blob: f0f166cb64719c5c44c81f073dbefcb29cd6e2d0 [file] [log] [blame]
/* $Id: nurbsutl.c,v 1.1 1999/08/19 00:55:42 jtg Exp $ */
/*
* Mesa 3-D graphics library
* Version: 2.4
* Copyright (C) 1995-1997 Brian Paul
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* $Log: nurbsutl.c,v $
* Revision 1.1 1999/08/19 00:55:42 jtg
* Initial revision
*
* Revision 1.8 1999/06/08 00:44:51 brianp
* OpenStep updates (pete@ohm.york.ac.uk)
*
* Revision 1.7 1998/07/26 02:07:59 brianp
* updated for Windows compilation per Ted Jump
*
* Revision 1.6 1997/10/29 02:02:20 brianp
* various MS Windows compiler changes (David Bucciarelli, v20 3dfx driver)
*
* Revision 1.5 1997/07/24 01:28:44 brianp
* changed precompiled header symbol from PCH to PC_HEADER
*
* Revision 1.4 1997/05/28 02:29:38 brianp
* added support for precompiled headers (PCH), inserted APIENTRY keyword
*
* Revision 1.3 1997/05/27 03:19:54 brianp
* minor clean-up
*
* Revision 1.2 1997/05/27 03:00:16 brianp
* incorporated Bogdan's new NURBS code
*
* Revision 1.1 1996/09/27 01:19:39 brianp
* Initial revision
*
*/
/*
* NURBS implementation written by Bogdan Sikorski (bogdan@cira.it)
* See README2 for more info.
*/
#ifdef PC_HEADER
#include "all.h"
#else
#include <math.h>
#include <stdlib.h>
#include "gluP.h"
#include "nurbs.h"
#endif
GLenum
test_knot(GLint nknots, GLfloat *knot, GLint order)
{
GLsizei i;
GLint knot_mult;
GLfloat tmp_knot;
tmp_knot=knot[0];
knot_mult=1;
for(i=1;i<nknots;i++)
{
if(knot[i] < tmp_knot)
return GLU_NURBS_ERROR4;
if(fabs(tmp_knot-knot[i]) > EPSILON)
{
if(knot_mult>order)
return GLU_NURBS_ERROR5;
knot_mult=1;
tmp_knot=knot[i];
}
else
++knot_mult;
}
return GLU_NO_ERROR;
}
static int
/* qsort function */
#if defined(WIN32) && !defined(OPENSTEP)
__cdecl
#endif
knot_sort(const void *a, const void *b)
{
GLfloat x,y;
x=*((GLfloat *)a);
y=*((GLfloat *)b);
if(fabs(x-y) < EPSILON)
return 0;
if(x > y)
return 1;
return -1;
}
/* insert into dest knot all values within the valid range from src knot */
/* that do not appear in dest */
void
collect_unified_knot(knot_str_type *dest, knot_str_type *src,
GLfloat maximal_min_knot, GLfloat minimal_max_knot)
{
GLfloat *src_knot,*dest_knot;
GLint src_t_min,src_t_max,dest_t_min,dest_t_max;
GLint src_nknots,dest_nknots;
GLint i,j,k,new_cnt;
GLboolean not_found_flag;
src_knot=src->unified_knot;
dest_knot=dest->unified_knot;
src_t_min=src->t_min;
src_t_max=src->t_max;
dest_t_min=dest->t_min;
dest_t_max=dest->t_max;
src_nknots=src->unified_nknots;
dest_nknots=dest->unified_nknots;
k=new_cnt=dest_nknots;
for(i=src_t_min;i<=src_t_max;i++)
if(src_knot[i] - maximal_min_knot > -EPSILON &&
src_knot[i] - minimal_max_knot < EPSILON)
{
not_found_flag=GL_TRUE;
for(j=dest_t_min;j<=dest_t_max;j++)
if(fabs(dest_knot[j]-src_knot[i]) < EPSILON)
{
not_found_flag=GL_FALSE;
break;
}
if(not_found_flag)
{
/* knot from src is not in dest - add this knot to dest */
dest_knot[k++]=src_knot[i];
++new_cnt;
++(dest->t_max); /* the valid range widens */
++(dest->delta_nknots); /* increment the extra knot value counter */
}
}
dest->unified_nknots=new_cnt;
qsort((void *)dest_knot,(size_t)new_cnt,(size_t)sizeof(GLfloat),
&knot_sort);
}
/* basing on the new common knot range for all attributes set */
/* t_min and t_max values for each knot - they will be used later on */
/* by explode_knot() and calc_new_ctrl_pts */
static void
set_new_t_min_t_max(knot_str_type *geom_knot, knot_str_type *color_knot,
knot_str_type *normal_knot, knot_str_type *texture_knot,
GLfloat maximal_min_knot, GLfloat minimal_max_knot)
{
GLuint t_min,t_max,cnt;
if(minimal_max_knot-maximal_min_knot < EPSILON)
{
/* knot common range empty */
geom_knot->t_min=geom_knot->t_max=0;
color_knot->t_min=color_knot->t_max=0;
normal_knot->t_min=normal_knot->t_max=0;
texture_knot->t_min=texture_knot->t_max=0;
}
else
{
if(geom_knot->unified_knot!=NULL)
{
cnt=geom_knot->unified_nknots;
for(t_min=0;t_min<cnt;t_min++)
if(fabs((geom_knot->unified_knot)[t_min] - maximal_min_knot) <
EPSILON)
break;
for(t_max=cnt-1;t_max;t_max--)
if(fabs((geom_knot->unified_knot)[t_max] - minimal_max_knot) <
EPSILON)
break;
}
else
if(geom_knot->nknots)
{
cnt=geom_knot->nknots;
for(t_min=0;t_min<cnt;t_min++)
if(fabs((geom_knot->knot)[t_min] - maximal_min_knot) < EPSILON)
break;
for(t_max=cnt-1;t_max;t_max--)
if(fabs((geom_knot->knot)[t_max] - minimal_max_knot) < EPSILON)
break;
}
geom_knot->t_min=t_min;
geom_knot->t_max=t_max;
if(color_knot->unified_knot!=NULL)
{
cnt=color_knot->unified_nknots;
for(t_min=0;t_min<cnt;t_min++)
if(fabs((color_knot->unified_knot)[t_min] - maximal_min_knot) <
EPSILON)
break;
for(t_max=cnt-1;t_max;t_max--)
if(fabs((color_knot->unified_knot)[t_max] - minimal_max_knot) <
EPSILON)
break;
color_knot->t_min=t_min;
color_knot->t_max=t_max;
}
if(normal_knot->unified_knot!=NULL)
{
cnt=normal_knot->unified_nknots;
for(t_min=0;t_min<cnt;t_min++)
if(fabs((normal_knot->unified_knot)[t_min] - maximal_min_knot) <
EPSILON)
break;
for(t_max=cnt-1;t_max;t_max--)
if(fabs((normal_knot->unified_knot)[t_max] - minimal_max_knot) <
EPSILON)
break;
normal_knot->t_min=t_min;
normal_knot->t_max=t_max;
}
if(texture_knot->unified_knot!=NULL)
{
cnt=texture_knot->unified_nknots;
for(t_min=0;t_min<cnt;t_min++)
if(fabs((texture_knot->unified_knot)[t_min] - maximal_min_knot)
< EPSILON)
break;
for(t_max=cnt-1;t_max;t_max--)
if(fabs((texture_knot->unified_knot)[t_max] - minimal_max_knot)
< EPSILON)
break;
texture_knot->t_min=t_min;
texture_knot->t_max=t_max;
}
}
}
/* modify all knot valid ranges in such a way that all have the same */
/* range, common to all knots */
/* do this by knot insertion */
GLenum
select_knot_working_range(GLUnurbsObj *nobj,knot_str_type *geom_knot,
knot_str_type *color_knot, knot_str_type *normal_knot,
knot_str_type *texture_knot)
{
GLint max_nknots;
GLfloat maximal_min_knot,minimal_max_knot;
GLint i;
/* find the maximum modified knot length */
max_nknots=geom_knot->nknots;
if(color_knot->unified_knot)
max_nknots+=color_knot->nknots;
if(normal_knot->unified_knot)
max_nknots+=normal_knot->nknots;
if(texture_knot->unified_knot)
max_nknots+=texture_knot->nknots;
maximal_min_knot=(geom_knot->knot)[geom_knot->t_min];
minimal_max_knot=(geom_knot->knot)[geom_knot->t_max];
/* any attirb data ? */
if(max_nknots!=geom_knot->nknots)
{
/* allocate space for the unified knots */
if((geom_knot->unified_knot=
(GLfloat *)malloc(sizeof(GLfloat)*max_nknots))==NULL)
{
call_user_error(nobj,GLU_OUT_OF_MEMORY);
return GLU_ERROR;
}
/* copy the original knot to the unified one */
geom_knot->unified_nknots=geom_knot->nknots;
for(i=0;i<geom_knot->nknots;i++)
(geom_knot->unified_knot)[i]=(geom_knot->knot)[i];
if(color_knot->unified_knot)
{
if((color_knot->knot)[color_knot->t_min] - maximal_min_knot >
EPSILON)
maximal_min_knot=(color_knot->knot)[color_knot->t_min];
if(minimal_max_knot - (color_knot->knot)[color_knot->t_max] >
EPSILON)
minimal_max_knot=(color_knot->knot)[color_knot->t_max];
if((color_knot->unified_knot=
(GLfloat *)malloc(sizeof(GLfloat)*max_nknots))==NULL)
{
free(geom_knot->unified_knot);
call_user_error(nobj,GLU_OUT_OF_MEMORY);
return GLU_ERROR;
}
/* copy the original knot to the unified one */
color_knot->unified_nknots=color_knot->nknots;
for(i=0;i<color_knot->nknots;i++)
(color_knot->unified_knot)[i]=(color_knot->knot)[i];
}
if(normal_knot->unified_knot)
{
if((normal_knot->knot)[normal_knot->t_min] - maximal_min_knot >
EPSILON)
maximal_min_knot=(normal_knot->knot)[normal_knot->t_min];
if(minimal_max_knot - (normal_knot->knot)[normal_knot->t_max] >
EPSILON)
minimal_max_knot=(normal_knot->knot)[normal_knot->t_max];
if((normal_knot->unified_knot=
(GLfloat *)malloc(sizeof(GLfloat)*max_nknots))==NULL)
{
free(geom_knot->unified_knot);
free(color_knot->unified_knot);
call_user_error(nobj,GLU_OUT_OF_MEMORY);
return GLU_ERROR;
}
/* copy the original knot to the unified one */
normal_knot->unified_nknots=normal_knot->nknots;
for(i=0;i<normal_knot->nknots;i++)
(normal_knot->unified_knot)[i]=(normal_knot->knot)[i];
}
if(texture_knot->unified_knot)
{
if((texture_knot->knot)[texture_knot->t_min] - maximal_min_knot >
EPSILON)
maximal_min_knot=(texture_knot->knot)[texture_knot->t_min];
if(minimal_max_knot - (texture_knot->knot)[texture_knot->t_max] >
EPSILON)
minimal_max_knot=(texture_knot->knot)[texture_knot->t_max];
if((texture_knot->unified_knot=
(GLfloat *)malloc(sizeof(GLfloat)*max_nknots))==NULL)
{
free(geom_knot->unified_knot);
free(color_knot->unified_knot);
free(normal_knot->unified_knot);
call_user_error(nobj,GLU_OUT_OF_MEMORY);
return GLU_ERROR;
}
/* copy the original knot to the unified one */
texture_knot->unified_nknots=texture_knot->nknots;
for(i=0;i<texture_knot->nknots;i++)
(texture_knot->unified_knot)[i]=(texture_knot->knot)[i];
}
/* work on the geometry knot with all additional knot values */
/* appearing in attirbutive knots */
if(minimal_max_knot-maximal_min_knot < EPSILON)
{
/* empty working range */
geom_knot->unified_nknots=0;
color_knot->unified_nknots=0;
normal_knot->unified_nknots=0;
texture_knot->unified_nknots=0;
}
else
{
if(color_knot->unified_knot)
collect_unified_knot(geom_knot,color_knot,maximal_min_knot,
minimal_max_knot);
if(normal_knot->unified_knot)
collect_unified_knot(geom_knot,normal_knot,maximal_min_knot,
minimal_max_knot);
if(texture_knot->unified_knot)
collect_unified_knot(geom_knot,texture_knot,maximal_min_knot,
minimal_max_knot);
/* since we have now built the "unified" geometry knot */
/* add same knot values to all attributive knots */
if(color_knot->unified_knot)
collect_unified_knot(color_knot,geom_knot,maximal_min_knot,
minimal_max_knot);
if(normal_knot->unified_knot)
collect_unified_knot(normal_knot,geom_knot,maximal_min_knot,
minimal_max_knot);
if(texture_knot->unified_knot)
collect_unified_knot(texture_knot,geom_knot,maximal_min_knot,
minimal_max_knot);
}
}
set_new_t_min_t_max(geom_knot,color_knot,normal_knot,texture_knot,
maximal_min_knot,minimal_max_knot);
return GLU_NO_ERROR;
}
void
free_unified_knots(knot_str_type *geom_knot, knot_str_type *color_knot,
knot_str_type *normal_knot, knot_str_type *texture_knot)
{
if(geom_knot->unified_knot)
free(geom_knot->unified_knot);
if(color_knot->unified_knot)
free(color_knot->unified_knot);
if(normal_knot->unified_knot)
free(normal_knot->unified_knot);
if(texture_knot->unified_knot)
free(texture_knot->unified_knot);
}
GLenum
explode_knot(knot_str_type *the_knot)
{
GLfloat *knot,*new_knot;
GLint nknots,n_new_knots=0;
GLint t_min,t_max;
GLint ord;
GLsizei i,j,k;
GLfloat tmp_float;
if(the_knot->unified_knot)
{
knot=the_knot->unified_knot;
nknots=the_knot->unified_nknots;
}
else
{
knot=the_knot->knot;
nknots=the_knot->nknots;
}
ord=the_knot->order;
t_min=the_knot->t_min;
t_max=the_knot->t_max;
for(i=t_min;i<=t_max;)
{
tmp_float=knot[i];
for(j=0;j<ord && (i+j)<=t_max;j++)
if(fabs(tmp_float-knot[i+j])>EPSILON)
break;
n_new_knots+=ord-j;
i+=j;
}
/* alloc space for new_knot */
if((new_knot=(GLfloat *)malloc(sizeof(GLfloat)*(nknots+n_new_knots)))==NULL)
{
return GLU_OUT_OF_MEMORY;
}
/* fill in new knot */
for(j=0;j<t_min;j++)
new_knot[j]=knot[j];
for(i=j;i<=t_max;i++)
{
tmp_float=knot[i];
for(k=0;k<ord;k++)
{
new_knot[j++]=knot[i];
if(tmp_float==knot[i+1])
i++;
}
}
for(i=t_max+1;i<(int)nknots;i++)
new_knot[j++]=knot[i];
/* fill in the knot structure */
the_knot->new_knot=new_knot;
the_knot->delta_nknots+=n_new_knots;
the_knot->t_max+=n_new_knots;
return GLU_NO_ERROR;
}
GLenum
calc_alphas(knot_str_type *the_knot)
{
GLfloat tmp_float;
int i,j,k,m,n;
int order;
GLfloat *alpha,*alpha_new,*tmp_alpha;
GLfloat denom;
GLfloat *knot,*new_knot;
knot=the_knot->knot;
order=the_knot->order;
new_knot=the_knot->new_knot;
n=the_knot->nknots-the_knot->order;
m=n+the_knot->delta_nknots;
if((alpha=(GLfloat *)malloc(sizeof(GLfloat)*n*m))==NULL)
{
return GLU_OUT_OF_MEMORY;
}
if((alpha_new=(GLfloat *)malloc(sizeof(GLfloat)*n*m))==NULL)
{
free(alpha);
return GLU_OUT_OF_MEMORY;
}
for(j=0;j<m;j++)
{
for(i=0;i<n;i++)
{
if((knot[i] <= new_knot[j]) && (new_knot[j] < knot[i+1]))
tmp_float=1.0;
else
tmp_float=0.0;
alpha[i+j*n]=tmp_float;
}
}
for(k=1;k<order;k++)
{
for(j=0;j<m;j++)
for(i=0;i<n;i++)
{
denom=knot[i+k]-knot[i];
if(fabs(denom)<EPSILON)
tmp_float=0.0;
else
tmp_float=(new_knot[j+k]-knot[i])/denom*
alpha[i+j*n];
denom=knot[i+k+1]-knot[i+1];
if(fabs(denom)>EPSILON)
tmp_float+=(knot[i+k+1]-new_knot[j+k])/denom*
alpha[(i+1)+j*n];
alpha_new[i+j*n]=tmp_float;
}
tmp_alpha=alpha_new;
alpha_new=alpha;
alpha=tmp_alpha;
}
the_knot->alpha=alpha;
free(alpha_new);
return GLU_NO_ERROR;
}
GLenum
calc_new_ctrl_pts(GLfloat *ctrl,GLint stride,knot_str_type *the_knot,
GLint dim,GLfloat **new_ctrl,GLint *ncontrol)
{
GLsizei i,j,k,l,m,n;
GLsizei index1,index2;
GLfloat *alpha;
GLfloat *new_knot;
new_knot=the_knot->new_knot;
n=the_knot->nknots-the_knot->order;
alpha=the_knot->alpha;
m=the_knot->t_max+1-the_knot->t_min-the_knot->order;
k=the_knot->t_min;
/* allocate space for new control points */
if((*new_ctrl=(GLfloat *)malloc(sizeof(GLfloat)*dim*m))==NULL)
{
return GLU_OUT_OF_MEMORY;
}
for(j=0;j<m;j++)
{
for(l=0;l<dim;l++)
(*new_ctrl)[j*dim+l]=0.0;
for(i=0;i<n;i++)
{
index1=i+(j+k)*n;
index2=i*stride;
for(l=0;l<dim;l++)
(*new_ctrl)[j*dim+l]+=alpha[index1]*ctrl[index2+l];
}
}
*ncontrol=(GLint)m;
return GLU_NO_ERROR;
}
static GLint
calc_factor(GLfloat *pts,GLint order,GLint indx,GLint stride,GLfloat tolerance,
GLint dim)
{
GLdouble model[16],proj[16];
GLint viewport[4];
GLdouble x,y,z,w,winx1,winy1,winz,winx2,winy2;
GLint i;
GLdouble len,dx,dy;
glGetDoublev(GL_MODELVIEW_MATRIX,model);
glGetDoublev(GL_PROJECTION_MATRIX,proj);
glGetIntegerv(GL_VIEWPORT,viewport);
if(dim==4)
{
w=(GLdouble)pts[indx+3];
x=(GLdouble)pts[indx]/w;
y=(GLdouble)pts[indx+1]/w;
z=(GLdouble)pts[indx+2]/w;
gluProject(x,y,z,model,proj,viewport,&winx1,&winy1,&winz);
len=0.0;
for(i=1;i<order;i++)
{
w=(GLdouble)pts[indx+i*stride+3];
x=(GLdouble)pts[indx+i*stride]/w;
y=(GLdouble)pts[indx+i*stride+1]/w;
z=(GLdouble)pts[indx+i*stride+2]/w;
if(gluProject(x,y,z,model,proj,viewport,&winx2,&winy2,&winz))
{
dx=winx2-winx1;
dy=winy2-winy1;
len+=sqrt(dx*dx+dy*dy);
}
winx1=winx2; winy1=winy2;
}
}
else
{
x=(GLdouble)pts[indx];
y=(GLdouble)pts[indx+1];
if(dim==2)
z=0.0;
else
z=(GLdouble)pts[indx+2];
gluProject(x,y,z,model,proj,viewport,&winx1,&winy1,&winz);
len=0.0;
for(i=1;i<order;i++)
{
x=(GLdouble)pts[indx+i*stride];
y=(GLdouble)pts[indx+i*stride+1];
if(dim==2)
z=0.0;
else
z=(GLdouble)pts[indx+i*stride+2];
if(gluProject(x,y,z,model,proj,viewport,&winx2,&winy2,&winz))
{
dx=winx2-winx1;
dy=winy2-winy1;
len+=sqrt(dx*dx+dy*dy);
}
winx1=winx2; winy1=winy2;
}
}
len /= tolerance;
return ((GLint)len+1);
}
/* we can't use the Mesa evaluators - no way to get the point coords */
/* so we use our own Bezier point calculus routines */
/* because I'm lazy, I reuse the ones from eval.c */
static void
bezier_curve(GLfloat *cp, GLfloat *out, GLfloat t,
GLuint dim, GLuint order, GLint offset)
{
GLfloat s, powert;
GLuint i, k, bincoeff;
if(order >= 2)
{
bincoeff = order-1;
s = 1.0-t;
for(k=0; k<dim; k++)
out[k] = s*cp[k] + bincoeff*t*cp[offset+k];
for(i=2, cp+=2*offset, powert=t*t; i<order; i++, powert*=t, cp +=offset)
{
bincoeff *= order-i;
bincoeff /= i;
for(k=0; k<dim; k++)
out[k] = s*out[k] + bincoeff*powert*cp[k];
}
}
else /* order=1 -> constant curve */
{
for(k=0; k<dim; k++)
out[k] = cp[k];
}
}
static GLint
calc_parametric_factor(GLfloat *pts,GLint order,GLint indx,GLint stride,
GLfloat tolerance,GLint dim)
{
GLdouble model[16],proj[16];
GLint viewport[4];
GLdouble x,y,z,w,x1,y1,z1,x2,y2,z2,x3,y3,z3;
GLint i;
GLint P;
GLfloat bez_pt[4];
GLdouble len=0.0,tmp,z_med;
P = 2*(order+2);
glGetDoublev(GL_MODELVIEW_MATRIX,model);
glGetDoublev(GL_PROJECTION_MATRIX,proj);
glGetIntegerv(GL_VIEWPORT,viewport);
z_med = (viewport[2] + viewport[3]) * 0.5;
switch(dim)
{
case 4:
for(i=1;i<P;i++)
{
bezier_curve(pts+indx, bez_pt, (GLfloat)i/(GLfloat)P, 4,
order,stride);
w = (GLdouble)bez_pt[3];
x = (GLdouble)bez_pt[0] / w;
y = (GLdouble)bez_pt[1] / w;
z = (GLdouble)bez_pt[2] / w;
gluProject(x,y,z,model,proj,viewport,&x3,&y3,&z3);
z3 *= z_med;
bezier_curve(pts+indx, bez_pt, (GLfloat)(i-1)/(GLfloat)P, 4,
order,stride);
w = (GLdouble)bez_pt[3];
x = (GLdouble)bez_pt[0] / w;
y = (GLdouble)bez_pt[1] / w;
z = (GLdouble)bez_pt[2] / w;
gluProject(x,y,z,model,proj,viewport,&x1,&y1,&z1);
z1 *= z_med;
bezier_curve(pts+indx, bez_pt, (GLfloat)(i+1)/(GLfloat)P, 4,
order,stride);
w = (GLdouble)bez_pt[3];
x = (GLdouble)bez_pt[0] / w;
y = (GLdouble)bez_pt[1] / w;
z = (GLdouble)bez_pt[2] / w;
gluProject(x,y,z,model,proj,viewport,&x2,&y2,&z2);
z2 *= z_med;
/* calc distance between point (x3,y3,z3) and line segment */
/* <x1,y1,z1><x2,y2,z2> */
x = x2-x1;
y = y2-y1;
z = z2-z1;
tmp = sqrt(x*x+y*y+z*z);
x /= tmp;
y /= tmp;
z /= tmp;
tmp = x3*x+y3*y+z3*z-x1*x-y1*y-z1*z;
x = x1+x*tmp-x3;
y = y1+y*tmp-y3;
z = z1+z*tmp-z3;
tmp = sqrt(x*x+y*y+z*z);
if(tmp > len)
len = tmp;
}
break;
case 3:
for(i=1;i<P;i++)
{
bezier_curve(pts+indx, bez_pt, (GLfloat)i/(GLfloat)P, 3,
order,stride);
x = (GLdouble)bez_pt[0];
y = (GLdouble)bez_pt[1];
z = (GLdouble)bez_pt[2];
gluProject(x,y,z,model,proj,viewport,&x3,&y3,&z3);
z3 *= z_med;
bezier_curve(pts+indx, bez_pt, (GLfloat)(i-1)/(GLfloat)P, 3,
order,stride);
x = (GLdouble)bez_pt[0];
y = (GLdouble)bez_pt[1];
z = (GLdouble)bez_pt[2];
gluProject(x,y,z,model,proj,viewport,&x1,&y1,&z1);
z1 *= z_med;
bezier_curve(pts+indx, bez_pt, (GLfloat)(i+1)/(GLfloat)P, 3,
order,stride);
x = (GLdouble)bez_pt[0];
y = (GLdouble)bez_pt[1];
z = (GLdouble)bez_pt[2];
gluProject(x,y,z,model,proj,viewport,&x2,&y2,&z2);
z2 *= z_med;
/* calc distance between point (x3,y3,z3) and line segment */
/* <x1,y1,z1><x2,y2,z2> */
x = x2-x1;
y = y2-y1;
z = z2-z1;
tmp = sqrt(x*x+y*y+z*z);
x /= tmp;
y /= tmp;
z /= tmp;
tmp = x3*x+y3*y+z3*z-x1*x-y1*y-z1*z;
x = x1+x*tmp-x3;
y = y1+y*tmp-y3;
z = z1+z*tmp-z3;
tmp = sqrt(x*x+y*y+z*z);
if(tmp > len)
len = tmp;
}
break;
case 2:
for(i=1;i<P;i++)
{
bezier_curve(pts+indx, bez_pt, (GLfloat)i/(GLfloat)P, 2,
order,stride);
x = (GLdouble)bez_pt[0];
y = (GLdouble)bez_pt[1];
z = 0.0;
gluProject(x,y,z,model,proj,viewport,&x3,&y3,&z3);
z3 *= z_med;
bezier_curve(pts+indx, bez_pt, (GLfloat)(i-1)/(GLfloat)P, 2,
order,stride);
x = (GLdouble)bez_pt[0];
y = (GLdouble)bez_pt[1];
z = 0.0;
gluProject(x,y,z,model,proj,viewport,&x1,&y1,&z1);
z1 *= z_med;
bezier_curve(pts+indx, bez_pt, (GLfloat)(i+1)/(GLfloat)P, 2,
order,stride);
x = (GLdouble)bez_pt[0];
y = (GLdouble)bez_pt[1];
z = 0.0;
gluProject(x,y,z,model,proj,viewport,&x2,&y2,&z2);
z2 *= z_med;
/* calc distance between point (x3,y3,z3) and line segment */
/* <x1,y1,z1><x2,y2,z2> */
x = x2-x1;
y = y2-y1;
z = z2-z1;
tmp = sqrt(x*x+y*y+z*z);
x /= tmp;
y /= tmp;
z /= tmp;
tmp = x3*x+y3*y+z3*z-x1*x-y1*y-z1*z;
x = x1+x*tmp-x3;
y = y1+y*tmp-y3;
z = z1+z*tmp-z3;
tmp = sqrt(x*x+y*y+z*z);
if(tmp > len)
len = tmp;
}
break;
}
if(len < tolerance)
return (order);
else
return (GLint)(sqrt(len/tolerance)*(order+2)+1);
}
static GLenum
calc_sampling_3D(new_ctrl_type *new_ctrl, GLfloat tolerance, GLint dim,
GLint uorder, GLint vorder, GLint **ufactors, GLint **vfactors)
{
GLfloat *ctrl;
GLint tmp_factor1,tmp_factor2;
GLint ufactor_cnt,vfactor_cnt;
GLint offset1,offset2,offset3;
GLint i,j;
ufactor_cnt=new_ctrl->s_bezier_cnt;
vfactor_cnt=new_ctrl->t_bezier_cnt;
if((*ufactors=(GLint *)malloc(sizeof(GLint)*ufactor_cnt*3))
==NULL)
{
return GLU_OUT_OF_MEMORY;
}
if((*vfactors=(GLint *)malloc(sizeof(GLint)*vfactor_cnt*3))
==NULL)
{
free(*ufactors);
return GLU_OUT_OF_MEMORY;
}
ctrl=new_ctrl->geom_ctrl;
offset1=new_ctrl->geom_t_stride*vorder;
offset2=new_ctrl->geom_s_stride*uorder;
for(j=0;j<vfactor_cnt;j++)
{
*(*vfactors+j*3+1)=tmp_factor1=calc_factor(ctrl,vorder,
j*offset1,dim,tolerance,dim);
/* loop ufactor_cnt-1 times */
for(i=1;i<ufactor_cnt;i++)
{
tmp_factor2=calc_factor(ctrl,vorder,
j*offset1+i*offset2,dim,tolerance,dim);
if(tmp_factor2>tmp_factor1)
tmp_factor1=tmp_factor2;
}
/* last time for the opposite edge */
*(*vfactors+j*3+2)=tmp_factor2=calc_factor(ctrl,vorder,
j*offset1+i*offset2-new_ctrl->geom_s_stride,
dim,tolerance,dim);
if(tmp_factor2>tmp_factor1)
*(*vfactors+j*3)=tmp_factor2;
else
*(*vfactors+j*3)=tmp_factor1;
}
offset3=new_ctrl->geom_s_stride;
offset2=new_ctrl->geom_s_stride*uorder;
for(j=0;j<ufactor_cnt;j++)
{
*(*ufactors+j*3+1)=tmp_factor1=calc_factor(ctrl,uorder,
j*offset2,offset3,tolerance,dim);
/* loop vfactor_cnt-1 times */
for(i=1;i<vfactor_cnt;i++)
{
tmp_factor2=calc_factor(ctrl,uorder,
j*offset2+i*offset1,offset3,tolerance,dim);
if(tmp_factor2>tmp_factor1)
tmp_factor1=tmp_factor2;
}
/* last time for the opposite edge */
*(*ufactors+j*3+2)=tmp_factor2=calc_factor(ctrl,uorder,
j*offset2+i*offset1-new_ctrl->geom_t_stride,
offset3,tolerance,dim);
if(tmp_factor2>tmp_factor1)
*(*ufactors+j*3)=tmp_factor2;
else
*(*ufactors+j*3)=tmp_factor1;
}
return GL_NO_ERROR;
}
static GLenum
calc_sampling_param_3D(new_ctrl_type *new_ctrl, GLfloat tolerance, GLint dim,
GLint uorder, GLint vorder, GLint **ufactors, GLint **vfactors)
{
GLfloat *ctrl;
GLint tmp_factor1,tmp_factor2;
GLint ufactor_cnt,vfactor_cnt;
GLint offset1,offset2,offset3;
GLint i,j;
ufactor_cnt=new_ctrl->s_bezier_cnt;
vfactor_cnt=new_ctrl->t_bezier_cnt;
if((*ufactors=(GLint *)malloc(sizeof(GLint)*ufactor_cnt*3))
==NULL)
{
return GLU_OUT_OF_MEMORY;
}
if((*vfactors=(GLint *)malloc(sizeof(GLint)*vfactor_cnt*3))
==NULL)
{
free(*ufactors);
return GLU_OUT_OF_MEMORY;
}
ctrl=new_ctrl->geom_ctrl;
offset1=new_ctrl->geom_t_stride*vorder;
offset2=new_ctrl->geom_s_stride*uorder;
for(j=0;j<vfactor_cnt;j++)
{
*(*vfactors+j*3+1)=tmp_factor1=calc_parametric_factor(ctrl,vorder,
j*offset1,dim,tolerance,dim);
/* loop ufactor_cnt-1 times */
for(i=1;i<ufactor_cnt;i++)
{
tmp_factor2=calc_parametric_factor(ctrl,vorder,
j*offset1+i*offset2,dim,tolerance,dim);
if(tmp_factor2>tmp_factor1)
tmp_factor1=tmp_factor2;
}
/* last time for the opposite edge */
*(*vfactors+j*3+2)=tmp_factor2=calc_parametric_factor(ctrl,vorder,
j*offset1+i*offset2-new_ctrl->geom_s_stride,
dim,tolerance,dim);
if(tmp_factor2>tmp_factor1)
*(*vfactors+j*3)=tmp_factor2;
else
*(*vfactors+j*3)=tmp_factor1;
}
offset3=new_ctrl->geom_s_stride;
offset2=new_ctrl->geom_s_stride*uorder;
for(j=0;j<ufactor_cnt;j++)
{
*(*ufactors+j*3+1)=tmp_factor1=calc_parametric_factor(ctrl,uorder,
j*offset2,offset3,tolerance,dim);
/* loop vfactor_cnt-1 times */
for(i=1;i<vfactor_cnt;i++)
{
tmp_factor2=calc_parametric_factor(ctrl,uorder,
j*offset2+i*offset1,offset3,tolerance,dim);
if(tmp_factor2>tmp_factor1)
tmp_factor1=tmp_factor2;
}
/* last time for the opposite edge */
*(*ufactors+j*3+2)=tmp_factor2=calc_parametric_factor(ctrl,uorder,
j*offset2+i*offset1-new_ctrl->geom_t_stride,
offset3,tolerance,dim);
if(tmp_factor2>tmp_factor1)
*(*ufactors+j*3)=tmp_factor2;
else
*(*ufactors+j*3)=tmp_factor1;
}
return GL_NO_ERROR;
}
static GLenum
calc_sampling_2D(GLfloat *ctrl, GLint cnt, GLint order,
GLfloat tolerance, GLint dim, GLint **factors)
{
GLint factor_cnt;
GLint tmp_factor;
GLint offset;
GLint i;
factor_cnt=cnt/order;
if((*factors=(GLint *)malloc(sizeof(GLint)*factor_cnt))==NULL)
{
return GLU_OUT_OF_MEMORY;
}
offset=order*dim;
for(i=0;i<factor_cnt;i++)
{
tmp_factor=calc_factor(ctrl,order,i*offset,dim,tolerance,dim);
if(tmp_factor == 0)
(*factors)[i]=1;
else
(*factors)[i]=tmp_factor;
}
return GL_NO_ERROR;
}
static void
set_sampling_and_culling( GLUnurbsObj *nobj )
{
if(nobj->auto_load_matrix==GL_FALSE)
{
GLint i;
GLfloat m[4];
glPushAttrib( (GLbitfield) (GL_VIEWPORT_BIT | GL_TRANSFORM_BIT));
for(i=0;i<4;i++)
m[i]=nobj->sampling_matrices.viewport[i];
glViewport(m[0],m[1],m[2],m[3]);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadMatrixf(nobj->sampling_matrices.proj);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadMatrixf(nobj->sampling_matrices.model);
}
}
static void
revert_sampling_and_culling( GLUnurbsObj *nobj )
{
if(nobj->auto_load_matrix==GL_FALSE)
{
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glPopAttrib();
}
}
GLenum
glu_do_sampling_3D( GLUnurbsObj *nobj, new_ctrl_type *new_ctrl,
GLint **sfactors, GLint **tfactors)
{
GLint dim;
GLenum err;
*sfactors=NULL;
*tfactors=NULL;
dim=nobj->surface.geom.dim;
set_sampling_and_culling(nobj);
if((err=calc_sampling_3D(new_ctrl,nobj->sampling_tolerance,dim,
nobj->surface.geom.sorder,nobj->surface.geom.torder,
sfactors,tfactors))==GLU_ERROR)
{
revert_sampling_and_culling(nobj);
call_user_error(nobj,err);
return GLU_ERROR;
}
revert_sampling_and_culling(nobj);
return GLU_NO_ERROR;
}
GLenum
glu_do_sampling_uv( GLUnurbsObj *nobj, new_ctrl_type *new_ctrl,
GLint **sfactors, GLint **tfactors)
{
GLint s_cnt, t_cnt, i;
GLint u_steps, v_steps;
s_cnt = new_ctrl->s_bezier_cnt;
t_cnt = new_ctrl->t_bezier_cnt;
*sfactors=NULL;
*tfactors=NULL;
if((*sfactors=(GLint *)malloc(sizeof(GLint)*s_cnt*3))
==NULL)
{
return GLU_OUT_OF_MEMORY;
}
if((*tfactors=(GLint *)malloc(sizeof(GLint)*t_cnt*3))
==NULL)
{
free(*sfactors);
return GLU_OUT_OF_MEMORY;
}
u_steps = nobj->u_step;
v_steps = nobj->v_step;
for(i=0; i<s_cnt; i++)
{
*(*sfactors+i*3) = u_steps;
*(*sfactors+i*3+1) = u_steps;
*(*sfactors+i*3+2) = u_steps;
}
for(i=0; i<t_cnt; i++)
{
*(*tfactors+i*3) = v_steps;
*(*tfactors+i*3+1) = v_steps;
*(*tfactors+i*3+2) = v_steps;
}
return GLU_NO_ERROR;
}
GLenum
glu_do_sampling_param_3D( GLUnurbsObj *nobj, new_ctrl_type *new_ctrl,
GLint **sfactors, GLint **tfactors)
{
GLint dim;
GLenum err;
*sfactors=NULL;
*tfactors=NULL;
dim=nobj->surface.geom.dim;
set_sampling_and_culling(nobj);
if((err=calc_sampling_param_3D(new_ctrl,nobj->parametric_tolerance,dim,
nobj->surface.geom.sorder,nobj->surface.geom.torder,
sfactors,tfactors))==GLU_ERROR)
{
revert_sampling_and_culling(nobj);
call_user_error(nobj,err);
return GLU_ERROR;
}
revert_sampling_and_culling(nobj);
return GLU_NO_ERROR;
}
GLenum
glu_do_sampling_2D( GLUnurbsObj *nobj, GLfloat *ctrl, GLint cnt, GLint order,
GLint dim, GLint **factors)
{
GLenum err;
set_sampling_and_culling(nobj);
err=calc_sampling_2D(ctrl,cnt,order,nobj->sampling_tolerance,dim,
factors);
revert_sampling_and_culling(nobj);
return err;
}
GLenum
glu_do_sampling_u( GLUnurbsObj *nobj, GLfloat *ctrl, GLint cnt, GLint order,
GLint dim, GLint **factors)
{
GLint i;
GLint u_steps;
cnt /= order;
if((*factors=(GLint *)malloc(sizeof(GLint)*cnt))
==NULL)
{
return GLU_OUT_OF_MEMORY;
}
u_steps = nobj->u_step;
for(i=0; i<cnt; i++)
(*factors)[i] = u_steps;
return GLU_NO_ERROR;
}
GLenum
glu_do_sampling_param_2D( GLUnurbsObj *nobj, GLfloat *ctrl, GLint cnt,
GLint order, GLint dim, GLint **factors)
{
GLint i;
GLint u_steps;
GLfloat tolerance;
set_sampling_and_culling(nobj);
tolerance = nobj->parametric_tolerance;
cnt /= order;
if((*factors=(GLint *)malloc(sizeof(GLint)*cnt))
==NULL)
{
revert_sampling_and_culling(nobj);
return GLU_OUT_OF_MEMORY;
}
u_steps = nobj->u_step;
for(i=0; i<cnt; i++)
{
(*factors)[i] = calc_parametric_factor(ctrl,order,0,
dim,tolerance,dim);
}
revert_sampling_and_culling(nobj);
return GLU_NO_ERROR;
}
GLenum
glu_do_sampling_crv( GLUnurbsObj *nobj, GLfloat *ctrl, GLint cnt, GLint order,
GLint dim, GLint **factors)
{
GLenum err;
*factors=NULL;
switch(nobj->sampling_method)
{
case GLU_PATH_LENGTH:
if((err=glu_do_sampling_2D(nobj,ctrl,cnt,order,dim,factors))!=
GLU_NO_ERROR)
{
call_user_error(nobj,err);
return GLU_ERROR;
}
break;
case GLU_DOMAIN_DISTANCE:
if((err=glu_do_sampling_u(nobj,ctrl,cnt,order,dim,factors))!=
GLU_NO_ERROR)
{
call_user_error(nobj,err);
return GLU_ERROR;
}
break;
case GLU_PARAMETRIC_ERROR:
if((err=glu_do_sampling_param_2D(nobj,ctrl,cnt,order,dim,factors))!=
GLU_NO_ERROR)
{
call_user_error(nobj,err);
return GLU_ERROR;
}
break;
default:
abort();
}
return GLU_NO_ERROR;
}
/* TODO - i don't like this culling - this one just tests if at least one */
/* ctrl point lies within the viewport . Also the point_in_viewport() */
/* should be included in the fnctions for efficiency reasons */
static GLboolean
point_in_viewport(GLfloat *pt, GLint dim)
{
GLdouble model[16],proj[16];
GLint viewport[4];
GLdouble x,y,z,w,winx,winy,winz;
glGetDoublev(GL_MODELVIEW_MATRIX,model);
glGetDoublev(GL_PROJECTION_MATRIX,proj);
glGetIntegerv(GL_VIEWPORT,viewport);
if(dim==3)
{
x=(GLdouble)pt[0];
y=(GLdouble)pt[1];
z=(GLdouble)pt[2];
gluProject(x,y,z,model,proj,viewport,&winx,&winy,&winz);
}
else
{
w=(GLdouble)pt[3];
x=(GLdouble)pt[0]/w;
y=(GLdouble)pt[1]/w;
z=(GLdouble)pt[2]/w;
gluProject(x,y,z,model,proj,viewport,&winx,&winy,&winz);
}
if((GLint)winx >= viewport[0] && (GLint)winx < viewport[2] &&
(GLint)winy >= viewport[1] && (GLint)winy < viewport[3])
return GL_TRUE;
return GL_FALSE;
}
GLboolean
fine_culling_test_3D(GLUnurbsObj *nobj,GLfloat *pts,GLint s_cnt,GLint t_cnt,
GLint s_stride,GLint t_stride, GLint dim)
{
GLint i,j;
if(nobj->culling==GL_FALSE)
return GL_FALSE;
set_sampling_and_culling(nobj);
if(dim==3)
{
for(i=0;i<s_cnt;i++)
for(j=0;j<t_cnt;j++)
if(point_in_viewport(pts+i*s_stride+j*t_stride,dim))
{
revert_sampling_and_culling(nobj);
return GL_FALSE;
}
}
else
{
for(i=0;i<s_cnt;i++)
for(j=0;j<t_cnt;j++)
if(point_in_viewport(pts+i*s_stride+j*t_stride,dim))
{
revert_sampling_and_culling(nobj);
return GL_FALSE;
}
}
revert_sampling_and_culling(nobj);
return GL_TRUE;
}
/*GLboolean
fine_culling_test_3D(GLUnurbsObj *nobj,GLfloat *pts,GLint s_cnt,GLint t_cnt,
GLint s_stride,GLint t_stride, GLint dim)
{
GLint visible_cnt;
GLfloat feedback_buffer[5];
GLsizei buffer_size;
GLint i,j;
if(nobj->culling==GL_FALSE)
return GL_FALSE;
buffer_size=5;
set_sampling_and_culling(nobj);
glFeedbackBuffer(buffer_size,GL_2D,feedback_buffer);
glRenderMode(GL_FEEDBACK);
if(dim==3)
{
for(i=0;i<s_cnt;i++)
{
glBegin(GL_LINE_LOOP);
for(j=0;j<t_cnt;j++)
glVertex3fv(pts+i*s_stride+j*t_stride);
glEnd();
}
for(j=0;j<t_cnt;j++)
{
glBegin(GL_LINE_LOOP);
for(i=0;i<s_cnt;i++)
glVertex3fv(pts+i*s_stride+j*t_stride);
glEnd();
}
}
else
{
for(i=0;i<s_cnt;i++)
{
glBegin(GL_LINE_LOOP);
for(j=0;j<t_cnt;j++)
glVertex4fv(pts+i*s_stride+j*t_stride);
glEnd();
}
for(j=0;j<t_cnt;j++)
{
glBegin(GL_LINE_LOOP);
for(i=0;i<s_cnt;i++)
glVertex4fv(pts+i*s_stride+j*t_stride);
glEnd();
}
}
visible_cnt=glRenderMode(GL_RENDER);
revert_sampling_and_culling(nobj);
return (GLboolean)(visible_cnt==0);
}*/
GLboolean
fine_culling_test_2D(GLUnurbsObj *nobj,GLfloat *pts,GLint cnt,
GLint stride, GLint dim)
{
GLint i;
if(nobj->culling==GL_FALSE)
return GL_FALSE;
set_sampling_and_culling(nobj);
if(dim==3)
{
for(i=0;i<cnt;i++)
if(point_in_viewport(pts+i*stride,dim))
{
revert_sampling_and_culling(nobj);
return GL_FALSE;
}
}
else
{
for(i=0;i<cnt;i++)
if(point_in_viewport(pts+i*stride,dim))
{
revert_sampling_and_culling(nobj);
return GL_FALSE;
}
}
revert_sampling_and_culling(nobj);
return GL_TRUE;
}
/*GLboolean
fine_culling_test_2D(GLUnurbsObj *nobj,GLfloat *pts,GLint cnt,
GLint stride, GLint dim)
{
GLint visible_cnt;
GLfloat feedback_buffer[5];
GLsizei buffer_size;
GLint i;
if(nobj->culling==GL_FALSE)
return GL_FALSE;
buffer_size=5;
set_sampling_and_culling(nobj);
glFeedbackBuffer(buffer_size,GL_2D,feedback_buffer);
glRenderMode(GL_FEEDBACK);
glBegin(GL_LINE_LOOP);
if(dim==3)
{
for(i=0;i<cnt;i++)
glVertex3fv(pts+i*stride);
}
else
{
for(i=0;i<cnt;i++)
glVertex4fv(pts+i*stride);
}
glEnd();
visible_cnt=glRenderMode(GL_RENDER);
revert_sampling_and_culling(nobj);
return (GLboolean)(visible_cnt==0);
}*/