blob: c0ca960059c28729674111749d58eccf550a3c9c [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "anv_private.h"
#include "common/intel_aux_map.h"
#include "common/intel_sample_positions.h"
#include "common/intel_pixel_hash.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
#include "vk_standard_sample_locations.h"
#if GFX_VERx10 == 125 && ANV_SUPPORT_RT
#include "grl/genX_grl.h"
#endif
#include "vk_util.h"
#include "vk_format.h"
static void
genX(emit_slice_hashing_state)(struct anv_device *device,
struct anv_batch *batch)
{
#if GFX_VER == 11
/* Gfx11 hardware has two pixel pipes at most. */
for (unsigned i = 2; i < ARRAY_SIZE(device->info->ppipe_subslices); i++)
assert(device->info->ppipe_subslices[i] == 0);
if (device->info->ppipe_subslices[0] == device->info->ppipe_subslices[1])
return;
if (!device->slice_hash.alloc_size) {
unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
device->slice_hash =
anv_state_pool_alloc(&device->dynamic_state_pool, size, 64);
const bool flip = device->info->ppipe_subslices[0] <
device->info->ppipe_subslices[1];
struct GENX(SLICE_HASH_TABLE) table;
intel_compute_pixel_hash_table_3way(16, 16, 3, 3, flip, table.Entry[0]);
GENX(SLICE_HASH_TABLE_pack)(NULL, device->slice_hash.map, &table);
}
anv_batch_emit(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
ptr.SliceHashStatePointerValid = true;
ptr.SliceHashTableStatePointer = device->slice_hash.offset;
}
anv_batch_emit(batch, GENX(3DSTATE_3D_MODE), mode) {
mode.SliceHashingTableEnable = true;
}
#elif GFX_VERx10 == 120
/* For each n calculate ppipes_of[n], equal to the number of pixel pipes
* present with n active dual subslices.
*/
unsigned ppipes_of[3] = {};
for (unsigned n = 0; n < ARRAY_SIZE(ppipes_of); n++) {
for (unsigned p = 0; p < 3; p++)
ppipes_of[n] += (device->info->ppipe_subslices[p] == n);
}
/* Gfx12 has three pixel pipes. */
for (unsigned p = 3; p < ARRAY_SIZE(device->info->ppipe_subslices); p++)
assert(device->info->ppipe_subslices[p] == 0);
if (ppipes_of[2] == 3 || ppipes_of[0] == 2) {
/* All three pixel pipes have the maximum number of active dual
* subslices, or there is only one active pixel pipe: Nothing to do.
*/
return;
}
anv_batch_emit(batch, GENX(3DSTATE_SUBSLICE_HASH_TABLE), p) {
p.SliceHashControl[0] = TABLE_0;
if (ppipes_of[2] == 2 && ppipes_of[0] == 1)
intel_compute_pixel_hash_table_3way(8, 16, 2, 2, 0, p.TwoWayTableEntry[0]);
else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1)
intel_compute_pixel_hash_table_3way(8, 16, 3, 3, 0, p.TwoWayTableEntry[0]);
if (ppipes_of[2] == 2 && ppipes_of[1] == 1)
intel_compute_pixel_hash_table_3way(8, 16, 5, 4, 0, p.ThreeWayTableEntry[0]);
else if (ppipes_of[2] == 2 && ppipes_of[0] == 1)
intel_compute_pixel_hash_table_3way(8, 16, 2, 2, 0, p.ThreeWayTableEntry[0]);
else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1)
intel_compute_pixel_hash_table_3way(8, 16, 3, 3, 0, p.ThreeWayTableEntry[0]);
else
unreachable("Illegal fusing.");
}
anv_batch_emit(batch, GENX(3DSTATE_3D_MODE), p) {
p.SubsliceHashingTableEnable = true;
p.SubsliceHashingTableEnableMask = true;
}
#elif GFX_VERx10 == 125
uint32_t ppipe_mask = 0;
for (unsigned p = 0; p < ARRAY_SIZE(device->info->ppipe_subslices); p++) {
if (device->info->ppipe_subslices[p])
ppipe_mask |= (1u << p);
}
assert(ppipe_mask);
if (!device->slice_hash.alloc_size) {
unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
device->slice_hash =
anv_state_pool_alloc(&device->dynamic_state_pool, size, 64);
struct GENX(SLICE_HASH_TABLE) table;
/* Note that the hardware expects an array with 7 tables, each
* table is intended to specify the pixel pipe hashing behavior
* for every possible slice count between 2 and 8, however that
* doesn't actually work, among other reasons due to hardware
* bugs that will cause the GPU to erroneously access the table
* at the wrong index in some cases, so in practice all 7 tables
* need to be initialized to the same value.
*/
for (unsigned i = 0; i < 7; i++)
intel_compute_pixel_hash_table_nway(16, 16, ppipe_mask, table.Entry[i][0]);
GENX(SLICE_HASH_TABLE_pack)(NULL, device->slice_hash.map, &table);
}
anv_batch_emit(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
ptr.SliceHashStatePointerValid = true;
ptr.SliceHashTableStatePointer = device->slice_hash.offset;
}
anv_batch_emit(batch, GENX(3DSTATE_3D_MODE), mode) {
mode.SliceHashingTableEnable = true;
mode.SliceHashingTableEnableMask = true;
mode.CrossSliceHashingMode = (util_bitcount(ppipe_mask) > 1 ?
hashing32x32 : NormalMode);
mode.CrossSliceHashingModeMask = -1;
/* TODO: Figure out FCV support for other platforms
* Testing indicates that FCV is broken on MTL, but works fine on DG2.
* Let's disable FCV on MTL for now till we figure out what's wrong.
*
* Ref: https://gitlab.freedesktop.org/mesa/mesa/-/issues/9987
*/
mode.FastClearOptimizationEnable = intel_device_info_is_dg2(device->info);
mode.FastClearOptimizationEnableMask =
intel_device_info_is_dg2(device->info);
}
#endif
}
static void
init_common_queue_state(struct anv_queue *queue, struct anv_batch *batch)
{
UNUSED struct anv_device *device = queue->device;
#if GFX_VER >= 11
/* Starting with GFX version 11, SLM is no longer part of the L3$ config
* so it never changes throughout the lifetime of the VkDevice.
*/
const struct intel_l3_config *cfg = intel_get_default_l3_config(device->info);
genX(emit_l3_config)(batch, device, cfg);
device->l3_config = cfg;
#endif
#if GFX_VERx10 == 125
/* Even though L3 partial write merging is supposed to be enabled
* by default on Gfx12.5 according to the hardware spec, i915
* appears to accidentally clear the enables during context
* initialization, so make sure to enable them here since partial
* write merging has a large impact on rendering performance.
*/
anv_batch_write_reg(batch, GENX(L3SQCREG5), reg) {
reg.L3CachePartialWriteMergeTimerInitialValue = 0x7f;
reg.CompressiblePartialWriteMergeEnable = true;
reg.CoherentPartialWriteMergeEnable = true;
reg.CrossTilePartialWriteMergeEnable = true;
}
#endif
/* Emit STATE_BASE_ADDRESS on Gfx12+ because we set a default CPS_STATE and
* those are relative to STATE_BASE_ADDRESS::DynamicStateBaseAddress.
*/
#if GFX_VER >= 12
#if GFX_VERx10 >= 125
/* Wa_14016407139:
*
* "On Surface state base address modification, for 3D workloads, SW must
* always program PIPE_CONTROL either with CS Stall or PS sync stall. In
* both the cases set Render Target Cache Flush Enable".
*/
genx_batch_emit_pipe_control(batch, device->info,
ANV_PIPE_CS_STALL_BIT |
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT);
#endif
/* GEN:BUG:1607854226:
*
* Non-pipelined state has issues with not applying in MEDIA/GPGPU mode.
* Fortunately, we always start the context off in 3D mode.
*/
uint32_t mocs = device->isl_dev.mocs.internal;
anv_batch_emit(batch, GENX(STATE_BASE_ADDRESS), sba) {
sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
sba.GeneralStateBufferSize = 0xfffff;
sba.GeneralStateMOCS = mocs;
sba.GeneralStateBaseAddressModifyEnable = true;
sba.GeneralStateBufferSizeModifyEnable = true;
sba.StatelessDataPortAccessMOCS = mocs;
sba.SurfaceStateBaseAddress =
(struct anv_address) { .offset =
device->physical->va.internal_surface_state_pool.addr,
};
sba.SurfaceStateMOCS = mocs;
sba.SurfaceStateBaseAddressModifyEnable = true;
sba.DynamicStateBaseAddress =
(struct anv_address) { .offset =
device->physical->va.dynamic_state_pool.addr,
};
sba.DynamicStateBufferSize = device->physical->va.dynamic_state_pool.size / 4096;
sba.DynamicStateMOCS = mocs;
sba.DynamicStateBaseAddressModifyEnable = true;
sba.DynamicStateBufferSizeModifyEnable = true;
sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
sba.IndirectObjectBufferSize = 0xfffff;
sba.IndirectObjectMOCS = mocs;
sba.IndirectObjectBaseAddressModifyEnable = true;
sba.IndirectObjectBufferSizeModifyEnable = true;
sba.InstructionBaseAddress =
(struct anv_address) { .offset =
device->physical->va.instruction_state_pool.addr,
};
sba.InstructionBufferSize = device->physical->va.instruction_state_pool.size / 4096;
sba.InstructionMOCS = mocs;
sba.InstructionBaseAddressModifyEnable = true;
sba.InstructionBuffersizeModifyEnable = true;
if (device->physical->indirect_descriptors) {
sba.BindlessSurfaceStateBaseAddress =
(struct anv_address) { .offset =
device->physical->va.bindless_surface_state_pool.addr,
};
sba.BindlessSurfaceStateSize =
anv_physical_device_bindless_heap_size(device->physical) / ANV_SURFACE_STATE_SIZE - 1;
sba.BindlessSurfaceStateMOCS = mocs;
sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
sba.BindlessSamplerStateMOCS = mocs;
sba.BindlessSamplerStateBaseAddressModifyEnable = true;
sba.BindlessSamplerStateBufferSize = 0;
} else {
/* Bindless Surface State & Bindless Sampler State are aligned to the
* same heap
*/
sba.BindlessSurfaceStateBaseAddress =
sba.BindlessSamplerStateBaseAddress =
(struct anv_address) { .offset = device->physical->va.binding_table_pool.addr, };
sba.BindlessSurfaceStateSize =
(device->physical->va.binding_table_pool.size +
device->physical->va.internal_surface_state_pool.size +
device->physical->va.descriptor_pool.size) - 1;
sba.BindlessSamplerStateBufferSize =
(device->physical->va.binding_table_pool.size +
device->physical->va.internal_surface_state_pool.size +
device->physical->va.descriptor_pool.size) / 4096 - 1;
sba.BindlessSurfaceStateMOCS = sba.BindlessSamplerStateMOCS = mocs;
sba.BindlessSurfaceStateBaseAddressModifyEnable =
sba.BindlessSamplerStateBaseAddressModifyEnable = true;
}
#if GFX_VERx10 >= 125
sba.L1CacheControl = L1CC_WB;
#endif
}
#endif
#if GFX_VERx10 >= 125
if (ANV_SUPPORT_RT && device->info->has_ray_tracing) {
anv_batch_emit(batch, GENX(3DSTATE_BTD), btd) {
/* TODO: This is the timeout after which the bucketed thread
* dispatcher will kick off a wave of threads. We go with the
* lowest value for now. It could be tweaked on a per
* application basis (drirc).
*/
btd.DispatchTimeoutCounter = _64clocks;
/* BSpec 43851: "This field must be programmed to 6h i.e. memory
* backed buffer must be 128KB."
*/
btd.PerDSSMemoryBackedBufferSize = 6;
btd.MemoryBackedBufferBasePointer = (struct anv_address) {
/* This batch doesn't have a reloc list so we can't use the BO
* here. We just use the address directly.
*/
.offset = device->btd_fifo_bo->offset,
};
}
}
#endif
}
static VkResult
init_render_queue_state(struct anv_queue *queue, bool is_companion_rcs_batch)
{
struct anv_device *device = queue->device;
UNUSED const struct intel_device_info *devinfo = queue->device->info;
uint32_t cmds[128];
struct anv_batch batch = {
.start = cmds,
.next = cmds,
.end = (void *) cmds + sizeof(cmds),
};
struct GENX(VERTEX_ELEMENT_STATE) empty_ve = {
.Valid = true,
.Component0Control = VFCOMP_STORE_0,
.Component1Control = VFCOMP_STORE_0,
.Component2Control = VFCOMP_STORE_0,
.Component3Control = VFCOMP_STORE_0,
};
GENX(VERTEX_ELEMENT_STATE_pack)(NULL, device->empty_vs_input, &empty_ve);
genX(emit_pipeline_select)(&batch, _3D);
#if GFX_VER == 9
anv_batch_write_reg(&batch, GENX(CACHE_MODE_1), cm1) {
cm1.FloatBlendOptimizationEnable = true;
cm1.FloatBlendOptimizationEnableMask = true;
cm1.MSCRAWHazardAvoidanceBit = true;
cm1.MSCRAWHazardAvoidanceBitMask = true;
cm1.PartialResolveDisableInVC = true;
cm1.PartialResolveDisableInVCMask = true;
}
#endif
anv_batch_emit(&batch, GENX(3DSTATE_AA_LINE_PARAMETERS), aa);
anv_batch_emit(&batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
rect.ClippedDrawingRectangleYMin = 0;
rect.ClippedDrawingRectangleXMin = 0;
rect.ClippedDrawingRectangleYMax = UINT16_MAX;
rect.ClippedDrawingRectangleXMax = UINT16_MAX;
rect.DrawingRectangleOriginY = 0;
rect.DrawingRectangleOriginX = 0;
}
anv_batch_emit(&batch, GENX(3DSTATE_WM_CHROMAKEY), ck);
/* SKL PRMs, Volume 2a: Command Reference: Instructions: 3DSTATE_WM_HZ_OP:
*
* "3DSTATE_RASTER if used must be programmed prior to using this
* packet."
*
* Emit this before 3DSTATE_WM_HZ_OP below.
*/
anv_batch_emit(&batch, GENX(3DSTATE_RASTER), rast) {
rast.APIMode = DX101;
}
/* SKL PRMs, Volume 2a: Command Reference: Instructions: 3DSTATE_WM_HZ_OP:
*
* "3DSTATE_MULTISAMPLE packet must be used prior to this packet to
* change the Number of Multisamples. This packet must not be used to
* change Number of Multisamples in a rendering sequence."
*
* Emit this before 3DSTATE_WM_HZ_OP below.
*/
anv_batch_emit(&batch, GENX(3DSTATE_MULTISAMPLE), ms);
/* The BDW+ docs describe how to use the 3DSTATE_WM_HZ_OP instruction in the
* section titled, "Optimized Depth Buffer Clear and/or Stencil Buffer
* Clear." It mentions that the packet overrides GPU state for the clear
* operation and needs to be reset to 0s to clear the overrides. Depending
* on the kernel, we may not get a context with the state for this packet
* zeroed. Do it ourselves just in case. We've observed this to prevent a
* number of GPU hangs on ICL.
*/
anv_batch_emit(&batch, GENX(3DSTATE_WM_HZ_OP), hzp);
genX(emit_sample_pattern)(&batch, NULL);
#if GFX_VER == 11
/* The default behavior of bit 5 "Headerless Message for Pre-emptable
* Contexts" in SAMPLER MODE register is set to 0, which means
* headerless sampler messages are not allowed for pre-emptable
* contexts. Set the bit 5 to 1 to allow them.
*/
anv_batch_write_reg(&batch, GENX(SAMPLER_MODE), sm) {
sm.HeaderlessMessageforPreemptableContexts = true;
sm.HeaderlessMessageforPreemptableContextsMask = true;
}
/* Bit 1 "Enabled Texel Offset Precision Fix" must be set in
* HALF_SLICE_CHICKEN7 register.
*/
anv_batch_write_reg(&batch, GENX(HALF_SLICE_CHICKEN7), hsc7) {
hsc7.EnabledTexelOffsetPrecisionFix = true;
hsc7.EnabledTexelOffsetPrecisionFixMask = true;
}
anv_batch_write_reg(&batch, GENX(TCCNTLREG), tcc) {
tcc.L3DataPartialWriteMergingEnable = true;
tcc.ColorZPartialWriteMergingEnable = true;
tcc.URBPartialWriteMergingEnable = true;
tcc.TCDisable = true;
}
#endif
genX(emit_slice_hashing_state)(device, &batch);
#if GFX_VER >= 11
/* hardware specification recommends disabling repacking for
* the compatibility with decompression mechanism in display controller.
*/
if (device->info->disable_ccs_repack) {
anv_batch_write_reg(&batch, GENX(CACHE_MODE_0), cm0) {
cm0.DisableRepackingforCompression = true;
cm0.DisableRepackingforCompressionMask = true;
}
}
/* an unknown issue is causing vs push constants to become
* corrupted during object-level preemption. For now, restrict
* to command buffer level preemption to avoid rendering
* corruption.
*/
anv_batch_write_reg(&batch, GENX(CS_CHICKEN1), cc1) {
cc1.ReplayMode = MidcmdbufferPreemption;
cc1.ReplayModeMask = true;
#if GFX_VERx10 == 120
cc1.DisablePreemptionandHighPriorityPausingdueto3DPRIMITIVECommand = true;
cc1.DisablePreemptionandHighPriorityPausingdueto3DPRIMITIVECommandMask = true;
#endif
}
#if INTEL_NEEDS_WA_1806527549
/* Wa_1806527549 says to disable the following HiZ optimization when the
* depth buffer is D16_UNORM. We've found the WA to help with more depth
* buffer configurations however, so we always disable it just to be safe.
*/
anv_batch_write_reg(&batch, GENX(HIZ_CHICKEN), reg) {
reg.HZDepthTestLEGEOptimizationDisable = true;
reg.HZDepthTestLEGEOptimizationDisableMask = true;
}
#endif
#if GFX_VER == 12
anv_batch_write_reg(&batch, GENX(FF_MODE2), reg) {
/* On Alchemist, the FF_MODE2 docs for the GS timer say:
*
* "The timer value must be set to 224."
*
* and Wa_16011163337 indicates this is the case for all Gfx12 parts,
* and that this is necessary to avoid hanging the HS/DS units. It
* also clarifies that 224 is literally 0xE0 in the bits, not 7*32=224.
*
* The HS timer docs also have the same quote for Alchemist. I am
* unaware of a reason it needs to be set to 224 on Tigerlake, but
* we do so for consistency if nothing else.
*
* For the TDS timer value, the docs say:
*
* "For best performance, a value of 4 should be programmed."
*
* i915 also sets it this way on Tigerlake due to workarounds.
*
* The default VS timer appears to be 0, so we leave it at that.
*/
reg.GSTimerValue = 224;
reg.HSTimerValue = 224;
reg.TDSTimerValue = 4;
reg.VSTimerValue = 0;
}
#endif
#if INTEL_NEEDS_WA_1508744258
/* Disable RHWO by setting 0x7010[14] by default except during resolve
* pass.
*
* We implement global disabling of the optimization here and we toggle it
* in anv_image_ccs_op().
*/
anv_batch_write_reg(&batch, GENX(COMMON_SLICE_CHICKEN1), c1) {
c1.RCCRHWOOptimizationDisable = true;
c1.RCCRHWOOptimizationDisableMask = true;
}
#endif
#if GFX_VERx10 < 125
#define AA_LINE_QUALITY_REG GENX(3D_CHICKEN3)
#else
#define AA_LINE_QUALITY_REG GENX(CHICKEN_RASTER_1)
#endif
/* Enable the new line drawing algorithm that produces higher quality
* lines.
*/
anv_batch_write_reg(&batch, AA_LINE_QUALITY_REG, c3) {
c3.AALineQualityFix = true;
c3.AALineQualityFixMask = true;
}
#endif
#if GFX_VER == 12
if (device->info->has_aux_map) {
uint64_t aux_base_addr = intel_aux_map_get_base(device->aux_map_ctx);
assert(aux_base_addr % (32 * 1024) == 0);
anv_batch_emit(&batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = GENX(GFX_AUX_TABLE_BASE_ADDR_num);
lri.DataDWord = aux_base_addr & 0xffffffff;
}
anv_batch_emit(&batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = GENX(GFX_AUX_TABLE_BASE_ADDR_num) + 4;
lri.DataDWord = aux_base_addr >> 32;
}
}
#endif
/* Set the "CONSTANT_BUFFER Address Offset Disable" bit, so
* 3DSTATE_CONSTANT_XS buffer 0 is an absolute address.
*
* This is only safe on kernels with context isolation support.
*/
assert(device->physical->info.has_context_isolation);
anv_batch_write_reg(&batch, GENX(CS_DEBUG_MODE2), csdm2) {
csdm2.CONSTANT_BUFFERAddressOffsetDisable = true;
csdm2.CONSTANT_BUFFERAddressOffsetDisableMask = true;
}
init_common_queue_state(queue, &batch);
/* Because 3DSTATE_CPS::CoarsePixelShadingStateArrayPointer is relative to
* the dynamic state base address we need to emit this instruction after
* STATE_BASE_ADDRESS in init_common_queue_state().
*/
#if GFX_VER == 11
anv_batch_emit(&batch, GENX(3DSTATE_CPS), cps);
#elif GFX_VER >= 12
anv_batch_emit(&batch, GENX(3DSTATE_CPS_POINTERS), cps) {
assert(device->cps_states.alloc_size != 0);
/* Offset 0 is the disabled state */
cps.CoarsePixelShadingStateArrayPointer =
device->cps_states.offset;
}
#endif
#if GFX_VERx10 >= 125
anv_batch_emit(&batch, GENX(STATE_COMPUTE_MODE), zero);
anv_batch_emit(&batch, GENX(3DSTATE_MESH_CONTROL), zero);
anv_batch_emit(&batch, GENX(3DSTATE_TASK_CONTROL), zero);
genx_batch_emit_pipe_control_write(&batch, device->info, NoWrite,
ANV_NULL_ADDRESS,
0,
ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS);
genX(emit_pipeline_select)(&batch, GPGPU);
anv_batch_emit(&batch, GENX(CFE_STATE), cfe) {
cfe.MaximumNumberofThreads =
devinfo->max_cs_threads * devinfo->subslice_total;
}
genx_batch_emit_pipe_control_write(&batch, device->info, NoWrite,
ANV_NULL_ADDRESS,
0,
ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS);
genX(emit_pipeline_select)(&batch, _3D);
#endif
anv_batch_emit(&batch, GENX(MI_BATCH_BUFFER_END), bbe);
assert(batch.next <= batch.end);
return anv_queue_submit_simple_batch(queue, &batch, is_companion_rcs_batch);
}
static VkResult
init_compute_queue_state(struct anv_queue *queue)
{
UNUSED const struct intel_device_info *devinfo = queue->device->info;
uint32_t cmds[64];
struct anv_batch batch = {
.start = cmds,
.next = cmds,
.end = (void *) cmds + sizeof(cmds),
};
genX(emit_pipeline_select)(&batch, GPGPU);
#if GFX_VER == 12
if (queue->device->info->has_aux_map) {
uint64_t aux_base_addr =
intel_aux_map_get_base(queue->device->aux_map_ctx);
assert(aux_base_addr % (32 * 1024) == 0);
anv_batch_emit(&batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = GENX(COMPCS0_AUX_TABLE_BASE_ADDR_num);
lri.DataDWord = aux_base_addr & 0xffffffff;
}
anv_batch_emit(&batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = GENX(COMPCS0_AUX_TABLE_BASE_ADDR_num) + 4;
lri.DataDWord = aux_base_addr >> 32;
}
}
#else
assert(!queue->device->info->has_aux_map);
#endif
/* Wa_14015782607 - Issue pipe control with HDC_flush and
* untyped cache flush set to 1 when CCS has NP state update with
* STATE_COMPUTE_MODE.
*/
if (intel_needs_workaround(devinfo, 14015782607) &&
queue->family->engine_class == INTEL_ENGINE_CLASS_COMPUTE) {
genx_batch_emit_pipe_control(&batch, devinfo,
ANV_PIPE_CS_STALL_BIT |
ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT |
ANV_PIPE_HDC_PIPELINE_FLUSH_BIT);
}
#if GFX_VERx10 >= 125
/* Wa_14014427904/22013045878 - We need additional invalidate/flush when
* emitting NP state commands with ATS-M in compute mode.
*/
if (intel_device_info_is_atsm(devinfo) &&
queue->family->engine_class == INTEL_ENGINE_CLASS_COMPUTE) {
genx_batch_emit_pipe_control
(&batch, devinfo,
ANV_PIPE_CS_STALL_BIT |
ANV_PIPE_STATE_CACHE_INVALIDATE_BIT |
ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT |
ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT |
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT |
ANV_PIPE_HDC_PIPELINE_FLUSH_BIT);
}
anv_batch_emit(&batch, GENX(STATE_COMPUTE_MODE), cm) {
cm.PixelAsyncComputeThreadLimit = 4;
cm.PixelAsyncComputeThreadLimitMask = 0x7;
}
#endif
init_common_queue_state(queue, &batch);
#if GFX_VERx10 >= 125
anv_batch_emit(&batch, GENX(CFE_STATE), cfe) {
cfe.MaximumNumberofThreads =
devinfo->max_cs_threads * devinfo->subslice_total;
}
#endif
anv_batch_emit(&batch, GENX(MI_BATCH_BUFFER_END), bbe);
assert(batch.next <= batch.end);
return anv_queue_submit_simple_batch(queue, &batch,
false /* is_companion_rcs_batch */);
}
void
genX(init_physical_device_state)(ASSERTED struct anv_physical_device *pdevice)
{
assert(pdevice->info.verx10 == GFX_VERx10);
#if GFX_VERx10 == 125 && ANV_SUPPORT_RT
genX(grl_load_rt_uuid)(pdevice->rt_uuid);
pdevice->max_grl_scratch_size = genX(grl_max_scratch_size)();
#endif
pdevice->cmd_emit_timestamp = genX(cmd_emit_timestamp);
}
VkResult
genX(init_device_state)(struct anv_device *device)
{
VkResult res;
device->slice_hash = (struct anv_state) { 0 };
for (uint32_t i = 0; i < device->queue_count; i++) {
struct anv_queue *queue = &device->queues[i];
switch (queue->family->engine_class) {
case INTEL_ENGINE_CLASS_RENDER:
res = init_render_queue_state(queue, false /* is_companion_rcs_batch */);
break;
case INTEL_ENGINE_CLASS_COMPUTE: {
res = init_compute_queue_state(queue);
if (res != VK_SUCCESS)
return res;
/**
* Execute RCS init batch by default on the companion RCS command buffer in
* order to support MSAA copy/clear operations on compute queue.
*/
res = init_render_queue_state(queue, true /* is_companion_rcs_batch */);
break;
}
case INTEL_ENGINE_CLASS_VIDEO:
res = VK_SUCCESS;
break;
case INTEL_ENGINE_CLASS_COPY:
/**
* Execute RCS init batch by default on the companion RCS command buffer in
* order to support MSAA copy/clear operations on copy queue.
*/
res = init_render_queue_state(queue, true /* is_companion_rcs_batch */);
break;
default:
res = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
break;
}
if (res != VK_SUCCESS)
return res;
}
return res;
}
#if GFX_VERx10 >= 125
#define maybe_for_each_shading_rate_op(name) \
for (VkFragmentShadingRateCombinerOpKHR name = VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR; \
name <= VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MUL_KHR; \
name++)
#elif GFX_VER >= 12
#define maybe_for_each_shading_rate_op(name)
#endif
/* Rather than reemitting the CPS_STATE structure everything those changes and
* for as many viewports as needed, we can just prepare all possible cases and
* just pick the right offset from the prepacked states when needed.
*/
void
genX(init_cps_device_state)(struct anv_device *device)
{
#if GFX_VER >= 12
void *cps_state_ptr = device->cps_states.map;
/* Disabled CPS mode */
for (uint32_t __v = 0; __v < MAX_VIEWPORTS; __v++) {
/* ICL PRMs, Volume 2d: Command Reference: Structures: 3DSTATE_CPS_BODY:
*
* "It is an INVALID configuration to set the CPS mode other than
* CPS_MODE_NONE and request per-sample dispatch in 3DSTATE_PS_EXTRA.
* Such configuration should be disallowed at the API level, and
* rendering results are undefined."
*
* Since we select this state when per coarse pixel is disabled and that
* includes when per-sample dispatch is enabled, we need to ensure this
* is set to NONE.
*/
struct GENX(CPS_STATE) cps_state = {
.CoarsePixelShadingMode = CPS_MODE_NONE,
};
GENX(CPS_STATE_pack)(NULL, cps_state_ptr, &cps_state);
cps_state_ptr += GENX(CPS_STATE_length) * 4;
}
maybe_for_each_shading_rate_op(op0) {
maybe_for_each_shading_rate_op(op1) {
for (uint32_t x = 1; x <= 4; x *= 2) {
for (uint32_t y = 1; y <= 4; y *= 2) {
struct GENX(CPS_STATE) cps_state = {
.CoarsePixelShadingMode = CPS_MODE_CONSTANT,
.MinCPSizeX = x,
.MinCPSizeY = y,
};
#if GFX_VERx10 >= 125
static const uint32_t combiner_ops[] = {
[VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR] = PASSTHROUGH,
[VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR] = OVERRIDE,
[VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MIN_KHR] = HIGH_QUALITY,
[VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MAX_KHR] = LOW_QUALITY,
[VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MUL_KHR] = RELATIVE,
};
cps_state.Combiner0OpcodeforCPsize = combiner_ops[op0];
cps_state.Combiner1OpcodeforCPsize = combiner_ops[op1];
#endif /* GFX_VERx10 >= 125 */
for (uint32_t __v = 0; __v < MAX_VIEWPORTS; __v++) {
GENX(CPS_STATE_pack)(NULL, cps_state_ptr, &cps_state);
cps_state_ptr += GENX(CPS_STATE_length) * 4;
}
}
}
}
}
#endif /* GFX_VER >= 12 */
}
void
genX(emit_l3_config)(struct anv_batch *batch,
const struct anv_device *device,
const struct intel_l3_config *cfg)
{
UNUSED const struct intel_device_info *devinfo = device->info;
#if GFX_VER >= 12
#define L3_ALLOCATION_REG GENX(L3ALLOC)
#define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
#else
#define L3_ALLOCATION_REG GENX(L3CNTLREG)
#define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
#endif
anv_batch_write_reg(batch, L3_ALLOCATION_REG, l3cr) {
if (cfg == NULL) {
#if GFX_VER >= 12
l3cr.L3FullWayAllocationEnable = true;
#else
unreachable("Invalid L3$ config");
#endif
} else {
#if GFX_VER < 11
l3cr.SLMEnable = cfg->n[INTEL_L3P_SLM];
#endif
#if INTEL_NEEDS_WA_1406697149
/* Wa_1406697149: Bit 9 "Error Detection Behavior Control" must be
* set in L3CNTLREG register. The default setting of the bit is not
* the desirable behavior.
*/
l3cr.ErrorDetectionBehaviorControl = true;
l3cr.UseFullWays = true;
#endif /* INTEL_NEEDS_WA_1406697149 */
assert(cfg->n[INTEL_L3P_IS] == 0);
assert(cfg->n[INTEL_L3P_C] == 0);
assert(cfg->n[INTEL_L3P_T] == 0);
l3cr.URBAllocation = cfg->n[INTEL_L3P_URB];
l3cr.ROAllocation = cfg->n[INTEL_L3P_RO];
l3cr.DCAllocation = cfg->n[INTEL_L3P_DC];
l3cr.AllAllocation = cfg->n[INTEL_L3P_ALL];
}
}
}
void
genX(emit_sample_pattern)(struct anv_batch *batch,
const struct vk_sample_locations_state *sl)
{
assert(sl == NULL || sl->grid_size.width == 1);
assert(sl == NULL || sl->grid_size.height == 1);
/* See the Vulkan 1.0 spec Table 24.1 "Standard sample locations" and
* VkPhysicalDeviceFeatures::standardSampleLocations.
*/
anv_batch_emit(batch, GENX(3DSTATE_SAMPLE_PATTERN), sp) {
/* The Skylake PRM Vol. 2a "3DSTATE_SAMPLE_PATTERN" says:
*
* "When programming the sample offsets (for NUMSAMPLES_4 or _8
* and MSRASTMODE_xxx_PATTERN), the order of the samples 0 to 3
* (or 7 for 8X, or 15 for 16X) must have monotonically increasing
* distance from the pixel center. This is required to get the
* correct centroid computation in the device."
*
* However, the Vulkan spec seems to require that the the samples occur
* in the order provided through the API. The standard sample patterns
* have the above property that they have monotonically increasing
* distances from the center but client-provided ones do not. As long as
* this only affects centroid calculations as the docs say, we should be
* ok because OpenGL and Vulkan only require that the centroid be some
* lit sample and that it's the same for all samples in a pixel; they
* have no requirement that it be the one closest to center.
*/
for (uint32_t i = 1; i <= 16; i *= 2) {
switch (i) {
case VK_SAMPLE_COUNT_1_BIT:
if (sl && sl->per_pixel == i) {
INTEL_SAMPLE_POS_1X_ARRAY(sp._1xSample, sl->locations);
} else {
INTEL_SAMPLE_POS_1X(sp._1xSample);
}
break;
case VK_SAMPLE_COUNT_2_BIT:
if (sl && sl->per_pixel == i) {
INTEL_SAMPLE_POS_2X_ARRAY(sp._2xSample, sl->locations);
} else {
INTEL_SAMPLE_POS_2X(sp._2xSample);
}
break;
case VK_SAMPLE_COUNT_4_BIT:
if (sl && sl->per_pixel == i) {
INTEL_SAMPLE_POS_4X_ARRAY(sp._4xSample, sl->locations);
} else {
INTEL_SAMPLE_POS_4X(sp._4xSample);
}
break;
case VK_SAMPLE_COUNT_8_BIT:
if (sl && sl->per_pixel == i) {
INTEL_SAMPLE_POS_8X_ARRAY(sp._8xSample, sl->locations);
} else {
INTEL_SAMPLE_POS_8X(sp._8xSample);
}
break;
case VK_SAMPLE_COUNT_16_BIT:
if (sl && sl->per_pixel == i) {
INTEL_SAMPLE_POS_16X_ARRAY(sp._16xSample, sl->locations);
} else {
INTEL_SAMPLE_POS_16X(sp._16xSample);
}
break;
default:
unreachable("Invalid sample count");
}
}
}
}
static uint32_t
vk_to_intel_tex_filter(VkFilter filter, bool anisotropyEnable)
{
switch (filter) {
default:
unreachable("Invalid filter");
case VK_FILTER_NEAREST:
return anisotropyEnable ? MAPFILTER_ANISOTROPIC : MAPFILTER_NEAREST;
case VK_FILTER_LINEAR:
return anisotropyEnable ? MAPFILTER_ANISOTROPIC : MAPFILTER_LINEAR;
}
}
static uint32_t
vk_to_intel_max_anisotropy(float ratio)
{
return (CLAMP(ratio, 2, 16) - 2) / 2;
}
static const uint32_t vk_to_intel_mipmap_mode[] = {
[VK_SAMPLER_MIPMAP_MODE_NEAREST] = MIPFILTER_NEAREST,
[VK_SAMPLER_MIPMAP_MODE_LINEAR] = MIPFILTER_LINEAR
};
static const uint32_t vk_to_intel_tex_address[] = {
[VK_SAMPLER_ADDRESS_MODE_REPEAT] = TCM_WRAP,
[VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT] = TCM_MIRROR,
[VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE] = TCM_CLAMP,
[VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
[VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
};
/* Vulkan specifies the result of shadow comparisons as:
* 1 if ref <op> texel,
* 0 otherwise.
*
* The hardware does:
* 0 if texel <op> ref,
* 1 otherwise.
*
* So, these look a bit strange because there's both a negation
* and swapping of the arguments involved.
*/
static const uint32_t vk_to_intel_shadow_compare_op[] = {
[VK_COMPARE_OP_NEVER] = PREFILTEROP_ALWAYS,
[VK_COMPARE_OP_LESS] = PREFILTEROP_LEQUAL,
[VK_COMPARE_OP_EQUAL] = PREFILTEROP_NOTEQUAL,
[VK_COMPARE_OP_LESS_OR_EQUAL] = PREFILTEROP_LESS,
[VK_COMPARE_OP_GREATER] = PREFILTEROP_GEQUAL,
[VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROP_EQUAL,
[VK_COMPARE_OP_GREATER_OR_EQUAL] = PREFILTEROP_GREATER,
[VK_COMPARE_OP_ALWAYS] = PREFILTEROP_NEVER,
};
static const uint32_t vk_to_intel_sampler_reduction_mode[] = {
[VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE] = STD_FILTER,
[VK_SAMPLER_REDUCTION_MODE_MIN] = MINIMUM,
[VK_SAMPLER_REDUCTION_MODE_MAX] = MAXIMUM,
};
VkResult genX(CreateSampler)(
VkDevice _device,
const VkSamplerCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSampler* pSampler)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_sampler *sampler;
sampler = vk_sampler_create(&device->vk, pCreateInfo,
pAllocator, sizeof(*sampler));
if (!sampler)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
const struct vk_format_ycbcr_info *ycbcr_info =
sampler->vk.format != VK_FORMAT_UNDEFINED ?
vk_format_get_ycbcr_info(sampler->vk.format) : NULL;
assert((ycbcr_info == NULL) == (sampler->vk.ycbcr_conversion == NULL));
sampler->n_planes = ycbcr_info ? ycbcr_info->n_planes : 1;
uint32_t border_color_stride = 64;
uint32_t border_color_offset;
if (sampler->vk.border_color <= VK_BORDER_COLOR_INT_OPAQUE_WHITE) {
border_color_offset = device->border_colors.offset +
pCreateInfo->borderColor *
border_color_stride;
} else {
assert(vk_border_color_is_custom(sampler->vk.border_color));
sampler->custom_border_color =
anv_state_reserved_pool_alloc(&device->custom_border_colors);
border_color_offset = sampler->custom_border_color.offset;
union isl_color_value color = { .u32 = {
sampler->vk.border_color_value.uint32[0],
sampler->vk.border_color_value.uint32[1],
sampler->vk.border_color_value.uint32[2],
sampler->vk.border_color_value.uint32[3],
} };
const struct anv_format *format_desc =
sampler->vk.format != VK_FORMAT_UNDEFINED ?
anv_get_format(sampler->vk.format) : NULL;
if (format_desc && format_desc->n_planes == 1 &&
!isl_swizzle_is_identity(format_desc->planes[0].swizzle)) {
const struct anv_format_plane *fmt_plane = &format_desc->planes[0];
assert(!isl_format_has_int_channel(fmt_plane->isl_format));
color = isl_color_value_swizzle(color, fmt_plane->swizzle, true);
}
memcpy(sampler->custom_border_color.map, color.u32, sizeof(color));
}
/* If we have bindless, allocate enough samplers. We allocate 32 bytes
* for each sampler instead of 16 bytes because we want all bindless
* samplers to be 32-byte aligned so we don't have to use indirect
* sampler messages on them.
*/
sampler->bindless_state =
anv_state_pool_alloc(&device->dynamic_state_pool,
sampler->n_planes * 32, 32);
const bool seamless_cube =
!(pCreateInfo->flags & VK_SAMPLER_CREATE_NON_SEAMLESS_CUBE_MAP_BIT_EXT);
for (unsigned p = 0; p < sampler->n_planes; p++) {
const bool plane_has_chroma =
ycbcr_info && ycbcr_info->planes[p].has_chroma;
const VkFilter min_filter =
plane_has_chroma ? sampler->vk.ycbcr_conversion->state.chroma_filter :
pCreateInfo->minFilter;
const VkFilter mag_filter =
plane_has_chroma ? sampler->vk.ycbcr_conversion->state.chroma_filter :
pCreateInfo->magFilter;
const bool enable_min_filter_addr_rounding = min_filter != VK_FILTER_NEAREST;
const bool enable_mag_filter_addr_rounding = mag_filter != VK_FILTER_NEAREST;
/* From Broadwell PRM, SAMPLER_STATE:
* "Mip Mode Filter must be set to MIPFILTER_NONE for Planar YUV surfaces."
*/
enum isl_format plane0_isl_format = sampler->vk.ycbcr_conversion ?
anv_get_format(sampler->vk.format)->planes[0].isl_format :
ISL_FORMAT_UNSUPPORTED;
const bool isl_format_is_planar_yuv =
plane0_isl_format != ISL_FORMAT_UNSUPPORTED &&
isl_format_is_yuv(plane0_isl_format) &&
isl_format_is_planar(plane0_isl_format);
const uint32_t mip_filter_mode =
isl_format_is_planar_yuv ?
MIPFILTER_NONE : vk_to_intel_mipmap_mode[pCreateInfo->mipmapMode];
struct GENX(SAMPLER_STATE) sampler_state = {
.SamplerDisable = false,
.TextureBorderColorMode = DX10OGL,
#if GFX_VER >= 11
.CPSLODCompensationEnable = true,
#endif
.LODPreClampMode = CLAMP_MODE_OGL,
.MipModeFilter = mip_filter_mode,
.MagModeFilter = vk_to_intel_tex_filter(mag_filter, pCreateInfo->anisotropyEnable),
.MinModeFilter = vk_to_intel_tex_filter(min_filter, pCreateInfo->anisotropyEnable),
.TextureLODBias = CLAMP(pCreateInfo->mipLodBias, -16, 15.996),
.AnisotropicAlgorithm =
pCreateInfo->anisotropyEnable ? EWAApproximation : LEGACY,
.MinLOD = CLAMP(pCreateInfo->minLod, 0, 14),
.MaxLOD = CLAMP(pCreateInfo->maxLod, 0, 14),
.ChromaKeyEnable = 0,
.ChromaKeyIndex = 0,
.ChromaKeyMode = 0,
.ShadowFunction =
vk_to_intel_shadow_compare_op[pCreateInfo->compareEnable ?
pCreateInfo->compareOp : VK_COMPARE_OP_NEVER],
.CubeSurfaceControlMode = seamless_cube ? OVERRIDE : PROGRAMMED,
.BorderColorPointer = border_color_offset,
.LODClampMagnificationMode = MIPNONE,
.MaximumAnisotropy = vk_to_intel_max_anisotropy(pCreateInfo->maxAnisotropy),
.RAddressMinFilterRoundingEnable = enable_min_filter_addr_rounding,
.RAddressMagFilterRoundingEnable = enable_mag_filter_addr_rounding,
.VAddressMinFilterRoundingEnable = enable_min_filter_addr_rounding,
.VAddressMagFilterRoundingEnable = enable_mag_filter_addr_rounding,
.UAddressMinFilterRoundingEnable = enable_min_filter_addr_rounding,
.UAddressMagFilterRoundingEnable = enable_mag_filter_addr_rounding,
.TrilinearFilterQuality = 0,
.NonnormalizedCoordinateEnable = pCreateInfo->unnormalizedCoordinates,
.TCXAddressControlMode = vk_to_intel_tex_address[pCreateInfo->addressModeU],
.TCYAddressControlMode = vk_to_intel_tex_address[pCreateInfo->addressModeV],
.TCZAddressControlMode = vk_to_intel_tex_address[pCreateInfo->addressModeW],
.ReductionType =
vk_to_intel_sampler_reduction_mode[sampler->vk.reduction_mode],
.ReductionTypeEnable =
sampler->vk.reduction_mode != VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE,
};
GENX(SAMPLER_STATE_pack)(NULL, sampler->state[p], &sampler_state);
if (sampler->bindless_state.map) {
memcpy(sampler->bindless_state.map + p * 32,
sampler->state[p], GENX(SAMPLER_STATE_length) * 4);
}
}
*pSampler = anv_sampler_to_handle(sampler);
return VK_SUCCESS;
}
/* Wa_14015814527
*
* Check if task shader was utilized within cmd_buffer, if so
* commit empty URB states and null prim.
*/
void
genX(apply_task_urb_workaround)(struct anv_cmd_buffer *cmd_buffer)
{
#if GFX_VERx10 >= 125
const struct intel_device_info *devinfo = &cmd_buffer->device->physical->info;
if (!intel_needs_workaround(devinfo, 16014390852))
return;
if (cmd_buffer->state.current_pipeline != _3D ||
!cmd_buffer->state.gfx.used_task_shader)
return;
cmd_buffer->state.gfx.used_task_shader = false;
/* Wa_14015821291 mentions that WA below is not required if we have
* a pipeline flush going on. It will get flushed during
* cmd_buffer_flush_state before draw.
*/
if ((cmd_buffer->state.pending_pipe_bits & ANV_PIPE_CS_STALL_BIT))
return;
for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_URB_VS), urb) {
urb._3DCommandSubOpcode += i;
}
}
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_URB_ALLOC_MESH), zero);
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_URB_ALLOC_TASK), zero);
/* Issue 'nullprim' to commit the state. */
genx_batch_emit_pipe_control_write
(&cmd_buffer->batch, cmd_buffer->device->info,
WriteImmediateData, cmd_buffer->device->workaround_address, 0, 0);
#endif
}