blob: 76b7dddc6cdfff8f5a556795da4e34981a400f6d [file] [log] [blame]
/*
* Copyright © 2019 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <algorithm>
#include "aco_ir.h"
#include <stack>
namespace aco {
namespace {
struct NOP_ctx_gfx8_9 {
enum chip_class chip_class;
unsigned vcc_physical;
/* just initialize these with something less than max NOPs */
int VALU_wrexec = -10;
int VALU_wrvcc = -10;
int VALU_wrsgpr = -10;
NOP_ctx_gfx8_9(Program* program) : chip_class(program->chip_class) {
vcc_physical = program->config->num_sgprs - 2;
}
};
struct NOP_ctx_gfx10 {
bool has_VOPC = false;
bool has_nonVALU_exec_read = false;
bool has_VMEM = false;
bool has_branch_after_VMEM = false;
bool has_DS = false;
bool has_branch_after_DS = false;
std::bitset<128> sgprs_read_by_VMEM;
std::bitset<128> sgprs_read_by_SMEM;
void join(const NOP_ctx_gfx10 &other) {
has_VOPC |= other.has_VOPC;
has_nonVALU_exec_read |= other.has_nonVALU_exec_read;
has_VMEM |= other.has_VMEM;
has_branch_after_VMEM |= other.has_branch_after_VMEM;
has_DS |= other.has_DS;
has_branch_after_DS |= other.has_branch_after_DS;
sgprs_read_by_VMEM |= other.sgprs_read_by_VMEM;
sgprs_read_by_SMEM |= other.sgprs_read_by_SMEM;
}
bool operator==(const NOP_ctx_gfx10 &other)
{
return
has_VOPC == other.has_VOPC &&
has_nonVALU_exec_read == other.has_nonVALU_exec_read &&
has_VMEM == other.has_VMEM &&
has_branch_after_VMEM == other.has_branch_after_VMEM &&
has_DS == other.has_DS &&
has_branch_after_DS == other.has_branch_after_DS &&
sgprs_read_by_VMEM == other.sgprs_read_by_VMEM &&
sgprs_read_by_SMEM == other.sgprs_read_by_SMEM;
}
};
template <std::size_t N>
bool check_written_regs(const aco_ptr<Instruction> &instr, const std::bitset<N> &check_regs)
{
return std::any_of(instr->definitions.begin(), instr->definitions.end(), [&check_regs](const Definition &def) -> bool {
bool writes_any = false;
for (unsigned i = 0; i < def.size(); i++) {
unsigned def_reg = def.physReg() + i;
writes_any |= def_reg < check_regs.size() && check_regs[def_reg];
}
return writes_any;
});
}
template <std::size_t N>
void mark_read_regs(const aco_ptr<Instruction> &instr, std::bitset<N> &reg_reads)
{
for (const Operand &op : instr->operands) {
for (unsigned i = 0; i < op.size(); i++) {
unsigned reg = op.physReg() + i;
if (reg < reg_reads.size())
reg_reads.set(reg);
}
}
}
bool VALU_writes_sgpr(aco_ptr<Instruction>& instr)
{
if ((uint32_t) instr->format & (uint32_t) Format::VOPC)
return true;
if (instr->isVOP3() && instr->definitions.size() == 2)
return true;
if (instr->opcode == aco_opcode::v_readfirstlane_b32 || instr->opcode == aco_opcode::v_readlane_b32)
return true;
return false;
}
bool instr_reads_exec(const aco_ptr<Instruction>& instr)
{
return std::any_of(instr->operands.begin(), instr->operands.end(), [](const Operand &op) -> bool {
return op.physReg() == exec_lo || op.physReg() == exec_hi;
});
}
bool instr_writes_exec(const aco_ptr<Instruction>& instr)
{
return std::any_of(instr->definitions.begin(), instr->definitions.end(), [](const Definition &def) -> bool {
return def.physReg() == exec_lo || def.physReg() == exec_hi;
});
}
bool instr_writes_sgpr(const aco_ptr<Instruction>& instr)
{
return std::any_of(instr->definitions.begin(), instr->definitions.end(), [](const Definition &def) -> bool {
return def.getTemp().type() == RegType::sgpr;
});
}
inline bool instr_is_branch(const aco_ptr<Instruction>& instr)
{
return instr->opcode == aco_opcode::s_branch ||
instr->opcode == aco_opcode::s_cbranch_scc0 ||
instr->opcode == aco_opcode::s_cbranch_scc1 ||
instr->opcode == aco_opcode::s_cbranch_vccz ||
instr->opcode == aco_opcode::s_cbranch_vccnz ||
instr->opcode == aco_opcode::s_cbranch_execz ||
instr->opcode == aco_opcode::s_cbranch_execnz ||
instr->opcode == aco_opcode::s_cbranch_cdbgsys ||
instr->opcode == aco_opcode::s_cbranch_cdbguser ||
instr->opcode == aco_opcode::s_cbranch_cdbgsys_or_user ||
instr->opcode == aco_opcode::s_cbranch_cdbgsys_and_user ||
instr->opcode == aco_opcode::s_subvector_loop_begin ||
instr->opcode == aco_opcode::s_subvector_loop_end ||
instr->opcode == aco_opcode::s_setpc_b64 ||
instr->opcode == aco_opcode::s_swappc_b64 ||
instr->opcode == aco_opcode::s_getpc_b64 ||
instr->opcode == aco_opcode::s_call_b64;
}
bool regs_intersect(PhysReg a_reg, unsigned a_size, PhysReg b_reg, unsigned b_size)
{
return a_reg > b_reg ?
(a_reg - b_reg < b_size) :
(b_reg - a_reg < a_size);
}
unsigned handle_SMEM_clause(aco_ptr<Instruction>& instr, int new_idx,
std::vector<aco_ptr<Instruction>>& new_instructions)
{
//TODO: s_dcache_inv needs to be in it's own group on GFX10 (and previous versions?)
const bool is_store = instr->definitions.empty();
for (int pred_idx = new_idx - 1; pred_idx >= 0; pred_idx--) {
aco_ptr<Instruction>& pred = new_instructions[pred_idx];
if (pred->format != Format::SMEM)
break;
/* Don't allow clauses with store instructions since the clause's
* instructions may use the same address. */
if (is_store || pred->definitions.empty())
return 1;
Definition& instr_def = instr->definitions[0];
Definition& pred_def = pred->definitions[0];
/* ISA reference doesn't say anything about this, but best to be safe */
if (regs_intersect(instr_def.physReg(), instr_def.size(), pred_def.physReg(), pred_def.size()))
return 1;
for (const Operand& op : pred->operands) {
if (op.isConstant() || !op.isFixed())
continue;
if (regs_intersect(instr_def.physReg(), instr_def.size(), op.physReg(), op.size()))
return 1;
}
for (const Operand& op : instr->operands) {
if (op.isConstant() || !op.isFixed())
continue;
if (regs_intersect(pred_def.physReg(), pred_def.size(), op.physReg(), op.size()))
return 1;
}
}
return 0;
}
int handle_instruction_gfx8_9(NOP_ctx_gfx8_9& ctx, aco_ptr<Instruction>& instr,
std::vector<aco_ptr<Instruction>>& old_instructions,
std::vector<aco_ptr<Instruction>>& new_instructions)
{
int new_idx = new_instructions.size();
// TODO: setreg / getreg / m0 writes
// TODO: try to schedule the NOP-causing instruction up to reduce the number of stall cycles
/* break off from prevous SMEM clause if needed */
if (instr->format == Format::SMEM && ctx.chip_class >= GFX8) {
return handle_SMEM_clause(instr, new_idx, new_instructions);
} else if (instr->isVALU() || instr->format == Format::VINTRP) {
int NOPs = 0;
if (instr->isDPP()) {
/* VALU does not forward EXEC to DPP. */
if (ctx.VALU_wrexec + 5 >= new_idx)
NOPs = 5 + ctx.VALU_wrexec - new_idx + 1;
/* VALU DPP reads VGPR written by VALU */
for (int pred_idx = new_idx - 1; pred_idx >= 0 && pred_idx >= new_idx - 2; pred_idx--) {
aco_ptr<Instruction>& pred = new_instructions[pred_idx];
if ((pred->isVALU() || pred->format == Format::VINTRP) &&
!pred->definitions.empty() &&
pred->definitions[0].physReg() == instr->operands[0].physReg()) {
NOPs = std::max(NOPs, 2 + pred_idx - new_idx + 1);
break;
}
}
}
/* SALU writes M0 */
if (instr->format == Format::VINTRP && new_idx > 0 && ctx.chip_class >= GFX9) {
aco_ptr<Instruction>& pred = new_instructions.back();
if (pred->isSALU() &&
!pred->definitions.empty() &&
pred->definitions[0].physReg() == m0)
NOPs = std::max(NOPs, 1);
}
for (const Operand& op : instr->operands) {
/* VALU which uses VCCZ */
if (op.physReg() == PhysReg{251} &&
ctx.VALU_wrvcc + 5 >= new_idx)
NOPs = std::max(NOPs, 5 + ctx.VALU_wrvcc - new_idx + 1);
/* VALU which uses EXECZ */
if (op.physReg() == PhysReg{252} &&
ctx.VALU_wrexec + 5 >= new_idx)
NOPs = std::max(NOPs, 5 + ctx.VALU_wrexec - new_idx + 1);
/* VALU which reads VCC as a constant */
if (ctx.VALU_wrvcc + 1 >= new_idx) {
for (unsigned k = 0; k < op.size(); k++) {
unsigned reg = op.physReg() + k;
if (reg == ctx.vcc_physical || reg == ctx.vcc_physical + 1)
NOPs = std::max(NOPs, 1);
}
}
}
switch (instr->opcode) {
case aco_opcode::v_readlane_b32:
case aco_opcode::v_writelane_b32: {
if (ctx.VALU_wrsgpr + 4 < new_idx)
break;
PhysReg reg = instr->operands[1].physReg();
for (int pred_idx = new_idx - 1; pred_idx >= 0 && pred_idx >= new_idx - 4; pred_idx--) {
aco_ptr<Instruction>& pred = new_instructions[pred_idx];
if (!pred->isVALU() || !VALU_writes_sgpr(pred))
continue;
for (const Definition& def : pred->definitions) {
if (def.physReg() == reg)
NOPs = std::max(NOPs, 4 + pred_idx - new_idx + 1);
}
}
break;
}
case aco_opcode::v_div_fmas_f32:
case aco_opcode::v_div_fmas_f64: {
if (ctx.VALU_wrvcc + 4 >= new_idx)
NOPs = std::max(NOPs, 4 + ctx.VALU_wrvcc - new_idx + 1);
break;
}
default:
break;
}
/* Write VGPRs holding writedata > 64 bit from MIMG/MUBUF instructions */
// FIXME: handle case if the last instruction of a block without branch is such store
// TODO: confirm that DS instructions cannot cause WAR hazards here
if (new_idx > 0) {
aco_ptr<Instruction>& pred = new_instructions.back();
if (pred->isVMEM() &&
pred->operands.size() == 4 &&
pred->operands[3].size() > 2 &&
pred->operands[1].size() != 8 &&
(pred->format != Format::MUBUF || pred->operands[2].physReg() >= 102)) {
/* Ops that use a 256-bit T# do not need a wait state.
* BUFFER_STORE_* operations that use an SGPR for "offset"
* do not require any wait states. */
PhysReg wrdata = pred->operands[3].physReg();
unsigned size = pred->operands[3].size();
assert(wrdata >= 256);
for (const Definition& def : instr->definitions) {
if (regs_intersect(def.physReg(), def.size(), wrdata, size))
NOPs = std::max(NOPs, 1);
}
}
}
if (VALU_writes_sgpr(instr)) {
for (const Definition& def : instr->definitions) {
if (def.physReg() == vcc)
ctx.VALU_wrvcc = NOPs ? new_idx : new_idx + 1;
else if (def.physReg() == exec)
ctx.VALU_wrexec = NOPs ? new_idx : new_idx + 1;
else if (def.physReg() <= 102)
ctx.VALU_wrsgpr = NOPs ? new_idx : new_idx + 1;
}
}
return NOPs;
} else if (instr->isVMEM() && ctx.VALU_wrsgpr + 5 >= new_idx) {
/* If the VALU writes the SGPR that is used by a VMEM, the user must add five wait states. */
for (int pred_idx = new_idx - 1; pred_idx >= 0 && pred_idx >= new_idx - 5; pred_idx--) {
aco_ptr<Instruction>& pred = new_instructions[pred_idx];
if (!(pred->isVALU() && VALU_writes_sgpr(pred)))
continue;
for (const Definition& def : pred->definitions) {
if (def.physReg() > 102)
continue;
if (instr->operands.size() > 1 &&
regs_intersect(instr->operands[1].physReg(), instr->operands[1].size(),
def.physReg(), def.size())) {
return 5 + pred_idx - new_idx + 1;
}
if (instr->operands.size() > 2 &&
regs_intersect(instr->operands[2].physReg(), instr->operands[2].size(),
def.physReg(), def.size())) {
return 5 + pred_idx - new_idx + 1;
}
}
}
}
return 0;
}
void handle_block_gfx8_9(NOP_ctx_gfx8_9& ctx, Block& block)
{
std::vector<aco_ptr<Instruction>> instructions;
instructions.reserve(block.instructions.size());
for (unsigned i = 0; i < block.instructions.size(); i++) {
aco_ptr<Instruction>& instr = block.instructions[i];
unsigned NOPs = handle_instruction_gfx8_9(ctx, instr, block.instructions, instructions);
if (NOPs) {
// TODO: try to move the instruction down
/* create NOP */
aco_ptr<SOPP_instruction> nop{create_instruction<SOPP_instruction>(aco_opcode::s_nop, Format::SOPP, 0, 0)};
nop->imm = NOPs - 1;
nop->block = -1;
instructions.emplace_back(std::move(nop));
}
instructions.emplace_back(std::move(instr));
}
ctx.VALU_wrvcc -= instructions.size();
ctx.VALU_wrexec -= instructions.size();
ctx.VALU_wrsgpr -= instructions.size();
block.instructions = std::move(instructions);
}
void insert_NOPs_gfx8_9(Program* program)
{
NOP_ctx_gfx8_9 ctx(program);
for (Block& block : program->blocks) {
if (block.instructions.empty())
continue;
handle_block_gfx8_9(ctx, block);
}
}
void handle_instruction_gfx10(Program *program, NOP_ctx_gfx10 &ctx, aco_ptr<Instruction>& instr,
std::vector<aco_ptr<Instruction>>& old_instructions,
std::vector<aco_ptr<Instruction>>& new_instructions)
{
/* VMEMtoScalarWriteHazard
* Handle EXEC/M0/SGPR write following a VMEM instruction without a VALU or "waitcnt vmcnt(0)" in-between.
*/
if (instr->isVMEM() || instr->format == Format::FLAT || instr->format == Format::GLOBAL ||
instr->format == Format::SCRATCH || instr->format == Format::DS) {
/* Remember all SGPRs that are read by the VMEM instruction */
mark_read_regs(instr, ctx.sgprs_read_by_VMEM);
ctx.sgprs_read_by_VMEM.set(exec);
if (program->wave_size == 64)
ctx.sgprs_read_by_VMEM.set(exec_hi);
} else if (instr->isSALU() || instr->format == Format::SMEM) {
/* Check if SALU writes an SGPR that was previously read by the VALU */
if (check_written_regs(instr, ctx.sgprs_read_by_VMEM)) {
ctx.sgprs_read_by_VMEM.reset();
/* Insert v_nop to mitigate the problem */
aco_ptr<VOP1_instruction> nop{create_instruction<VOP1_instruction>(aco_opcode::v_nop, Format::VOP1, 0, 0)};
new_instructions.emplace_back(std::move(nop));
}
} else if (instr->opcode == aco_opcode::s_waitcnt) {
/* Hazard is mitigated by "s_waitcnt vmcnt(0)" */
uint16_t imm = static_cast<SOPP_instruction*>(instr.get())->imm;
unsigned vmcnt = (imm & 0xF) | ((imm & (0x3 << 14)) >> 10);
if (vmcnt == 0)
ctx.sgprs_read_by_VMEM.reset();
} else if (instr->isVALU()) {
/* Hazard is mitigated by any VALU instruction */
ctx.sgprs_read_by_VMEM.reset();
}
/* VcmpxPermlaneHazard
* Handle any permlane following a VOPC instruction, insert v_mov between them.
*/
if (instr->format == Format::VOPC) {
ctx.has_VOPC = true;
} else if (ctx.has_VOPC &&
(instr->opcode == aco_opcode::v_permlane16_b32 ||
instr->opcode == aco_opcode::v_permlanex16_b32)) {
ctx.has_VOPC = false;
/* v_nop would be discarded by SQ, so use v_mov with the first operand of the permlane */
aco_ptr<VOP1_instruction> v_mov{create_instruction<VOP1_instruction>(aco_opcode::v_mov_b32, Format::VOP1, 1, 1)};
v_mov->definitions[0] = Definition(instr->operands[0].physReg(), v1);
v_mov->operands[0] = Operand(instr->operands[0].physReg(), v1);
new_instructions.emplace_back(std::move(v_mov));
} else if (instr->isVALU() && instr->opcode != aco_opcode::v_nop) {
ctx.has_VOPC = false;
}
/* VcmpxExecWARHazard
* Handle any VALU instruction writing the exec mask after it was read by a non-VALU instruction.
*/
if (!instr->isVALU() && instr_reads_exec(instr)) {
ctx.has_nonVALU_exec_read = true;
} else if (instr->isVALU()) {
if (instr_writes_exec(instr)) {
ctx.has_nonVALU_exec_read = false;
/* Insert s_waitcnt_depctr instruction with magic imm to mitigate the problem */
aco_ptr<SOPP_instruction> depctr{create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt_depctr, Format::SOPP, 0, 0)};
depctr->imm = 0xfffe;
depctr->block = -1;
new_instructions.emplace_back(std::move(depctr));
} else if (instr_writes_sgpr(instr)) {
/* Any VALU instruction that writes an SGPR mitigates the problem */
ctx.has_nonVALU_exec_read = false;
}
} else if (instr->opcode == aco_opcode::s_waitcnt_depctr) {
/* s_waitcnt_depctr can mitigate the problem if it has a magic imm */
const SOPP_instruction *sopp = static_cast<const SOPP_instruction *>(instr.get());
if ((sopp->imm & 0xfffe) == 0xfffe)
ctx.has_nonVALU_exec_read = false;
}
/* SMEMtoVectorWriteHazard
* Handle any VALU instruction writing an SGPR after an SMEM reads it.
*/
if (instr->format == Format::SMEM) {
/* Remember all SGPRs that are read by the SMEM instruction */
mark_read_regs(instr, ctx.sgprs_read_by_SMEM);
} else if (VALU_writes_sgpr(instr)) {
/* Check if VALU writes an SGPR that was previously read by SMEM */
if (check_written_regs(instr, ctx.sgprs_read_by_SMEM)) {
ctx.sgprs_read_by_SMEM.reset();
/* Insert s_mov to mitigate the problem */
aco_ptr<SOP1_instruction> s_mov{create_instruction<SOP1_instruction>(aco_opcode::s_mov_b32, Format::SOP1, 1, 1)};
s_mov->definitions[0] = Definition(sgpr_null, s1);
s_mov->operands[0] = Operand(0u);
new_instructions.emplace_back(std::move(s_mov));
}
} else if (instr->isSALU()) {
if (instr->format != Format::SOPP) {
/* SALU can mitigate the hazard */
ctx.sgprs_read_by_SMEM.reset();
} else {
/* Reducing lgkmcnt count to 0 always mitigates the hazard. */
const SOPP_instruction *sopp = static_cast<const SOPP_instruction *>(instr.get());
if (sopp->opcode == aco_opcode::s_waitcnt_lgkmcnt) {
if (sopp->imm == 0 && sopp->definitions[0].physReg() == sgpr_null)
ctx.sgprs_read_by_SMEM.reset();
} else if (sopp->opcode == aco_opcode::s_waitcnt) {
unsigned lgkm = (sopp->imm >> 8) & 0x3f;
if (lgkm == 0)
ctx.sgprs_read_by_SMEM.reset();
}
}
}
/* LdsBranchVmemWARHazard
* Handle VMEM/GLOBAL/SCRATCH->branch->DS and DS->branch->VMEM/GLOBAL/SCRATCH patterns.
*/
if (instr->isVMEM() || instr->format == Format::GLOBAL || instr->format == Format::SCRATCH) {
ctx.has_VMEM = true;
ctx.has_branch_after_VMEM = false;
/* Mitigation for DS is needed only if there was already a branch after */
ctx.has_DS = ctx.has_branch_after_DS;
} else if (instr->format == Format::DS) {
ctx.has_DS = true;
ctx.has_branch_after_DS = false;
/* Mitigation for VMEM is needed only if there was already a branch after */
ctx.has_VMEM = ctx.has_branch_after_VMEM;
} else if (instr_is_branch(instr)) {
ctx.has_branch_after_VMEM = ctx.has_VMEM;
ctx.has_branch_after_DS = ctx.has_DS;
} else if (instr->opcode == aco_opcode::s_waitcnt_vscnt) {
/* Only s_waitcnt_vscnt can mitigate the hazard */
const SOPK_instruction *sopk = static_cast<const SOPK_instruction *>(instr.get());
if (sopk->definitions[0].physReg() == sgpr_null && sopk->imm == 0)
ctx.has_VMEM = ctx.has_branch_after_VMEM = ctx.has_DS = ctx.has_branch_after_DS = false;
}
if ((ctx.has_VMEM && ctx.has_branch_after_DS) || (ctx.has_DS && ctx.has_branch_after_VMEM)) {
ctx.has_VMEM = ctx.has_branch_after_VMEM = ctx.has_DS = ctx.has_branch_after_DS = false;
/* Insert s_waitcnt_vscnt to mitigate the problem */
aco_ptr<SOPK_instruction> wait{create_instruction<SOPK_instruction>(aco_opcode::s_waitcnt_vscnt, Format::SOPK, 0, 1)};
wait->definitions[0] = Definition(sgpr_null, s1);
wait->imm = 0;
new_instructions.emplace_back(std::move(wait));
}
}
void handle_block_gfx10(Program *program, NOP_ctx_gfx10& ctx, Block& block)
{
if (block.instructions.empty())
return;
std::vector<aco_ptr<Instruction>> instructions;
instructions.reserve(block.instructions.size());
for (aco_ptr<Instruction>& instr : block.instructions) {
handle_instruction_gfx10(program, ctx, instr, block.instructions, instructions);
instructions.emplace_back(std::move(instr));
}
block.instructions = std::move(instructions);
}
void mitigate_hazards_gfx10(Program *program)
{
NOP_ctx_gfx10 all_ctx[program->blocks.size()];
std::stack<unsigned> loop_header_indices;
for (unsigned i = 0; i < program->blocks.size(); i++) {
Block& block = program->blocks[i];
NOP_ctx_gfx10 &ctx = all_ctx[i];
if (block.kind & block_kind_loop_header) {
loop_header_indices.push(i);
} else if (block.kind & block_kind_loop_exit) {
/* Go through the whole loop again */
for (unsigned idx = loop_header_indices.top(); idx < i; idx++) {
NOP_ctx_gfx10 loop_block_ctx;
for (unsigned b : program->blocks[idx].linear_preds)
loop_block_ctx.join(all_ctx[b]);
handle_block_gfx10(program, loop_block_ctx, program->blocks[idx]);
/* We only need to continue if the loop header context changed */
if (idx == loop_header_indices.top() && loop_block_ctx == all_ctx[idx])
break;
all_ctx[idx] = loop_block_ctx;
}
loop_header_indices.pop();
}
for (unsigned b : block.linear_preds)
ctx.join(all_ctx[b]);
handle_block_gfx10(program, ctx, block);
}
}
} /* end namespace */
void insert_NOPs(Program* program)
{
if (program->chip_class >= GFX10)
mitigate_hazards_gfx10(program);
else
insert_NOPs_gfx8_9(program);
}
}