampler, VkSampler)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_shader_module, VkShaderModule)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_semaphore, VkSemaphore)
#endif /* RADV_PRIVATE_H */