blob: 5e3761a34a98e184e55be5d68866493ceefdce8f [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef ANV_PRIVATE_H
#define ANV_PRIVATE_H
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <pthread.h>
#include <assert.h>
#include <stdint.h>
#include "drm-uapi/i915_drm.h"
#include "drm-uapi/drm_fourcc.h"
#ifdef HAVE_VALGRIND
#include <valgrind.h>
#include <memcheck.h>
#define VG(x) x
#ifndef NDEBUG
#define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
#endif
#else
#define VG(x) ((void)0)
#endif
#if defined(__Fuchsia__)
#include <zircon/syscalls.h>
#include <zircon/process.h>
#include <sys/mman.h> // for MAP_FAILED
#endif
#include "common/intel_clflush.h"
#include "common/intel_decoder.h"
#include "common/intel_gem.h"
#include "common/intel_l3_config.h"
#include "common/intel_measure.h"
#include "common/intel_sample_positions.h"
#include "dev/intel_device_info.h"
#include "blorp/blorp.h"
#include "compiler/brw_compiler.h"
#include "compiler/brw_rt.h"
#include "ds/intel_driver_ds.h"
#include "util/bitset.h"
#include "util/bitscan.h"
#include "util/macros.h"
#include "util/hash_table.h"
#include "util/list.h"
#include "util/perf/u_trace.h"
#include "util/sparse_array.h"
#include "util/u_atomic.h"
#include "util/u_vector.h"
#include "util/u_math.h"
#include "util/vma.h"
#include "util/xmlconfig.h"
#include "vk_alloc.h"
#include "vk_buffer.h"
#include "vk_command_buffer.h"
#include "vk_command_pool.h"
#include "vk_debug_report.h"
#include "vk_device.h"
#if defined(USE_MAGMA)
#include "vk_magma_syncobj.h"
#else
#include "vk_drm_syncobj.h"
#endif
#include "vk_enum_defines.h"
#include "vk_framebuffer.h"
#include "vk_graphics_state.h"
#include "vk_image.h"
#include "vk_instance.h"
#include "vk_pipeline_cache.h"
#include "vk_physical_device.h"
#include "vk_shader_module.h"
#include "vk_sync.h"
#include "vk_sync_timeline.h"
#include "vk_util.h"
#include "vk_queue.h"
#include "vk_log.h"
/* Pre-declarations needed for WSI entrypoints */
struct wl_surface;
struct wl_display;
typedef struct xcb_connection_t xcb_connection_t;
typedef uint32_t xcb_visualid_t;
typedef uint32_t xcb_window_t;
struct anv_batch;
struct anv_buffer;
struct anv_buffer_view;
struct anv_image_view;
struct anv_acceleration_structure;
struct anv_instance;
struct intel_aux_map_context;
struct intel_perf_config;
struct intel_perf_counter_pass;
struct intel_perf_query_result;
#include <vulkan/vulkan.h>
#include <vulkan/vk_icd.h>
#include "anv_android.h"
#include "anv_entrypoints.h"
#include "isl/isl.h"
#include "dev/intel_debug.h"
#undef MESA_LOG_TAG
#define MESA_LOG_TAG "MESA-INTEL"
#include "util/log.h"
#include "wsi_common.h"
#define NSEC_PER_SEC 1000000000ull
/* anv Virtual Memory Layout
* =========================
*
* When the anv driver is determining the virtual graphics addresses of memory
* objects itself using the softpin mechanism, the following memory ranges
* will be used.
*
* Three special considerations to notice:
*
* (1) the dynamic state pool is located within the same 4 GiB as the low
* heap. This is to work around a VF cache issue described in a comment in
* anv_physical_device_init_heaps.
*
* (2) the binding table pool is located at lower addresses than the surface
* state pool, within a 4 GiB range. This allows surface state base addresses
* to cover both binding tables (16 bit offsets) and surface states (32 bit
* offsets).
*
* (3) the last 4 GiB of the address space is withheld from the high
* heap. Various hardware units will read past the end of an object for
* various reasons. This healthy margin prevents reads from wrapping around
* 48-bit addresses.
*/
#define GENERAL_STATE_POOL_MIN_ADDRESS 0x000000200000ULL /* 2 MiB */
#define GENERAL_STATE_POOL_MAX_ADDRESS 0x00003fffffffULL
#define LOW_HEAP_MIN_ADDRESS 0x000040000000ULL /* 1 GiB */
#define LOW_HEAP_MAX_ADDRESS 0x00007fffffffULL
#define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
#define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
#define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
#define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
#define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
#define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
#define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
#define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
#define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
#define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
#define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
#define GENERAL_STATE_POOL_SIZE \
(GENERAL_STATE_POOL_MAX_ADDRESS - GENERAL_STATE_POOL_MIN_ADDRESS + 1)
#define LOW_HEAP_SIZE \
(LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
#define DYNAMIC_STATE_POOL_SIZE \
(DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
#define BINDING_TABLE_POOL_SIZE \
(BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
#define BINDING_TABLE_POOL_BLOCK_SIZE (65536)
#define SURFACE_STATE_POOL_SIZE \
(SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
#define INSTRUCTION_STATE_POOL_SIZE \
(INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
#define CLIENT_VISIBLE_HEAP_SIZE \
(CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
/* Allowing different clear colors requires us to perform a depth resolve at
* the end of certain render passes. This is because while slow clears store
* the clear color in the HiZ buffer, fast clears (without a resolve) don't.
* See the PRMs for examples describing when additional resolves would be
* necessary. To enable fast clears without requiring extra resolves, we set
* the clear value to a globally-defined one. We could allow different values
* if the user doesn't expect coherent data during or after a render passes
* (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
* don't seem to exist yet. In almost all Vulkan applications tested thus far,
* 1.0f seems to be the only value used. The only application that doesn't set
* this value does so through the usage of an seemingly uninitialized clear
* value.
*/
#define ANV_HZ_FC_VAL 1.0f
/* 3DSTATE_VERTEX_BUFFER supports 33 VBs, we use 2 for base & drawid SGVs */
#define MAX_VBS (33 - 2)
/* 3DSTATE_VERTEX_ELEMENTS supports up to 34 VEs, but our backend compiler
* only supports the push model of VS inputs, and we only have 128 GRFs,
* minus the g0 and g1 payload, which gives us a maximum of 31 VEs. Plus,
* we use two of them for SGVs.
*/
#define MAX_VES (31 - 2)
#define MAX_XFB_BUFFERS 4
#define MAX_XFB_STREAMS 4
#define MAX_SETS 32
#define MAX_RTS 8
#define MAX_VIEWPORTS 16
#define MAX_SCISSORS 16
#define MAX_PUSH_CONSTANTS_SIZE 128
#define MAX_DYNAMIC_BUFFERS 16
#define MAX_IMAGES 64
#define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
#define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
#define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
/* We need 16 for UBO block reads to work and 32 for push UBOs. However, we
* use 64 here to avoid cache issues. This could most likely bring it back to
* 32 if we had different virtual addresses for the different views on a given
* GEM object.
*/
#define ANV_UBO_ALIGNMENT 64
#define ANV_SSBO_ALIGNMENT 4
#define ANV_SSBO_BOUNDS_CHECK_ALIGNMENT 4
#define MAX_VIEWS_FOR_PRIMITIVE_REPLICATION 16
#define MAX_SAMPLE_LOCATIONS 16
/* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
*
* "The surface state model is used when a Binding Table Index (specified
* in the message descriptor) of less than 240 is specified. In this model,
* the Binding Table Index is used to index into the binding table, and the
* binding table entry contains a pointer to the SURFACE_STATE."
*
* Binding table values above 240 are used for various things in the hardware
* such as stateless, stateless with incoherent cache, SLM, and bindless.
*/
#define MAX_BINDING_TABLE_SIZE 240
/* The kernel relocation API has a limitation of a 32-bit delta value
* applied to the address before it is written which, in spite of it being
* unsigned, is treated as signed . Because of the way that this maps to
* the Vulkan API, we cannot handle an offset into a buffer that does not
* fit into a signed 32 bits. The only mechanism we have for dealing with
* this at the moment is to limit all VkDeviceMemory objects to a maximum
* of 2GB each. The Vulkan spec allows us to do this:
*
* "Some platforms may have a limit on the maximum size of a single
* allocation. For example, certain systems may fail to create
* allocations with a size greater than or equal to 4GB. Such a limit is
* implementation-dependent, and if such a failure occurs then the error
* VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
*/
#define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
#define ANV_SVGS_VB_INDEX MAX_VBS
#define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
/* We reserve this MI ALU register for the purpose of handling predication.
* Other code which uses the MI ALU should leave it alone.
*/
#define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
/* We reserve this MI ALU register to pass around an offset computed from
* VkPerformanceQuerySubmitInfoKHR::counterPassIndex VK_KHR_performance_query.
* Other code which uses the MI ALU should leave it alone.
*/
#define ANV_PERF_QUERY_OFFSET_REG 0x2670 /* MI_ALU_REG14 */
#define ANV_GRAPHICS_SHADER_STAGE_COUNT (MESA_SHADER_MESH + 1)
/* For gfx12 we set the streamout buffers using 4 separate commands
* (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
* of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
* 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
* 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
* SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
* 3DSTATE_SO_BUFFER_INDEX_0.
*/
#define SO_BUFFER_INDEX_0_CMD 0x60
#define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
static inline uint32_t
align_down_npot_u32(uint32_t v, uint32_t a)
{
return v - (v % a);
}
static inline uint32_t
align_down_u32(uint32_t v, uint32_t a)
{
assert(a != 0 && a == (a & -a));
return v & ~(a - 1);
}
static inline uint32_t
align_u32(uint32_t v, uint32_t a)
{
assert(a != 0 && a == (a & -a));
return align_down_u32(v + a - 1, a);
}
static inline uint64_t
align_down_u64(uint64_t v, uint64_t a)
{
assert(a != 0 && a == (a & -a));
return v & ~(a - 1);
}
static inline uint64_t
align_u64(uint64_t v, uint64_t a)
{
return align_down_u64(v + a - 1, a);
}
static inline int32_t
align_i32(int32_t v, int32_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
/** Alignment must be a power of 2. */
static inline bool
anv_is_aligned(uintmax_t n, uintmax_t a)
{
assert(a == (a & -a));
return (n & (a - 1)) == 0;
}
static inline uint32_t
anv_minify(uint32_t n, uint32_t levels)
{
if (unlikely(n == 0))
return 0;
else
return MAX2(n >> levels, 1);
}
static inline float
anv_clamp_f(float f, float min, float max)
{
assert(min < max);
if (f > max)
return max;
else if (f < min)
return min;
else
return f;
}
static inline bool
anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
{
if (*inout_mask & clear_mask) {
*inout_mask &= ~clear_mask;
return true;
} else {
return false;
}
}
static inline union isl_color_value
vk_to_isl_color(VkClearColorValue color)
{
return (union isl_color_value) {
.u32 = {
color.uint32[0],
color.uint32[1],
color.uint32[2],
color.uint32[3],
},
};
}
static inline union isl_color_value
vk_to_isl_color_with_format(VkClearColorValue color, enum isl_format format)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(format);
union isl_color_value isl_color = { .u32 = {0, } };
#define COPY_COLOR_CHANNEL(c, i) \
if (fmtl->channels.c.bits) \
isl_color.u32[i] = color.uint32[i]
COPY_COLOR_CHANNEL(r, 0);
COPY_COLOR_CHANNEL(g, 1);
COPY_COLOR_CHANNEL(b, 2);
COPY_COLOR_CHANNEL(a, 3);
#undef COPY_COLOR_CHANNEL
return isl_color;
}
static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
{
uintptr_t mask = (1ull << bits) - 1;
*flags = ptr & mask;
return (void *) (ptr & ~mask);
}
static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
{
uintptr_t value = (uintptr_t) ptr;
uintptr_t mask = (1ull << bits) - 1;
return value | (mask & flags);
}
/**
* Warn on ignored extension structs.
*
* The Vulkan spec requires us to ignore unsupported or unknown structs in
* a pNext chain. In debug mode, emitting warnings for ignored structs may
* help us discover structs that we should not have ignored.
*
*
* From the Vulkan 1.0.38 spec:
*
* Any component of the implementation (the loader, any enabled layers,
* and drivers) must skip over, without processing (other than reading the
* sType and pNext members) any chained structures with sType values not
* defined by extensions supported by that component.
*/
#define anv_debug_ignored_stype(sType) \
mesa_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
void __anv_perf_warn(struct anv_device *device,
const struct vk_object_base *object,
const char *file, int line, const char *format, ...)
anv_printflike(5, 6);
/**
* Print a FINISHME message, including its source location.
*/
#define anv_finishme(format, ...) \
do { \
static bool reported = false; \
if (!reported) { \
mesa_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
##__VA_ARGS__); \
reported = true; \
} \
} while (0)
/**
* Print a perf warning message. Set INTEL_DEBUG=perf to see these.
*/
#define anv_perf_warn(objects_macro, format, ...) \
do { \
static bool reported = false; \
if (!reported && INTEL_DEBUG(DEBUG_PERF)) { \
__vk_log(VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT, \
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT, \
objects_macro, __FILE__, __LINE__, \
format, ## __VA_ARGS__); \
reported = true; \
} \
} while (0)
/* A non-fatal assert. Useful for debugging. */
#ifdef DEBUG
#define anv_assert(x) ({ \
if (unlikely(!(x))) \
mesa_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
})
#else
#define anv_assert(x)
#endif
/* Extra ANV-defined BO flags which won't be passed to the kernel */
#define ANV_BO_UNCACHED (1ull << 30)
#define ANV_BO_EXTERNAL (1ull << 31)
#define ANV_BO_FLAG_MASK (ANV_BO_UNCACHED | ANV_BO_EXTERNAL)
struct anv_bo {
const char *name;
uint32_t gem_handle;
uint32_t refcount;
/* Index into the current validation list. This is used by the
* validation list building algorithm to track which buffers are already
* in the validation list so that we can ensure uniqueness.
*/
uint32_t exec_obj_index;
/* Index for use with util_sparse_array_free_list */
uint32_t free_index;
/* Last known offset. This value is provided by the kernel when we
* execbuf and is used as the presumed offset for the next bunch of
* relocations.
*/
uint64_t offset;
/** Size of the buffer not including implicit aux */
uint64_t size;
/* Map for internally mapped BOs.
*
* If ANV_BO_ALLOC_MAPPED is set in flags, this is the map for the whole
* BO. If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
*/
void *map;
/** Size of the implicit CCS range at the end of the buffer
*
* On Gfx12, CCS data is always a direct 1/256 scale-down. A single 64K
* page of main surface data maps to a 256B chunk of CCS data and that
* mapping is provided on TGL-LP by the AUX table which maps virtual memory
* addresses in the main surface to virtual memory addresses for CCS data.
*
* Because we can't change these maps around easily and because Vulkan
* allows two VkImages to be bound to overlapping memory regions (as long
* as the app is careful), it's not feasible to make this mapping part of
* the image. (On Gfx11 and earlier, the mapping was provided via
* RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
* Instead, we attach the CCS data directly to the buffer object and setup
* the AUX table mapping at BO creation time.
*
* This field is for internal tracking use by the BO allocator only and
* should not be touched by other parts of the code. If something wants to
* know if a BO has implicit CCS data, it should instead look at the
* has_implicit_ccs boolean below.
*
* This data is not included in maps of this buffer.
*/
uint32_t _ccs_size;
/** Flags to pass to the kernel through drm_i915_exec_object2::flags */
uint32_t flags;
/** True if this BO may be shared with other processes */
bool is_external:1;
/** True if this BO is a wrapper
*
* When set to true, none of the fields in this BO are meaningful except
* for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
* See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
* is set in the physical device.
*/
bool is_wrapper:1;
/** See also ANV_BO_ALLOC_FIXED_ADDRESS */
bool has_fixed_address:1;
/** True if this BO wraps a host pointer */
bool from_host_ptr:1;
/** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
bool has_client_visible_address:1;
/** True if this BO has implicit CCS data attached to it */
bool has_implicit_ccs:1;
};
static inline struct anv_bo *
anv_bo_ref(struct anv_bo *bo)
{
p_atomic_inc(&bo->refcount);
return bo;
}
static inline struct anv_bo *
anv_bo_unwrap(struct anv_bo *bo)
{
while (bo->is_wrapper)
bo = bo->map;
return bo;
}
static inline bool
anv_bo_is_pinned(struct anv_bo *bo)
{
#if defined(GFX_VERx10) && GFX_VERx10 >= 90
/* Sky Lake and later always uses softpin */
assert(bo->flags & EXEC_OBJECT_PINNED);
return true;
#elif defined(GFX_VERx10) && GFX_VERx10 < 80
/* Haswell and earlier never use softpin */
assert(!(bo->flags & EXEC_OBJECT_PINNED));
assert(!bo->has_fixed_address);
return false;
#else
/* If we don't have a GFX_VERx10 #define, we need to look at the BO. Also,
* for GFX version 8, we need to look at the BO because Broadwell softpins
* but Cherryview doesn't.
*/
assert((bo->flags & EXEC_OBJECT_PINNED) || !bo->has_fixed_address);
return (bo->flags & EXEC_OBJECT_PINNED) != 0;
#endif
}
struct anv_address {
struct anv_bo *bo;
int64_t offset;
};
#define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
static inline struct anv_address
anv_address_from_u64(uint64_t addr_u64)
{
assert(addr_u64 == intel_canonical_address(addr_u64));
return (struct anv_address) {
.bo = NULL,
.offset = addr_u64,
};
}
static inline bool
anv_address_is_null(struct anv_address addr)
{
return addr.bo == NULL && addr.offset == 0;
}
static inline uint64_t
anv_address_physical(struct anv_address addr)
{
if (addr.bo && anv_bo_is_pinned(addr.bo)) {
return intel_canonical_address(addr.bo->offset + addr.offset);
} else {
return intel_canonical_address(addr.offset);
}
}
static inline struct anv_address
anv_address_add(struct anv_address addr, uint64_t offset)
{
addr.offset += offset;
return addr;
}
/* Represents a lock-free linked list of "free" things. This is used by
* both the block pool and the state pools. Unfortunately, in order to
* solve the ABA problem, we can't use a single uint32_t head.
*/
union anv_free_list {
struct {
uint32_t offset;
/* A simple count that is incremented every time the head changes. */
uint32_t count;
};
/* Make sure it's aligned to 64 bits. This will make atomic operations
* faster on 32 bit platforms.
*/
uint64_t u64 __attribute__ ((aligned (8)));
};
#define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
struct anv_block_state {
union {
struct {
uint32_t next;
uint32_t end;
};
/* Make sure it's aligned to 64 bits. This will make atomic operations
* faster on 32 bit platforms.
*/
uint64_t u64 __attribute__ ((aligned (8)));
};
};
#define anv_block_pool_foreach_bo(bo, pool) \
for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
_pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
_pp_bo++)
#define ANV_MAX_BLOCK_POOL_BOS 20
struct anv_block_pool {
const char *name;
struct anv_device *device;
bool use_relocations;
/* Wrapper BO for use in relocation lists. This BO is simply a wrapper
* around the actual BO so that we grow the pool after the wrapper BO has
* been put in a relocation list. This is only used in the non-softpin
* case.
*/
struct anv_bo wrapper_bo;
struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
struct anv_bo *bo;
uint32_t nbos;
uint64_t size;
/* The address where the start of the pool is pinned. The various bos that
* are created as the pool grows will have addresses in the range
* [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
*/
uint64_t start_address;
/* The offset from the start of the bo to the "center" of the block
* pool. Pointers to allocated blocks are given by
* bo.map + center_bo_offset + offsets.
*/
uint32_t center_bo_offset;
/* Current memory map of the block pool. This pointer may or may not
* point to the actual beginning of the block pool memory. If
* anv_block_pool_alloc_back has ever been called, then this pointer
* will point to the "center" position of the buffer and all offsets
* (negative or positive) given out by the block pool alloc functions
* will be valid relative to this pointer.
*
* In particular, map == bo.map + center_offset
*
* DO NOT access this pointer directly. Use anv_block_pool_map() instead,
* since it will handle the softpin case as well, where this points to NULL.
*/
void *map;
#if !defined(USE_MAGMA)
int fd;
#endif
/**
* Array of mmaps and gem handles owned by the block pool, reclaimed when
* the block pool is destroyed.
*/
struct u_vector mmap_cleanups;
struct anv_block_state state;
struct anv_block_state back_state;
};
/* Block pools are backed by a fixed-size 1GB memfd */
#define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
/* The center of the block pool is also the middle of the memfd. This may
* change in the future if we decide differently for some reason.
*/
#define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
static inline uint32_t
anv_block_pool_size(struct anv_block_pool *pool)
{
return pool->state.end + pool->back_state.end;
}
struct anv_state {
int32_t offset;
uint32_t alloc_size;
void *map;
uint32_t idx;
};
#define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
struct anv_fixed_size_state_pool {
union anv_free_list free_list;
struct anv_block_state block;
};
#define ANV_MIN_STATE_SIZE_LOG2 6
#define ANV_MAX_STATE_SIZE_LOG2 22
#define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
struct anv_free_entry {
uint32_t next;
struct anv_state state;
};
struct anv_state_table {
struct anv_device *device;
int fd;
struct anv_free_entry *map;
uint32_t size;
struct anv_block_state state;
struct u_vector cleanups;
};
struct anv_state_pool {
struct anv_block_pool block_pool;
/* Offset into the relevant state base address where the state pool starts
* allocating memory.
*/
int32_t start_offset;
struct anv_state_table table;
/* The size of blocks which will be allocated from the block pool */
uint32_t block_size;
/** Free list for "back" allocations */
union anv_free_list back_alloc_free_list;
struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
};
struct anv_state_reserved_pool {
struct anv_state_pool *pool;
union anv_free_list reserved_blocks;
uint32_t count;
};
struct anv_state_stream {
struct anv_state_pool *state_pool;
/* The size of blocks to allocate from the state pool */
uint32_t block_size;
/* Current block we're allocating from */
struct anv_state block;
/* Offset into the current block at which to allocate the next state */
uint32_t next;
/* List of all blocks allocated from this pool */
struct util_dynarray all_blocks;
};
/* The block_pool functions exported for testing only. The block pool should
* only be used via a state pool (see below).
*/
VkResult anv_block_pool_init(struct anv_block_pool *pool,
struct anv_device *device,
const char *name,
uint64_t start_address,
uint32_t initial_size);
void anv_block_pool_finish(struct anv_block_pool *pool);
int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
uint32_t block_size, uint32_t *padding);
int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
uint32_t block_size);
void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
size);
VkResult anv_state_pool_init(struct anv_state_pool *pool,
struct anv_device *device,
const char *name,
uint64_t base_address,
int32_t start_offset,
uint32_t block_size);
void anv_state_pool_finish(struct anv_state_pool *pool);
struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
uint32_t state_size, uint32_t alignment);
struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
void anv_state_stream_init(struct anv_state_stream *stream,
struct anv_state_pool *state_pool,
uint32_t block_size);
void anv_state_stream_finish(struct anv_state_stream *stream);
struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
uint32_t size, uint32_t alignment);
void anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
struct anv_state_pool *parent,
uint32_t count, uint32_t size,
uint32_t alignment);
void anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool);
struct anv_state anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool);
void anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
struct anv_state state);
VkResult anv_state_table_init(struct anv_state_table *table,
struct anv_device *device,
uint32_t initial_entries);
void anv_state_table_finish(struct anv_state_table *table);
VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
uint32_t count);
void anv_free_list_push(union anv_free_list *list,
struct anv_state_table *table,
uint32_t idx, uint32_t count);
struct anv_state* anv_free_list_pop(union anv_free_list *list,
struct anv_state_table *table);
static inline struct anv_state *
anv_state_table_get(struct anv_state_table *table, uint32_t idx)
{
return &table->map[idx].state;
}
/**
* Implements a pool of re-usable BOs. The interface is identical to that
* of block_pool except that each block is its own BO.
*/
struct anv_bo_pool {
const char *name;
struct anv_device *device;
struct util_sparse_array_free_list free_list[16];
};
void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
const char *name);
void anv_bo_pool_finish(struct anv_bo_pool *pool);
VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
struct anv_bo **bo_out);
void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
struct anv_scratch_pool {
/* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
struct anv_bo *bos[16][MESA_SHADER_STAGES];
uint32_t surfs[16];
struct anv_state surf_states[16];
};
void anv_scratch_pool_init(struct anv_device *device,
struct anv_scratch_pool *pool);
void anv_scratch_pool_finish(struct anv_device *device,
struct anv_scratch_pool *pool);
struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
struct anv_scratch_pool *pool,
gl_shader_stage stage,
unsigned per_thread_scratch);
uint32_t anv_scratch_pool_get_surf(struct anv_device *device,
struct anv_scratch_pool *pool,
unsigned per_thread_scratch);
/** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
struct anv_bo_cache {
struct util_sparse_array bo_map;
pthread_mutex_t mutex;
};
VkResult anv_bo_cache_init(struct anv_bo_cache *cache,
struct anv_device *device);
void anv_bo_cache_finish(struct anv_bo_cache *cache);
struct anv_queue_family {
/* Standard bits passed on to the client */
VkQueueFlags queueFlags;
uint32_t queueCount;
/* Driver internal information */
enum drm_i915_gem_engine_class engine_class;
};
#define ANV_MAX_QUEUE_FAMILIES 3
struct anv_memory_type {
/* Standard bits passed on to the client */
VkMemoryPropertyFlags propertyFlags;
uint32_t heapIndex;
};
struct anv_memory_heap {
/* Standard bits passed on to the client */
VkDeviceSize size;
VkMemoryHeapFlags flags;
/** Driver-internal book-keeping.
*
* Align it to 64 bits to make atomic operations faster on 32 bit platforms.
*/
VkDeviceSize used __attribute__ ((aligned (8)));
bool is_local_mem;
};
struct anv_memregion {
struct drm_i915_gem_memory_class_instance region;
uint64_t size;
uint64_t available;
};
struct anv_physical_device {
struct vk_physical_device vk;
/* Link in anv_instance::physical_devices */
struct list_head link;
struct anv_instance * instance;
char path[64];
struct intel_device_info info;
/** Amount of "GPU memory" we want to advertise
*
* Clearly, this value is bogus since Intel is a UMA architecture. On
* gfx7 platforms, we are limited by GTT size unless we want to implement
* fine-grained tracking and GTT splitting. On Broadwell and above we are
* practically unlimited. However, we will never report more than 3/4 of
* the total system ram to try and avoid running out of RAM.
*/
bool supports_48bit_addresses;
struct brw_compiler * compiler;
struct isl_device isl_dev;
struct intel_perf_config * perf;
/* True if hardware support is incomplete/alpha */
bool is_alpha;
/*
* Number of commands required to implement a performance query begin +
* end.
*/
uint32_t n_perf_query_commands;
int cmd_parser_version;
bool has_exec_async;
bool has_exec_capture;
int max_context_priority;
bool has_context_isolation;
bool has_mmap_offset;
bool has_userptr_probe;
uint64_t gtt_size;
bool use_relocations;
bool use_softpin;
#if defined(USE_MAGMA)
uint32_t softpin_extra_page_count;
#endif
bool always_use_bindless;
bool use_call_secondary;
/** True if we can access buffers using A64 messages */
bool has_a64_buffer_access;
/** True if we can use bindless access for images */
bool has_bindless_images;
/** True if we can use bindless access for samplers */
bool has_bindless_samplers;
/** True if we can use timeline semaphores through execbuf */
bool has_exec_timeline;
/** True if we can read the GPU timestamp register
*
* When running in a virtual context, the timestamp register is unreadable
* on Gfx12+.
*/
bool has_reg_timestamp;
/** True if this device has implicit AUX
*
* If true, CCS is handled as an implicit attachment to the BO rather than
* as an explicitly bound surface.
*/
bool has_implicit_ccs;
bool always_flush_cache;
struct {
uint32_t family_count;
struct anv_queue_family families[ANV_MAX_QUEUE_FAMILIES];
} queue;
struct {
uint32_t type_count;
struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
uint32_t heap_count;
struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
bool need_clflush;
} memory;
/* Either we have a single vram region and it's all mappable, or we have
* both mappable & non-mappable parts. System memory is always available.
*/
struct anv_memregion vram_mappable;
struct anv_memregion vram_non_mappable;
struct anv_memregion sys;
uint8_t driver_build_sha1[20];
uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
uint8_t driver_uuid[VK_UUID_SIZE];
uint8_t device_uuid[VK_UUID_SIZE];
struct vk_sync_type sync_syncobj_type;
struct vk_sync_timeline_type sync_timeline_type;
const struct vk_sync_type * sync_types[4];
struct wsi_device wsi_device;
int local_fd;
bool has_local;
int64_t local_major;
int64_t local_minor;
int master_fd;
bool has_master;
int64_t master_major;
int64_t master_minor;
struct drm_i915_query_engine_info * engine_info;
void (*cmd_emit_timestamp)(struct anv_batch *, struct anv_device *, struct anv_address, bool);
struct intel_measure_device measure_device;
};
static inline bool
anv_physical_device_has_vram(const struct anv_physical_device *device)
{
return device->vram_mappable.size > 0;
}
struct anv_app_info {
const char* app_name;
uint32_t app_version;
const char* engine_name;
uint32_t engine_version;
uint32_t api_version;
};
struct anv_instance {
struct vk_instance vk;
bool physical_devices_enumerated;
struct list_head physical_devices;
#if !defined(USE_MAGMA)
struct driOptionCache dri_options;
struct driOptionCache available_dri_options;
#endif
/**
* Workarounds for game bugs.
*/
bool assume_full_subgroups;
bool limit_trig_input_range;
bool sample_mask_out_opengl_behaviour;
};
VkResult anv_init_wsi(struct anv_physical_device *physical_device);
void anv_finish_wsi(struct anv_physical_device *physical_device);
struct anv_queue {
struct vk_queue vk;
struct anv_device * device;
const struct anv_queue_family * family;
uint32_t index_in_family;
uint32_t exec_flags;
/** Synchronization object for debug purposes (DEBUG_SYNC) */
struct vk_sync *sync;
struct intel_ds_queue * ds;
};
struct nir_xfb_info;
struct anv_pipeline_bind_map;
extern const struct vk_pipeline_cache_object_ops *const anv_cache_import_ops[2];
struct anv_shader_bin *
anv_device_search_for_kernel(struct anv_device *device,
struct vk_pipeline_cache *cache,
const void *key_data, uint32_t key_size,
bool *user_cache_bit);
struct anv_shader_bin *
anv_device_upload_kernel(struct anv_device *device,
struct vk_pipeline_cache *cache,
gl_shader_stage stage,
const void *key_data, uint32_t key_size,
const void *kernel_data, uint32_t kernel_size,
const struct brw_stage_prog_data *prog_data,
uint32_t prog_data_size,
const struct brw_compile_stats *stats,
uint32_t num_stats,
const struct nir_xfb_info *xfb_info,
const struct anv_pipeline_bind_map *bind_map);
struct nir_shader;
struct nir_shader_compiler_options;
struct nir_shader *
anv_device_search_for_nir(struct anv_device *device,
struct vk_pipeline_cache *cache,
const struct nir_shader_compiler_options *nir_options,
unsigned char sha1_key[20],
void *mem_ctx);
void
anv_device_upload_nir(struct anv_device *device,
struct vk_pipeline_cache *cache,
const struct nir_shader *nir,
unsigned char sha1_key[20]);
struct anv_device {
struct vk_device vk;
struct anv_physical_device * physical;
struct intel_device_info info;
struct isl_device isl_dev;
int context_id;
int fd;
bool can_chain_batches;
bool robust_buffer_access;
pthread_mutex_t vma_mutex;
struct util_vma_heap vma_lo;
struct util_vma_heap vma_cva;
struct util_vma_heap vma_hi;
/** List of all anv_device_memory objects */
struct list_head memory_objects;
struct anv_bo_pool batch_bo_pool;
struct anv_bo_pool utrace_bo_pool;
struct anv_bo_cache bo_cache;
struct anv_state_pool general_state_pool;
struct anv_state_pool dynamic_state_pool;
struct anv_state_pool instruction_state_pool;
struct anv_state_pool binding_table_pool;
struct anv_state_pool surface_state_pool;
struct anv_state_reserved_pool custom_border_colors;
/** BO used for various workarounds
*
* There are a number of workarounds on our hardware which require writing
* data somewhere and it doesn't really matter where. For that, we use
* this BO and just write to the first dword or so.
*
* We also need to be able to handle NULL buffers bound as pushed UBOs.
* For that, we use the high bytes (>= 1024) of the workaround BO.
*/
struct anv_bo * workaround_bo;
struct anv_address workaround_address;
struct anv_bo * trivial_batch_bo;
struct anv_state null_surface_state;
struct vk_pipeline_cache * default_pipeline_cache;
struct vk_pipeline_cache * internal_cache;
struct blorp_context blorp;
struct anv_state border_colors;
struct anv_state slice_hash;
/** An array of CPS_STATE structures grouped by MAX_VIEWPORTS elements
*
* We need to emit CPS_STATE structures for each viewport accessible by a
* pipeline. So rather than write many identical CPS_STATE structures
* dynamically, we can enumerate all possible combinaisons and then just
* emit a 3DSTATE_CPS_POINTERS instruction with the right offset into this
* array.
*/
struct anv_state cps_states;
uint32_t queue_count;
struct anv_queue * queues;
struct anv_scratch_pool scratch_pool;
struct anv_bo *rt_scratch_bos[16];
/** Shadow ray query BO
*
* The ray_query_bo only holds the current ray being traced. When using
* more than 1 ray query per thread, we cannot fit all the queries in
* there, so we need a another buffer to hold query data that is not
* currently being used by the HW for tracing, similar to a scratch space.
*
* The size of the shadow buffer depends on the number of queries per
* shader.
*/
struct anv_bo *ray_query_shadow_bos[16];
/** Ray query buffer used to communicated with HW unit.
*/
struct anv_bo *ray_query_bo;
struct anv_shader_bin *rt_trampoline;
struct anv_shader_bin *rt_trivial_return;
uint32_t uncached_mocs;
pthread_mutex_t mutex;
pthread_cond_t queue_submit;
struct intel_batch_decode_ctx decoder_ctx;
/*
* When decoding a anv_cmd_buffer, we might need to search for BOs through
* the cmd_buffer's list.
*/
struct anv_cmd_buffer *cmd_buffer_being_decoded;
int perf_fd; /* -1 if no opened */
uint64_t perf_metric; /* 0 if unset */
struct intel_aux_map_context *aux_map_ctx;
const struct intel_l3_config *l3_config;
struct intel_debug_block_frame *debug_frame_desc;
struct intel_ds_device ds;
};
#if defined(GFX_VERx10) && GFX_VERx10 >= 90
#define ANV_ALWAYS_SOFTPIN true
#else
#define ANV_ALWAYS_SOFTPIN false
#endif
static inline bool
anv_use_relocations(const struct anv_physical_device *pdevice)
{
#if defined(GFX_VERx10) && GFX_VERx10 >= 90
/* Sky Lake and later always uses softpin */
assert(!pdevice->use_relocations);
return false;
#elif defined(GFX_VERx10) && GFX_VERx10 < 80
/* Haswell and earlier never use softpin */
assert(pdevice->use_relocations);
return true;
#else
/* If we don't have a GFX_VERx10 #define, we need to look at the physical
* device. Also, for GFX version 8, we need to look at the physical
* device because Broadwell softpins but Cherryview doesn't.
*/
return pdevice->use_relocations;
#endif
}
static inline struct anv_state_pool *
anv_binding_table_pool(struct anv_device *device)
{
if (anv_use_relocations(device->physical))
return &device->surface_state_pool;
else
return &device->binding_table_pool;
}
static inline struct anv_state
anv_binding_table_pool_alloc(struct anv_device *device)
{
if (anv_use_relocations(device->physical))
return anv_state_pool_alloc_back(&device->surface_state_pool);
else
return anv_state_pool_alloc(&device->binding_table_pool,
device->binding_table_pool.block_size, 0);
}
static inline void
anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
anv_state_pool_free(anv_binding_table_pool(device), state);
}
static inline uint32_t
anv_mocs(const struct anv_device *device,
const struct anv_bo *bo,
isl_surf_usage_flags_t usage)
{
if (bo && bo->flags & ANV_BO_UNCACHED)
return device->uncached_mocs;
return isl_mocs(&device->isl_dev, usage, bo && bo->is_external);
}
void anv_device_init_blorp(struct anv_device *device);
void anv_device_finish_blorp(struct anv_device *device);
enum anv_bo_alloc_flags {
/** Specifies that the BO must have a 32-bit address
*
* This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
*/
ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
/** Specifies that the BO may be shared externally */
ANV_BO_ALLOC_EXTERNAL = (1 << 1),
/** Specifies that the BO should be mapped */
ANV_BO_ALLOC_MAPPED = (1 << 2),
/** Specifies that the BO should be snooped so we get coherency */
ANV_BO_ALLOC_SNOOPED = (1 << 3),
/** Specifies that the BO should be captured in error states */
ANV_BO_ALLOC_CAPTURE = (1 << 4),
/** Specifies that the BO will have an address assigned by the caller
*
* Such BOs do not exist in any VMA heap.
*/
ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
/** Enables implicit synchronization on the BO
*
* This is the opposite of EXEC_OBJECT_ASYNC.
*/
ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
/** Enables implicit synchronization on the BO
*
* This is equivalent to EXEC_OBJECT_WRITE.
*/
ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
/** Has an address which is visible to the client */
ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
/** This buffer has implicit CCS data attached to it */
ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
/** This buffer is allocated from local memory */
ANV_BO_ALLOC_LOCAL_MEM = (1 << 10),
/** This buffer is allocated from local memory and should be cpu visible */
ANV_BO_ALLOC_LOCAL_MEM_CPU_VISIBLE = (1 << 11),
};
enum anv_create_image_flags {
ANV_CREATE_IMAGE_PRESENTABLE = (1 << 0),
ANV_CREATE_IMAGE_VULKAN_USAGE = (1 << 1),
};
static inline uint64_t get_create_image_flags_from_usage(VkImageUsageFlags usage) {
uint64_t flags = ANV_CREATE_IMAGE_VULKAN_USAGE | (((uint64_t)usage) << 32);
if (usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSFER_DST_BIT))
flags |= ANV_CREATE_IMAGE_PRESENTABLE;
return flags;
}
VkResult anv_device_alloc_bo(struct anv_device *device,
const char *name, uint64_t size,
enum anv_bo_alloc_flags alloc_flags,
uint64_t explicit_address,
struct anv_bo **bo);
VkResult anv_device_map_bo(struct anv_device *device,
struct anv_bo *bo,
uint64_t offset,
size_t size,
uint32_t gem_flags,
void **map_out);
void anv_device_unmap_bo(struct anv_device *device,
struct anv_bo *bo,
void *map, size_t map_size);
VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
void *host_ptr, uint32_t size,
enum anv_bo_alloc_flags alloc_flags,
uint64_t client_address,
struct anv_bo **bo_out);
VkResult anv_device_import_bo(struct anv_device *device, int fd,
enum anv_bo_alloc_flags alloc_flags,
uint64_t client_address,
struct anv_bo **bo);
/* TODO(fxbug.dev/74456) - don't pass size once lseek is available */
VkResult anv_device_import_bo_with_size(struct anv_device *device, int fd, uint64_t import_size,
enum anv_bo_alloc_flags alloc_flags,
uint64_t client_address,
struct anv_bo **bo);
VkResult anv_device_export_bo(struct anv_device *device,
struct anv_bo *bo, int *fd_out);
VkResult anv_device_get_bo_tiling(struct anv_device *device,
struct anv_bo *bo,
enum isl_tiling *tiling_out);
VkResult anv_device_set_bo_tiling(struct anv_device *device,
struct anv_bo *bo,
uint32_t row_pitch_B,
enum isl_tiling tiling);
void anv_device_release_bo(struct anv_device *device,
struct anv_bo *bo);
/* Used for Fuchsia memory import */
VkResult anv_device_import_buffer_handle(struct anv_device* device,
uint32_t gem_handle,
uint64_t import_size,
enum anv_bo_alloc_flags alloc_flags,
uint64_t client_address,
struct anv_bo** bo_out);
static inline struct anv_bo *
anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
{
return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
}
VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
int64_t timeout);
VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue,
uint32_t exec_flags,
const VkDeviceQueueCreateInfo *pCreateInfo,
uint32_t index_in_family);
void anv_queue_finish(struct anv_queue *queue);
VkResult anv_queue_submit(struct vk_queue *queue,
struct vk_queue_submit *submit);
VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
struct anv_batch *batch);
#if defined(USE_MAGMA)
int anv_gem_connect(struct anv_device* device);
void anv_gem_disconnect(struct anv_device* device);
#endif
void* anv_gem_mmap(struct anv_device *device,
uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
void anv_gem_munmap(struct anv_device *device, void *p, uint64_t size);
uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
uint32_t anv_gem_create_regions(struct anv_device *device, uint64_t anv_bo_size,
uint32_t flags, uint32_t num_regions,
struct drm_i915_gem_memory_class_instance *regions);
uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
int anv_gem_execbuffer(struct anv_device *device,
struct drm_i915_gem_execbuffer2 *execbuf);
int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
uint32_t stride, uint32_t tiling);
int anv_gem_create_context(struct anv_device *device);
bool anv_gem_has_context_priority(int fd, int priority);
int anv_gem_destroy_context(struct anv_device *device, int context);
int anv_gem_set_context_param(int fd, int context, uint32_t param,
uint64_t value);
int anv_gem_get_param(int fd, uint32_t param);
int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
int anv_gem_context_get_reset_stats(int fd, int context,
uint32_t *active, uint32_t *pending);
int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
int anv_gem_reg_read(int fd, uint32_t offset, uint64_t *result);
uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
uint32_t read_domains, uint32_t write_domain);
int anv_i915_query(int fd, uint64_t query_id, void *buffer,
int32_t *buffer_len);
struct drm_i915_query_engine_info *anv_gem_get_engine_info(int fd);
struct anv_timestamp_query {
uint64_t monotonic_raw_timestamp[2]; // start and end of sample interval
uint64_t monotonic_timestamp;
uint64_t device_timestamp;
};
#if USE_MAGMA
int anv_gem_query_timestamp(int fd, struct anv_timestamp_query* query_out);
#endif
int anv_gem_import_fuchsia_buffer(struct anv_device *device, uint32_t handle, uint32_t* buffer_out, uint64_t* size_out);
#if defined(USE_MAGMA)
/* Returns a GEM handle */
uint32_t anv_gem_create_image(struct anv_device *device, uint64_t drm_format,
const uint64_t* drm_format_modifiers, uint32_t width, uint32_t height, uint64_t flags);
int anv_gem_get_image_info(struct anv_device *device, uint32_t gem_handle,
uint64_t* drm_format_modifier_out, uint32_t* bytes_per_row_out, bool* is_cache_coherent_out);
#endif
uint64_t anv_vma_alloc(struct anv_device *device,
uint64_t size, uint64_t align,
enum anv_bo_alloc_flags alloc_flags,
uint64_t client_address);
void anv_vma_free(struct anv_device *device,
uint64_t address, uint64_t size);
struct anv_reloc_list {
uint32_t num_relocs;
uint32_t array_length;
struct drm_i915_gem_relocation_entry * relocs;
struct anv_bo ** reloc_bos;
uint32_t dep_words;
BITSET_WORD * deps;
};
VkResult anv_reloc_list_init(struct anv_reloc_list *list,
const VkAllocationCallbacks *alloc);
void anv_reloc_list_finish(struct anv_reloc_list *list,
const VkAllocationCallbacks *alloc);
VkResult anv_reloc_list_add(struct anv_reloc_list *list,
const VkAllocationCallbacks *alloc,
uint32_t offset, struct anv_bo *target_bo,
uint32_t delta, uint64_t *address_u64_out);
VkResult anv_reloc_list_add_bo(struct anv_reloc_list *list,
const VkAllocationCallbacks *alloc,
struct anv_bo *target_bo);
struct anv_batch_bo {
/* Link in the anv_cmd_buffer.owned_batch_bos list */
struct list_head link;
struct anv_bo * bo;
/* Bytes actually consumed in this batch BO */
uint32_t length;
/* When this batch BO is used as part of a primary batch buffer, this
* tracked whether it is chained to another primary batch buffer.
*
* If this is the case, the relocation list's last entry points the
* location of the MI_BATCH_BUFFER_START chaining to the next batch.
*/
bool chained;
struct anv_reloc_list relocs;
};
struct anv_batch {
const VkAllocationCallbacks * alloc;
struct anv_address start_addr;
void * start;
void * end;
void * next;
struct anv_reloc_list * relocs;
/* This callback is called (with the associated user data) in the event
* that the batch runs out of space.
*/
VkResult (*extend_cb)(struct anv_batch *, void *);
void * user_data;
/**
* Current error status of the command buffer. Used to track inconsistent
* or incomplete command buffer states that are the consequence of run-time
* errors such as out of memory scenarios. We want to track this in the
* batch because the command buffer object is not visible to some parts
* of the driver.
*/
VkResult status;
};
void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
struct anv_address anv_batch_address(struct anv_batch *batch, void *batch_location);
static inline void
anv_batch_set_storage(struct anv_batch *batch, struct anv_address addr,
void *map, size_t size)
{
batch->start_addr = addr;
batch->next = batch->start = map;
batch->end = map + size;
}
static inline VkResult
anv_batch_set_error(struct anv_batch *batch, VkResult error)
{
assert(error != VK_SUCCESS);
if (batch->status == VK_SUCCESS)
batch->status = error;
return batch->status;
}
static inline bool
anv_batch_has_error(struct anv_batch *batch)
{
return batch->status != VK_SUCCESS;
}
static inline uint64_t
anv_batch_emit_reloc(struct anv_batch *batch,
void *location, struct anv_bo *bo, uint32_t delta)
{
uint64_t address_u64 = 0;
VkResult result;
if (ANV_ALWAYS_SOFTPIN) {
address_u64 = bo->offset + delta;
result = anv_reloc_list_add_bo(batch->relocs, batch->alloc, bo);
} else {
result = anv_reloc_list_add(batch->relocs, batch->alloc,
location - batch->start, bo, delta,
&address_u64);
}
if (unlikely(result != VK_SUCCESS)) {
anv_batch_set_error(batch, result);
return 0;
}
return address_u64;
}
static inline void
write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
{
unsigned reloc_size = 0;
if (device->info.ver >= 8) {
reloc_size = sizeof(uint64_t);
*(uint64_t *)p = intel_canonical_address(v);
} else {
reloc_size = sizeof(uint32_t);
*(uint32_t *)p = v;
}
if (flush && device->physical->memory.need_clflush)
intel_flush_range(p, reloc_size);
}
static inline uint64_t
_anv_combine_address(struct anv_batch *batch, void *location,
const struct anv_address address, uint32_t delta)
{
if (address.bo == NULL) {
return address.offset + delta;
} else if (batch == NULL) {
assert(anv_bo_is_pinned(address.bo));
return anv_address_physical(anv_address_add(address, delta));
} else {
assert(batch->start <= location && location < batch->end);
/* i915 relocations are signed. */
assert(INT32_MIN <= address.offset && address.offset <= INT32_MAX);
return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
}
}
#define __gen_address_type struct anv_address
#define __gen_user_data struct anv_batch
#define __gen_combine_address _anv_combine_address
/* Wrapper macros needed to work around preprocessor argument issues. In
* particular, arguments don't get pre-evaluated if they are concatenated.
* This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
* GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
* We can work around this easily enough with these helpers.
*/
#define __anv_cmd_length(cmd) cmd ## _length
#define __anv_cmd_length_bias(cmd) cmd ## _length_bias
#define __anv_cmd_header(cmd) cmd ## _header
#define __anv_cmd_pack(cmd) cmd ## _pack
#define __anv_reg_num(reg) reg ## _num
#define anv_pack_struct(dst, struc, ...) do { \
struct struc __template = { \
__VA_ARGS__ \
}; \
__anv_cmd_pack(struc)(NULL, dst, &__template); \
VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
} while (0)
#define anv_batch_emitn(batch, n, cmd, ...) ({ \
void *__dst = anv_batch_emit_dwords(batch, n); \
if (__dst) { \
struct cmd __template = { \
__anv_cmd_header(cmd), \
.DWordLength = n - __anv_cmd_length_bias(cmd), \
__VA_ARGS__ \
}; \
__anv_cmd_pack(cmd)(batch, __dst, &__template); \
} \
__dst; \
})
#define anv_batch_emit_merge(batch, dwords0, dwords1) \
do { \
uint32_t *dw; \
\
STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
if (!dw) \
break; \
for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
dw[i] = (dwords0)[i] | (dwords1)[i]; \
VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
} while (0)
#define anv_batch_emit(batch, cmd, name) \
for (struct cmd name = { __anv_cmd_header(cmd) }, \
*_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
__builtin_expect(_dst != NULL, 1); \
({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
_dst = NULL; \
}))
#define anv_batch_write_reg(batch, reg, name) \
for (struct reg name = {}, *_cont = (struct reg *)1; _cont != NULL; \
({ \
uint32_t _dw[__anv_cmd_length(reg)]; \
__anv_cmd_pack(reg)(NULL, _dw, &name); \
for (unsigned i = 0; i < __anv_cmd_length(reg); i++) { \
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) { \
lri.RegisterOffset = __anv_reg_num(reg); \
lri.DataDWord = _dw[i]; \
} \
} \
_cont = NULL; \
}))
/* #define __gen_get_batch_dwords anv_batch_emit_dwords */
/* #define __gen_get_batch_address anv_batch_address */
/* #define __gen_address_value anv_address_physical */
/* #define __gen_address_offset anv_address_add */
struct anv_device_memory {
struct vk_object_base base;
struct list_head link;
struct anv_bo * bo;
const struct anv_memory_type * type;
void * map;
size_t map_size;
/* The map, from the user PoV is map + map_delta */
uint64_t map_delta;
/* If set, we are holding reference to AHardwareBuffer
* which we must release when memory is freed.
*/
struct AHardwareBuffer * ahw;
/* If set, this memory comes from a host pointer. */
void * host_ptr;
#if defined(__linux__) && !defined(ANDROID) && defined(USE_MAGMA)
/* Used to bind memory to a dedicated image. */
struct {
struct anv_image* image;
enum anv_bo_alloc_flags alloc_flags;
} dedicated;
#endif
};
/**
* Header for Vertex URB Entry (VUE)
*/
struct anv_vue_header {
uint32_t Reserved;
uint32_t RTAIndex; /* RenderTargetArrayIndex */
uint32_t ViewportIndex;
float PointWidth;
};
/** Struct representing a sampled image descriptor
*
* This descriptor layout is used for sampled images, bare sampler, and
* combined image/sampler descriptors.
*/
struct anv_sampled_image_descriptor {
/** Bindless image handle
*
* This is expected to already be shifted such that the 20-bit
* SURFACE_STATE table index is in the top 20 bits.
*/
uint32_t image;
/** Bindless sampler handle
*
* This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
* to the dynamic state base address.
*/
uint32_t sampler;
};
struct anv_texture_swizzle_descriptor {
/** Texture swizzle
*
* See also nir_intrinsic_channel_select_intel
*/
uint8_t swizzle[4];
/** Unused padding to ensure the struct is a multiple of 64 bits */
uint32_t _pad;
};
/** Struct representing a storage image descriptor */
struct anv_storage_image_descriptor {
/** Bindless image handles
*
* These are expected to already be shifted such that the 20-bit
* SURFACE_STATE table index is in the top 20 bits.
*/
uint32_t vanilla;
uint32_t lowered;
};
/** Struct representing a address/range descriptor
*
* The fields of this struct correspond directly to the data layout of
* nir_address_format_64bit_bounded_global addresses. The last field is the
* offset in the NIR address so it must be zero so that when you load the
* descriptor you get a pointer to the start of the range.
*/
struct anv_address_range_descriptor {
uint64_t address;
uint32_t range;
uint32_t zero;
};
enum anv_descriptor_data {
/** The descriptor contains a BTI reference to a surface state */
ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
/** The descriptor contains a BTI reference to a sampler state */
ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
/** The descriptor contains an actual buffer view */
ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
/** The descriptor contains auxiliary image layout data */
ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
/** The descriptor contains auxiliary image layout data */
ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
/** anv_address_range_descriptor with a buffer address and range */
ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
/** Bindless surface handle */
ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
/** Storage image handles */
ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
/** Storage image handles */
ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
};
struct anv_descriptor_set_binding_layout {
/* The type of the descriptors in this binding */
VkDescriptorType type;
/* Flags provided when this binding was created */
VkDescriptorBindingFlags flags;
/* Bitfield representing the type of data this descriptor contains */
enum anv_descriptor_data data;
/* Maximum number of YCbCr texture/sampler planes */
uint8_t max_plane_count;
/* Number of array elements in this binding (or size in bytes for inline
* uniform data)
*/
uint32_t array_size;
/* Index into the flattened descriptor set */
uint32_t descriptor_index;
/* Index into the dynamic state array for a dynamic buffer */
int16_t dynamic_offset_index;
/* Index into the descriptor set buffer views */
int32_t buffer_view_index;
/* Offset into the descriptor buffer where this descriptor lives */
uint32_t descriptor_offset;
/* Pre computed stride */
unsigned descriptor_stride;
/* Immutable samplers (or NULL if no immutable samplers) */
struct anv_sampler **immutable_samplers;
};
bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
const struct anv_descriptor_set_binding_layout *binding,
bool sampler);
bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
const struct anv_descriptor_set_binding_layout *binding,
bool sampler);
struct anv_descriptor_set_layout {
struct vk_object_base base;
/* Descriptor set layouts can be destroyed at almost any time */
uint32_t ref_cnt;
/* Number of bindings in this descriptor set */
uint32_t binding_count;
/* Total number of descriptors */
uint32_t descriptor_count;
/* Shader stages affected by this descriptor set */
uint16_t shader_stages;
/* Number of buffer views in this descriptor set */
uint32_t buffer_view_count;
/* Number of dynamic offsets used by this descriptor set */
uint16_t dynamic_offset_count;
/* For each dynamic buffer, which VkShaderStageFlagBits stages are using
* this buffer
*/
VkShaderStageFlags dynamic_offset_stages[MAX_DYNAMIC_BUFFERS];
/* Size of the descriptor buffer for this descriptor set */
uint32_t descriptor_buffer_size;
/* Bindings in this descriptor set */
struct anv_descriptor_set_binding_layout binding[0];
};
void anv_descriptor_set_layout_destroy(struct anv_device *device,
struct anv_descriptor_set_layout *layout);
static inline void
anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
{
assert(layout && layout->ref_cnt >= 1);
p_atomic_inc(&layout->ref_cnt);
}
static inline void
anv_descriptor_set_layout_unref(struct anv_device *device,
struct anv_descriptor_set_layout *layout)
{
assert(layout && layout->ref_cnt >= 1);
if (p_atomic_dec_zero(&layout->ref_cnt))
anv_descriptor_set_layout_destroy(device, layout);
}
struct anv_descriptor {
VkDescriptorType type;
union {
struct {
VkImageLayout layout;
struct anv_image_view *image_view;
struct anv_sampler *sampler;
};
struct {
struct anv_buffer_view *set_buffer_view;
struct anv_buffer *buffer;
uint64_t offset;
uint64_t range;
};
struct anv_buffer_view *buffer_view;
struct anv_acceleration_structure *accel_struct;
};
};
struct anv_descriptor_set {
struct vk_object_base base;
struct anv_descriptor_pool *pool;
struct anv_descriptor_set_layout *layout;
/* Amount of space occupied in the the pool by this descriptor set. It can
* be larger than the size of the descriptor set.
*/
uint32_t size;
/* State relative to anv_descriptor_pool::bo */
struct anv_state desc_mem;
/* Surface state for the descriptor buffer */
struct anv_state desc_surface_state;
/* Descriptor set address. */
struct anv_address desc_addr;
uint32_t buffer_view_count;
struct anv_buffer_view *buffer_views;
/* Link to descriptor pool's desc_sets list . */
struct list_head pool_link;
uint32_t descriptor_count;
struct anv_descriptor descriptors[0];
};
static inline bool
anv_descriptor_set_is_push(struct anv_descriptor_set *set)
{
return set->pool == NULL;
}
struct anv_buffer_view {
struct vk_object_base base;
uint64_t range; /**< VkBufferViewCreateInfo::range */
struct anv_address address;
struct anv_state surface_state;
struct anv_state storage_surface_state;
struct anv_state lowered_storage_surface_state;
struct brw_image_param lowered_storage_image_param;
};
struct anv_push_descriptor_set {
struct anv_descriptor_set set;
/* Put this field right behind anv_descriptor_set so it fills up the
* descriptors[0] field. */
struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
/** True if the descriptor set buffer has been referenced by a draw or
* dispatch command.
*/
bool set_used_on_gpu;
struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
};
static inline struct anv_address
anv_descriptor_set_address(struct anv_descriptor_set *set)
{
if (anv_descriptor_set_is_push(set)) {
/* We have to flag push descriptor set as used on the GPU
* so that the next time we push descriptors, we grab a new memory.
*/
struct anv_push_descriptor_set *push_set =
(struct anv_push_descriptor_set *)set;
push_set->set_used_on_gpu = true;
}
return set->desc_addr;
}
struct anv_descriptor_pool {
struct vk_object_base base;
uint32_t size;
uint32_t next;
uint32_t free_list;
struct anv_bo *bo;
struct util_vma_heap bo_heap;
struct anv_state_stream surface_state_stream;
void *surface_state_free_list;
struct list_head desc_sets;
bool host_only;
char data[0];
};
struct anv_descriptor_template_entry {
/* The type of descriptor in this entry */
VkDescriptorType type;
/* Binding in the descriptor set */
uint32_t binding;
/* Offset at which to write into the descriptor set binding */
uint32_t array_element;
/* Number of elements to write into the descriptor set binding */
uint32_t array_count;
/* Offset into the user provided data */
size_t offset;
/* Stride between elements into the user provided data */
size_t stride;
};
struct anv_descriptor_update_template {
struct vk_object_base base;
VkPipelineBindPoint bind_point;
/* The descriptor set this template corresponds to. This value is only
* valid if the template was created with the templateType
* VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
*/
uint8_t set;
/* Number of entries in this template */
uint32_t entry_count;
/* Entries of the template */
struct anv_descriptor_template_entry entries[0];
};
size_t
anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout,
uint32_t var_desc_count);
uint32_t
anv_descriptor_set_layout_descriptor_buffer_size(const struct anv_descriptor_set_layout *set_layout,
uint32_t var_desc_count);
void
anv_descriptor_set_write_image_view(struct anv_device *device,
struct anv_descriptor_set *set,
const VkDescriptorImageInfo * const info,
VkDescriptorType type,
uint32_t binding,
uint32_t element);
void
anv_descriptor_set_write_buffer_view(struct anv_device *device,
struct anv_descriptor_set *set,
VkDescriptorType type,
struct anv_buffer_view *buffer_view,
uint32_t binding,
uint32_t element);
void
anv_descriptor_set_write_buffer(struct anv_device *device,
struct anv_descriptor_set *set,
struct anv_state_stream *alloc_stream,
VkDescriptorType type,
struct anv_buffer *buffer,
uint32_t binding,
uint32_t element,
VkDeviceSize offset,
VkDeviceSize range);
void
anv_descriptor_set_write_acceleration_structure(struct anv_device *device,
struct anv_descriptor_set *set,
struct anv_acceleration_structure *accel,
uint32_t binding,
uint32_t element);
void
anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
struct anv_descriptor_set *set,
uint32_t binding,
const void *data,
size_t offset,
size_t size);
void
anv_descriptor_set_write_template(struct anv_device *device,
struct anv_descriptor_set *set,
struct anv_state_stream *alloc_stream,
const struct anv_descriptor_update_template *template,
const void *data);
#define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
#define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
#define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
#define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
#define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
#define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
struct anv_pipeline_binding {
/** Index in the descriptor set
*
* This is a flattened index; the descriptor set layout is already taken
* into account.
*/
uint32_t index;
/** The descriptor set this surface corresponds to.
*
* The special ANV_DESCRIPTOR_SET_* values above indicates that this
* binding is not a normal descriptor set but something else.
*/
uint8_t set;
union {
/** Plane in the binding index for images */
uint8_t plane;
/** Dynamic offset index (for dynamic UBOs and SSBOs) */
uint8_t dynamic_offset_index;
};
/** For a storage image, whether it requires a lowered surface */
uint8_t lowered_storage_surface;
/** Pad to 64 bits so that there are no holes and we can safely memcmp
* assuming POD zero-initialization.
*/
uint8_t pad;
};
struct anv_push_range {
/** Index in the descriptor set */
uint32_t index;
/** Descriptor set index */
uint8_t set;
/** Dynamic offset index (for dynamic UBOs) */
uint8_t dynamic_offset_index;
/** Start offset in units of 32B */
uint8_t start;
/** Range in units of 32B */
uint8_t length;
};
struct anv_pipeline_layout {
struct vk_object_base base;
struct {
struct anv_descriptor_set_layout *layout;
uint32_t dynamic_offset_start;
} set[MAX_SETS];
uint32_t num_sets;
unsigned char sha1[20];
};
struct anv_buffer {
struct vk_buffer vk;
/* Set when bound */
struct anv_address address;
};
enum anv_cmd_dirty_bits {
ANV_CMD_DIRTY_PIPELINE = 1 << 0,
ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 1,
ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 2,
ANV_CMD_DIRTY_XFB_ENABLE = 1 << 3,
};
typedef enum anv_cmd_dirty_bits anv_cmd_dirty_mask_t;
enum anv_pipe_bits {
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
/* ANV_PIPE_HDC_PIPELINE_FLUSH_BIT is a precise way to ensure prior data
* cache work has completed. Available on Gfx12+. For earlier Gfx we
* must reinterpret this flush as ANV_PIPE_DATA_CACHE_FLUSH_BIT.
*/
ANV_PIPE_HDC_PIPELINE_FLUSH_BIT = (1 << 14),
ANV_PIPE_PSS_STALL_SYNC_BIT = (1 << 15),
ANV_PIPE_CS_STALL_BIT = (1 << 20),
ANV_PIPE_END_OF_PIPE_SYNC_BIT = (1 << 21),
/* This bit does not exist directly in PIPE_CONTROL. Instead it means that
* a flush has happened but not a CS stall. The next time we do any sort
* of invalidation we need to insert a CS stall at that time. Otherwise,
* we would have to CS stall on every flush which could be bad.
*/
ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT = (1 << 22),
/* This bit does not exist directly in PIPE_CONTROL. It means that render
* target operations related to transfer commands with VkBuffer as
* destination are ongoing. Some operations like copies on the command
* streamer might need to be aware of this to trigger the appropriate stall
* before they can proceed with the copy.
*/
ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 23),
/* This bit does not exist directly in PIPE_CONTROL. It means that Gfx12
* AUX-TT data has changed and we need to invalidate AUX-TT data. This is
* done by writing the AUX-TT register.
*/
ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 24),
/* This bit does not exist directly in PIPE_CONTROL. It means that a
* PIPE_CONTROL with a post-sync operation will follow. This is used to
* implement a workaround for Gfx9.
*/
ANV_PIPE_POST_SYNC_BIT = (1 << 25),
};
#define ANV_PIPE_FLUSH_BITS ( \
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
ANV_PIPE_HDC_PIPELINE_FLUSH_BIT | \
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
ANV_PIPE_TILE_CACHE_FLUSH_BIT)
#define ANV_PIPE_STALL_BITS ( \
ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
ANV_PIPE_DEPTH_STALL_BIT | \
ANV_PIPE_CS_STALL_BIT)
#define ANV_PIPE_INVALIDATE_BITS ( \
ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
enum intel_ds_stall_flag
anv_pipe_flush_bit_to_ds_stall_flag(enum anv_pipe_bits bits);
static inline enum anv_pipe_bits
anv_pipe_flush_bits_for_access_flags(struct anv_device *device,
VkAccessFlags2 flags)
{
enum anv_pipe_bits pipe_bits = 0;
u_foreach_bit64(b, flags) {
switch ((VkAccessFlags2)BITFIELD64_BIT(b)) {
case VK_ACCESS_2_SHADER_WRITE_BIT:
case VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT:
/* We're transitioning a buffer that was previously used as write
* destination through the data port. To make its content available
* to future operations, flush the hdc pipeline.
*/
pipe_bits |= ANV_PIPE_HDC_PIPELINE_FLUSH_BIT;
break;
case VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT:
/* We're transitioning a buffer that was previously used as render
* target. To make its content available to future operations, flush
* the render target cache.
*/
pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
/* We're transitioning a buffer that was previously used as depth
* buffer. To make its content available to future operations, flush
* the depth cache.
*/
pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_2_TRANSFER_WRITE_BIT:
/* We're transitioning a buffer that was previously used as a
* transfer write destination. Generic write operations include color
* & depth operations as well as buffer operations like :
* - vkCmdClearColorImage()
* - vkCmdClearDepthStencilImage()
* - vkCmdBlitImage()
* - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
*
* Most of these operations are implemented using Blorp which writes
* through the render target, so flush that cache to make it visible
* to future operations. And for depth related operations we also
* need to flush the depth cache.
*/
pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_2_MEMORY_WRITE_BIT:
/* We're transitioning a buffer for generic write operations. Flush
* all the caches.
*/
pipe_bits |= ANV_PIPE_FLUSH_BITS;
break;
case VK_ACCESS_2_HOST_WRITE_BIT:
/* We're transitioning a buffer for access by CPU. Invalidate
* all the caches. Since data and tile caches don't have invalidate,
* we are forced to flush those as well.
*/
pipe_bits |= ANV_PIPE_FLUSH_BITS;
pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
break;
case VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT:
case VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT:
/* We're transitioning a buffer written either from VS stage or from
* the command streamer (see CmdEndTransformFeedbackEXT), we just
* need to stall the CS.
*/
pipe_bits |= ANV_PIPE_CS_STALL_BIT;
break;
default:
break; /* Nothing to do */
}
}
return pipe_bits;
}
static inline enum anv_pipe_bits
anv_pipe_invalidate_bits_for_access_flags(struct anv_device *device,
VkAccessFlags2 flags)
{
enum anv_pipe_bits pipe_bits = 0;
u_foreach_bit64(b, flags) {
switch ((VkAccessFlags2)BITFIELD64_BIT(b)) {
case VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT:
/* Indirect draw commands take a buffer as input that we're going to
* read from the command streamer to load some of the HW registers
* (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
* command streamer stall so that all the cache flushes have
* completed before the command streamer loads from memory.
*/
pipe_bits |= ANV_PIPE_CS_STALL_BIT;
/* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
* through a vertex buffer, so invalidate that cache.
*/
pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
/* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
* UBO from the buffer, so we need to invalidate constant cache.
*/
pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
/* Tile cache flush needed For CmdDipatchIndirect since command
* streamer and vertex fetch aren't L3 coherent.
*/
pipe_bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_2_INDEX_READ_BIT:
case VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT:
/* We transitioning a buffer to be used for as input for vkCmdDraw*
* commands, so we invalidate the VF cache to make sure there is no
* stale data when we start rendering.
*/
pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
break;
case VK_ACCESS_2_UNIFORM_READ_BIT:
/* We transitioning a buffer to be used as uniform data. Because
* uniform is accessed through the data port & sampler, we need to
* invalidate the texture cache (sampler) & constant cache (data
* port) to avoid stale data.
*/
pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
if (device->physical->compiler->indirect_ubos_use_sampler)
pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
else
pipe_bits |= ANV_PIPE_HDC_PIPELINE_FLUSH_BIT;
break;
case VK_ACCESS_2_SHADER_READ_BIT:
case VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT:
case VK_ACCESS_2_TRANSFER_READ_BIT:
/* Transitioning a buffer to be read through the sampler, so
* invalidate the texture cache, we don't want any stale data.
*/
pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
break;
case VK_ACCESS_2_MEMORY_READ_BIT:
/* Transitioning a buffer for generic read, invalidate all the
* caches.
*/
pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
break;
case VK_ACCESS_2_MEMORY_WRITE_BIT:
/* Generic write, make sure all previously written things land in
* memory.
*/
pipe_bits |= ANV_PIPE_FLUSH_BITS;
break;
case VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT:
case VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT:
/* Transitioning a buffer for conditional rendering or transform
* feedback. We'll load the content of this buffer into HW registers
* using the command streamer, so we need to stall the command
* streamer , so we need to stall the command streamer to make sure
* any in-flight flush operations have completed.
*/
pipe_bits |= ANV_PIPE_CS_STALL_BIT;
pipe_bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_2_HOST_READ_BIT:
/* We're transitioning a buffer that was written by CPU. Flush
* all the caches.
*/
pipe_bits |= ANV_PIPE_FLUSH_BITS;
break;
case VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT:
/* We're transitioning a buffer to be written by the streamout fixed
* function. This one is apparently not L3 coherent, so we need a
* tile cache flush to make sure any previous write is not going to
* create WaW hazards.
*/
pipe_bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
break;
default:
break; /* Nothing to do */
}
}
return pipe_bits;
}
#define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
VK_IMAGE_ASPECT_COLOR_BIT | \
VK_IMAGE_ASPECT_PLANE_0_BIT | \
VK_IMAGE_ASPECT_PLANE_1_BIT | \
VK_IMAGE_ASPECT_PLANE_2_BIT)
#define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
VK_IMAGE_ASPECT_PLANE_0_BIT | \
VK_IMAGE_ASPECT_PLANE_1_BIT | \
VK_IMAGE_ASPECT_PLANE_2_BIT)
struct anv_vertex_binding {
struct anv_buffer * buffer;
VkDeviceSize offset;
VkDeviceSize size;
};
struct anv_xfb_binding {
struct anv_buffer * buffer;
VkDeviceSize offset;
VkDeviceSize size;
};
struct anv_push_constants {
/** Push constant data provided by the client through vkPushConstants */
uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
/** Dynamic offsets for dynamic UBOs and SSBOs */
uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
/* Robust access pushed registers. */
uint64_t push_reg_mask[MESA_SHADER_STAGES];
/** Ray query globals (RT_DISPATCH_GLOBALS) */
uint64_t ray_query_globals;
/* Base addresses for descriptor sets */
uint64_t desc_sets[MAX_SETS];
struct {
/** Base workgroup ID
*
* Used for vkCmdDispatchBase.
*/
uint32_t base_work_group_id[3];
/** Subgroup ID
*
* This is never set by software but is implicitly filled out when
* uploading the push constants for compute shaders.
*/
uint32_t subgroup_id;
} cs;
};
struct anv_surface_state {
struct anv_state state;
/** Address of the surface referred to by this state
*
* This address is relative to the start of the BO.
*/
struct anv_address address;
/* Address of the aux surface, if any
*
* This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
*
* With the exception of gfx8, the bottom 12 bits of this address' offset
* include extra aux information.
*/
struct anv_address aux_address;
/* Address of the clear color, if any
*
* This address is relative to the start of the BO.
*/
struct anv_address clear_address;
};
struct anv_attachment {
VkFormat vk_format;
const struct anv_image_view *iview;
VkImageLayout layout;
enum isl_aux_usage aux_usage;
struct anv_surface_state surface_state;
VkResolveModeFlagBits resolve_mode;
const struct anv_image_view *resolve_iview;
VkImageLayout resolve_layout;
};
/** State tracking for vertex buffer flushes
*
* On Gfx8-9, the VF cache only considers the bottom 32 bits of memory
* addresses. If you happen to have two vertex buffers which get placed
* exactly 4 GiB apart and use them in back-to-back draw calls, you can get
* collisions. In order to solve this problem, we track vertex address ranges
* which are live in the cache and invalidate the cache if one ever exceeds 32
* bits.
*/
struct anv_vb_cache_range {
/* Virtual address at which the live vertex buffer cache range starts for
* this vertex buffer index.
*/
uint64_t start;
/* Virtual address of the byte after where vertex buffer cache range ends.
* This is exclusive such that end - start is the size of the range.
*/
uint64_t end;
};
/* Check whether we need to apply the Gfx8-9 vertex buffer workaround*/
static inline bool
anv_gfx8_9_vb_cache_range_needs_workaround(struct anv_vb_cache_range *bound,
struct anv_vb_cache_range *dirty,
struct anv_address vb_address,
uint32_t vb_size)
{
if (vb_size == 0) {
bound->start = 0;
bound->end = 0;
return false;
}
assert(vb_address.bo && anv_bo_is_pinned(vb_address.bo));
bound->start = intel_48b_address(anv_address_physical(vb_address));
bound->end = bound->start + vb_size;
assert(bound->end > bound->start); /* No overflow */
/* Align everything to a cache line */
bound->start &= ~(64ull - 1ull);
bound->end = align_u64(bound->end, 64);
/* Compute the dirty range */
dirty->start = MIN2(dirty->start, bound->start);
dirty->end = MAX2(dirty->end, bound->end);
/* If our range is larger than 32 bits, we have to flush */
assert(bound->end - bound->start <= (1ull << 32));
return (dirty->end - dirty->start) > (1ull << 32);
}
/** State tracking for particular pipeline bind point
*
* This struct is the base struct for anv_cmd_graphics_state and
* anv_cmd_compute_state. These are used to track state which is bound to a
* particular type of pipeline. Generic state that applies per-stage such as
* binding table offsets and push constants is tracked generically with a
* per-stage array in anv_cmd_state.
*/
struct anv_cmd_pipeline_state {
struct anv_descriptor_set *descriptors[MAX_SETS];
struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
struct anv_push_constants push_constants;
/* Push constant state allocated when flushing push constants. */
struct anv_state push_constants_state;
};
/** State tracking for graphics pipeline
*
* This has anv_cmd_pipeline_state as a base struct to track things which get
* bound to a graphics pipeline. Along with general pipeline bind point state
* which is in the anv_cmd_pipeline_state base struct, it also contains other
* state which is graphics-specific.
*/
struct anv_cmd_graphics_state {
struct anv_cmd_pipeline_state base;
struct anv_graphics_pipeline *pipeline;
VkRenderingFlags rendering_flags;
VkRect2D render_area;
uint32_t layer_count;
uint32_t samples;
uint32_t view_mask;
uint32_t color_att_count;
struct anv_state att_states;
struct anv_attachment color_att[MAX_RTS];
struct anv_attachment depth_att;
struct anv_attachment stencil_att;
struct anv_state null_surface_state;
anv_cmd_dirty_mask_t dirty;
uint32_t vb_dirty;
struct anv_vb_cache_range ib_bound_range;
struct anv_vb_cache_range ib_dirty_range;
struct anv_vb_cache_range vb_bound_ranges[33];
struct anv_vb_cache_range vb_dirty_ranges[33];
uint32_t restart_index;
VkShaderStageFlags push_constant_stages;
uint32_t primitive_topology;
struct anv_buffer *index_buffer;
uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
uint32_t index_offset;
struct vk_sample_locations_state sample_locations;
};
enum anv_depth_reg_mode {
ANV_DEPTH_REG_MODE_UNKNOWN = 0,
ANV_DEPTH_REG_MODE_HW_DEFAULT,
ANV_DEPTH_REG_MODE_D16_1X_MSAA,
};
/** State tracking for compute pipeline
*
* This has anv_cmd_pipeline_state as a base struct to track things which get
* bound to a compute pipeline. Along with general pipeline bind point state
* which is in the anv_cmd_pipeline_state base struct, it also contains other
* state which is compute-specific.
*/
struct anv_cmd_compute_state {
struct anv_cmd_pipeline_state base;
struct anv_compute_pipeline *pipeline;
bool pipeline_dirty;
struct anv_state push_data;
struct anv_address num_workgroups;
};
struct anv_cmd_ray_tracing_state {
struct anv_cmd_pipeline_state base;
struct anv_ray_tracing_pipeline *pipeline;
bool pipeline_dirty;
struct {
struct anv_bo *bo;
struct brw_rt_scratch_layout layout;
} scratch;
};
/** State required while building cmd buffer */
struct anv_cmd_state {
/* PIPELINE_SELECT.PipelineSelection */
uint32_t current_pipeline;
const struct intel_l3_config * current_l3_config;
uint32_t last_aux_map_state;
struct anv_cmd_graphics_state gfx;
struct anv_cmd_compute_state compute;
struct anv_cmd_ray_tracing_state rt;
enum anv_pipe_bits pending_pipe_bits;
VkShaderStageFlags descriptors_dirty;
VkShaderStageFlags push_constants_dirty;
struct anv_vertex_binding vertex_bindings[MAX_VBS];
bool xfb_enabled;
struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
struct anv_state binding_tables[MESA_VULKAN_SHADER_STAGES];
struct anv_state samplers[MESA_VULKAN_SHADER_STAGES];
unsigned char sampler_sha1s[MESA_VULKAN_SHADER_STAGES][20];
unsigned char surface_sha1s[MESA_VULKAN_SHADER_STAGES][20];
unsigned char push_sha1s[MESA_VULKAN_SHADER_STAGES][20];
/**
* Whether or not the gfx8 PMA fix is enabled. We ensure that, at the top
* of any command buffer it is disabled by disabling it in EndCommandBuffer
* and before invoking the secondary in ExecuteCommands.
*/
bool pma_fix_enabled;
/**
* Whether or not we know for certain that HiZ is enabled for the current
* subpass. If, for whatever reason, we are unsure as to whether HiZ is
* enabled or not, this will be false.
*/
bool hiz_enabled;
/* We ensure the registers for the gfx12 D16 fix are initialized at the
* first non-NULL depth stencil packet emission of every command buffer.
* For secondary command buffer execution, we transfer the state from the
* last command buffer to the primary (if known).
*/
enum anv_depth_reg_mode depth_reg_mode;
/**
* Whether RHWO optimization is enabled (Wa_1508744258).
*/
bool rhwo_optimization_enabled;
/**
* Pending state of the RHWO optimization, to be applied at the next
* genX(cmd_buffer_apply_pipe_flushes).
*/
bool pending_rhwo_optimization_enabled;
bool conditional_render_enabled;
/**
* Last rendering scale argument provided to
* genX(cmd_buffer_emit_hashing_mode)().
*/
unsigned current_hash_scale;
/**
* A buffer used for spill/fill of ray queries.
*/
struct anv_bo * ray_query_shadow_bo;
};
#define ANV_MIN_CMD_BUFFER_BATCH_SIZE 8192
#define ANV_MAX_CMD_BUFFER_BATCH_SIZE (16 * 1024 * 1024)
enum anv_cmd_buffer_exec_mode {
ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
ANV_CMD_BUFFER_EXEC_MODE_EMIT,
ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
ANV_CMD_BUFFER_EXEC_MODE_CALL_AND_RETURN,
};
struct anv_measure_batch;
struct anv_cmd_buffer {
struct vk_command_buffer vk;
struct anv_device * device;
struct anv_queue_family * queue_family;
struct anv_batch batch;
/* Pointer to the location in the batch where MI_BATCH_BUFFER_END was
* recorded upon calling vkEndCommandBuffer(). This is useful if we need to
* rewrite the end to chain multiple batch together at vkQueueSubmit().
*/
void * batch_end;
/* Fields required for the actual chain of anv_batch_bo's.
*
* These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
*/
struct list_head batch_bos;
enum anv_cmd_buffer_exec_mode exec_mode;
/* A vector of anv_batch_bo pointers for every batch or surface buffer
* referenced by this command buffer
*
* initialized by anv_cmd_buffer_init_batch_bo_chain()
*/
struct u_vector seen_bbos;
/* A vector of int32_t's for every block of binding tables.
*
* initialized by anv_cmd_buffer_init_batch_bo_chain()
*/
struct u_vector bt_block_states;
struct anv_state bt_next;
struct anv_reloc_list surface_relocs;
/** Last seen surface state block pool center bo offset */
uint32_t last_ss_pool_center;
/* Serial for tracking buffer completion */
uint32_t serial;
/* Stream objects for storing temporary data */
struct anv_state_stream surface_state_stream;
struct anv_state_stream dynamic_state_stream;
struct anv_state_stream general_state_stream;
VkCommandBufferUsageFlags usage_flags;
struct anv_query_pool *perf_query_pool;
struct anv_cmd_state state;
struct anv_address return_addr;
/* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
uint64_t intel_perf_marker;
struct anv_measure_batch *measure;
/**
* KHR_performance_query requires self modifying command buffers and this
* array has the location of modifying commands to the query begin and end
* instructions storing performance counters. The array length is
* anv_physical_device::n_perf_query_commands.
*/
struct mi_address_token *self_mod_locations;
/**
* Index tracking which of the self_mod_locations items have already been
* used.
*/
uint32_t perf_reloc_idx;
/**
* Sum of all the anv_batch_bo sizes allocated for this command buffer.
* Used to increase allocation size for long command buffers.
*/
uint32_t total_batch_size;
/**
*
*/
struct u_trace trace;
};
/* Determine whether we can chain a given cmd_buffer to another one. We need
* softpin and we also need to make sure that we can edit the end of the batch
* to point to next one, which requires the command buffer to not be used
* simultaneously.
*/
static inline bool
anv_cmd_buffer_is_chainable(struct anv_cmd_buffer *cmd_buffer)
{
return !anv_use_relocations(cmd_buffer->device->physical) &&
!(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT);
}
VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
struct anv_cmd_buffer *secondary);
void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
struct anv_cmd_buffer *cmd_buffer,
const VkSemaphore *in_semaphores,
const uint64_t *in_wait_values,
uint32_t num_in_semaphores,
const VkSemaphore *out_semaphores,
const uint64_t *out_signal_values,
uint32_t num_out_semaphores,
VkFence fence,
int perf_query_pass);
VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
const void *data, uint32_t size, uint32_t alignment);
struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
uint32_t *a, uint32_t *b,
uint32_t dwords, uint32_t alignment);
struct anv_address
anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
struct anv_state
anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
uint32_t entries, uint32_t *state_offset);
struct anv_state
anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
struct anv_state
anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
uint32_t size, uint32_t alignment);
VkResult
anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
struct anv_state
anv_cmd_buffer_gfx_push_constants(struct anv_cmd_buffer *cmd_buffer);
struct anv_state
anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
VkResult
anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
uint32_t num_entries,
uint32_t *state_offset,
struct anv_state *bt_state);
void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
enum anv_bo_sync_state {
/** Indicates that this is a new (or newly reset fence) */
ANV_BO_SYNC_STATE_RESET,
/** Indicates that this fence has been submitted to the GPU but is still
* (as far as we know) in use by the GPU.
*/
ANV_BO_SYNC_STATE_SUBMITTED,
ANV_BO_SYNC_STATE_SIGNALED,
};
struct anv_bo_sync {
struct vk_sync sync;
enum anv_bo_sync_state state;
struct anv_bo *bo;
};
extern const struct vk_sync_type anv_bo_sync_type;
static inline bool
vk_sync_is_anv_bo_sync(const struct vk_sync *sync)
{
return sync->type == &anv_bo_sync_type;
}
VkResult anv_create_sync_for_memory(struct vk_device *device,
VkDeviceMemory memory,
bool signal_memory,
struct vk_sync **sync_out);
struct anv_event {
struct vk_object_base base;
uint64_t semaphore;
struct anv_state state;
};
#define ANV_STAGE_MASK ((1 << MESA_VULKAN_SHADER_STAGES) - 1)
#define anv_foreach_stage(stage, stage_bits) \
for (gl_shader_stage stage, \
__tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
stage = __builtin_ffs(__tmp) - 1, __tmp; \
__tmp &= ~(1 << (stage)))
struct anv_pipeline_bind_map {
unsigned char surface_sha1[20];
unsigned char sampler_sha1[20];
unsigned char push_sha1[20];
uint32_t surface_count;
uint32_t sampler_count;
struct anv_pipeline_binding * surface_to_descriptor;
struct anv_pipeline_binding * sampler_to_descriptor;
struct anv_push_range push_ranges[4];
};
struct anv_shader_bin {
struct vk_pipeline_cache_object base;
gl_shader_stage stage;
struct anv_state kernel;
uint32_t kernel_size;
const struct brw_stage_prog_data *prog_data;
uint32_t prog_data_size;
struct brw_compile_stats stats[3];
uint32_t num_stats;
struct nir_xfb_info *xfb_info;
struct anv_pipeline_bind_map bind_map;
};
struct anv_shader_bin *
anv_shader_bin_create(struct anv_device *device,
gl_shader_stage stage,
const void *key, uint32_t key_size,
const void *kernel, uint32_t kernel_size,
const struct brw_stage_prog_data *prog_data,
uint32_t prog_data_size,
const struct brw_compile_stats *stats, uint32_t num_stats,
const struct nir_xfb_info *xfb_info,
const struct anv_pipeline_bind_map *bind_map);
static inline void
anv_shader_bin_ref(struct anv_shader_bin *shader)
{
vk_pipeline_cache_object_ref(&shader->base);
}
static inline void
anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
{
vk_pipeline_cache_object_unref(&shader->base);
}
#define anv_shader_bin_get_bsr(bin, local_arg_offset) ({ \
assert((local_arg_offset) % 8 == 0); \
const struct brw_bs_prog_data *prog_data = \
brw_bs_prog_data_const(bin->prog_data); \
assert(prog_data->simd_size == 8 || prog_data->simd_size == 16); \
\
(struct GFX_BINDLESS_SHADER_RECORD) { \
.OffsetToLocalArguments = (local_arg_offset) / 8, \
.BindlessShaderDispatchMode = \
prog_data->simd_size == 16 ? RT_SIMD16 : RT_SIMD8, \
.KernelStartPointer = bin->kernel.offset, \
}; \
})
struct anv_pipeline_executable {
gl_shader_stage stage;
struct brw_compile_stats stats;
char *nir;
char *disasm;
};
enum anv_pipeline_type {
ANV_PIPELINE_GRAPHICS,
ANV_PIPELINE_COMPUTE,
ANV_PIPELINE_RAY_TRACING,
};
struct anv_pipeline {
struct vk_object_base base;
struct anv_device * device;
struct anv_batch batch;
struct anv_reloc_list batch_relocs;
void * mem_ctx;
enum anv_pipeline_type type;
VkPipelineCreateFlags flags;
uint32_t ray_queries;
struct util_dynarray executables;
const struct intel_l3_config * l3_config;
};
struct anv_graphics_pipeline {
struct anv_pipeline base;
/* Shaders */
struct anv_shader_bin * shaders[ANV_GRAPHICS_SHADER_STAGE_COUNT];
VkShaderStageFlags active_stages;
struct vk_sample_locations_state sample_locations;
struct vk_dynamic_graphics_state dynamic_state;
/* These fields are required with dynamic primitive topology,
* rasterization_samples used only with gen < 8.
*/
VkLineRasterizationModeEXT line_mode;
VkPolygonMode polygon_mode;
uint32_t patch_control_points;
uint32_t rasterization_samples;
VkColorComponentFlags color_comp_writes[MAX_RTS];
uint32_t view_mask;
uint32_t instance_multiplier;
bool depth_clamp_enable;
bool depth_clip_enable;
bool kill_pixel;
bool force_fragment_thread_dispatch;
bool negative_one_to_one;
/* When primitive replication is used, subpass->view_mask will describe what
* views to replicate.
*/
bool use_primitive_replication;
uint32_t vb_used;
struct anv_pipeline_vertex_binding {
uint32_t stride;
bool instanced;
uint32_t instance_divisor;
} vb[MAX_VBS];
/* Pre computed CS instructions that can directly be copied into
* anv_cmd_buffer.
*/
uint32_t batch_data[512];
/* Pre packed CS instructions & structures that need to be merged later
* with dynamic state.
*/
struct {
uint32_t sf[7];
uint32_t clip[4];
uint32_t xfb_bo_pitch[4];
uint32_t wm[3];
uint32_t blend_state[MAX_RTS * 2];
uint32_t streamout_state[3];
} gfx7;
struct {
uint32_t sf[4];
uint32_t raster[5];
uint32_t wm[2];
uint32_t ps_blend[2];
uint32_t blend_state[1 + MAX_RTS * 2];
uint32_t streamout_state[5];
} gfx8;
};
struct anv_compute_pipeline {
struct anv_pipeline base;
struct anv_shader_bin * cs;
uint32_t batch_data[9];
uint32_t interface_descriptor_data[8];
};
struct anv_rt_shader_group {
VkRayTracingShaderGroupTypeKHR type;
struct anv_shader_bin *general;
struct anv_shader_bin *closest_hit;
struct anv_shader_bin *any_hit;
struct anv_shader_bin *intersection;
/* VK_KHR_ray_tracing requires shaderGroupHandleSize == 32 */
uint32_t handle[8];
};
struct anv_ray_tracing_pipeline {
struct anv_pipeline base;
/* All shaders in the pipeline */
struct util_dynarray shaders;
uint32_t group_count;
struct anv_rt_shader_group * groups;
/* If non-zero, this is the default computed stack size as per the stack
* size computation in the Vulkan spec. If zero, that indicates that the
* client has requested a dynamic stack size.
*/
uint32_t stack_size;
};
#define ANV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
static inline struct anv_##pipe_type##_pipeline * \
anv_pipeline_to_##pipe_type(struct anv_pipeline *pipeline) \
{ \
assert(pipeline->type == pipe_enum); \
return (struct anv_##pipe_type##_pipeline *) pipeline; \
}
ANV_DECL_PIPELINE_DOWNCAST(graphics, ANV_PIPELINE_GRAPHICS)
ANV_DECL_PIPELINE_DOWNCAST(compute, ANV_PIPELINE_COMPUTE)
ANV_DECL_PIPELINE_DOWNCAST(ray_tracing, ANV_PIPELINE_RAY_TRACING)
static inline bool
anv_pipeline_has_stage(const struct anv_graphics_pipeline *pipeline,
gl_shader_stage stage)
{
return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
}
static inline bool
anv_pipeline_is_primitive(const struct anv_graphics_pipeline *pipeline)
{
return anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX);
}
static inline bool
anv_pipeline_is_mesh(const struct anv_graphics_pipeline *pipeline)
{
return anv_pipeline_has_stage(pipeline, MESA_SHADER_MESH);
}
static inline bool
anv_cmd_buffer_all_color_write_masked(const struct anv_cmd_buffer *cmd_buffer)
{
const struct anv_cmd_graphics_state *state = &cmd_buffer->state.gfx;
const struct vk_dynamic_graphics_state *dyn =
&cmd_buffer->vk.dynamic_graphics_state;
uint8_t color_writes = dyn->cb.color_write_enables;
/* All writes disabled through vkCmdSetColorWriteEnableEXT */
if ((color_writes & ((1u << state->color_att_count) - 1)) == 0)
return true;
/* Or all write masks are empty */
for (uint32_t i = 0; i < state->color_att_count; i++) {
if (state->pipeline->color_comp_writes[i] != 0)
return false;
}
return true;
}
#define ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(prefix, stage) \
static inline const struct brw_##prefix##_prog_data * \
get_##prefix##_prog_data(const struct anv_graphics_pipeline *pipeline) \
{ \
if (anv_pipeline_has_stage(pipeline, stage)) { \
return (const struct brw_##prefix##_prog_data *) \
pipeline->shaders[stage]->prog_data; \
} else { \
return NULL; \
} \
}
ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(mesh, MESA_SHADER_MESH)
ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(task, MESA_SHADER_TASK)
static inline const struct brw_cs_prog_data *
get_cs_prog_data(const struct anv_compute_pipeline *pipeline)
{
assert(pipeline->cs);
return (const struct brw_cs_prog_data *) pipeline->cs->prog_data;
}
static inline const struct brw_vue_prog_data *
anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline *pipeline)
{
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
return &get_gs_prog_data(pipeline)->base;
else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
return &get_tes_prog_data(pipeline)->base;
else
return &get_vs_prog_data(pipeline)->base;
}
VkResult
anv_device_init_rt_shaders(struct anv_device *device);
void
anv_device_finish_rt_shaders(struct anv_device *device);
VkResult
anv_pipeline_init(struct anv_pipeline *pipeline,
struct anv_device *device,
enum anv_pipeline_type type,
VkPipelineCreateFlags flags,
const VkAllocationCallbacks *pAllocator);
void
anv_pipeline_finish(struct anv_pipeline *pipeline,
struct anv_device *device,
const VkAllocationCallbacks *pAllocator);
struct anv_format_plane {
enum isl_format isl_format:16;
struct isl_swizzle swizzle;
/* Whether this plane contains chroma channels */
bool has_chroma;
/* For downscaling of YUV planes */
uint8_t denominator_scales[2];
/* How to map sampled ycbcr planes to a single 4 component element. */
struct isl_swizzle ycbcr_swizzle;
/* What aspect is associated to this plane */
VkImageAspectFlags aspect;
};
struct anv_format {
struct anv_format_plane planes[3];
VkFormat vk_format;
uint8_t n_planes;
bool can_ycbcr;
};
static inline void
anv_assert_valid_aspect_set(VkImageAspectFlags aspects)
{
if (util_bitcount(aspects) == 1) {
assert(aspects & (VK_IMAGE_ASPECT_COLOR_BIT |
VK_IMAGE_ASPECT_DEPTH_BIT |
VK_IMAGE_ASPECT_STENCIL_BIT |
VK_IMAGE_ASPECT_PLANE_0_BIT |
VK_IMAGE_ASPECT_PLANE_1_BIT |
VK_IMAGE_ASPECT_PLANE_2_BIT));
} else if (aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) {
assert(aspects == VK_IMAGE_ASPECT_PLANE_0_BIT ||
aspects == (VK_IMAGE_ASPECT_PLANE_0_BIT |
VK_IMAGE_ASPECT_PLANE_1_BIT) ||
aspects == (VK_IMAGE_ASPECT_PLANE_0_BIT |
VK_IMAGE_ASPECT_PLANE_1_BIT |
VK_IMAGE_ASPECT_PLANE_2_BIT));
} else {
assert(aspects == (VK_IMAGE_ASPECT_DEPTH_BIT |
VK_IMAGE_ASPECT_STENCIL_BIT));
}
}
/**
* Return the aspect's plane relative to all_aspects. For an image, for
* instance, all_aspects would be the set of aspects in the image. For
* an image view, all_aspects would be the subset of aspects represented
* by that particular view.
*/
static inline uint32_t
anv_aspect_to_plane(VkImageAspectFlags all_aspects,
VkImageAspectFlagBits aspect)
{
anv_assert_valid_aspect_set(all_aspects);
assert(util_bitcount(aspect) == 1);
assert(!(aspect & ~all_aspects));
/* Because we always put image and view planes in aspect-bit-order, the
* plane index is the number of bits in all_aspects before aspect.
*/
return util_bitcount(all_aspects & (aspect - 1));
}
#define anv_foreach_image_aspect_bit(b, image, aspects) \
u_foreach_bit(b, vk_image_expand_aspect_mask(&(image)->vk, aspects))
const struct anv_format *
anv_get_format(VkFormat format);
static inline uint32_t
anv_get_format_planes(VkFormat vk_format)
{
const struct anv_format *format = anv_get_format(vk_format);
return format != NULL ? format->n_planes : 0;
}
struct anv_format_plane
anv_get_format_plane(const struct intel_device_info *devinfo,
VkFormat vk_format, uint32_t plane,
VkImageTiling tiling);
struct anv_format_plane
anv_get_format_aspect(const struct intel_device_info *devinfo,
VkFormat vk_format,
VkImageAspectFlagBits aspect, VkImageTiling tiling);
static inline enum isl_format
anv_get_isl_format(const struct intel_device_info *devinfo, VkFormat vk_format,
VkImageAspectFlags aspect, VkImageTiling tiling)
{
return anv_get_format_aspect(devinfo, vk_format, aspect, tiling).isl_format;
}
bool anv_formats_ccs_e_compatible(const struct intel_device_info *devinfo,
VkImageCreateFlags create_flags,
VkFormat vk_format, VkImageTiling vk_tiling,
VkImageUsageFlags vk_usage,
const VkImageFormatListCreateInfo *fmt_list);
extern VkFormat
vk_format_from_android(unsigned android_format, unsigned android_usage);
static inline struct isl_swizzle
anv_swizzle_for_render(struct isl_swizzle swizzle)
{
/* Sometimes the swizzle will have alpha map to one. We do this to fake
* RGB as RGBA for texturing
*/
assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
/* But it doesn't matter what we render to that channel */
swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
return swizzle;
}
void
anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
/**
* Describes how each part of anv_image will be bound to memory.
*/
struct anv_image_memory_range {
/**
* Disjoint bindings into which each portion of the image will be bound.
*
* Binding images to memory can be complicated and invold binding different
* portions of the image to different memory objects or regions. For most
* images, everything lives in the MAIN binding and gets bound by
* vkBindImageMemory. For disjoint multi-planar images, each plane has
* a unique, disjoint binding and gets bound by vkBindImageMemory2 with
* VkBindImagePlaneMemoryInfo. There may also exist bits of memory which are
* implicit or driver-managed and live in special-case bindings.
*/
enum anv_image_memory_binding {
/**
* Used if and only if image is not multi-planar disjoint. Bound by
* vkBindImageMemory2 without VkBindImagePlaneMemoryInfo.
*/
ANV_IMAGE_MEMORY_BINDING_MAIN,
/**
* Used if and only if image is multi-planar disjoint. Bound by
* vkBindImageMemory2 with VkBindImagePlaneMemoryInfo.
*/
ANV_IMAGE_MEMORY_BINDING_PLANE_0,
ANV_IMAGE_MEMORY_BINDING_PLANE_1,
ANV_IMAGE_MEMORY_BINDING_PLANE_2,
/**
* Driver-private bo. In special cases we may store the aux surface and/or
* aux state in this binding.
*/
ANV_IMAGE_MEMORY_BINDING_PRIVATE,
/** Sentinel */
ANV_IMAGE_MEMORY_BINDING_END,
} binding;
/**
* Offset is relative to the start of the binding created by
* vkBindImageMemory, not to the start of the bo.
*/
uint64_t offset;
uint64_t size;
uint32_t alignment;
};
/**
* Subsurface of an anv_image.
*/
struct anv_surface {
struct isl_surf isl;
struct anv_image_memory_range memory_range;
};
static inline bool MUST_CHECK
anv_surface_is_valid(const struct anv_surface *surface)
{
return surface->isl.size_B > 0 && surface->memory_range.size > 0;
}
struct anv_image {
struct vk_image vk;
uint32_t n_planes;
/**
* Image has multi-planar format and was created with
* VK_IMAGE_CREATE_DISJOINT_BIT.
*/
bool disjoint;
/**
* Image was imported from an struct AHardwareBuffer. We have to delay
* final image creation until bind time.
*/
bool from_ahb;
#if defined(__linux__) && defined(USE_MAGMA)
struct {
bool is_external;
/* GEM handle used in the case of external image dedicated allocation */
uint32_t gem_handle;
bool is_cache_coherent;
} magma_linux;
#endif
/**
* Image was imported from gralloc with VkNativeBufferANDROID. The gralloc bo
* must be released when the image is destroyed.
*/
bool from_gralloc;
/**
* The memory bindings created by vkCreateImage and vkBindImageMemory.
*
* For details on the image's memory layout, see check_memory_bindings().
*
* vkCreateImage constructs the `memory_range` for each
* anv_image_memory_binding. After vkCreateImage, each binding is valid if
* and only if `memory_range::size > 0`.
*
* vkBindImageMemory binds each valid `memory_range` to an `address`.
* Usually, the app will provide the address via the parameters of
* vkBindImageMemory. However, special-case bindings may be bound to
* driver-private memory.
*/
struct anv_image_binding {
struct anv_image_memory_range memory_range;
struct anv_address address;
} bindings[ANV_IMAGE_MEMORY_BINDING_END];
/**
* Image subsurfaces
*
* For each foo, anv_image::planes[x].surface is valid if and only if
* anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
* to figure the number associated with a given aspect.
*
* The hardware requires that the depth buffer and stencil buffer be
* separate surfaces. From Vulkan's perspective, though, depth and stencil
* reside in the same VkImage. To satisfy both the hardware and Vulkan, we
* allocate the depth and stencil buffers as separate surfaces in the same
* bo.
*/
struct anv_image_plane {
struct anv_surface primary_surface;
/**
* A surface which shadows the main surface and may have different
* tiling. This is used for sampling using a tiling that isn't supported
* for other operations.
*/
struct anv_surface shadow_surface;
/**
* The base aux usage for this image. For color images, this can be
* either CCS_E or CCS_D depending on whether or not we can reliably
* leave CCS on all the time.
*/
enum isl_aux_usage aux_usage;
struct anv_surface aux_surface;
/** Location of the fast clear state. */
struct anv_image_memory_range fast_clear_memory_range;
/**
* Whether this image can be fast cleared with non-zero clear colors.
* This can happen with mutable images when formats of different bit
* sizes per components are used.
*
* On Gfx9+, because the clear colors are stored as a 4 components 32bit
* values, we can clear in R16G16_UNORM (store 2 16bit values in the
* components 0 & 1 of the clear color) and then draw in R32_UINT which
* would interpret the clear color as a single component value, using
* only the first 16bit component of the previous written clear color.
*
* On Gfx7/7.5/8, only CC_ZERO/CC_ONE clear colors are supported, this
* boolean will prevent the usage of CC_ONE.
*/
bool can_non_zero_fast_clear;
} planes[3];
};
static inline bool
anv_image_is_externally_shared(const struct anv_image *image)
{
return image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID ||
image->vk.external_handle_types != 0;
}
static inline bool
anv_image_has_private_binding(const struct anv_image *image)
{
const struct anv_image_binding private_binding =
image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE];
return private_binding.memory_range.size != 0;
}
/* The ordering of this enum is important */
enum anv_fast_clear_type {
/** Image does not have/support any fast-clear blocks */
ANV_FAST_CLEAR_NONE = 0,
/** Image has/supports fast-clear but only to the default value */
ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
/** Image has/supports fast-clear with an arbitrary fast-clear value */
ANV_FAST_CLEAR_ANY = 2,
};
/**
* Return the aspect's _format_ plane, not its _memory_ plane (using the
* vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
* aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
* VK_IMAGE_ASPECT_MEMORY_PLANE_* .
*/
static inline uint32_t
anv_image_aspect_to_plane(const struct anv_image *image,
VkImageAspectFlagBits aspect)
{
return anv_aspect_to_plane(image->vk.aspects, aspect);
}
/* Returns the number of auxiliary buffer levels attached to an image. */
static inline uint8_t
anv_image_aux_levels(const struct anv_image * const image,
VkImageAspectFlagBits aspect)
{
uint32_t plane = anv_image_aspect_to_plane(image, aspect);
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
return 0;
return image->vk.mip_levels;
}
/* Returns the number of auxiliary buffer layers attached to an image. */
static inline uint32_t
anv_image_aux_layers(const struct anv_image * const image,
VkImageAspectFlagBits aspect,
const uint8_t miplevel)
{
assert(image);
/* The miplevel must exist in the main buffer. */
assert(miplevel < image->vk.mip_levels);
if (miplevel >= anv_image_aux_levels(image, aspect)) {
/* There are no layers with auxiliary data because the miplevel has no
* auxiliary data.
*/
return 0;
}
return MAX2(image->vk.array_layers, image->vk.extent.depth >> miplevel);
}
static inline struct anv_address MUST_CHECK
anv_image_address(const struct anv_image *image,
const struct anv_image_memory_range *mem_range)
{
const struct anv_image_binding *binding = &image->bindings[mem_range->binding];
assert(binding->memory_range.offset == 0);
if (mem_range->size == 0)
return ANV_NULL_ADDRESS;
return anv_address_add(binding->address, mem_range->offset);
}
static inline struct anv_address
anv_image_get_clear_color_addr(UNUSED const struct anv_device *device,
const struct anv_image *image,
VkImageAspectFlagBits aspect)
{
assert(image->vk.aspects & (VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV |
VK_IMAGE_ASPECT_DEPTH_BIT));
uint32_t plane = anv_image_aspect_to_plane(image, aspect);
const struct anv_image_memory_range *mem_range =
&image->planes[plane].fast_clear_memory_range;
return anv_image_address(image, mem_range);
}
static inline struct anv_address
anv_image_get_fast_clear_type_addr(const struct anv_device *device,
const struct anv_image *image,
VkImageAspectFlagBits aspect)
{
struct anv_address addr =
anv_image_get_clear_color_addr(device, image, aspect);
const unsigned clear_color_state_size = device->info.ver >= 10 ?
device->isl_dev.ss.clear_color_state_size :
device->isl_dev.ss.clear_value_size;
return anv_address_add(addr, clear_color_state_size);
}
static inline struct anv_address
anv_image_get_compression_state_addr(const struct anv_device *device,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
uint32_t level, uint32_t array_layer)
{
assert(level < anv_image_aux_levels(image, aspect));
assert(array_layer < anv_image_aux_layers(image, aspect, level));
UNUSED uint32_t plane = anv_image_aspect_to_plane(image, aspect);
assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
/* Relative to start of the plane's fast clear memory range */
uint32_t offset;
offset = 4; /* Go past the fast clear type */
if (image->vk.image_type == VK_IMAGE_TYPE_3D) {
for (uint32_t l = 0; l < level; l++)
offset += anv_minify(image->vk.extent.depth, l) * 4;
} else {
offset += level * image->vk.array_layers * 4;
}
offset += array_layer * 4;
assert(offset < image->planes[plane].fast_clear_memory_range.size);
return anv_address_add(
anv_image_get_fast_clear_type_addr(device, image, aspect),
offset);
}
/* Returns true if a HiZ-enabled depth buffer can be sampled from. */
static inline bool
anv_can_sample_with_hiz(const struct intel_device_info * const devinfo,
const struct anv_image *image)
{
if (!(image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
return false;
/* For Gfx8-11, there are some restrictions around sampling from HiZ.
* The Skylake PRM docs for RENDER_SURFACE_STATE::AuxiliarySurfaceMode
* say:
*
* "If this field is set to AUX_HIZ, Number of Multisamples must
* be MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D."
*/
if (image->vk.image_type == VK_IMAGE_TYPE_3D)
return false;
/* Allow this feature on BDW even though it is disabled in the BDW devinfo
* struct. There's documentation which suggests that this feature actually
* reduces performance on BDW, but it has only been observed to help so
* far. Sampling fast-cleared blocks on BDW must also be handled with care
* (see depth_stencil_attachment_compute_aux_usage() for more info).
*/
if (devinfo->ver != 8 && !devinfo->has_sample_with_hiz)
return false;
return image->vk.samples == 1;
}
/* Returns true if an MCS-enabled buffer can be sampled from. */
static inline bool
anv_can_sample_mcs_with_clear(const struct intel_device_info * const devinfo,
const struct anv_image *image)
{
assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);
const uint32_t plane =
anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_COLOR_BIT);
assert(isl_aux_usage_has_mcs(image->planes[plane].aux_usage));
const struct anv_surface *anv_surf = &image->planes[plane].primary_surface;
/* On TGL, the sampler has an issue with some 8 and 16bpp MSAA fast clears.
* See HSD 1707282275, wa_14013111325. Due to the use of
* format-reinterpretation, a simplified workaround is implemented.
*/
if (devinfo->ver >= 12 &&
isl_format_get_layout(anv_surf->isl.format)->bpb <= 16) {
return false;
}
return true;
}
static inline bool
anv_image_plane_uses_aux_map(const struct anv_device *device,
const struct anv_image *image,
uint32_t plane)
{
return device->info.has_aux_map &&
isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
}
void
anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
enum isl_aux_usage aux_usage,
uint32_t level,
uint32_t base_layer,
uint32_t layer_count);
void
anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
enum isl_aux_usage aux_usage,
enum isl_format format, struct isl_swizzle swizzle,
uint32_t level, uint32_t base_layer, uint32_t layer_count,
VkRect2D area, union isl_color_value clear_color);
void
anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlags aspects,
enum isl_aux_usage depth_aux_usage,
uint32_t level,
uint32_t base_layer, uint32_t layer_count,
VkRect2D area,
float depth_value, uint8_t stencil_value);
void
anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *src_image,
enum isl_aux_usage src_aux_usage,
uint32_t src_level, uint32_t src_base_layer,
const struct anv_image *dst_image,
enum isl_aux_usage dst_aux_usage,
uint32_t dst_level, uint32_t dst_base_layer,
VkImageAspectFlagBits aspect,
uint32_t src_x, uint32_t src_y,
uint32_t dst_x, uint32_t dst_y,
uint32_t width, uint32_t height,
uint32_t layer_count,
enum blorp_filter filter);
void
anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect, uint32_t level,
uint32_t base_layer, uint32_t layer_count,
enum isl_aux_op hiz_op);
void
anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlags aspects,
uint32_t level,
uint32_t base_layer, uint32_t layer_count,
VkRect2D area, uint8_t stencil_value);
void
anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
enum isl_format format, struct isl_swizzle swizzle,
VkImageAspectFlagBits aspect,
uint32_t base_layer, uint32_t layer_count,
enum isl_aux_op mcs_op, union isl_color_value *clear_value,
bool predicate);
void
anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
enum isl_format format, struct isl_swizzle swizzle,
VkImageAspectFlagBits aspect, uint32_t level,
uint32_t base_layer, uint32_t layer_count,
enum isl_aux_op ccs_op, union isl_color_value *clear_value,
bool predicate);
void
anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
uint32_t base_level, uint32_t level_count,
uint32_t base_layer, uint32_t layer_count);
enum isl_aux_state ATTRIBUTE_PURE
anv_layout_to_aux_state(const struct intel_device_info * const devinfo,
const struct anv_image *image,
const VkImageAspectFlagBits aspect,
const VkImageLayout layout);
enum isl_aux_usage ATTRIBUTE_PURE
anv_layout_to_aux_usage(const struct intel_device_info * const devinfo,
const struct anv_image *image,
const VkImageAspectFlagBits aspect,
const VkImageUsageFlagBits usage,
const VkImageLayout layout);
enum anv_fast_clear_type ATTRIBUTE_PURE
anv_layout_to_fast_clear_type(const struct intel_device_info * const devinfo,
const struct anv_image * const image,
const VkImageAspectFlagBits aspect,
const VkImageLayout layout);
static inline bool
anv_image_aspects_compatible(VkImageAspectFlags aspects1,
VkImageAspectFlags aspects2)
{
if (aspects1 == aspects2)
return true;
/* Only 1 color aspects are compatibles. */
if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
(aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
util_bitcount(aspects1) == util_bitcount(aspects2))
return true;
return false;
}
struct anv_image_view {
struct vk_image_view vk;
const struct anv_image *image; /**< VkImageViewCreateInfo::image */
unsigned n_planes;
struct {
uint32_t image_plane;
struct isl_view isl;
/**
* RENDER_SURFACE_STATE when using image as a sampler surface with an
* image layout of SHADER_READ_ONLY_OPTIMAL or
* DEPTH_STENCIL_READ_ONLY_OPTIMAL.
*/
struct anv_surface_state optimal_sampler_surface_state;
/**
* RENDER_SURFACE_STATE when using image as a sampler surface with an
* image layout of GENERAL.
*/
struct anv_surface_state general_sampler_surface_state;
/**
* RENDER_SURFACE_STATE when using image as a storage image. Separate
* states for vanilla (with the original format) and one which has been
* lowered to a format suitable for reading. This may be a raw surface
* in extreme cases or simply a surface with a different format where we
* expect some conversion to be done in the shader.
*/
struct anv_surface_state storage_surface_state;
struct anv_surface_state lowered_storage_surface_state;
struct brw_image_param lowered_storage_image_param;
} planes[3];
};
enum anv_image_view_state_flags {
ANV_IMAGE_VIEW_STATE_STORAGE_LOWERED = (1 << 0),
ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
};
void anv_image_fill_surface_state(struct anv_device *device,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
const struct isl_view *view,
isl_surf_usage_flags_t view_usage,
enum isl_aux_usage aux_usage,
const union isl_color_value *clear_color,
enum anv_image_view_state_flags flags,
struct anv_surface_state *state_inout,
struct brw_image_param *image_param_out);
struct anv_image_create_info {
const VkImageCreateInfo *vk_info;
/** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
isl_tiling_flags_t isl_tiling_flags;
/** These flags will be added to any derived from VkImageCreateInfo. */
isl_surf_usage_flags_t isl_extra_usage_flags;
};
VkResult anv_image_init(struct anv_device *device, struct anv_image *image,
const struct anv_image_create_info *create_info);
void anv_image_finish(struct anv_image *image);
void anv_image_get_memory_requirements(struct anv_device *device,
struct anv_image *image,
VkImageAspectFlags aspects,
VkMemoryRequirements2 *pMemoryRequirements);
enum isl_format
anv_isl_format_for_descriptor_type(const struct anv_device *device,
VkDescriptorType type);
static inline uint32_t
anv_rasterization_aa_mode(VkPolygonMode raster_mode,
VkLineRasterizationModeEXT line_mode)
{
if (raster_mode == VK_POLYGON_MODE_LINE &&
line_mode == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT)
return true;
return false;
}
VkFormatFeatureFlags2
anv_get_image_format_features2(const struct intel_device_info *devinfo,
VkFormat vk_format,
const struct anv_format *anv_format,
VkImageTiling vk_tiling,
const struct isl_drm_modifier_info *isl_mod_info);
void anv_fill_buffer_surface_state(struct anv_device *device,
struct anv_state state,
enum isl_format format,
struct isl_swizzle swizzle,
isl_surf_usage_flags_t usage,
struct anv_address address,
uint32_t range, uint32_t stride);
/* Haswell border color is a bit of a disaster. Float and unorm formats use a
* straightforward 32-bit float color in the first 64 bytes. Instead of using
* a nice float/integer union like Gfx8+, Haswell specifies the integer border
* color as a separate entry /after/ the float color. The layout of this entry
* also depends on the format's bpp (with extra hacks for RG32), and overlaps.
*
* Since we don't know the format/bpp, we can't make any of the border colors
* containing '1' work for all formats, as it would be in the wrong place for
* some of them. We opt to make 32-bit integers work as this seems like the
* most common option. Fortunately, transparent black works regardless, as
* all zeroes is the same in every bit-size.
*/
struct hsw_border_color {
float float32[4];
uint32_t _pad0[12];
uint32_t uint32[4];
uint32_t _pad1[108];
};
struct gfx8_border_color {
union {
float float32[4];
uint32_t uint32[4];
};
/* Pad out to 64 bytes */
uint32_t _pad[12];
};
struct anv_ycbcr_conversion {
struct vk_object_base base;
const struct anv_format * format;
VkSamplerYcbcrModelConversion ycbcr_model;
VkSamplerYcbcrRange ycbcr_range;
VkComponentSwizzle mapping[4];
VkChromaLocation chroma_offsets[2];
VkFilter chroma_filter;
bool chroma_reconstruction;
};
struct anv_sampler {
struct vk_object_base base;
uint32_t state[3][4];
uint32_t n_planes;
struct anv_ycbcr_conversion *conversion;
/* Blob of sampler state data which is guaranteed to be 32-byte aligned
* and with a 32-byte stride for use as bindless samplers.
*/
struct anv_state bindless_state;
struct anv_state custom_border_color;
};
#define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
struct anv_query_pool {
struct vk_object_base base;
VkQueryType type;
VkQueryPipelineStatisticFlags pipeline_statistics;
/** Stride between slots, in bytes */
uint32_t stride;
/** Number of slots in this query pool */
uint32_t slots;
struct anv_bo * bo;
/* KHR perf queries : */
uint32_t pass_size;
uint32_t data_offset;
uint32_t snapshot_size;
uint32_t n_counters;
struct intel_perf_counter_pass *counter_pass;
uint32_t n_passes;
struct intel_perf_query_info **pass_query;
};
static inline uint32_t khr_perf_query_preamble_offset(const struct anv_query_pool *pool,
uint32_t pass)
{
return pool->pass_size * pass + 8;
}
struct anv_acceleration_structure {
struct vk_object_base base;
VkDeviceSize size;
struct anv_address address;
};
int anv_get_instance_entrypoint_index(const char *name);
int anv_get_device_entrypoint_index(const char *name);
int anv_get_physical_device_entrypoint_index(const char *name);
const char *anv_get_instance_entry_name(int index);
const char *anv_get_physical_device_entry_name(int index);
const char *anv_get_device_entry_name(int index);
bool
anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
const struct vk_instance_extension_table *instance);
bool
anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
const struct vk_instance_extension_table *instance);
bool
anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
const struct vk_instance_extension_table *instance,
const struct vk_device_extension_table *device);
const struct vk_device_dispatch_table *
anv_get_device_dispatch_table(const struct intel_device_info *devinfo);
void
anv_dump_pipe_bits(enum anv_pipe_bits bits);
static inline void
anv_add_pending_pipe_bits(struct anv_cmd_buffer* cmd_buffer,
enum anv_pipe_bits bits,
const char* reason)
{
cmd_buffer->state.pending_pipe_bits |= bits;
if (INTEL_DEBUG(DEBUG_PIPE_CONTROL) && bits)
{
fputs("pc: add ", stderr);
anv_dump_pipe_bits(bits);
fprintf(stderr, "reason: %s\n", reason);
}
}
struct anv_performance_configuration_intel {
struct vk_object_base base;
struct intel_perf_registers *register_config;
uint64_t config_id;
};
void anv_physical_device_init_perf(struct anv_physical_device *device, int fd);
void anv_device_perf_init(struct anv_device *device);
void anv_perf_write_pass_results(struct intel_perf_config *perf,
struct anv_query_pool *pool, uint32_t pass,
const struct intel_perf_query_result *accumulated_results,
union VkPerformanceCounterResultKHR *results);
/* Use to emit a series of memcpy operations */
struct anv_memcpy_state {
struct anv_device *device;
struct anv_batch *batch;
struct anv_vb_cache_range vb_bound;
struct anv_vb_cache_range vb_dirty;
};
struct anv_utrace_flush_copy {
/* Needs to be the first field */
struct intel_ds_flush_data ds;
/* Batch stuff to implement of copy of timestamps recorded in another
* buffer.
*/
struct anv_reloc_list relocs;
struct anv_batch batch;
struct anv_bo *batch_bo;
/* Buffer of 64bits timestamps */
struct anv_bo *trace_bo;
/* Syncobj to be signaled when the batch completes */
struct vk_sync *sync;
/* Queue on which all the recorded traces are submitted */
struct anv_queue *queue;
struct anv_memcpy_state memcpy_state;
};
void anv_device_utrace_init(struct anv_device *device);
void anv_device_utrace_finish(struct anv_device *device);
VkResult
anv_device_utrace_flush_cmd_buffers(struct anv_queue *queue,
uint32_t cmd_buffer_count,
struct anv_cmd_buffer **cmd_buffers,
struct anv_utrace_flush_copy **out_flush_data);
#ifdef HAVE_PERFETTO
void anv_perfetto_init(void);
uint64_t anv_perfetto_begin_submit(struct anv_queue *queue);
void anv_perfetto_end_submit(struct anv_queue *queue, uint32_t submission_id,
uint64_t start_ts);
#else
static inline void anv_perfetto_init(void)
{
}
static inline uint64_t anv_perfetto_begin_submit(struct anv_queue *queue)
{
return 0;
}
static inline void anv_perfetto_end_submit(struct anv_queue *queue,
uint32_t submission_id,
uint64_t start_ts)
{}
#endif
isl_surf_usage_flags_t
choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,
VkImageUsageFlags vk_usage,
isl_surf_usage_flags_t isl_extra_usage,
VkImageAspectFlagBits aspect);
#if VK_USE_PLATFORM_FUCHSIA
struct anv_fuchsia_image_plane_params {
uint32_t bytes_per_row;
uint32_t byte_offset;
};
VkResult anv_image_params_from_buffer_collection(
struct anv_device* device, VkBufferCollectionFUCHSIA vk_collection, const VkExtent3D* extent,
VkImageDrmFormatModifierExplicitCreateInfoEXT* modifier_info_out,
VkSubresourceLayout* subresource_layout_out);
VkResult anv_memory_params_from_buffer_collection(VkDevice device,
VkBufferCollectionFUCHSIA vk_collection,
bool* is_cache_coherent_out);
VkResult anv_get_buffer_collection_handle(struct anv_device* device,
VkBufferCollectionFUCHSIA collection, uint32_t index,
uint32_t* handle_out, uint32_t* offset_out);
#endif
#define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
VK_FROM_HANDLE(__anv_type, __name, __handle)
VK_DEFINE_HANDLE_CASTS(anv_cmd_buffer, vk.base, VkCommandBuffer,
VK_OBJECT_TYPE_COMMAND_BUFFER)
VK_DEFINE_HANDLE_CASTS(anv_device, vk.base, VkDevice, VK_OBJECT_TYPE_DEVICE)
VK_DEFINE_HANDLE_CASTS(anv_instance, vk.base, VkInstance, VK_OBJECT_TYPE_INSTANCE)
VK_DEFINE_HANDLE_CASTS(anv_physical_device, vk.base, VkPhysicalDevice,
VK_OBJECT_TYPE_PHYSICAL_DEVICE)
VK_DEFINE_HANDLE_CASTS(anv_queue, vk.base, VkQueue, VK_OBJECT_TYPE_QUEUE)
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_acceleration_structure, base,
VkAccelerationStructureKHR,
VK_OBJECT_TYPE_ACCELERATION_STRUCTURE_KHR)
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, vk.base, VkBuffer,
VK_OBJECT_TYPE_BUFFER)
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, base, VkBufferView,
VK_OBJECT_TYPE_BUFFER_VIEW)
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, base, VkDescriptorPool,
VK_OBJECT_TYPE_DESCRIPTOR_POOL)
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, base, VkDescriptorSet,
VK_OBJECT_TYPE_DESCRIPTOR_SET)
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, base,
VkDescriptorSetLayout,
VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT)
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, base,
VkDescriptorUpdateTemplate,
VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE)
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, base, VkDeviceMemory,
VK_OBJECT_TYPE_DEVICE_MEMORY)
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_event, base, VkEvent, VK_OBJECT_TYPE_EVENT)
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image, vk.base, VkImage, VK_OBJECT_TYPE_IMAGE)
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, vk.base, VkImageView,
VK_OBJECT_TYPE_IMAGE_VIEW);
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, base, VkPipeline,
VK_OBJECT_TYPE_PIPELINE)
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, base, VkPipelineLayout,
VK_OBJECT_TYPE_PIPELINE_LAYOUT)
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, base, VkQueryPool,
VK_OBJECT_TYPE_QUERY_POOL)
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, base, VkSampler,
VK_OBJECT_TYPE_SAMPLER)
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, base,
VkSamplerYcbcrConversion,
VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION)
VK_DEFINE_NONDISP_HANDLE_CASTS(anv_performance_configuration_intel, base,
VkPerformanceConfigurationINTEL,
VK_OBJECT_TYPE_PERFORMANCE_CONFIGURATION_INTEL)
#define anv_genX(devinfo, thing) ({ \
__typeof(&gfx9_##thing) genX_thing; \
switch ((devinfo)->verx10) { \
case 70: \
genX_thing = &gfx7_##thing; \
break; \
case 75: \
genX_thing = &gfx75_##thing; \
break; \
case 80: \
genX_thing = &gfx8_##thing; \
break; \
case 90: \
genX_thing = &gfx9_##thing; \
break; \
case 110: \
genX_thing = &gfx11_##thing; \
break; \
case 120: \
genX_thing = &gfx12_##thing; \
break; \
case 125: \
genX_thing = &gfx125_##thing; \
break; \
default: \
unreachable("Unknown hardware generation"); \
} \
genX_thing; \
})
/* Gen-specific function declarations */
#ifdef genX
# include "anv_genX.h"
#else
# define genX(x) gfx7_##x
# include "anv_genX.h"
# undef genX
# define genX(x) gfx75_##x
# include "anv_genX.h"
# undef genX
# define genX(x) gfx8_##x
# include "anv_genX.h"
# undef genX
# define genX(x) gfx9_##x
# include "anv_genX.h"
# undef genX
# define genX(x) gfx11_##x
# include "anv_genX.h"
# undef genX
# define genX(x) gfx12_##x
# include "anv_genX.h"
# undef genX
# define genX(x) gfx125_##x
# include "anv_genX.h"
# undef genX
#endif
#endif /* ANV_PRIVATE_H */