blob: 9986fa1d1ac4e1240877bf9d5f96c95942720b6a [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <inttypes.h>
#include <stdbool.h>
#include <string.h>
#ifdef MAJOR_IN_MKDEV
#include <sys/mkdev.h>
#endif
#ifdef MAJOR_IN_SYSMACROS
#include <sys/sysmacros.h>
#endif
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#if defined(USE_MAGMA)
#include "util/os_dirent.h"
#include "util/magma/u_magma.h"
#else
#include <xf86drm.h>
#endif
#include "drm-uapi/drm_fourcc.h"
#include "drm-uapi/drm.h"
#include "anv_private.h"
#include "anv_measure.h"
#include "util/debug.h"
#include "util/build_id.h"
#include "util/disk_cache.h"
#include "util/mesa-sha1.h"
#include "util/os_file.h"
#include "util/os_misc.h"
#include "util/u_atomic.h"
#include "util/u_string.h"
#include "util/driconf.h"
#include "git_sha1.h"
#include "vk_util.h"
#include "vk_deferred_operation.h"
#include "vk_drm_syncobj.h"
#include "common/intel_aux_map.h"
#include "common/intel_defines.h"
#include "common/intel_uuid.h"
#include "perf/intel_perf.h"
#include "genxml/gen7_pack.h"
#include "genxml/genX_bits.h"
#if !defined(USE_MAGMA)
static const driOptionDescription anv_dri_options[] = {
DRI_CONF_SECTION_PERFORMANCE
DRI_CONF_ADAPTIVE_SYNC(true)
DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
DRI_CONF_VK_X11_STRICT_IMAGE_COUNT(false)
DRI_CONF_VK_XWAYLAND_WAIT_READY(true)
DRI_CONF_ANV_ASSUME_FULL_SUBGROUPS(false)
DRI_CONF_ANV_SAMPLE_MASK_OUT_OPENGL_BEHAVIOUR(false)
DRI_CONF_SECTION_END
DRI_CONF_SECTION_DEBUG
DRI_CONF_ALWAYS_FLUSH_CACHE(false)
DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST(false)
DRI_CONF_LIMIT_TRIG_INPUT_RANGE(false)
DRI_CONF_SECTION_END
};
#endif
/* This is probably far to big but it reflects the max size used for messages
* in OpenGLs KHR_debug.
*/
#define MAX_DEBUG_MESSAGE_LENGTH 4096
/* Render engine timestamp register */
#define TIMESTAMP 0x2358
/* The "RAW" clocks on Linux are called "FAST" on FreeBSD */
#if !defined(CLOCK_MONOTONIC_RAW) && defined(CLOCK_MONOTONIC_FAST)
#define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC_FAST
#endif
static void
compiler_debug_log(void *data, UNUSED unsigned *id, const char *fmt, ...)
{
char str[MAX_DEBUG_MESSAGE_LENGTH];
struct anv_device *device = (struct anv_device *)data;
UNUSED struct anv_instance *instance = device->physical->instance;
va_list args;
va_start(args, fmt);
(void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
va_end(args);
//vk_logd(VK_LOG_NO_OBJS(&instance->vk), "%s", str);
}
static void
compiler_perf_log(UNUSED void *data, UNUSED unsigned *id, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
if (INTEL_DEBUG(DEBUG_PERF))
mesa_logd_v(fmt, args);
va_end(args);
}
#if defined(VK_USE_PLATFORM_WAYLAND_KHR) || \
defined(VK_USE_PLATFORM_XCB_KHR) || \
defined(VK_USE_PLATFORM_XLIB_KHR) || \
defined(VK_USE_PLATFORM_DISPLAY_KHR)
#define ANV_USE_WSI_PLATFORM
#endif
#ifdef ANDROID
#define ANV_API_VERSION VK_MAKE_VERSION(1, 1, VK_HEADER_VERSION)
#else
#define ANV_API_VERSION VK_MAKE_VERSION(1, 3, VK_HEADER_VERSION)
#endif
VkResult anv_EnumerateInstanceVersion(
uint32_t* pApiVersion)
{
*pApiVersion = ANV_API_VERSION;
return VK_SUCCESS;
}
static const struct vk_instance_extension_table instance_extensions = {
.KHR_device_group_creation = true,
.KHR_external_fence_capabilities = true,
.KHR_external_memory_capabilities = true,
.KHR_external_semaphore_capabilities = true,
.KHR_get_physical_device_properties2 = true,
.EXT_debug_report = true,
.EXT_debug_utils = true,
#ifdef ANV_USE_WSI_PLATFORM
.KHR_get_surface_capabilities2 = true,
.KHR_surface = true,
.KHR_surface_protected_capabilities = true,
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
.KHR_wayland_surface = true,
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
.KHR_xcb_surface = true,
#endif
#ifdef VK_USE_PLATFORM_XLIB_KHR
.KHR_xlib_surface = true,
#endif
#ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT
.EXT_acquire_xlib_display = true,
#endif
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
.KHR_display = true,
.KHR_get_display_properties2 = true,
.EXT_direct_mode_display = true,
.EXT_display_surface_counter = true,
.EXT_acquire_drm_display = true,
#endif
};
#if defined(__Fuchsia__) || defined(DISABLE_EXTERNAL_SYNC_FD)
const bool kEnableExternalSyncFd = false;
#elif __linux__
const bool kEnableExternalSyncFd = true;
#endif
static void
get_device_extensions(const struct anv_physical_device *device,
struct vk_device_extension_table *ext)
{
const bool has_syncobj_wait =
(device->sync_syncobj_type.features & VK_SYNC_FEATURE_CPU_WAIT) != 0;
const bool nv_mesh_shading_enabled =
env_var_as_boolean("ANV_EXPERIMENTAL_NV_MESH_SHADER", false);
*ext = (struct vk_device_extension_table) {
.KHR_8bit_storage = device->info.ver >= 8,
.KHR_16bit_storage = device->info.ver >= 8,
.KHR_bind_memory2 = true,
.KHR_buffer_device_address = device->has_a64_buffer_access,
.KHR_copy_commands2 = true,
.KHR_create_renderpass2 = true,
.KHR_dedicated_allocation = true,
.KHR_deferred_host_operations = true,
.KHR_depth_stencil_resolve = true,
.KHR_descriptor_update_template = true,
.KHR_device_group = true,
.KHR_draw_indirect_count = true,
.KHR_driver_properties = true,
.KHR_dynamic_rendering = true,
.KHR_external_fence = has_syncobj_wait,
.KHR_external_fence_fd = has_syncobj_wait && kEnableExternalSyncFd,
.KHR_external_memory = true,
#if !defined(__Fuchsia__)
.KHR_external_memory_fd = true,
#endif
.KHR_external_semaphore = true,
.KHR_external_semaphore_fd = kEnableExternalSyncFd,
.KHR_format_feature_flags2 = true,
.KHR_fragment_shading_rate = device->info.ver >= 11,
.KHR_get_memory_requirements2 = true,
.KHR_image_format_list = true,
.KHR_imageless_framebuffer = true,
#ifdef ANV_USE_WSI_PLATFORM
.KHR_incremental_present = true,
#endif
.KHR_maintenance1 = true,
.KHR_maintenance2 = true,
.KHR_maintenance3 = true,
.KHR_maintenance4 = true,
.KHR_multiview = true,
.KHR_performance_query =
!anv_use_relocations(device) && device->perf &&
(device->perf->i915_perf_version >= 3 ||
INTEL_DEBUG(DEBUG_NO_OACONFIG)) &&
device->use_call_secondary,
.KHR_pipeline_executable_properties = true,
.KHR_push_descriptor = true,
.KHR_ray_query = device->info.has_ray_tracing,
.KHR_relaxed_block_layout = true,
.KHR_sampler_mirror_clamp_to_edge = true,
.KHR_sampler_ycbcr_conversion = true,
.KHR_separate_depth_stencil_layouts = true,
.KHR_shader_atomic_int64 = device->info.ver >= 9,
.KHR_shader_clock = true,
.KHR_shader_draw_parameters = true,
.KHR_shader_float16_int8 = device->info.ver >= 8,
.KHR_shader_float_controls = device->info.ver >= 8,
.KHR_shader_integer_dot_product = true,
.KHR_shader_non_semantic_info = true,
.KHR_shader_subgroup_extended_types = device->info.ver >= 8,
.KHR_shader_subgroup_uniform_control_flow = true,
.KHR_shader_terminate_invocation = true,
.KHR_spirv_1_4 = true,
.KHR_storage_buffer_storage_class = true,
#ifdef ANV_USE_WSI_PLATFORM
.KHR_swapchain = true,
.KHR_swapchain_mutable_format = true,
#endif
.KHR_synchronization2 = true,
.KHR_timeline_semaphore = true,
.KHR_uniform_buffer_standard_layout = true,
.KHR_variable_pointers = true,
.KHR_vulkan_memory_model = true,
.KHR_workgroup_memory_explicit_layout = true,
.KHR_zero_initialize_workgroup_memory = true,
.EXT_4444_formats = true,
.EXT_border_color_swizzle = device->info.ver >= 8,
.EXT_buffer_device_address = device->has_a64_buffer_access,
.EXT_calibrated_timestamps = device->has_reg_timestamp,
.EXT_color_write_enable = true,
.EXT_conditional_rendering = device->info.verx10 >= 75,
.EXT_conservative_rasterization = device->info.ver >= 9,
.EXT_custom_border_color = device->info.ver >= 8,
.EXT_depth_clip_control = true,
.EXT_depth_clip_enable = true,
.EXT_descriptor_indexing = device->has_a64_buffer_access &&
device->has_bindless_images,
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
.EXT_display_control = true,
#endif
.EXT_extended_dynamic_state = true,
.EXT_extended_dynamic_state2 = true,
#if !defined(__Fuchsia__)
.EXT_external_memory_dma_buf = true,
#endif
#if !defined(USE_MAGMA)
.EXT_external_memory_host = true,
#endif
.EXT_fragment_shader_interlock = device->info.ver >= 9,
.EXT_global_priority = device->max_context_priority >=
INTEL_CONTEXT_MEDIUM_PRIORITY,
.EXT_global_priority_query = device->max_context_priority >=
INTEL_CONTEXT_MEDIUM_PRIORITY,
.EXT_host_query_reset = true,
.EXT_image_2d_view_of_3d = true,
.EXT_image_robustness = true,
#if !defined(__Fuchsia__)
.EXT_image_drm_format_modifier = true,
#endif
.EXT_image_view_min_lod = true,
.EXT_index_type_uint8 = true,
.EXT_inline_uniform_block = true,
.EXT_line_rasterization = true,
#if !defined(USE_MAGMA) // TODO(fxbug.dev/13254)
/* Enable the extension only if we have support on both the local &
* system memory
*/
.EXT_memory_budget = (!device->info.has_local_mem ||
device->vram_mappable.available > 0) &&
device->sys.available,
#endif
.EXT_non_seamless_cube_map = true,
#if !defined(USE_MAGMA)
.EXT_pci_bus_info = true,
.EXT_physical_device_drm = true,
#endif
.EXT_pipeline_creation_cache_control = true,
.EXT_pipeline_creation_feedback = true,
.EXT_post_depth_coverage = device->info.ver >= 9,
.EXT_primitives_generated_query = true,
.EXT_primitive_topology_list_restart = true,
.EXT_private_data = true,
.EXT_provoking_vertex = true,
.EXT_queue_family_foreign = true,
.EXT_robustness2 = true,
.EXT_sample_locations = true,
.EXT_sampler_filter_minmax = device->info.ver >= 9,
.EXT_scalar_block_layout = true,
.EXT_separate_stencil_usage = true,
.EXT_shader_atomic_float = true,
.EXT_shader_atomic_float2 = device->info.ver >= 9,
.EXT_shader_demote_to_helper_invocation = true,
.EXT_shader_module_identifier = true,
.EXT_shader_stencil_export = device->info.ver >= 9,
.EXT_shader_subgroup_ballot = true,
.EXT_shader_subgroup_vote = true,
.EXT_shader_viewport_index_layer = true,
.EXT_subgroup_size_control = true,
.EXT_texel_buffer_alignment = true,
.EXT_tooling_info = true,
.EXT_transform_feedback = true,
.EXT_vertex_attribute_divisor = true,
.EXT_ycbcr_image_arrays = true,
#ifdef ANDROID
.ANDROID_external_memory_android_hardware_buffer = true,
.ANDROID_native_buffer = true,
#endif
.GOOGLE_decorate_string = true,
.GOOGLE_hlsl_functionality1 = true,
.GOOGLE_user_type = true,
.INTEL_performance_query = device->perf &&
device->perf->i915_perf_version >= 3,
.INTEL_shader_integer_functions2 = device->info.ver >= 8,
.EXT_multi_draw = true,
.NV_compute_shader_derivatives = true,
.NV_mesh_shader = device->info.has_mesh_shading &&
nv_mesh_shading_enabled,
.VALVE_mutable_descriptor_type = true,
#if defined(__Fuchsia__)
.FUCHSIA_buffer_collection = true,
.FUCHSIA_external_memory = true,
.FUCHSIA_external_semaphore = true,
#endif
};
}
static uint64_t
anv_compute_sys_heap_size(struct anv_physical_device *device,
uint64_t total_ram)
{
/* We don't want to burn too much ram with the GPU. If the user has 4GiB
* or less, we use at most half. If they have more than 4GiB, we use 3/4.
*/
uint64_t available_ram;
#if defined(ANV_AVAILABLE_RAM_FRACTION)
available_ram = (double) total_ram * ANV_AVAILABLE_RAM_FRACTION;
#else
if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
available_ram = total_ram / 2;
else
available_ram = total_ram * 3 / 4;
#endif
/* We also want to leave some padding for things we allocate in the driver,
* so don't go over 3/4 of the GTT either.
*/
available_ram = MIN2(available_ram, device->gtt_size * 3 / 4);
if (available_ram > (2ull << 30) && !device->supports_48bit_addresses) {
/* When running with an overridden PCI ID, we may get a GTT size from
* the kernel that is greater than 2 GiB but the execbuf check for 48bit
* address support can still fail. Just clamp the address space size to
* 2 GiB if we don't have 48-bit support.
*/
mesa_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
"not support for 48-bit addresses",
__FILE__, __LINE__);
available_ram = 2ull << 30;
}
return available_ram;
}
static VkResult MUST_CHECK
anv_init_meminfo(struct anv_physical_device *device, int fd)
{
const struct intel_device_info *devinfo = &device->info;
device->sys.region.memory_class = devinfo->mem.sram.mem_class;
device->sys.region.memory_instance = devinfo->mem.sram.mem_instance;
device->sys.size =
anv_compute_sys_heap_size(device, devinfo->mem.sram.mappable.size);
device->sys.available = devinfo->mem.sram.mappable.free;
device->vram_mappable.region.memory_class = devinfo->mem.vram.mem_class;
device->vram_mappable.region.memory_instance =
devinfo->mem.vram.mem_instance;
device->vram_mappable.size = devinfo->mem.vram.mappable.size;
device->vram_mappable.available = devinfo->mem.vram.mappable.free;
device->vram_non_mappable.region.memory_class =
devinfo->mem.vram.mem_class;
device->vram_non_mappable.region.memory_instance =
devinfo->mem.vram.mem_instance;
device->vram_non_mappable.size = devinfo->mem.vram.unmappable.size;
device->vram_non_mappable.available = devinfo->mem.vram.unmappable.free;
return VK_SUCCESS;
}
static void
anv_update_meminfo(struct anv_physical_device *device, int fd)
{
if (!intel_device_info_update_memory_info(&device->info, fd))
return;
const struct intel_device_info *devinfo = &device->info;
device->sys.available = devinfo->mem.sram.mappable.free;
device->vram_mappable.available = devinfo->mem.vram.mappable.free;
device->vram_non_mappable.available = devinfo->mem.vram.unmappable.free;
}
static VkResult
anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
{
VkResult result = anv_init_meminfo(device, fd);
if (result != VK_SUCCESS)
return result;
assert(device->sys.size != 0);
if (anv_physical_device_has_vram(device)) {
/* We can create 2 or 3 different heaps when we have local memory
* support, first heap with local memory size and second with system
* memory size and the third is added only if part of the vram is
* mappable to the host.
*/
device->memory.heap_count = 2;
device->memory.heaps[0] = (struct anv_memory_heap) {
/* If there is a vram_non_mappable, use that for the device only
* heap. Otherwise use the vram_mappable.
*/
.size = device->vram_non_mappable.size != 0 ?
device->vram_non_mappable.size : device->vram_mappable.size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
.is_local_mem = true,
};
device->memory.heaps[1] = (struct anv_memory_heap) {
.size = device->sys.size,
.flags = 0,
.is_local_mem = false,
};
/* Add an additional smaller vram mappable heap if we can't map all the
* vram to the host.
*/
if (device->vram_non_mappable.size > 0) {
device->memory.heap_count++;
device->memory.heaps[2] = (struct anv_memory_heap) {
.size = device->vram_mappable.size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
.is_local_mem = true,
};
}
device->memory.type_count = 3;
device->memory.types[0] = (struct anv_memory_type) {
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.heapIndex = 0,
};
device->memory.types[1] = (struct anv_memory_type) {
.propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
.heapIndex = 1,
};
device->memory.types[2] = (struct anv_memory_type) {
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
/* This memory type either comes from heaps[0] if there is only
* mappable vram region, or from heaps[2] if there is both mappable &
* non-mappable vram regions.
*/
.heapIndex = device->vram_non_mappable.size > 0 ? 2 : 0,
};
} else if (device->info.has_llc) {
device->memory.heap_count = 1;
device->memory.heaps[0] = (struct anv_memory_heap) {
.size = device->sys.size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
.is_local_mem = false,
};
/* Big core GPUs share LLC with the CPU and thus one memory type can be
* both cached and coherent at the same time.
*/
device->memory.type_count = 1;
device->memory.types[0] = (struct anv_memory_type) {
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
.heapIndex = 0,
};
} else {
device->memory.heap_count = 1;
device->memory.heaps[0] = (struct anv_memory_heap) {
.size = device->sys.size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
.is_local_mem = false,
};
/* The spec requires that we expose a host-visible, coherent memory
* type, but Atom GPUs don't share LLC. Thus we offer two memory types
* to give the application a choice between cached, but not coherent and
* coherent but uncached (WC though).
*/
device->memory.type_count = 2;
device->memory.types[0] = (struct anv_memory_type) {
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
.heapIndex = 0,
};
device->memory.types[1] = (struct anv_memory_type) {
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
.heapIndex = 0,
};
}
device->memory.need_clflush = false;
for (unsigned i = 0; i < device->memory.type_count; i++) {
VkMemoryPropertyFlags props = device->memory.types[i].propertyFlags;
if ((props & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) &&
!(props & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
device->memory.need_clflush = true;
}
return VK_SUCCESS;
}
static VkResult
anv_physical_device_init_uuids(struct anv_physical_device *device)
{
const struct build_id_note *note =
build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
if (!note) {
return vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
"Failed to find build-id");
}
unsigned build_id_len = build_id_length(note);
if (build_id_len < 20) {
return vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
"build-id too short. It needs to be a SHA");
}
memcpy(device->driver_build_sha1, build_id_data(note), 20);
struct mesa_sha1 sha1_ctx;
uint8_t sha1[20];
STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
/* The pipeline cache UUID is used for determining when a pipeline cache is
* invalid. It needs both a driver build and the PCI ID of the device.
*/
_mesa_sha1_init(&sha1_ctx);
_mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
_mesa_sha1_update(&sha1_ctx, &device->info.pci_device_id,
sizeof(device->info.pci_device_id));
_mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
sizeof(device->always_use_bindless));
_mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
sizeof(device->has_a64_buffer_access));
_mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
sizeof(device->has_bindless_images));
_mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
sizeof(device->has_bindless_samplers));
_mesa_sha1_final(&sha1_ctx, sha1);
memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
intel_uuid_compute_driver_id(device->driver_uuid, &device->info, VK_UUID_SIZE);
intel_uuid_compute_device_id(device->device_uuid, &device->info, VK_UUID_SIZE);
return VK_SUCCESS;
}
static void
anv_physical_device_init_disk_cache(struct anv_physical_device *device)
{
#ifdef ENABLE_SHADER_CACHE
char renderer[10];
ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
device->info.pci_device_id);
assert(len == sizeof(renderer) - 2);
char timestamp[41];
_mesa_sha1_format(timestamp, device->driver_build_sha1);
const uint64_t driver_flags =
brw_get_compiler_config_value(device->compiler);
device->vk.disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
#endif
}
static void
anv_physical_device_free_disk_cache(struct anv_physical_device *device)
{
#ifdef ENABLE_SHADER_CACHE
if (device->vk.disk_cache) {
disk_cache_destroy(device->vk.disk_cache);
device->vk.disk_cache = NULL;
}
#else
assert(device->vk.disk_cache == NULL);
#endif
}
/* The ANV_QUEUE_OVERRIDE environment variable is a comma separated list of
* queue overrides.
*
* To override the number queues:
* * "gc" is for graphics queues with compute support
* * "g" is for graphics queues with no compute support
* * "c" is for compute queues with no graphics support
*
* For example, ANV_QUEUE_OVERRIDE=gc=2,c=1 would override the number of
* advertised queues to be 2 queues with graphics+compute support, and 1 queue
* with compute-only support.
*
* ANV_QUEUE_OVERRIDE=c=1 would override the number of advertised queues to
* include 1 queue with compute-only support, but it will not change the
* number of graphics+compute queues.
*
* ANV_QUEUE_OVERRIDE=gc=0,c=1 would override the number of advertised queues
* to include 1 queue with compute-only support, and it would override the
* number of graphics+compute queues to be 0.
*/
static void
anv_override_engine_counts(int *gc_count, int *g_count, int *c_count)
{
int gc_override = -1;
int g_override = -1;
int c_override = -1;
char *env = getenv("ANV_QUEUE_OVERRIDE");
if (env == NULL)
return;
env = strdup(env);
char *save = NULL;
char *next = strtok_r(env, ",", &save);
while (next != NULL) {
if (strncmp(next, "gc=", 3) == 0) {
gc_override = strtol(next + 3, NULL, 0);
} else if (strncmp(next, "g=", 2) == 0) {
g_override = strtol(next + 2, NULL, 0);
} else if (strncmp(next, "c=", 2) == 0) {
c_override = strtol(next + 2, NULL, 0);
} else {
mesa_logw("Ignoring unsupported ANV_QUEUE_OVERRIDE token: %s", next);
}
next = strtok_r(NULL, ",", &save);
}
free(env);
if (gc_override >= 0)
*gc_count = gc_override;
if (g_override >= 0)
*g_count = g_override;
if (*g_count > 0 && *gc_count <= 0 && (gc_override >= 0 || g_override >= 0))
mesa_logw("ANV_QUEUE_OVERRIDE: gc=0 with g > 0 violates the "
"Vulkan specification");
if (c_override >= 0)
*c_count = c_override;
}
static void
anv_physical_device_init_queue_families(struct anv_physical_device *pdevice)
{
uint32_t family_count = 0;
if (pdevice->engine_info) {
int gc_count =
intel_gem_count_engines(pdevice->engine_info,
I915_ENGINE_CLASS_RENDER);
int g_count = 0;
int c_count = 0;
if (env_var_as_boolean("INTEL_COMPUTE_CLASS", false))
c_count = intel_gem_count_engines(pdevice->engine_info,
I915_ENGINE_CLASS_COMPUTE);
enum drm_i915_gem_engine_class compute_class =
c_count < 1 ? I915_ENGINE_CLASS_RENDER : I915_ENGINE_CLASS_COMPUTE;
anv_override_engine_counts(&gc_count, &g_count, &c_count);
if (gc_count > 0) {
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT,
.queueCount = gc_count,
.engine_class = I915_ENGINE_CLASS_RENDER,
};
}
if (g_count > 0) {
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_TRANSFER_BIT,
.queueCount = g_count,
.engine_class = I915_ENGINE_CLASS_RENDER,
};
}
if (c_count > 0) {
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
.queueFlags = VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT,
.queueCount = c_count,
.engine_class = compute_class,
};
}
/* Increase count below when other families are added as a reminder to
* increase the ANV_MAX_QUEUE_FAMILIES value.
*/
STATIC_ASSERT(ANV_MAX_QUEUE_FAMILIES >= 3);
} else {
/* Default to a single render queue */
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT,
.queueCount = 1,
.engine_class = I915_ENGINE_CLASS_RENDER,
};
family_count = 1;
}
assert(family_count <= ANV_MAX_QUEUE_FAMILIES);
pdevice->queue.family_count = family_count;
}
static VkResult
anv_physical_device_try_create(struct anv_instance *instance,
#if defined(USE_MAGMA)
const char *primary_path,
const char *path,
#else
drmDevicePtr drm_device,
#endif
struct anv_physical_device **device_out)
{
#if !defined(USE_MAGMA)
const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
const char *path = drm_device->nodes[DRM_NODE_RENDER];
#endif
VkResult result;
int master_fd = -1;
brw_process_intel_debug_variable();
#if defined(USE_MAGMA)
int fd = u_magma_open(path);
if (fd < 0)
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"Unable to open device %s", path);
#else
int fd;
fd = open(path, O_RDWR | O_CLOEXEC);
if (fd < 0) {
if (errno == ENOMEM) {
return vk_errorf(instance, VK_ERROR_OUT_OF_HOST_MEMORY,
"Unable to open device %s: out of memory", path);
}
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"Unable to open device %s: %m", path);
}
#endif
struct intel_device_info devinfo;
if (!intel_get_device_info_from_fd(fd, &devinfo)) {
result = vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
goto fail_fd;
}
bool is_alpha = true;
if (devinfo.platform == INTEL_PLATFORM_HSW) {
mesa_logw("Haswell Vulkan support is incomplete");
} else if (devinfo.platform == INTEL_PLATFORM_IVB) {
mesa_logw("Ivy Bridge Vulkan support is incomplete");
} else if (devinfo.platform == INTEL_PLATFORM_BYT) {
mesa_logw("Bay Trail Vulkan support is incomplete");
} else if (devinfo.ver >= 8 && devinfo.ver <= 12) {
/* Gfx8-12 fully supported */
is_alpha = false;
} else {
result = vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"Vulkan not yet supported on %s", devinfo.name);
goto fail_fd;
}
struct anv_physical_device *device =
vk_zalloc(&instance->vk.alloc, sizeof(*device), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (device == NULL) {
result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_fd;
}
struct vk_physical_device_dispatch_table dispatch_table;
vk_physical_device_dispatch_table_from_entrypoints(
&dispatch_table, &anv_physical_device_entrypoints, true);
vk_physical_device_dispatch_table_from_entrypoints(
&dispatch_table, &wsi_physical_device_entrypoints, false);
result = vk_physical_device_init(&device->vk, &instance->vk,
NULL, /* We set up extensions later */
&dispatch_table);
if (result != VK_SUCCESS) {
vk_error(instance, result);
goto fail_alloc;
}
device->instance = instance;
assert(strlen(path) < ARRAY_SIZE(device->path));
snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
device->info = devinfo;
device->is_alpha = is_alpha;
device->cmd_parser_version = -1;
if (device->info.ver == 7) {
device->cmd_parser_version =
anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
if (device->cmd_parser_version == -1) {
result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
"failed to get command parser version");
goto fail_base;
}
}
if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
"kernel missing gem wait");
goto fail_base;
}
if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
"kernel missing execbuf2");
goto fail_base;
}
if (!device->info.has_llc &&
anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
"kernel missing wc mmap");
goto fail_base;
}
device->use_relocations = device->info.ver < 8 ||
device->info.platform == INTEL_PLATFORM_CHV;
#if defined(USE_MAGMA)
device->softpin_extra_page_count = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN);
#else
if (!device->use_relocations &&
!anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)) {
result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
"kernel missing softpin");
goto fail_alloc;
}
#endif
if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY)) {
result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
"kernel missing syncobj support");
goto fail_base;
}
device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
/* Start with medium; sorted low to high */
const int priorities[] = {
INTEL_CONTEXT_MEDIUM_PRIORITY,
INTEL_CONTEXT_HIGH_PRIORITY,
INTEL_CONTEXT_REALTIME_PRIORITY,
};
device->max_context_priority = INT_MIN;
for (unsigned i = 0; i < ARRAY_SIZE(priorities); i++) {
if (!anv_gem_has_context_priority(fd, priorities[i]))
break;
device->max_context_priority = priorities[i];
}
device->gtt_size = device->info.gtt_size ? device->info.gtt_size :
device->info.aperture_bytes;
/* We only allow 48-bit addresses with softpin because knowing the actual
* address is required for the vertex cache flush workaround.
*/
device->supports_48bit_addresses = (device->info.ver >= 8) &&
device->gtt_size > (4ULL << 30 /* GiB */);
/* Initialize memory regions struct to 0. */
memset(&device->vram_non_mappable, 0, sizeof(device->vram_non_mappable));
memset(&device->vram_mappable, 0, sizeof(device->vram_mappable));
memset(&device->sys, 0, sizeof(device->sys));
result = anv_physical_device_init_heaps(device, fd);
if (result != VK_SUCCESS)
goto fail_base;
assert(device->supports_48bit_addresses == !device->use_relocations);
device->use_softpin = !device->use_relocations;
device->has_context_isolation =
anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
device->has_exec_timeline =
anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_TIMELINE_FENCES);
if (env_var_as_boolean("ANV_QUEUE_THREAD_DISABLE", false))
device->has_exec_timeline = false;
unsigned st_idx = 0;
#if defined(USE_MAGMA)
device->sync_syncobj_type = vk_magma_syncobj_get_type();
#else
device->sync_syncobj_type = vk_drm_syncobj_get_type(fd);
#endif
if (!device->has_exec_timeline)
device->sync_syncobj_type.features &= ~VK_SYNC_FEATURE_TIMELINE;
device->sync_types[st_idx++] = &device->sync_syncobj_type;
if (!(device->sync_syncobj_type.features & VK_SYNC_FEATURE_CPU_WAIT))
device->sync_types[st_idx++] = &anv_bo_sync_type;
if (!(device->sync_syncobj_type.features & VK_SYNC_FEATURE_TIMELINE)) {
device->sync_timeline_type = vk_sync_timeline_get_type(&anv_bo_sync_type);
device->sync_types[st_idx++] = &device->sync_timeline_type.sync;
}
device->sync_types[st_idx++] = NULL;
assert(st_idx <= ARRAY_SIZE(device->sync_types));
device->vk.supported_sync_types = device->sync_types;
device->vk.pipeline_cache_import_ops = anv_cache_import_ops;
device->always_use_bindless =
env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
device->use_call_secondary =
device->use_softpin &&
!env_var_as_boolean("ANV_DISABLE_SECONDARY_CMD_BUFFER_CALLS", false);
/* We first got the A64 messages on broadwell and we can only use them if
* we can pass addresses directly into the shader which requires softpin.
*/
device->has_a64_buffer_access = device->info.ver >= 8 &&
device->use_softpin;
/* We first get bindless image access on Skylake.
*/
device->has_bindless_images = device->info.ver >= 9;
/* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
* because it's just a matter of setting the sampler address in the sample
* message header. However, we've not bothered to wire it up for vec4 so
* we leave it disabled on gfx7.
*/
device->has_bindless_samplers = device->info.ver >= 8;
device->has_implicit_ccs = device->info.has_aux_map ||
device->info.verx10 >= 125;
/* Check if we can read the GPU timestamp register from the CPU */
uint64_t u64_ignore;
device->has_reg_timestamp = anv_gem_reg_read(fd, TIMESTAMP | I915_REG_READ_8B_WA,
&u64_ignore) == 0;
#if defined(USE_MAGMA)
device->always_flush_cache = INTEL_DEBUG(DEBUG_STALL);
#else
device->always_flush_cache = INTEL_DEBUG(DEBUG_STALL) ||
driQueryOptionb(&instance->dri_options, "always_flush_cache");
#endif
device->has_mmap_offset =
anv_gem_get_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4;
device->has_userptr_probe =
anv_gem_get_param(fd, I915_PARAM_HAS_USERPTR_PROBE);
device->compiler = brw_compiler_create(NULL, &device->info);
if (device->compiler == NULL) {
result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_base;
}
device->compiler->shader_debug_log = compiler_debug_log;
device->compiler->shader_perf_log = compiler_perf_log;
device->compiler->constant_buffer_0_is_relative =
device->info.ver < 8 || !device->has_context_isolation;
device->compiler->supports_shader_constants = true;
device->compiler->indirect_ubos_use_sampler = device->info.ver < 12;
isl_device_init(&device->isl_dev, &device->info);
result = anv_physical_device_init_uuids(device);
if (result != VK_SUCCESS)
goto fail_compiler;
anv_physical_device_init_disk_cache(device);
if (instance->vk.enabled_extensions.KHR_display) {
#if defined(USE_MAGMA)
result = vk_errorf(device->instance, VK_ERROR_INITIALIZATION_FAILED,
"Unsupported extension");
goto fail_fd;
#else
master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
if (master_fd >= 0) {
/* prod the device with a GETPARAM call which will fail if
* we don't have permission to even render on this device
*/
if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
close(master_fd);
master_fd = -1;
}
}
#endif
}
device->master_fd = master_fd;
device->engine_info = anv_gem_get_engine_info(fd);
anv_physical_device_init_queue_families(device);
device->local_fd = fd;
anv_physical_device_init_perf(device, fd);
get_device_extensions(device, &device->vk.supported_extensions);
result = anv_init_wsi(device);
if (result != VK_SUCCESS)
goto fail_perf;
anv_measure_device_init(device);
anv_genX(&device->info, init_physical_device_state)(device);
*device_out = device;
struct stat st;
#if defined(USE_MAGMA)
if (true) {
#else
if (stat(primary_path, &st) == 0) {
device->has_master = true;
device->master_major = major(st.st_rdev);
device->master_minor = minor(st.st_rdev);
} else {
#endif
device->has_master = false;
device->master_major = 0;
device->master_minor = 0;
}
#if defined(USE_MAGMA)
if (true) {
#else
if (stat(path, &st) == 0) {
device->has_local = true;
device->local_major = major(st.st_rdev);
device->local_minor = minor(st.st_rdev);
} else {
#endif
device->has_local = false;
device->local_major = 0;
device->local_minor = 0;
}
return VK_SUCCESS;
fail_perf:
ralloc_free(device->perf);
free(device->engine_info);
anv_physical_device_free_disk_cache(device);
fail_compiler:
ralloc_free(device->compiler);
fail_base:
vk_physical_device_finish(&device->vk);
fail_alloc:
vk_free(&instance->vk.alloc, device);
fail_fd:
#if defined(USE_MAGMA)
u_magma_close(fd);
#else
close(fd);
#endif
if (master_fd != -1)
close(master_fd);
return result;
}
static void
anv_physical_device_destroy(struct anv_physical_device *device)
{
anv_finish_wsi(device);
anv_measure_device_destroy(device);
free(device->engine_info);
anv_physical_device_free_disk_cache(device);
ralloc_free(device->compiler);
ralloc_free(device->perf);
#if defined(USE_MAGMA)
u_magma_close(device->local_fd);
#else
close(device->local_fd);
#endif
if (device->master_fd >= 0)
close(device->master_fd);
vk_physical_device_finish(&device->vk);
vk_free(&device->instance->vk.alloc, device);
}
VkResult anv_EnumerateInstanceExtensionProperties(
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties)
{
if (pLayerName)
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
return vk_enumerate_instance_extension_properties(
&instance_extensions, pPropertyCount, pProperties);
}
#if !defined(USE_MAGMA)
static void
anv_init_dri_options(struct anv_instance *instance)
{
driParseOptionInfo(&instance->available_dri_options, anv_dri_options,
ARRAY_SIZE(anv_dri_options));
driParseConfigFiles(&instance->dri_options,
&instance->available_dri_options, 0, "anv", NULL, NULL,
instance->vk.app_info.app_name,
instance->vk.app_info.app_version,
instance->vk.app_info.engine_name,
instance->vk.app_info.engine_version);
instance->assume_full_subgroups =
driQueryOptionb(&instance->dri_options, "anv_assume_full_subgroups");
instance->limit_trig_input_range =
driQueryOptionb(&instance->dri_options, "limit_trig_input_range");
instance->sample_mask_out_opengl_behaviour =
driQueryOptionb(&instance->dri_options, "anv_sample_mask_out_opengl_behaviour");
}
#endif
VkResult anv_CreateInstance(
const VkInstanceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance)
{
struct anv_instance *instance;
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
if (pAllocator == NULL)
pAllocator = vk_default_allocator();
instance = vk_alloc(pAllocator, sizeof(*instance), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!instance)
return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
struct vk_instance_dispatch_table dispatch_table;
vk_instance_dispatch_table_from_entrypoints(
&dispatch_table, &anv_instance_entrypoints, true);
vk_instance_dispatch_table_from_entrypoints(
&dispatch_table, &wsi_instance_entrypoints, false);
result = vk_instance_init(&instance->vk, &instance_extensions,
&dispatch_table, pCreateInfo, pAllocator);
if (result != VK_SUCCESS) {
vk_free(pAllocator, instance);
return vk_error(NULL, result);
}
instance->physical_devices_enumerated = false;
list_inithead(&instance->physical_devices);
VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
#if !defined(USE_MAGMA)
anv_init_dri_options(instance);
intel_driver_ds_init();
#endif
*pInstance = anv_instance_to_handle(instance);
return VK_SUCCESS;
}
void anv_DestroyInstance(
VkInstance _instance,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
if (!instance)
return;
list_for_each_entry_safe(struct anv_physical_device, pdevice,
&instance->physical_devices, link)
anv_physical_device_destroy(pdevice);
VG(VALGRIND_DESTROY_MEMPOOL(instance));
#if !defined(USE_MAGMA)
driDestroyOptionCache(&instance->dri_options);
driDestroyOptionInfo(&instance->available_dri_options);
#endif
vk_instance_finish(&instance->vk);
vk_free(&instance->vk.alloc, instance);
}
static VkResult
anv_enumerate_physical_devices(struct anv_instance *instance)
{
if (instance->physical_devices_enumerated)
return VK_SUCCESS;
instance->physical_devices_enumerated = true;
#if defined(USE_MAGMA)
VkResult result = VK_SUCCESS;
#ifdef DEV_GPU_PATH_OVERRIDE
struct anv_physical_device *pdevice;
result = anv_physical_device_try_create(instance,
DEV_GPU_PATH_OVERRIDE, DEV_GPU_PATH_OVERRIDE, &pdevice);
if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
const char DEV_GPU[] = "/dev/dri/renderD128";
result = anv_physical_device_try_create(instance,
DEV_GPU, DEV_GPU, &pdevice);
}
if (result == VK_SUCCESS) {
list_addtail(&pdevice->link, &instance->physical_devices);
} else if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
/* Incompatible device, skip. */
result = VK_SUCCESS;
}
#else
const char DEV_GPU[] = "/loader-gpu-devices/class/gpu";
struct os_dirent* de;
os_dir_t* dir = os_opendir(DEV_GPU);
if (!dir) {
mesa_loge("Error opening %s", DEV_GPU);
return VK_SUCCESS;
}
while ((de = os_readdir(dir)) != NULL) {
if (strcmp(de->d_name, ".") == 0) {
continue;
}
// extra +1 ensures space for null termination
char name[sizeof(DEV_GPU) + sizeof('/') + (NAME_MAX + 1) + 1];
snprintf(name, sizeof(name), "%s/%s", DEV_GPU, de->d_name);
struct anv_physical_device *pdevice;
result = anv_physical_device_try_create(instance,
name, name, &pdevice);
/* Incompatible device, skip. */
if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
result = VK_SUCCESS;
continue;
}
/* Error creating the physical device, report the error. */
if (result != VK_SUCCESS)
break;
list_addtail(&pdevice->link, &instance->physical_devices);
}
os_closedir(dir);
#endif
#else
/* TODO: Check for more devices ? */
drmDevicePtr devices[8];
int max_devices;
max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
if (max_devices < 1)
return VK_SUCCESS;
VkResult result = VK_SUCCESS;
for (unsigned i = 0; i < (unsigned)max_devices; i++) {
if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
devices[i]->bustype == DRM_BUS_PCI &&
devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
struct anv_physical_device *pdevice;
result = anv_physical_device_try_create(instance, devices[i],
&pdevice);
/* Incompatible DRM device, skip. */
if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
result = VK_SUCCESS;
continue;
}
/* Error creating the physical device, report the error. */
if (result != VK_SUCCESS)
break;
list_addtail(&pdevice->link, &instance->physical_devices);
}
}
drmFreeDevices(devices, max_devices);
#endif
/* If we successfully enumerated any devices, call it success */
return result;
}
VkResult anv_EnumeratePhysicalDevices(
VkInstance _instance,
uint32_t* pPhysicalDeviceCount,
VkPhysicalDevice* pPhysicalDevices)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
VK_OUTARRAY_MAKE_TYPED(VkPhysicalDevice, out,
pPhysicalDevices, pPhysicalDeviceCount);
VkResult result = anv_enumerate_physical_devices(instance);
if (result != VK_SUCCESS)
return result;
list_for_each_entry(struct anv_physical_device, pdevice,
&instance->physical_devices, link) {
vk_outarray_append_typed(VkPhysicalDevice, &out, i) {
*i = anv_physical_device_to_handle(pdevice);
}
}
return vk_outarray_status(&out);
}
VkResult anv_EnumeratePhysicalDeviceGroups(
VkInstance _instance,
uint32_t* pPhysicalDeviceGroupCount,
VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceGroupProperties, out,
pPhysicalDeviceGroupProperties,
pPhysicalDeviceGroupCount);
VkResult result = anv_enumerate_physical_devices(instance);
if (result != VK_SUCCESS)
return result;
list_for_each_entry(struct anv_physical_device, pdevice,
&instance->physical_devices, link) {
vk_outarray_append_typed(VkPhysicalDeviceGroupProperties, &out, p) {
p->physicalDeviceCount = 1;
memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
p->physicalDevices[0] = anv_physical_device_to_handle(pdevice);
p->subsetAllocation = false;
vk_foreach_struct(ext, p->pNext)
anv_debug_ignored_stype(ext->sType);
}
}
return vk_outarray_status(&out);
}
void anv_GetPhysicalDeviceFeatures(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures* pFeatures)
{
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
/* Just pick one; they're all the same */
const bool has_astc_ldr =
isl_format_supports_sampling(&pdevice->info,
ISL_FORMAT_ASTC_LDR_2D_4X4_FLT16);
*pFeatures = (VkPhysicalDeviceFeatures) {
.robustBufferAccess = true,
.fullDrawIndexUint32 = true,
.imageCubeArray = true,
.independentBlend = true,
.geometryShader = true,
.tessellationShader = true,
.sampleRateShading = true,
.dualSrcBlend = true,
.logicOp = true,
.multiDrawIndirect = true,
.drawIndirectFirstInstance = true,
.depthClamp = true,
.depthBiasClamp = true,
.fillModeNonSolid = true,
.depthBounds = pdevice->info.ver >= 12,
.wideLines = true,
.largePoints = true,
.alphaToOne = true,
.multiViewport = true,
.samplerAnisotropy = true,
.textureCompressionETC2 = pdevice->info.ver >= 8 ||
pdevice->info.platform == INTEL_PLATFORM_BYT,
.textureCompressionASTC_LDR = has_astc_ldr,
.textureCompressionBC = true,
.occlusionQueryPrecise = true,
.pipelineStatisticsQuery = true,
.fragmentStoresAndAtomics = true,
.shaderTessellationAndGeometryPointSize = true,
.shaderImageGatherExtended = true,
.shaderStorageImageExtendedFormats = true,
.shaderStorageImageMultisample = false,
.shaderStorageImageReadWithoutFormat = false,
.shaderStorageImageWriteWithoutFormat = true,
.shaderUniformBufferArrayDynamicIndexing = true,
.shaderSampledImageArrayDynamicIndexing = true,
.shaderStorageBufferArrayDynamicIndexing = true,
.shaderStorageImageArrayDynamicIndexing = true,
.shaderClipDistance = true,
.shaderCullDistance = true,
.shaderFloat64 = pdevice->info.ver >= 8 &&
pdevice->info.has_64bit_float,
.shaderInt64 = pdevice->info.ver >= 8,
.shaderInt16 = pdevice->info.ver >= 8,
.shaderResourceMinLod = pdevice->info.ver >= 9,
.variableMultisampleRate = true,
.inheritedQueries = true,
};
/* We can't do image stores in vec4 shaders */
pFeatures->vertexPipelineStoresAndAtomics =
pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
struct vk_app_info *app_info = &pdevice->instance->vk.app_info;
/* The new DOOM and Wolfenstein games require depthBounds without
* checking for it. They seem to run fine without it so just claim it's
* there and accept the consequences.
*/
if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
pFeatures->depthBounds = true;
}
static void
anv_get_physical_device_features_1_1(struct anv_physical_device *pdevice,
VkPhysicalDeviceVulkan11Features *f)
{
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
f->storageBuffer16BitAccess = pdevice->info.ver >= 8;
f->uniformAndStorageBuffer16BitAccess = pdevice->info.ver >= 8;
f->storagePushConstant16 = pdevice->info.ver >= 8;
f->storageInputOutput16 = false;
f->multiview = true;
f->multiviewGeometryShader = true;
f->multiviewTessellationShader = true;
f->variablePointersStorageBuffer = true;
f->variablePointers = true;
f->protectedMemory = false;
f->samplerYcbcrConversion = true;
f->shaderDrawParameters = true;
}
static void
anv_get_physical_device_features_1_2(struct anv_physical_device *pdevice,
VkPhysicalDeviceVulkan12Features *f)
{
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
f->samplerMirrorClampToEdge = true;
f->drawIndirectCount = true;
f->storageBuffer8BitAccess = pdevice->info.ver >= 8;
f->uniformAndStorageBuffer8BitAccess = pdevice->info.ver >= 8;
f->storagePushConstant8 = pdevice->info.ver >= 8;
f->shaderBufferInt64Atomics = pdevice->info.ver >= 9;
f->shaderSharedInt64Atomics = false;
f->shaderFloat16 = pdevice->info.ver >= 8;
f->shaderInt8 = pdevice->info.ver >= 8;
bool descIndexing = pdevice->has_a64_buffer_access &&
pdevice->has_bindless_images;
f->descriptorIndexing = descIndexing;
f->shaderInputAttachmentArrayDynamicIndexing = false;
f->shaderUniformTexelBufferArrayDynamicIndexing = descIndexing;
f->shaderStorageTexelBufferArrayDynamicIndexing = descIndexing;
f->shaderUniformBufferArrayNonUniformIndexing = false;
f->shaderSampledImageArrayNonUniformIndexing = descIndexing;
f->shaderStorageBufferArrayNonUniformIndexing = descIndexing;
f->shaderStorageImageArrayNonUniformIndexing = descIndexing;
f->shaderInputAttachmentArrayNonUniformIndexing = false;
f->shaderUniformTexelBufferArrayNonUniformIndexing = descIndexing;
f->shaderStorageTexelBufferArrayNonUniformIndexing = descIndexing;
f->descriptorBindingUniformBufferUpdateAfterBind = descIndexing;
f->descriptorBindingSampledImageUpdateAfterBind = descIndexing;
f->descriptorBindingStorageImageUpdateAfterBind = descIndexing;
f->descriptorBindingStorageBufferUpdateAfterBind = descIndexing;
f->descriptorBindingUniformTexelBufferUpdateAfterBind = descIndexing;
f->descriptorBindingStorageTexelBufferUpdateAfterBind = descIndexing;
f->descriptorBindingUpdateUnusedWhilePending = descIndexing;
f->descriptorBindingPartiallyBound = descIndexing;
f->descriptorBindingVariableDescriptorCount = descIndexing;
f->runtimeDescriptorArray = descIndexing;
f->samplerFilterMinmax = pdevice->info.ver >= 9;
f->scalarBlockLayout = true;
f->imagelessFramebuffer = true;
f->uniformBufferStandardLayout = true;
f->shaderSubgroupExtendedTypes = true;
f->separateDepthStencilLayouts = true;
f->hostQueryReset = true;
f->timelineSemaphore = true;
f->bufferDeviceAddress = pdevice->has_a64_buffer_access;
f->bufferDeviceAddressCaptureReplay = pdevice->has_a64_buffer_access;
f->bufferDeviceAddressMultiDevice = false;
f->vulkanMemoryModel = true;
f->vulkanMemoryModelDeviceScope = true;
f->vulkanMemoryModelAvailabilityVisibilityChains = true;
f->shaderOutputViewportIndex = true;
f->shaderOutputLayer = true;
f->subgroupBroadcastDynamicId = true;
}
static void
anv_get_physical_device_features_1_3(struct anv_physical_device *pdevice,
VkPhysicalDeviceVulkan13Features *f)
{
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES);
f->robustImageAccess = true;
f->inlineUniformBlock = true;
f->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
f->pipelineCreationCacheControl = true;
f->privateData = true;
f->shaderDemoteToHelperInvocation = true;
f->shaderTerminateInvocation = true;
f->subgroupSizeControl = true;
f->computeFullSubgroups = true;
f->synchronization2 = true;
f->textureCompressionASTC_HDR = false;
f->shaderZeroInitializeWorkgroupMemory = true;
f->dynamicRendering = true;
f->shaderIntegerDotProduct = true;
f->maintenance4 = true;
}
void anv_GetPhysicalDeviceFeatures2(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures2* pFeatures)
{
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
VkPhysicalDeviceVulkan11Features core_1_1 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
};
anv_get_physical_device_features_1_1(pdevice, &core_1_1);
VkPhysicalDeviceVulkan12Features core_1_2 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
};
anv_get_physical_device_features_1_2(pdevice, &core_1_2);
VkPhysicalDeviceVulkan13Features core_1_3 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES,
};
anv_get_physical_device_features_1_3(pdevice, &core_1_3);
vk_foreach_struct(ext, pFeatures->pNext) {
if (vk_get_physical_device_core_1_1_feature_ext(ext, &core_1_1))
continue;
if (vk_get_physical_device_core_1_2_feature_ext(ext, &core_1_2))
continue;
if (vk_get_physical_device_core_1_3_feature_ext(ext, &core_1_3))
continue;
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_4444_FORMATS_FEATURES_EXT: {
VkPhysicalDevice4444FormatsFeaturesEXT *features =
(VkPhysicalDevice4444FormatsFeaturesEXT *)ext;
features->formatA4R4G4B4 = true;
features->formatA4B4G4R4 = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR: {
VkPhysicalDeviceAccelerationStructureFeaturesKHR *features = (void *)ext;
features->accelerationStructure = false;
features->accelerationStructureCaptureReplay = false;
features->accelerationStructureIndirectBuild = false;
features->accelerationStructureHostCommands = false;
features->descriptorBindingAccelerationStructureUpdateAfterBind = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
features->bufferDeviceAddressCaptureReplay = false;
features->bufferDeviceAddressMultiDevice = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BORDER_COLOR_SWIZZLE_FEATURES_EXT: {
VkPhysicalDeviceBorderColorSwizzleFeaturesEXT *features =
(VkPhysicalDeviceBorderColorSwizzleFeaturesEXT *)ext;
features->borderColorSwizzle = true;
features->borderColorSwizzleFromImage = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COLOR_WRITE_ENABLE_FEATURES_EXT: {
VkPhysicalDeviceColorWriteEnableFeaturesEXT *features =
(VkPhysicalDeviceColorWriteEnableFeaturesEXT *)ext;
features->colorWriteEnable = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_2D_VIEW_OF_3D_FEATURES_EXT: {
VkPhysicalDeviceImage2DViewOf3DFeaturesEXT *features =
(VkPhysicalDeviceImage2DViewOf3DFeaturesEXT *)ext;
features->image2DViewOf3D = true;
features->sampler2DViewOf3D = pdevice->info.ver >= 9;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
(VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
features->computeDerivativeGroupQuads = true;
features->computeDerivativeGroupLinear = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
(VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
features->conditionalRendering = pdevice->info.verx10 >= 75;
features->inheritedConditionalRendering = pdevice->info.verx10 >= 75;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
VkPhysicalDeviceCustomBorderColorFeaturesEXT *features =
(VkPhysicalDeviceCustomBorderColorFeaturesEXT *)ext;
features->customBorderColors = pdevice->info.ver >= 8;
features->customBorderColorWithoutFormat = pdevice->info.ver >= 8;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
(VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
features->depthClipEnable = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
(VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
features->fragmentShaderSampleInterlock = pdevice->info.ver >= 9;
features->fragmentShaderPixelInterlock = pdevice->info.ver >= 9;
features->fragmentShaderShadingRateInterlock = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GLOBAL_PRIORITY_QUERY_FEATURES_KHR: {
VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR *features =
(VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR *)ext;
features->globalPriorityQuery = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR: {
VkPhysicalDeviceFragmentShadingRateFeaturesKHR *features =
(VkPhysicalDeviceFragmentShadingRateFeaturesKHR *)ext;
features->attachmentFragmentShadingRate = false;
features->pipelineFragmentShadingRate = true;
features->primitiveFragmentShadingRate =
pdevice->info.has_coarse_pixel_primitive_and_cb;
features->attachmentFragmentShadingRate =
pdevice->info.has_coarse_pixel_primitive_and_cb;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_VIEW_MIN_LOD_FEATURES_EXT: {
VkPhysicalDeviceImageViewMinLodFeaturesEXT *features =
(VkPhysicalDeviceImageViewMinLodFeaturesEXT *)ext;
features->minLod = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
(VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
features->indexTypeUint8 = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
(VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
/* Rectangular lines must use the strict algorithm, which is not
* supported for wide lines prior to ICL. See rasterization_mode for
* details and how the HW states are programmed.
*/
features->rectangularLines = pdevice->info.ver >= 10;
features->bresenhamLines = true;
/* Support for Smooth lines with MSAA was removed on gfx11. From the
* BSpec section "Multisample ModesState" table for "AA Line Support
* Requirements":
*
* GFX10:BUG:######## NUM_MULTISAMPLES == 1
*
* Fortunately, this isn't a case most people care about.
*/
features->smoothLines = pdevice->info.ver < 10;
features->stippledRectangularLines = false;
features->stippledBresenhamLines = true;
features->stippledSmoothLines = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_FEATURES_NV: {
VkPhysicalDeviceMeshShaderFeaturesNV *features =
(VkPhysicalDeviceMeshShaderFeaturesNV *)ext;
features->taskShader = pdevice->vk.supported_extensions.NV_mesh_shader;
features->meshShader = pdevice->vk.supported_extensions.NV_mesh_shader;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MUTABLE_DESCRIPTOR_TYPE_FEATURES_VALVE: {
VkPhysicalDeviceMutableDescriptorTypeFeaturesVALVE *features =
(VkPhysicalDeviceMutableDescriptorTypeFeaturesVALVE *)ext;
features->mutableDescriptorType = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_FEATURES_KHR: {
VkPhysicalDevicePerformanceQueryFeaturesKHR *feature =
(VkPhysicalDevicePerformanceQueryFeaturesKHR *)ext;
feature->performanceCounterQueryPools = true;
/* HW only supports a single configuration at a time. */
feature->performanceCounterMultipleQueryPools = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
(VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
features->pipelineExecutableInfo = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVES_GENERATED_QUERY_FEATURES_EXT: {
VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT *features =
(VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT *)ext;
features->primitivesGeneratedQuery = true;
features->primitivesGeneratedQueryWithRasterizerDiscard = false;
features->primitivesGeneratedQueryWithNonZeroStreams = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT: {
VkPhysicalDeviceProvokingVertexFeaturesEXT *features =
(VkPhysicalDeviceProvokingVertexFeaturesEXT *)ext;
features->provokingVertexLast = true;
features->transformFeedbackPreservesProvokingVertex = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_QUERY_FEATURES_KHR: {
VkPhysicalDeviceRayQueryFeaturesKHR *features = (void *)ext;
features->rayQuery = pdevice->info.has_ray_tracing;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
VkPhysicalDeviceRobustness2FeaturesEXT *features = (void *)ext;
features->robustBufferAccess2 = true;
features->robustImageAccess2 = true;
features->nullDescriptor = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT: {
VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *features = (void *)ext;
features->shaderBufferFloat32Atomics = true;
features->shaderBufferFloat32AtomicAdd = pdevice->info.has_lsc;
features->shaderBufferFloat64Atomics =
pdevice->info.has_64bit_float && pdevice->info.has_lsc;
features->shaderBufferFloat64AtomicAdd = false;
features->shaderSharedFloat32Atomics = true;
features->shaderSharedFloat32AtomicAdd = false;
features->shaderSharedFloat64Atomics = false;
features->shaderSharedFloat64AtomicAdd = false;
features->shaderImageFloat32Atomics = true;
features->shaderImageFloat32AtomicAdd = false;
features->sparseImageFloat32Atomics = false;
features->sparseImageFloat32AtomicAdd = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_2_FEATURES_EXT: {
VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT *features = (void *)ext;
features->shaderBufferFloat16Atomics = false;
features->shaderBufferFloat16AtomicAdd = false;
features->shaderBufferFloat16AtomicMinMax = false;
features->shaderBufferFloat32AtomicMinMax = pdevice->info.ver >= 9;
features->shaderBufferFloat64AtomicMinMax =
pdevice->info.has_64bit_float && pdevice->info.has_lsc;
features->shaderSharedFloat16Atomics = false;
features->shaderSharedFloat16AtomicAdd = false;
features->shaderSharedFloat16AtomicMinMax = false;
features->shaderSharedFloat32AtomicMinMax = pdevice->info.ver >= 9;
features->shaderSharedFloat64AtomicMinMax = false;
features->shaderImageFloat32AtomicMinMax = false;
features->sparseImageFloat32AtomicMinMax = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
VkPhysicalDeviceShaderClockFeaturesKHR *features =
(VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
features->shaderSubgroupClock = true;
features->shaderDeviceClock = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_FUNCTIONS_2_FEATURES_INTEL: {
VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL *features =
(VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL *)ext;
features->shaderIntegerFunctions2 = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_FEATURES_EXT: {
VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT *features =
(VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT *)ext;
features->shaderModuleIdentifier = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_UNIFORM_CONTROL_FLOW_FEATURES_KHR: {
VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR *features =
(VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR *)ext;
features->shaderSubgroupUniformControlFlow = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
(VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
features->texelBufferAlignment = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
(VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
features->transformFeedback = true;
features->geometryStreams = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
(VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
features->vertexAttributeInstanceRateDivisor = true;
features->vertexAttributeInstanceRateZeroDivisor = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_WORKGROUP_MEMORY_EXPLICIT_LAYOUT_FEATURES_KHR: {
VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR *features =
(VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR *)ext;
features->workgroupMemoryExplicitLayout = true;
features->workgroupMemoryExplicitLayoutScalarBlockLayout = true;
features->workgroupMemoryExplicitLayout8BitAccess = true;
features->workgroupMemoryExplicitLayout16BitAccess = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
(VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
features->ycbcrImageArrays = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_FEATURES_EXT: {
VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *features =
(VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *)ext;
features->extendedDynamicState = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_2_FEATURES_EXT: {
VkPhysicalDeviceExtendedDynamicState2FeaturesEXT *features =
(VkPhysicalDeviceExtendedDynamicState2FeaturesEXT *)ext;
features->extendedDynamicState2 = true;
features->extendedDynamicState2LogicOp = true;
features->extendedDynamicState2PatchControlPoints = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_FEATURES_EXT: {
VkPhysicalDeviceMultiDrawFeaturesEXT *features = (VkPhysicalDeviceMultiDrawFeaturesEXT *)ext;
features->multiDraw = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_NON_SEAMLESS_CUBE_MAP_FEATURES_EXT : {
VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT *features =
(VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT *)ext;
features->nonSeamlessCubeMap = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVE_TOPOLOGY_LIST_RESTART_FEATURES_EXT: {
VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT *features =
(VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT *)ext;
features->primitiveTopologyListRestart = true;
features->primitiveTopologyPatchListRestart = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_CONTROL_FEATURES_EXT: {
VkPhysicalDeviceDepthClipControlFeaturesEXT *features =
(VkPhysicalDeviceDepthClipControlFeaturesEXT *)ext;
features->depthClipControl = true;
break;
}
default:
anv_debug_ignored_stype(ext->sType);
break;
}
}
}
#define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
#define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
#define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
#define MAX_CUSTOM_BORDER_COLORS 4096
void anv_GetPhysicalDeviceProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties* pProperties)
{
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
const struct intel_device_info *devinfo = &pdevice->info;
const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
const uint32_t max_textures =
pdevice->has_bindless_images ? UINT16_MAX : 128;
const uint32_t max_samplers =
pdevice->has_bindless_samplers ? UINT16_MAX :
(devinfo->verx10 >= 75) ? 128 : 16;
const uint32_t max_images =
pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
/* If we can use bindless for everything, claim a high per-stage limit,
* otherwise use the binding table size, minus the slots reserved for
* render targets and one slot for the descriptor buffer. */
const uint32_t max_per_stage =
pdevice->has_bindless_images && pdevice->has_a64_buffer_access
? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
const uint32_t max_workgroup_size =
MIN2(1024, 32 * devinfo->max_cs_workgroup_threads);
VkSampleCountFlags sample_counts =
isl_device_get_sample_counts(&pdevice->isl_dev);
VkPhysicalDeviceLimits limits = {
.maxImageDimension1D = (1 << 14),
.maxImageDimension2D = (1 << 14),
.maxImageDimension3D = (1 << 11),
.maxImageDimensionCube = (1 << 14),
.maxImageArrayLayers = (1 << 11),
.maxTexelBufferElements = 128 * 1024 * 1024,
.maxUniformBufferRange = pdevice->compiler->indirect_ubos_use_sampler ? (1u << 27) : (1u << 30),
.maxStorageBufferRange = pdevice->isl_dev.max_buffer_size,
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
.maxMemoryAllocationCount = UINT32_MAX,
.maxSamplerAllocationCount = 64 * 1024,
.bufferImageGranularity = 1,
.sparseAddressSpaceSize = 0,
.maxBoundDescriptorSets = MAX_SETS,
.maxPerStageDescriptorSamplers = max_samplers,
.maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
.maxPerStageDescriptorStorageBuffers = max_ssbos,
.maxPerStageDescriptorSampledImages = max_textures,
.maxPerStageDescriptorStorageImages = max_images,
.maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
.maxPerStageResources = max_per_stage,
.maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
.maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
.maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
.maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
.maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
.maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
.maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
.maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
.maxVertexInputAttributes = MAX_VES,
.maxVertexInputBindings = MAX_VBS,
/* Broadwell PRMs: Volume 2d: Command Reference: Structures:
*
* VERTEX_ELEMENT_STATE::Source Element Offset: [0,2047]
*/
.maxVertexInputAttributeOffset = 2047,
/* Broadwell PRMs: Volume 2d: Command Reference: Structures:
*
* VERTEX_BUFFER_STATE::Buffer Pitch: [0,2048]
*
* Skylake PRMs: Volume 2d: Command Reference: Structures:
*
* VERTEX_BUFFER_STATE::Buffer Pitch: [0,4095]
*/
.maxVertexInputBindingStride = devinfo->ver < 9 ? 2048 : 4095,
.maxVertexOutputComponents = 128,
.maxTessellationGenerationLevel = 64,
.maxTessellationPatchSize = 32,
.maxTessellationControlPerVertexInputComponents = 128,
.maxTessellationControlPerVertexOutputComponents = 128,
.maxTessellationControlPerPatchOutputComponents = 128,
.maxTessellationControlTotalOutputComponents = 2048,
.maxTessellationEvaluationInputComponents = 128,
.maxTessellationEvaluationOutputComponents = 128,
.maxGeometryShaderInvocations = 32,
.maxGeometryInputComponents = devinfo->ver >= 8 ? 128 : 64,
.maxGeometryOutputComponents = 128,
.maxGeometryOutputVertices = 256,
.maxGeometryTotalOutputComponents = 1024,
.maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
.maxFragmentOutputAttachments = 8,
.maxFragmentDualSrcAttachments = 1,
.maxFragmentCombinedOutputResources = MAX_RTS + max_ssbos + max_images,
.maxComputeSharedMemorySize = 64 * 1024,
.maxComputeWorkGroupCount = { 65535, 65535, 65535 },
.maxComputeWorkGroupInvocations = max_workgroup_size,
.maxComputeWorkGroupSize = {
max_workgroup_size,
max_workgroup_size,
max_workgroup_size,
},
.subPixelPrecisionBits = 8,
.subTexelPrecisionBits = 8,
.mipmapPrecisionBits = 8,
.maxDrawIndexedIndexValue = UINT32_MAX,
.maxDrawIndirectCount = UINT32_MAX,
.maxSamplerLodBias = 16,
.maxSamplerAnisotropy = 16,
.maxViewports = MAX_VIEWPORTS,
.maxViewportDimensions = { (1 << 14), (1 << 14) },
.viewportBoundsRange = { INT16_MIN, INT16_MAX },
.viewportSubPixelBits = 13, /* We take a float? */
.minMemoryMapAlignment = 4096, /* A page */
/* The dataport requires texel alignment so we need to assume a worst
* case of R32G32B32A32 which is 16 bytes.
*/
.minTexelBufferOffsetAlignment = 16,
.minUniformBufferOffsetAlignment = ANV_UBO_ALIGNMENT,
.minStorageBufferOffsetAlignment = ANV_SSBO_ALIGNMENT,
.minTexelOffset = -8,
.maxTexelOffset = 7,
.minTexelGatherOffset = -32,
.maxTexelGatherOffset = 31,
.minInterpolationOffset = -0.5,
.maxInterpolationOffset = 0.4375,
.subPixelInterpolationOffsetBits = 4,
.maxFramebufferWidth = (1 << 14),
.maxFramebufferHeight = (1 << 14),
.maxFramebufferLayers = (1 << 11),
.framebufferColorSampleCounts = sample_counts,
.framebufferDepthSampleCounts = sample_counts,
.framebufferStencilSampleCounts = sample_counts,
.framebufferNoAttachmentsSampleCounts = sample_counts,
.maxColorAttachments = MAX_RTS,
.sampledImageColorSampleCounts = sample_counts,
.sampledImageIntegerSampleCounts = sample_counts,
.sampledImageDepthSampleCounts = sample_counts,
.sampledImageStencilSampleCounts = sample_counts,
.storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
.maxSampleMaskWords = 1,
.timestampComputeAndGraphics = true,
.timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
.maxClipDistances = 8,
.maxCullDistances = 8,
.maxCombinedClipAndCullDistances = 8,
.discreteQueuePriorities = 2,
.pointSizeRange = { 0.125, 255.875 },
/* While SKL and up support much wider lines than we are setting here,
* in practice we run into conformance issues if we go past this limit.
* Since the Windows driver does the same, it's probably fair to assume
* that no one needs more than this.
*/
.lineWidthRange = { 0.0, devinfo->ver >= 9 ? 8.0 : 7.9921875 },
.pointSizeGranularity = (1.0 / 8.0),
.lineWidthGranularity = (1.0 / 128.0),
.strictLines = false,
.standardSampleLocations = true,
.optimalBufferCopyOffsetAlignment = 128,
.optimalBufferCopyRowPitchAlignment = 128,
.nonCoherentAtomSize = 64,
};
*pProperties = (VkPhysicalDeviceProperties) {
.apiVersion = ANV_API_VERSION,
.driverVersion = vk_get_driver_version(),
.vendorID = 0x8086,
.deviceID = pdevice->info.pci_device_id,
.deviceType = pdevice->info.has_local_mem ?
VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU :
VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
.limits = limits,
.sparseProperties = {0}, /* Broadwell doesn't do sparse. */
};
snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
"%s", pdevice->info.name);
memcpy(pProperties->pipelineCacheUUID,
pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
}
static void
anv_get_physical_device_properties_1_1(struct anv_physical_device *pdevice,
VkPhysicalDeviceVulkan11Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
memset(p->deviceLUID, 0, VK_LUID_SIZE);
p->deviceNodeMask = 0;
p->deviceLUIDValid = false;
p->subgroupSize = BRW_SUBGROUP_SIZE;
VkShaderStageFlags scalar_stages = 0;
for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
if (pdevice->compiler->scalar_stage[stage])
scalar_stages |= mesa_to_vk_shader_stage(stage);
}
if (pdevice->vk.supported_extensions.KHR_ray_tracing_pipeline) {
scalar_stages |= VK_SHADER_STAGE_RAYGEN_BIT_KHR |
VK_SHADER_STAGE_ANY_HIT_BIT_KHR |
VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR |
VK_SHADER_STAGE_MISS_BIT_KHR |
VK_SHADER_STAGE_INTERSECTION_BIT_KHR |
VK_SHADER_STAGE_CALLABLE_BIT_KHR;
}
if (pdevice->vk.supported_extensions.NV_mesh_shader) {
scalar_stages |= VK_SHADER_STAGE_TASK_BIT_NV |
VK_SHADER_STAGE_MESH_BIT_NV;
}
p->subgroupSupportedStages = scalar_stages;
p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
VK_SUBGROUP_FEATURE_VOTE_BIT |
VK_SUBGROUP_FEATURE_BALLOT_BIT |
VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
VK_SUBGROUP_FEATURE_QUAD_BIT;
if (pdevice->info.ver >= 8) {
/* TODO: There's no technical reason why these can't be made to
* work on gfx7 but they don't at the moment so it's best to leave
* the feature disabled than enabled and broken.
*/
p->subgroupSupportedOperations |= VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
}
p->subgroupQuadOperationsInAllStages = pdevice->info.ver >= 8;
p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
p->maxMultiviewViewCount = 16;
p->maxMultiviewInstanceIndex = UINT32_MAX / 16;
p->protectedNoFault = false;
/* This value doesn't matter for us today as our per-stage descriptors are
* the real limit.
*/
p->maxPerSetDescriptors = 1024;
p->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
}
static void
anv_get_physical_device_properties_1_2(struct anv_physical_device *pdevice,
VkPhysicalDeviceVulkan12Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
p->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA;
memset(p->driverName, 0, sizeof(p->driverName));
snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE,
"Intel open-source Mesa driver");
memset(p->driverInfo, 0, sizeof(p->driverInfo));
snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE,
"Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
/* Don't advertise conformance with a particular version if the hardware's
* support is incomplete/alpha.
*/
if (pdevice->is_alpha) {
p->conformanceVersion = (VkConformanceVersion) {
.major = 0,
.minor = 0,
.subminor = 0,
.patch = 0,
};
}
else {
p->conformanceVersion = (VkConformanceVersion) {
.major = 1,
.minor = 3,
.subminor = 0,
.patch = 0,
};
}
p->denormBehaviorIndependence =
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL;
p->roundingModeIndependence =
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE;
/* Broadwell does not support HF denorms and there are restrictions
* other gens. According to Kabylake's PRM:
*
* "math - Extended Math Function
* [...]
* Restriction : Half-float denorms are always retained."
*/
p->shaderDenormFlushToZeroFloat16 = false;
p->shaderDenormPreserveFloat16 = pdevice->info.ver > 8;
p->shaderRoundingModeRTEFloat16 = true;
p->shaderRoundingModeRTZFloat16 = true;
p->shaderSignedZeroInfNanPreserveFloat16 = true;
p->shaderDenormFlushToZeroFloat32 = true;
p->shaderDenormPreserveFloat32 = true;
p->shaderRoundingModeRTEFloat32 = true;
p->shaderRoundingModeRTZFloat32 = true;
p->shaderSignedZeroInfNanPreserveFloat32 = true;
p->shaderDenormFlushToZeroFloat64 = true;
p->shaderDenormPreserveFloat64 = true;
p->shaderRoundingModeRTEFloat64 = true;
p->shaderRoundingModeRTZFloat64 = true;
p->shaderSignedZeroInfNanPreserveFloat64 = true;
/* It's a bit hard to exactly map our implementation to the limits
* described by Vulkan. The bindless surface handle in the extended
* message descriptors is 20 bits and it's an index into the table of
* RENDER_SURFACE_STATE structs that starts at bindless surface base
* address. This means that we can have at must 1M surface states
* allocated at any given time. Since most image views take two
* descriptors, this means we have a limit of about 500K image views.
*
* However, since we allocate surface states at vkCreateImageView time,
* this means our limit is actually something on the order of 500K image
* views allocated at any time. The actual limit describe by Vulkan, on
* the other hand, is a limit of how many you can have in a descriptor set.
* Assuming anyone using 1M descriptors will be using the same image view
* twice a bunch of times (or a bunch of null descriptors), we can safely
* advertise a larger limit here.
*/
const unsigned max_bindless_views = 1 << 20;
p->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
p->shaderUniformBufferArrayNonUniformIndexingNative = false;
p->shaderSampledImageArrayNonUniformIndexingNative = false;
p->shaderStorageBufferArrayNonUniformIndexingNative = true;
p->shaderStorageImageArrayNonUniformIndexingNative = false;
p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
p->robustBufferAccessUpdateAfterBind = true;
p->quadDivergentImplicitLod = false;
p->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
p->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
p->maxPerStageUpdateAfterBindResources = UINT32_MAX;
p->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
p->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
p->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
p->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
p->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
p->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
/* We support all of the depth resolve modes */
p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT |
VK_RESOLVE_MODE_AVERAGE_BIT |
VK_RESOLVE_MODE_MIN_BIT |
VK_RESOLVE_MODE_MAX_BIT;
/* Average doesn't make sense for stencil so we don't support that */
p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT;
if (pdevice->info.ver >= 8) {
/* The advanced stencil resolve modes currently require stencil
* sampling be supported by the hardware.
*/
p->supportedStencilResolveModes |= VK_RESOLVE_MODE_MIN_BIT |
VK_RESOLVE_MODE_MAX_BIT;
}
p->independentResolveNone = true;
p->independentResolve = true;
p->filterMinmaxSingleComponentFormats = pdevice->info.ver >= 9;
p->filterMinmaxImageComponentMapping = pdevice->info.ver >= 9;
p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
p->framebufferIntegerColorSampleCounts =
isl_device_get_sample_counts(&pdevice->isl_dev);
}
static void
anv_get_physical_device_properties_1_3(struct anv_physical_device *pdevice,
VkPhysicalDeviceVulkan13Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES);
p->minSubgroupSize = 8;
p->maxSubgroupSize = 32;
p->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_workgroup_threads;
p->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT |
VK_SHADER_STAGE_TASK_BIT_NV |
VK_SHADER_STAGE_MESH_BIT_NV;
p->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
p->maxPerStageDescriptorInlineUniformBlocks =
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
p->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
p->maxDescriptorSetInlineUniformBlocks =
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
p->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
p->maxInlineUniformTotalSize = UINT16_MAX;
p->integerDotProduct8BitUnsignedAccelerated = false;
p->integerDotProduct8BitSignedAccelerated = false;
p->integerDotProduct8BitMixedSignednessAccelerated = false;
p->integerDotProduct4x8BitPackedUnsignedAccelerated = pdevice->info.ver >= 12;
p->integerDotProduct4x8BitPackedSignedAccelerated = pdevice->info.ver >= 12;
p->integerDotProduct4x8BitPackedMixedSignednessAccelerated = pdevice->info.ver >= 12;
p->integerDotProduct16BitUnsignedAccelerated = false;
p->integerDotProduct16BitSignedAccelerated = false;
p->integerDotProduct16BitMixedSignednessAccelerated = false;
p->integerDotProduct32BitUnsignedAccelerated = false;
p->integerDotProduct32BitSignedAccelerated = false;
p->integerDotProduct32BitMixedSignednessAccelerated = false;
p->integerDotProduct64BitUnsignedAccelerated = false;
p->integerDotProduct64BitSignedAccelerated = false;
p->integerDotProduct64BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating8BitUnsignedAccelerated = false;
p->integerDotProductAccumulatingSaturating8BitSignedAccelerated = false;
p->integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated = pdevice->info.ver >= 12;
p->integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated = pdevice->info.ver >= 12;
p->integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated = pdevice->info.ver >= 12;
p->integerDotProductAccumulatingSaturating16BitUnsignedAccelerated = false;
p->integerDotProductAccumulatingSaturating16BitSignedAccelerated = false;
p->integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating32BitUnsignedAccelerated = false;
p->integerDotProductAccumulatingSaturating32BitSignedAccelerated = false;
p->integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating64BitUnsignedAccelerated = false;
p->integerDotProductAccumulatingSaturating64BitSignedAccelerated = false;
p->integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated = false;
/* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
* Base Address:
*
* "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
* specifies the base address of the first element of the surface,
* computed in software by adding the surface base address to the
* byte offset of the element in the buffer. The base address must
* be aligned to element size."
*
* The typed dataport messages require that things be texel aligned.
* Otherwise, we may just load/store the wrong data or, in the worst
* case, there may be hangs.
*/
p->storageTexelBufferOffsetAlignmentBytes = 16;
p->storageTexelBufferOffsetSingleTexelAlignment = true;
/* The sampler, however, is much more forgiving and it can handle
* arbitrary byte alignment for linear and buffer surfaces. It's
* hard to find a good PRM citation for this but years of empirical
* experience demonstrate that this is true.
*/
p->uniformTexelBufferOffsetAlignmentBytes = 1;
p->uniformTexelBufferOffsetSingleTexelAlignment = false;
p->maxBufferSize = pdevice->isl_dev.max_buffer_size;
}
void anv_GetPhysicalDeviceProperties2(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties2* pProperties)
{
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
VkPhysicalDeviceVulkan11Properties core_1_1 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
};
anv_get_physical_device_properties_1_1(pdevice, &core_1_1);
VkPhysicalDeviceVulkan12Properties core_1_2 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
};
anv_get_physical_device_properties_1_2(pdevice, &core_1_2);
VkPhysicalDeviceVulkan13Properties core_1_3 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES,
};
anv_get_physical_device_properties_1_3(pdevice, &core_1_3);
vk_foreach_struct(ext, pProperties->pNext) {
if (vk_get_physical_device_core_1_1_property_ext(ext, &core_1_1))
continue;
if (vk_get_physical_device_core_1_2_property_ext(ext, &core_1_2))
continue;
if (vk_get_physical_device_core_1_3_property_ext(ext, &core_1_3))
continue;
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_PROPERTIES_KHR: {
VkPhysicalDeviceAccelerationStructurePropertiesKHR *props = (void *)ext;
props->maxGeometryCount = (1u << 24) - 1;
props->maxInstanceCount = (1u << 24) - 1;
props->maxPrimitiveCount = (1u << 29) - 1;
props->maxPerStageDescriptorAccelerationStructures = UINT16_MAX;
props->maxPerStageDescriptorUpdateAfterBindAccelerationStructures = UINT16_MAX;
props->maxDescriptorSetAccelerationStructures = UINT16_MAX;
props->maxDescriptorSetUpdateAfterBindAccelerationStructures = UINT16_MAX;
props->minAccelerationStructureScratchOffsetAlignment = 64;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: {
/* TODO: Real limits */
VkPhysicalDeviceConservativeRasterizationPropertiesEXT *properties =
(VkPhysicalDeviceConservativeRasterizationPropertiesEXT *)ext;
/* There's nothing in the public docs about this value as far as I
* can tell. However, this is the value the Windows driver reports
* and there's a comment on a rejected HW feature in the internal
* docs that says:
*
* "This is similar to conservative rasterization, except the
* primitive area is not extended by 1/512 and..."
*
* That's a bit of an obtuse reference but it's the best we've got
* for now.
*/
properties->primitiveOverestimationSize = 1.0f / 512.0f;
properties->maxExtraPrimitiveOverestimationSize = 0.0f;
properties->extraPrimitiveOverestimationSizeGranularity = 0.0f;
properties->primitiveUnderestimation = false;
properties->conservativePointAndLineRasterization = false;
properties->degenerateTrianglesRasterized = true;
properties->degenerateLinesRasterized = false;
properties->fullyCoveredFragmentShaderInputVariable = false;
properties->conservativeRasterizationPostDepthCoverage = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: {
VkPhysicalDeviceCustomBorderColorPropertiesEXT *properties =
(VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext;
properties->maxCustomBorderColorSamplers = MAX_CUSTOM_BORDER_COLORS;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR: {
VkPhysicalDeviceFragmentShadingRatePropertiesKHR *props =
(VkPhysicalDeviceFragmentShadingRatePropertiesKHR *)ext;
props->primitiveFragmentShadingRateWithMultipleViewports =
pdevice->info.has_coarse_pixel_primitive_and_cb;
props->layeredShadingRateAttachments = pdevice->info.has_coarse_pixel_primitive_and_cb;
props->fragmentShadingRateNonTrivialCombinerOps =
pdevice->info.has_coarse_pixel_primitive_and_cb;
props->maxFragmentSize = (VkExtent2D) { 4, 4 };
props->maxFragmentSizeAspectRatio =
pdevice->info.has_coarse_pixel_primitive_and_cb ?
2 : 4;
props->maxFragmentShadingRateCoverageSamples = 4 * 4 *
(pdevice->info.has_coarse_pixel_primitive_and_cb ? 4 : 16);
props->maxFragmentShadingRateRasterizationSamples =
pdevice->info.has_coarse_pixel_primitive_and_cb ?
VK_SAMPLE_COUNT_4_BIT : VK_SAMPLE_COUNT_16_BIT;
props->fragmentShadingRateWithShaderDepthStencilWrites = false;
props->fragmentShadingRateWithSampleMask = true;
props->fragmentShadingRateWithShaderSampleMask = false;
props->fragmentShadingRateWithConservativeRasterization = true;
props->fragmentShadingRateWithFragmentShaderInterlock = true;
props->fragmentShadingRateWithCustomSampleLocations = true;
/* Fix in DG2_G10_C0 and DG2_G11_B0. Consider any other Sku as having
* the fix.
*/
props->fragmentShadingRateStrictMultiplyCombiner =
pdevice->info.platform == INTEL_PLATFORM_DG2_G10 ?
pdevice->info.revision >= 8 :
pdevice->info.platform == INTEL_PLATFORM_DG2_G11 ?
pdevice->info.revision >= 4 : true;
if (pdevice->info.has_coarse_pixel_primitive_and_cb) {
props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 8, 8 };
props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 8, 8 };
props->maxFragmentShadingRateAttachmentTexelSizeAspectRatio = 1;
} else {
/* Those must be 0 if attachmentFragmentShadingRate is not
* supported.
*/
props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 0, 0 };
props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 0, 0 };
props->maxFragmentShadingRateAttachmentTexelSizeAspectRatio = 0;
}
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRM_PROPERTIES_EXT: {
VkPhysicalDeviceDrmPropertiesEXT *props =
(VkPhysicalDeviceDrmPropertiesEXT *)ext;
props->hasPrimary = pdevice->has_master;
props->primaryMajor = pdevice->master_major;
props->primaryMinor = pdevice->master_minor;
props->hasRender = pdevice->has_local;
props->renderMajor = pdevice->local_major;
props->renderMinor = pdevice->local_minor;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
(VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
/* Userptr needs page aligned memory. */
props->minImportedHostPointerAlignment = 4096;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
(VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
/* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
* Sampling Rules - Legacy Mode", it says the following:
*
* "Note that the device divides a pixel into a 16x16 array of
* subpixels, referenced by their upper left corners."
*
* This is the only known reference in the PRMs to the subpixel
* precision of line rasterization and a "16x16 array of subpixels"
* implies 4 subpixel precision bits. Empirical testing has shown
* that 4 subpixel precision bits applies to all line rasterization
* types.
*/
props->lineSubPixelPrecisionBits = 4;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES: {
VkPhysicalDeviceMaintenance4Properties *properties =
(VkPhysicalDeviceMaintenance4Properties *)ext;
properties->maxBufferSize = pdevice->isl_dev.max_buffer_size;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_PROPERTIES_NV: {
VkPhysicalDeviceMeshShaderPropertiesNV *props =
(VkPhysicalDeviceMeshShaderPropertiesNV *)ext;
/* Bounded by the maximum representable size in
* 3DSTATE_MESH_SHADER_BODY::SharedLocalMemorySize. Same for Task.
*/
const uint32_t max_slm_size = 64 * 1024;
/* Bounded by the maximum representable size in
* 3DSTATE_MESH_SHADER_BODY::LocalXMaximum. Same for Task.
*/
const uint32_t max_workgroup_size = 1 << 10;
/* Bounded by the maximum representable count in
* 3DSTATE_MESH_SHADER_BODY::MaximumPrimitiveCount.
*/
const uint32_t max_primitives = 1024;
/* TODO(mesh): Multiview. */
const uint32_t max_view_count = 1;
props->maxDrawMeshTasksCount = UINT32_MAX;
/* TODO(mesh): Implement workgroup Y and Z sizes larger than one by
* mapping them to/from the single value that HW provides us
* (currently used for X).
*/
props->maxTaskWorkGroupInvocations = max_workgroup_size;
props->maxTaskWorkGroupSize[0] = max_workgroup_size;
props->maxTaskWorkGroupSize[1] = 1;
props->maxTaskWorkGroupSize[2] = 1;
props->maxTaskTotalMemorySize = max_slm_size;
props->maxTaskOutputCount = UINT16_MAX;
props->maxMeshWorkGroupInvocations = max_workgroup_size;
props->maxMeshWorkGroupSize[0] = max_workgroup_size;
props->maxMeshWorkGroupSize[1] = 1;
props->maxMeshWorkGroupSize[2] = 1;
props->maxMeshTotalMemorySize = max_slm_size / max_view_count;
props->maxMeshOutputPrimitives = max_primitives / max_view_count;
props->maxMeshMultiviewViewCount = max_view_count;
/* Depends on what indices can be represented with IndexFormat. For
* now we always use U32, so bound to the maximum unique vertices we
* need for the maximum primitives.
*
* TODO(mesh): Revisit this if we drop "U32" IndexFormat when adding
* support for others.
*/
props->maxMeshOutputVertices = 3 * props->maxMeshOutputPrimitives;
props->meshOutputPerVertexGranularity = 32;
props->meshOutputPerPrimitiveGranularity = 32;
break;
}
#if !defined(USE_MAGMA) // TODO(fxbug.dev/13254)
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
(VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
properties->pciDomain = pdevice->info.pci_domain;
properties->pciBus = pdevice->info.pci_bus;
properties->pciDevice = pdevice->info.pci_dev;
properties->pciFunction = pdevice->info.pci_func;
break;
}
#endif
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR: {
VkPhysicalDevicePerformanceQueryPropertiesKHR *properties =
(VkPhysicalDevicePerformanceQueryPropertiesKHR *)ext;
/* We could support this by spawning a shader to do the equation
* normalization.
*/
properties->allowCommandBufferQueryCopies = false;
break;
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wswitch"
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
VkPhysicalDevicePresentationPropertiesANDROID *props =
(VkPhysicalDevicePresentationPropertiesANDROID *)ext;
props->sharedImage = VK_FALSE;
break;
}
#pragma GCC diagnostic pop
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_PROPERTIES_EXT: {
VkPhysicalDeviceProvokingVertexPropertiesEXT *properties =
(VkPhysicalDeviceProvokingVertexPropertiesEXT *)ext;
properties->provokingVertexModePerPipeline = true;
properties->transformFeedbackPreservesTriangleFanProvokingVertex = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
(VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
VkPhysicalDeviceRobustness2PropertiesEXT *properties = (void *)ext;
properties->robustStorageBufferAccessSizeAlignment =
ANV_SSBO_BOUNDS_CHECK_ALIGNMENT;
properties->robustUniformBufferAccessSizeAlignment =
ANV_UBO_ALIGNMENT;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: {
VkPhysicalDeviceSampleLocationsPropertiesEXT *props =
(VkPhysicalDeviceSampleLocationsPropertiesEXT *)ext;
props->sampleLocationSampleCounts =
isl_device_get_sample_counts(&pdevice->isl_dev);
/* See also anv_GetPhysicalDeviceMultisamplePropertiesEXT */
props->maxSampleLocationGridSize.width = 1;
props->maxSampleLocationGridSize.height = 1;
props->sampleLocationCoordinateRange[0] = 0;
props->sampleLocationCoordinateRange[1] = 0.9375;
props->sampleLocationSubPixelBits = 4;
props->variableSampleLocations = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_PROPERTIES_EXT: {
VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT *props =
(VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT *)ext;
STATIC_ASSERT(sizeof(vk_shaderModuleIdentifierAlgorithmUUID) ==
sizeof(props->shaderModuleIdentifierAlgorithmUUID));
memcpy(props->shaderModuleIdentifierAlgorithmUUID,
vk_shaderModuleIdentifierAlgorithmUUID,
sizeof(props->shaderModuleIdentifierAlgorithmUUID));
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
(VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
props->maxTransformFeedbackBufferSize = (1ull << 32);
props->maxTransformFeedbackStreamDataSize = 128 * 4;
props->maxTransformFeedbackBufferDataSize = 128 * 4;
props->maxTransformFeedbackBufferDataStride = 2048;
props->transformFeedbackQueries = true;
props->transformFeedbackStreamsLinesTriangles = false;
props->transformFeedbackRasterizationStreamSelect = false;
/* This requires MI_MATH */
props->transformFeedbackDraw = pdevice->info.verx10 >= 75;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
(VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
/* We have to restrict this a bit for multiview */
props->maxVertexAttribDivisor = UINT32_MAX / 16;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_PROPERTIES_EXT: {
VkPhysicalDeviceMultiDrawPropertiesEXT *props = (VkPhysicalDeviceMultiDrawPropertiesEXT *)ext;
props->maxMultiDrawCount = 2048;
break;
}
default:
anv_debug_ignored_stype(ext->sType);
break;
}
}
}
static int
vk_priority_to_gen(int priority)
{
switch (priority) {
case VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR:
return INTEL_CONTEXT_LOW_PRIORITY;
case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR:
return INTEL_CONTEXT_MEDIUM_PRIORITY;
case VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR:
return INTEL_CONTEXT_HIGH_PRIORITY;
case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR:
return INTEL_CONTEXT_REALTIME_PRIORITY;
default:
unreachable("Invalid priority");
}
}
static const VkQueueFamilyProperties
anv_queue_family_properties_template = {
.timestampValidBits = 36, /* XXX: Real value here */
.minImageTransferGranularity = { 1, 1, 1 },
};
void anv_GetPhysicalDeviceQueueFamilyProperties2(
VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties2* pQueueFamilyProperties)
{
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
VK_OUTARRAY_MAKE_TYPED(VkQueueFamilyProperties2, out,
pQueueFamilyProperties, pQueueFamilyPropertyCount);
for (uint32_t i = 0; i < pdevice->queue.family_count; i++) {
struct anv_queue_family *queue_family = &pdevice->queue.families[i];
vk_outarray_append_typed(VkQueueFamilyProperties2, &out, p) {
p->queueFamilyProperties = anv_queue_family_properties_template;
p->queueFamilyProperties.queueFlags = queue_family->queueFlags;
p->queueFamilyProperties.queueCount = queue_family->queueCount;
vk_foreach_struct(ext, p->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_QUEUE_FAMILY_GLOBAL_PRIORITY_PROPERTIES_KHR: {
VkQueueFamilyGlobalPriorityPropertiesKHR *properties =
(VkQueueFamilyGlobalPriorityPropertiesKHR *)ext;
/* Deliberately sorted low to high */
VkQueueGlobalPriorityKHR all_priorities[] = {
VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR,
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR,
VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR,
};
uint32_t count = 0;
for (unsigned i = 0; i < ARRAY_SIZE(all_priorities); i++) {
if (vk_priority_to_gen(all_priorities[i]) >
pdevice->max_context_priority)
break;
properties->priorities[count++] = all_priorities[i];
}
properties->priorityCount = count;
break;
}
default:
anv_debug_ignored_stype(ext->sType);
}
}
}
}
}
void anv_GetPhysicalDeviceMemoryProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties* pMemoryProperties)
{
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
.propertyFlags = physical_device->memory.types[i].propertyFlags,
.heapIndex = physical_device->memory.types[i].heapIndex,
};
}
pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
.size = physical_device->memory.heaps[i].size,
.flags = physical_device->memory.heaps[i].flags,
};
}
}
static void
anv_get_memory_budget(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
{
ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
if (!device->vk.supported_extensions.EXT_memory_budget)
return;
anv_update_meminfo(device, device->local_fd);
VkDeviceSize total_sys_heaps_size = 0, total_vram_heaps_size = 0;
for (size_t i = 0; i < device->memory.heap_count; i++) {
if (device->memory.heaps[i].is_local_mem) {
total_vram_heaps_size += device->memory.heaps[i].size;
} else {
total_sys_heaps_size += device->memory.heaps[i].size;
}
}
for (size_t i = 0; i < device->memory.heap_count; i++) {
VkDeviceSize heap_size = device->memory.heaps[i].size;
VkDeviceSize heap_used = device->memory.heaps[i].used;
VkDeviceSize heap_budget, total_heaps_size;
uint64_t mem_available = 0;
if (device->memory.heaps[i].is_local_mem) {
total_heaps_size = total_vram_heaps_size;
if (device->vram_non_mappable.size > 0 && i == 0) {
mem_available = device->vram_non_mappable.available;
} else {
mem_available = device->vram_mappable.available;
}
} else {
total_heaps_size = total_sys_heaps_size;
mem_available = device->sys.available;
}
double heap_proportion = (double) heap_size / total_heaps_size;
VkDeviceSize available_prop = mem_available * heap_proportion;
/*
* Let's not incite the app to starve the system: report at most 90% of
* the available heap memory.
*/
uint64_t heap_available = available_prop * 9 / 10;
heap_budget = MIN2(heap_size, heap_used + heap_available);
/*
* Round down to the nearest MB
*/
heap_budget &= ~((1ull << 20) - 1);
/*
* The heapBudget value must be non-zero for array elements less than
* VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
* value must be less than or equal to VkMemoryHeap::size for each heap.
*/
assert(0 < heap_budget && heap_budget <= heap_size);
memoryBudget->heapUsage[i] = heap_used;
memoryBudget->heapBudget[i] = heap_budget;
}
/* The heapBudget and heapUsage values must be zero for array elements
* greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
*/
for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
memoryBudget->heapBudget[i] = 0;
memoryBudget->heapUsage[i] = 0;
}
}
void anv_GetPhysicalDeviceMemoryProperties2(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
{
anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
&pMemoryProperties->memoryProperties);
vk_foreach_struct(ext, pMemoryProperties->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
anv_get_memory_budget(physicalDevice, (void*)ext);
break;
default:
anv_debug_ignored_stype(ext->sType);
break;
}
}
}
void
anv_GetDeviceGroupPeerMemoryFeatures(
VkDevice device,
uint32_t heapIndex,
uint32_t localDeviceIndex,
uint32_t remoteDeviceIndex,
VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
{
assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
*pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
}
PFN_vkVoidFunction anv_GetInstanceProcAddr(
VkInstance _instance,
const char* pName)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
return vk_instance_get_proc_addr(&instance->vk,
&anv_instance_entrypoints,
pName);
}
/* With version 1+ of the loader interface the ICD should expose
* vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
*/
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
VkInstance instance,
const char* pName);
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
VkInstance instance,
const char* pName)
{
return anv_GetInstanceProcAddr(instance, pName);
}
/* With version 4+ of the loader interface the ICD should expose
* vk_icdGetPhysicalDeviceProcAddr()
*/
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
VkInstance _instance,
const char* pName);
PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
VkInstance _instance,
const char* pName)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
return vk_instance_get_physical_device_proc_addr(&instance->vk, pName);
}
static struct anv_state
anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
{
struct anv_state state;
state = anv_state_pool_alloc(pool, size, align);
memcpy(state.map, p, size);
return state;
}
static void
anv_device_init_border_colors(struct anv_device *device)
{
if (device->info.platform == INTEL_PLATFORM_HSW) {
static const struct hsw_border_color border_colors[] = {
[VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
[VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
[VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
[VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
[VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
[VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
};
device->border_colors =
anv_state_pool_emit_data(&device->dynamic_state_pool,
sizeof(border_colors), 512, border_colors);
} else {
static const struct gfx8_border_color border_colors[] = {
[VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
[VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
[VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
[VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
[VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
[VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
};
device->border_colors =
anv_state_pool_emit_data(&device->dynamic_state_pool,
sizeof(border_colors), 64, border_colors);
}
}
static VkResult
anv_device_init_trivial_batch(struct anv_device *device)
{
VkResult result = anv_device_alloc_bo(device, "trivial-batch", 4096,
ANV_BO_ALLOC_MAPPED,
0 /* explicit_address */,
&device->trivial_batch_bo);
if (result != VK_SUCCESS)
return result;
struct anv_batch batch = {
.start = device->trivial_batch_bo->map,
.next = device->trivial_batch_bo->map,
.end = device->trivial_batch_bo->map + 4096,
};
anv_batch_emit(&batch, GFX7_MI_BATCH_BUFFER_END, bbe);
anv_batch_emit(&batch, GFX7_MI_NOOP, noop);
if (device->physical->memory.need_clflush)
intel_clflush_range(batch.start, batch.next - batch.start);
return VK_SUCCESS;
}
static bool
get_bo_from_pool(struct intel_batch_decode_bo *ret,
struct anv_block_pool *pool,
uint64_t address)
{
anv_block_pool_foreach_bo(bo, pool) {
uint64_t bo_address = intel_48b_address(bo->offset);
if (address >= bo_address && address < (bo_address + bo->size)) {
*ret = (struct intel_batch_decode_bo) {
.addr = bo_address,
.size = bo->size,
.map = bo->map,
};
return true;
}
}
return false;
}
/* Finding a buffer for batch decoding */
static struct intel_batch_decode_bo
decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
{
struct anv_device *device = v_batch;
struct intel_batch_decode_bo ret_bo = {};
assert(ppgtt);
if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
return ret_bo;
if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
return ret_bo;
if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
return ret_bo;
if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
return ret_bo;
if (!device->cmd_buffer_being_decoded)
return (struct intel_batch_decode_bo) { };
struct anv_batch_bo **bo;
u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
/* The decoder zeroes out the top 16 bits, so we need to as well */
uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
return (struct intel_batch_decode_bo) {
.addr = bo_address,
.size = (*bo)->bo->size,
.map = (*bo)->bo->map,
};
}
}
return (struct intel_batch_decode_bo) { };
}
struct intel_aux_map_buffer {
struct intel_buffer base;
struct anv_state state;
};
static struct intel_buffer *
intel_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
{
struct intel_aux_map_buffer *buf = malloc(sizeof(struct intel_aux_map_buffer));
if (!buf)
return NULL;
struct anv_device *device = (struct anv_device*)driver_ctx;
assert(device->physical->supports_48bit_addresses &&
device->physical->use_softpin);
struct anv_state_pool *pool = &device->dynamic_state_pool;
buf->state = anv_state_pool_alloc(pool, size, size);
buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
buf->base.map = buf->state.map;
buf->base.driver_bo = &buf->state;
return &buf->base;
}
static void
intel_aux_map_buffer_free(void *driver_ctx, struct intel_buffer *buffer)
{
struct intel_aux_map_buffer *buf = (struct intel_aux_map_buffer*)buffer;
struct anv_device *device = (struct anv_device*)driver_ctx;
struct anv_state_pool *pool = &device->dynamic_state_pool;
anv_state_pool_free(pool, buf->state);
free(buf);
}
static struct intel_mapped_pinned_buffer_alloc aux_map_allocator = {
.alloc = intel_aux_map_buffer_alloc,
.free = intel_aux_map_buffer_free,
};
static VkResult anv_device_check_status(struct vk_device *vk_device);
VkResult anv_CreateDevice(
VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDevice* pDevice)
{
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
VkResult result;
struct anv_device *device;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
/* Check enabled features */
bool robust_buffer_access = false;
if (pCreateInfo->pEnabledFeatures) {
if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
robust_buffer_access = true;
}
vk_foreach_struct_const(ext, pCreateInfo->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
if (features->features.robustBufferAccess)
robust_buffer_access = true;
break;
}
default:
/* Don't warn */
break;
}
}
/* Check requested queues and fail if we are requested to create any
* queues with flags we don't support.
*/
assert(pCreateInfo->queueCreateInfoCount > 0);
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
return vk_error(physical_device, VK_ERROR_INITIALIZATION_FAILED);
}
/* Check if client specified queue priority. */
const VkDeviceQueueGlobalPriorityCreateInfoKHR *queue_priority =
vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_KHR);
VkQueueGlobalPriorityKHR priority =
queue_priority ? queue_priority->globalPriority :
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR;
device = vk_zalloc2(&physical_device->instance->vk.alloc, pAllocator,
sizeof(*device), 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!device)
return vk_error(physical_device, VK_ERROR_OUT_OF_HOST_MEMORY);
struct vk_device_dispatch_table dispatch_table;
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
anv_genX(&physical_device->info, device_entrypoints), true);
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
&anv_device_entrypoints, false);
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
&wsi_device_entrypoints, false);
result = vk_device_init(&device->vk, &physical_device->vk,
&dispatch_table, pCreateInfo, pAllocator);
if (result != VK_SUCCESS)
goto fail_alloc;
if (INTEL_DEBUG(DEBUG_BATCH)) {
const unsigned decode_flags =
INTEL_BATCH_DECODE_FULL |
(INTEL_DEBUG(DEBUG_COLOR) ? INTEL_BATCH_DECODE_IN_COLOR : 0) |
INTEL_BATCH_DECODE_OFFSETS |
INTEL_BATCH_DECODE_FLOATS;
intel_batch_decode_ctx_init(&device->decoder_ctx,
&physical_device->compiler->isa,
&physical_device->info,
stderr, decode_flags, NULL,
decode_get_bo, NULL, device);
device->decoder_ctx.dynamic_base = DYNAMIC_STATE_POOL_MIN_ADDRESS;
device->decoder_ctx.surface_base = SURFACE_STATE_POOL_MIN_ADDRESS;
device->decoder_ctx.instruction_base =
INSTRUCTION_STATE_POOL_MIN_ADDRESS;
}
device->physical = physical_device;
#if defined(USE_MAGMA)
device->fd = u_magma_open(physical_device->path);
#else
/* XXX(chadv): Can we dup() physicalDevice->fd here? */
device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
#endif
if (device->fd == -1) {
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
goto fail_device;
}
device->vk.check_status = anv_device_check_status;
device->vk.create_sync_for_memory = anv_create_sync_for_memory;
#if defined(USE_MAGMA)
if (anv_gem_connect(device) != 0) {
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
goto fail_device;
}
#else
vk_device_set_drm_fd(&device->vk, device->fd);
#endif
uint32_t num_queues = 0;
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
num_queues += pCreateInfo->pQueueCreateInfos[i].queueCount;
if (device->physical->engine_info) {
/* The kernel API supports at most 64 engines */
assert(num_queues <= 64);
uint16_t engine_classes[64];
int engine_count = 0;
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
const VkDeviceQueueCreateInfo *queueCreateInfo =
&pCreateInfo->pQueueCreateInfos[i];
assert(queueCreateInfo->queueFamilyIndex <
physical_device->queue.family_count);
struct anv_queue_family *queue_family =
&physical_device->queue.families[queueCreateInfo->queueFamilyIndex];
for (uint32_t j = 0; j < queueCreateInfo->queueCount; j++)
engine_classes[engine_count++] = queue_family->engine_class;
}
device->context_id =
intel_gem_create_context_engines(device->fd,
physical_device->engine_info,
engine_count, engine_classes);
} else {
assert(num_queues == 1);
device->context_id = anv_gem_create_context(device);
}
if (device->context_id == -1) {
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
goto fail_fd;
}
/* Here we tell the kernel not to attempt to recover our context but
* immediately (on the next batchbuffer submission) report that the
* context is lost, and we will do the recovery ourselves. In the case
* of Vulkan, recovery means throwing VK_ERROR_DEVICE_LOST and letting
* the client clean up the pieces.
*/
anv_gem_set_context_param(device->fd, device->context_id,
I915_CONTEXT_PARAM_RECOVERABLE, false);
device->queues =
vk_zalloc(&device->vk.alloc, num_queues * sizeof(*device->queues), 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (device->queues == NULL) {
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_context_id;
}
device->queue_count = 0;
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
const VkDeviceQueueCreateInfo *queueCreateInfo =
&pCreateInfo->pQueueCreateInfos[i];
for (uint32_t j = 0; j < queueCreateInfo->queueCount; j++) {
/* When using legacy contexts, we use I915_EXEC_RENDER but, with
* engine-based contexts, the bottom 6 bits of exec_flags are used
* for the engine ID.
*/
uint32_t exec_flags = device->physical->engine_info ?
device->queue_count : I915_EXEC_RENDER;
result = anv_queue_init(device, &device->queues[device->queue_count],
exec_flags, queueCreateInfo, j);
if (result != VK_SUCCESS)
goto fail_queues;
device->queue_count++;
}
}
if (!anv_use_relocations(physical_device)) {
if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
goto fail_queues;
}
/* keep the page with address zero out of the allocator */
util_vma_heap_init(&device->vma_lo,
LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
util_vma_heap_init(&device->vma_cva, CLIENT_VISIBLE_HEAP_MIN_ADDRESS,
CLIENT_VISIBLE_HEAP_SIZE);
/* Leave the last 4GiB out of the high vma range, so that no state
* base address + size can overflow 48 bits. For more information see
* the comment about Wa32bitGeneralStateOffset in anv_allocator.c
*/
util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
physical_device->gtt_size - (1ull << 32) -
HIGH_HEAP_MIN_ADDRESS);
}
list_inithead(&device->memory_objects);
/* As per spec, the driver implementation may deny requests to acquire
* a priority above the default priority (MEDIUM) if the caller does not
* have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_KHR
* is returned.
*/
if (physical_device->max_context_priority >= INTEL_CONTEXT_MEDIUM_PRIORITY) {
int err = anv_gem_set_context_param(device->fd, device->context_id,
I915_CONTEXT_PARAM_PRIORITY,
vk_priority_to_gen(priority));
if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR) {
result = vk_error(device, VK_ERROR_NOT_PERMITTED_KHR);
goto fail_vmas;
}
}
device->info = physical_device->info;
device->isl_dev = physical_device->isl_dev;
/* On Broadwell and later, we can use batch chaining to more efficiently
* implement growing command buffers. Prior to Haswell, the kernel
* command parser gets in the way and we have to fall back to growing
* the batch.
*/
device->can_chain_batches = device->info.ver >= 8;
device->robust_buffer_access = robust_buffer_access;
if (pthread_mutex_init(&device->mutex, NULL) != 0) {
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
goto fail_queues;
}
pthread_condattr_t condattr;
if (pthread_condattr_init(&condattr) != 0) {
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
goto fail_mutex;
}
if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
pthread_condattr_destroy(&condattr);
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
goto fail_mutex;
}
if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
pthread_condattr_destroy(&condattr);
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
goto fail_mutex;
}
pthread_condattr_destroy(&condattr);
result = anv_bo_cache_init(&device->bo_cache, device);
if (result != VK_SUCCESS)
goto fail_queue_cond;
anv_bo_pool_init(&device->batch_bo_pool, device, "batch");
/* Because scratch is also relative to General State Base Address, we leave
* the base address 0 and start the pool memory at an offset. This way we
* get the correct offsets in the anv_states that get allocated from it.
*/
result = anv_state_pool_init(&device->general_state_pool, device,
"general pool",
0, GENERAL_STATE_POOL_MIN_ADDRESS, 16384);
if (result != VK_SUCCESS)
goto fail_batch_bo_pool;
result = anv_state_pool_init(&device->dynamic_state_pool, device,
"dynamic pool",
DYNAMIC_STATE_POOL_MIN_ADDRESS, 0, 16384);
if (result != VK_SUCCESS)
goto fail_general_state_pool;
if (device->info.ver >= 8) {
/* The border color pointer is limited to 24 bits, so we need to make
* sure that any such color used at any point in the program doesn't
* exceed that limit.
* We achieve that by reserving all the custom border colors we support
* right off the bat, so they are close to the base address.
*/
anv_state_reserved_pool_init(&device->custom_border_colors,
&device->dynamic_state_pool,
MAX_CUSTOM_BORDER_COLORS,
sizeof(struct gfx8_border_color), 64);
}
result = anv_state_pool_init(&device->instruction_state_pool, device,
"instruction pool",
INSTRUCTION_STATE_POOL_MIN_ADDRESS, 0, 16384);
if (result != VK_SUCCESS)
goto fail_dynamic_state_pool;
result = anv_state_pool_init(&device->surface_state_pool, device,
"surface state pool",
SURFACE_STATE_POOL_MIN_ADDRESS, 0, 4096);
if (result != VK_SUCCESS)
goto fail_instruction_state_pool;
if (device->info.verx10 >= 125) {
/* We're using 3DSTATE_BINDING_TABLE_POOL_ALLOC to give the binding
* table its own base address separately from surface state base.
*/
result = anv_state_pool_init(&device->binding_table_pool, device,
"binding table pool",
BINDING_TABLE_POOL_MIN_ADDRESS, 0,
BINDING_TABLE_POOL_BLOCK_SIZE);
} else if (!anv_use_relocations(physical_device)) {
int64_t bt_pool_offset = (int64_t)BINDING_TABLE_POOL_MIN_ADDRESS -
(int64_t)SURFACE_STATE_POOL_MIN_ADDRESS;
assert(INT32_MIN < bt_pool_offset && bt_pool_offset < 0);
result = anv_state_pool_init(&device->binding_table_pool, device,
"binding table pool",
SURFACE_STATE_POOL_MIN_ADDRESS,
bt_pool_offset,
BINDING_TABLE_POOL_BLOCK_SIZE);
}
if (result != VK_SUCCESS)
goto fail_surface_state_pool;
if (device->info.has_aux_map) {
device->aux_map_ctx = intel_aux_map_init(device, &aux_map_allocator,
&physical_device->info);
if (!device->aux_map_ctx)
goto fail_binding_table_pool;
}
result = anv_device_alloc_bo(device, "workaround", 4096,
ANV_BO_ALLOC_CAPTURE |
ANV_BO_ALLOC_MAPPED |
ANV_BO_ALLOC_LOCAL_MEM,
0 /* explicit_address */,
&device->workaround_bo);
if (result != VK_SUCCESS)
goto fail_surface_aux_map_pool;
device->workaround_address = (struct anv_address) {
.bo = device->workaround_bo,
.offset = align_u32(
intel_debug_write_identifiers(device->workaround_bo->map,
device->workaround_bo->size,
"Anv") + 8, 8),
};
device->debug_frame_desc =
intel_debug_get_identifier_block(device->workaround_bo->map,
device->workaround_bo->size,
INTEL_DEBUG_BLOCK_TYPE_FRAME);
if (device->vk.enabled_extensions.KHR_ray_query) {
uint32_t ray_queries_size =
align_u32(brw_rt_ray_queries_hw_stacks_size(&device->info), 4096);
result = anv_device_alloc_bo(device, "ray queries",
ray_queries_size,
ANV_BO_ALLOC_LOCAL_MEM,
0 /* explicit_address */,
&device->ray_query_bo);
if (result != VK_SUCCESS)
goto fail_workaround_bo;
}
result = anv_device_init_trivial_batch(device);
if (result != VK_SUCCESS)
goto fail_ray_query_bo;
if (device->info.ver >= 12 &&
device->vk.enabled_extensions.KHR_fragment_shading_rate) {
uint32_t n_cps_states = 3 * 3; /* All combinaisons of X by Y CP sizes (1, 2, 4) */
if (device->info.has_coarse_pixel_primitive_and_cb)
n_cps_states *= 5 * 5; /* 5 combiners by 2 operators */
n_cps_states += 1; /* Disable CPS */
/* Each of the combinaison must be replicated on all viewports */
n_cps_states *= MAX_VIEWPORTS;
device->cps_states =
anv_state_pool_alloc(&device->dynamic_state_pool,
n_cps_states * CPS_STATE_length(&device->info) * 4,
32);
if (device->cps_states.map == NULL)
goto fail_trivial_batch;
anv_genX(&device->info, init_cps_device_state)(device);
}
/* Allocate a null surface state at surface state offset 0. This makes
* NULL descriptor handling trivial because we can just memset structures
* to zero and they have a valid descriptor.
*/
device->null_surface_state =
anv_state_pool_alloc(&device->surface_state_pool,
device->isl_dev.ss.size,
device->isl_dev.ss.align);
isl_null_fill_state(&device->isl_dev, device->null_surface_state.map,
.size = isl_extent3d(1, 1, 1) /* This shouldn't matter */);
assert(device->null_surface_state.offset == 0);
anv_scratch_pool_init(device, &device->scratch_pool);
/* TODO(RT): Do we want some sort of data structure for this? */
memset(device->rt_scratch_bos, 0, sizeof(device->rt_scratch_bos));
result = anv_genX(&device->info, init_device_state)(device);
if (result != VK_SUCCESS)
goto fail_trivial_batch_bo_and_scratch_pool;
struct vk_pipeline_cache_create_info pcc_info = { };
device->default_pipeline_cache =
vk_pipeline_cache_create(&device->vk, &pcc_info, NULL);
if (!device->default_pipeline_cache) {
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_trivial_batch_bo_and_scratch_pool;
}
/* Internal shaders need their own pipeline cache because, unlike the rest
* of ANV, it won't work at all without the cache. It depends on it for
* shaders to remain resident while it runs. Therefore, we need a special
* cache just for BLORP/RT that's forced to always be enabled.
*/
pcc_info.force_enable = true;
device->internal_cache =
vk_pipeline_cache_create(&device->vk, &pcc_info, NULL);
if (device->internal_cache == NULL) {
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_default_pipeline_cache;
}
result = anv_device_init_rt_shaders(device);
if (result != VK_SUCCESS) {
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_internal_cache;
}
anv_device_init_blorp(device);
anv_device_init_border_colors(device);
anv_device_perf_init(device);
anv_device_utrace_init(device);
*pDevice = anv_device_to_handle(device);
return VK_SUCCESS;
fail_internal_cache:
vk_pipeline_cache_destroy(device->internal_cache, NULL);
fail_default_pipeline_cache:
vk_pipeline_cache_destroy(device->default_pipeline_cache, NULL);
fail_trivial_batch_bo_and_scratch_pool:
anv_scratch_pool_finish(device, &device->scratch_pool);
fail_trivial_batch:
anv_device_release_bo(device, device->trivial_batch_bo);
fail_ray_query_bo:
if (device->ray_query_bo)
anv_device_release_bo(device, device->ray_query_bo);
fail_workaround_bo:
anv_device_release_bo(device, device->workaround_bo);
fail_surface_aux_map_pool:
if (device->info.has_aux_map) {
intel_aux_map_finish(device->aux_map_ctx);
device->aux_map_ctx = NULL;
}
fail_binding_table_pool:
if (!anv_use_relocations(physical_device))
anv_state_pool_finish(&device->binding_table_pool);
fail_surface_state_pool:
anv_state_pool_finish(&device->surface_state_pool);
fail_instruction_state_pool:
anv_state_pool_finish(&device->instruction_state_pool);
fail_dynamic_state_pool:
if (device->info.ver >= 8)
anv_state_reserved_pool_finish(&device->custom_border_colors);
anv_state_pool_finish(&device->dynamic_state_pool);
fail_general_state_pool:
anv_state_pool_finish(&device->general_state_pool);
fail_batch_bo_pool:
anv_bo_pool_finish(&device->batch_bo_pool);
anv_bo_cache_finish(&device->bo_cache);
fail_queue_cond:
pthread_cond_destroy(&device->queue_submit);
fail_mutex:
pthread_mutex_destroy(&device->mutex);
fail_vmas:
if (!anv_use_relocations(physical_device)) {
util_vma_heap_finish(&device->vma_hi);
util_vma_heap_finish(&device->vma_cva);
util_vma_heap_finish(&device->vma_lo);
}
fail_queues:
for (uint32_t i = 0; i < device->queue_count; i++)
anv_queue_finish(&device->queues[i]);
vk_free(&device->vk.alloc, device->queues);
fail_context_id:
anv_gem_destroy_context(device, device->context_id);
fail_fd:
#if defined(USE_MAGMA)
u_magma_close(device->fd);
#else
close(device->fd);
#endif
fail_device:
vk_device_finish(&device->vk);
fail_alloc:
vk_free(&device->vk.alloc, device);
return result;
}
void anv_DestroyDevice(
VkDevice _device,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
if (!device)
return;
anv_device_utrace_finish(device);
anv_device_finish_blorp(device);
anv_device_finish_rt_shaders(device);
vk_pipeline_cache_destroy(device->internal_cache, NULL);
vk_pipeline_cache_destroy(device->default_pipeline_cache, NULL);
#ifdef HAVE_VALGRIND
/* We only need to free these to prevent valgrind errors. The backing
* BO will go away in a couple of lines so we don't actually leak.
*/
if (device->info.ver >= 8)
anv_state_reserved_pool_finish(&device->custom_border_colors);
anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
anv_state_pool_free(&device->dynamic_state_pool, device->cps_states);
#endif
for (unsigned i = 0; i < ARRAY_SIZE(device->rt_scratch_bos); i++) {
if (device->rt_scratch_bos[i] != NULL)
anv_device_release_bo(device, device->rt_scratch_bos[i]);
}
anv_scratch_pool_finish(device, &device->scratch_pool);
if (device->vk.enabled_extensions.KHR_ray_query) {
for (unsigned i = 0; i < ARRAY_SIZE(device->ray_query_shadow_bos); i++) {
if (device->ray_query_shadow_bos[i] != NULL)
anv_device_release_bo(device, device->ray_query_shadow_bos[i]);
}
anv_device_release_bo(device, device->ray_query_bo);
}
anv_device_release_bo(device, device->workaround_bo);
anv_device_release_bo(device, device->trivial_batch_bo);
if (device->info.has_aux_map) {
intel_aux_map_finish(device->aux_map_ctx);
device->aux_map_ctx = NULL;
}
if (!anv_use_relocations(device->physical))
anv_state_pool_finish(&device->binding_table_pool);
anv_state_pool_finish(&device->surface_state_pool);
anv_state_pool_finish(&device->instruction_state_pool);
anv_state_pool_finish(&device->dynamic_state_pool);
anv_state_pool_finish(&device->general_state_pool);
anv_bo_pool_finish(&device->batch_bo_pool);
anv_bo_cache_finish(&device->bo_cache);
if (!anv_use_relocations(device->physical)) {
util_vma_heap_finish(&device->vma_hi);
util_vma_heap_finish(&device->vma_cva);
util_vma_heap_finish(&device->vma_lo);
}
pthread_cond_destroy(&device->queue_submit);
pthread_mutex_destroy(&device->mutex);
for (uint32_t i = 0; i < device->queue_count; i++)
anv_queue_finish(&device->queues[i]);
vk_free(&device->vk.alloc, device->queues);
anv_gem_destroy_context(device, device->context_id);
#if defined(USE_MAGMA)
anv_gem_disconnect(device);
#endif
if (INTEL_DEBUG(DEBUG_BATCH))
intel_batch_decode_ctx_finish(&device->decoder_ctx);
#if defined(USE_MAGMA)
u_magma_close(device->fd);
#else
close(device->fd);
#endif
vk_device_finish(&device->vk);
vk_free(&device->vk.alloc, device);
}
VkResult anv_EnumerateInstanceLayerProperties(
uint32_t* pPropertyCount,
VkLayerProperties* pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = 0;
return VK_SUCCESS;
}
/* None supported at this time */
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
}
static VkResult
anv_device_check_status(struct vk_device *vk_device)
{
struct anv_device *device = container_of(vk_device, struct anv_device, vk);
uint32_t active, pending;
int ret = anv_gem_context_get_reset_stats(device->fd, device->context_id,
&active, &pending);
if (ret == -1) {
/* We don't know the real error. */
return vk_device_set_lost(&device->vk, "get_reset_stats failed: %m");
}
if (active) {
return vk_device_set_lost(&device->vk, "GPU hung on one of our command buffers");
} else if (pending) {
return vk_device_set_lost(&device->vk, "GPU hung with commands in-flight");
}
return VK_SUCCESS;
}
VkResult
anv_device_wait(struct anv_device *device, struct anv_bo *bo,
int64_t timeout)
{
int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
if (ret == -1 && errno == ETIME) {
return VK_TIMEOUT;
} else if (ret == -1) {
/* We don't know the real error. */
return vk_device_set_lost(&device->vk, "gem wait failed: %m");
} else {
return VK_SUCCESS;
}
}
uint64_t
anv_vma_alloc(struct anv_device *device,
uint64_t size, uint64_t align,
enum anv_bo_alloc_flags alloc_flags,
uint64_t client_address)
{
#if defined(USE_MAGMA)
const uint32_t page_size = 4096;
size += device->physical->softpin_extra_page_count * page_size;
#endif
pthread_mutex_lock(&device->vma_mutex);
uint64_t addr = 0;
if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) {
if (client_address) {
if (util_vma_heap_alloc_addr(&device->vma_cva,
client_address, size)) {
addr = client_address;
}
} else {
addr = util_vma_heap_alloc(&device->vma_cva, size, align);
}
/* We don't want to fall back to other heaps */
goto done;
}
assert(client_address == 0);
if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS))
addr = util_vma_heap_alloc(&device->vma_hi, size, align);
if (addr == 0)
addr = util_vma_heap_alloc(&device->vma_lo, size, align);
done:
pthread_mutex_unlock(&device->vma_mutex);
assert(addr == intel_48b_address(addr));
return intel_canonical_address(addr);
}
void
anv_vma_free(struct anv_device *device,
uint64_t address, uint64_t size)
{
#if defined(USE_MAGMA)
const uint32_t page_size = 4096;
size += device->physical->softpin_extra_page_count * page_size;
#endif
const uint64_t addr_48b = intel_48b_address(address);
pthread_mutex_lock(&device->vma_mutex);
if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
addr_48b <= LOW_HEAP_MAX_ADDRESS) {
util_vma_heap_free(&device->vma_lo, addr_48b, size);
} else if (addr_48b >= CLIENT_VISIBLE_HEAP_MIN_ADDRESS &&
addr_48b <= CLIENT_VISIBLE_HEAP_MAX_ADDRESS) {
util_vma_heap_free(&device->vma_cva, addr_48b, size);
} else {
assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS);
util_vma_heap_free(&device->vma_hi, addr_48b, size);
}
pthread_mutex_unlock(&device->vma_mutex);
}
VkResult anv_AllocateMemory(
VkDevice _device,
const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator,
VkDeviceMemory* pMem)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_physical_device *pdevice = device->physical;
struct anv_device_memory *mem;
VkResult result = VK_SUCCESS;
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
/* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
assert(pAllocateInfo->allocationSize > 0);
VkDeviceSize aligned_alloc_size =
align_u64(pAllocateInfo->allocationSize, 4096);
if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE)
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
struct anv_memory_type *mem_type =
&pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
assert(mem_type->heapIndex < pdevice->memory.heap_count);
struct anv_memory_heap *mem_heap =
&pdevice->memory.heaps[mem_type->heapIndex];
uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
if (mem_heap_used + aligned_alloc_size > mem_heap->size)
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
mem = vk_object_alloc(&device->vk, pAllocator, sizeof(*mem),
VK_OBJECT_TYPE_DEVICE_MEMORY);
if (mem == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
mem->type = mem_type;
mem->map = NULL;
mem->map_size = 0;
mem->map_delta = 0;
mem->ahw = NULL;
mem->host_ptr = NULL;
#if defined(__linux__) && !defined(ANDROID) && defined(USE_MAGMA)
mem->dedicated.image = NULL;
mem->dedicated.alloc_flags = 0;
#endif
enum anv_bo_alloc_flags alloc_flags = 0;
const VkExportMemoryAllocateInfo *export_info = NULL;
const VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = NULL;
const VkImportMemoryFdInfoKHR *fd_info = NULL;
#ifdef VK_USE_PLATFORM_FUCHSIA
const VkImportMemoryZirconHandleInfoFUCHSIA *fuchsia_info = NULL;
const VkImportMemoryBufferCollectionFUCHSIA* fuchsia_buffer_collection = NULL;
#endif
const VkImportMemoryHostPointerInfoEXT *host_ptr_info = NULL;
const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
VkMemoryAllocateFlags vk_flags = 0;
uint64_t client_address = 0;
vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
export_info = (void *)ext;
break;
case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
ahw_import_info = (void *)ext;
break;
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
fd_info = (void *)ext;
break;
#ifdef VK_USE_PLATFORM_FUCHSIA
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_ZIRCON_HANDLE_INFO_FUCHSIA:
fuchsia_info = (void *)ext;
break;
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_BUFFER_COLLECTION_FUCHSIA:
fuchsia_buffer_collection = (void *)ext;
break;
#endif
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
host_ptr_info = (void *)ext;
break;
case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: {
const VkMemoryAllocateFlagsInfo *flags_info = (void *)ext;
vk_flags = flags_info->flags;
break;
}
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
dedicated_info = (void *)ext;
break;
case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO: {
const VkMemoryOpaqueCaptureAddressAllocateInfo *addr_info =
(const VkMemoryOpaqueCaptureAddressAllocateInfo *)ext;
client_address = addr_info->opaqueCaptureAddress;
break;
}
default:
if (ext->sType != VK_STRUCTURE_TYPE_WSI_MEMORY_ALLOCATE_INFO_MESA)
/* this isn't a real enum value,
* so use conditional to avoid compiler warn
*/
anv_debug_ignored_stype(ext->sType);
break;
}
}
/* By default, we want all VkDeviceMemory objects to support CCS */
if (device->physical->has_implicit_ccs && device->info.has_aux_map)
alloc_flags |= ANV_BO_ALLOC_IMPLICIT_CCS;
/* If i915 reported a mappable/non_mappable vram regions and the
* application want lmem mappable, then we need to use the
* I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS flag to create our BO.
*/
if (pdevice->vram_mappable.size > 0 &&
pdevice->vram_non_mappable.size > 0 &&
(mem_type->propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) &&
(mem_type->propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT))
alloc_flags |= ANV_BO_ALLOC_LOCAL_MEM_CPU_VISIBLE;
if (vk_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT)
alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
if ((export_info && export_info->handleTypes) ||
(fd_info && fd_info->handleType) ||
(host_ptr_info && host_ptr_info->handleType)
#ifdef VK_USE_PLATFORM_FUCHSIA
|| (fuchsia_info && fuchsia_info->handleType)
|| fuchsia_buffer_collection
#endif
) {
/* Anything imported or exported is EXTERNAL */
alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
}
/* Check if we need to support Android HW buffer export. If so,
* create AHardwareBuffer and import memory from it.
*/
bool android_export = false;
if (export_info && export_info->handleTypes &
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
android_export = true;
if (ahw_import_info) {
result = anv_import_ahw_memory(_device, mem, ahw_import_info);
if (result != VK_SUCCESS)
goto fail;
goto success;
} else if (android_export) {
result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
if (result != VK_SUCCESS)
goto fail;
goto success;
}
/* The Vulkan spec permits handleType to be 0, in which case the struct is
* ignored.
*/
if (fd_info && fd_info->handleType) {
/* At the moment, we support only the below handle types. */
assert(fd_info->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
fd_info->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
/* TODO(fxbug.dev/74456) - don't pass size once lseek is available */
result = anv_device_import_bo_with_size(device, fd_info->fd, aligned_alloc_size, alloc_flags,
client_address, &mem->bo);
if (result != VK_SUCCESS)
goto fail;
/* For security purposes, we reject importing the bo if it's smaller
* than the requested allocation size. This prevents a malicious client
* from passing a buffer to a trusted client, lying about the size, and
* telling the trusted client to try and texture from an image that goes
* out-of-bounds. This sort of thing could lead to GPU hangs or worse
* in the trusted client. The trusted client can protect itself against
* this sort of attack but only if it can trust the buffer size.
*/
if (mem->bo->size < aligned_alloc_size) {
result = vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
"aligned allocationSize too large for "
"VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
"%"PRIu64"B > %"PRIu64"B",
aligned_alloc_size, mem->bo->size);
anv_device_release_bo(device, mem->bo);
goto fail;
}
/* From the Vulkan spec:
*
* "Importing memory from a file descriptor transfers ownership of
* the file descriptor from the application to the Vulkan
* implementation. The application must not perform any operations on
* the file descriptor after a successful import."
*
* If the import fails, we leave the file descriptor open.
*/
close(fd_info->fd);
goto success;
#if VK_USE_PLATFORM_FUCHSIA
} else if (fuchsia_info && fuchsia_info->handleType) {
assert(fuchsia_info->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ZIRCON_VMO_BIT_FUCHSIA);
VkDeviceSize aligned_alloc_size =
align_u64(pAllocateInfo->allocationSize, 4096);
// The uint32_t isn't a unique handle per object, so the cache
// lookup in the import will always fail.
// TODO(fxbug.dev/12937) - get a unique id for this object and use that as the cache key;
// then clients will be able to import a buffer more than once.
uint32_t buffer;
uint64_t import_size;
int status = anv_gem_import_fuchsia_buffer(
device, fuchsia_info->handle, &buffer, &import_size);
if (status != 0)
return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
if (import_size < aligned_alloc_size) {
result = vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
"aligned allocationSize too large for "
"VK_EXTERNAL_MEMORY_HANDLE_TYPE_FUCHSIA_BIT_KHR: "
"%"PRIu64"B > %"PRIu64"B",
aligned_alloc_size, import_size);
anv_gem_close(device, buffer);
goto fail;
}
VkResult result = anv_device_import_buffer_handle(
device,
buffer,
aligned_alloc_size,
alloc_flags | ANV_BO_EXTERNAL,
0 /* client_address */,
&mem->bo);
if (result != VK_SUCCESS)
goto fail;
goto success;
} else if (fuchsia_buffer_collection) {
VkDeviceSize aligned_alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
bool is_cache_coherent;
result = anv_memory_params_from_buffer_collection(
_device, fuchsia_buffer_collection->collection, &is_cache_coherent);
if (result != VK_SUCCESS)
goto fail;
uint32_t handle;
uint32_t offset;
VkResult result =
anv_get_buffer_collection_handle(device, fuchsia_buffer_collection->collection,
fuchsia_buffer_collection->index, &handle, &offset);
if (result != VK_SUCCESS)
goto fail;
// The uint32_t isn't a unique handle per object, so the cache
// lookup in the import will always fail.
// TODO(fxbug.dev/12937) - get a unique id for this object and use that as the cache key;
// then clients will be able to import a buffer more than once.
uint32_t buffer;
uint64_t import_size;
int status = anv_gem_import_fuchsia_buffer(device, handle, &buffer, &import_size);
if (status != 0)
return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
if (import_size < aligned_alloc_size) {
result = vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
"aligned allocationSize too large for "
"VK_EXTERNAL_MEMORY_HANDLE_TYPE_FUCHSIA_BIT_KHR: "
"%" PRIu64 "B > %" PRIu64 "B",
aligned_alloc_size, import_size);
anv_gem_close(device, buffer);
goto fail;
}
if (!is_cache_coherent)
alloc_flags |= ANV_BO_UNCACHED;
result = anv_device_import_buffer_handle(device, buffer, aligned_alloc_size,
alloc_flags | ANV_BO_EXTERNAL,
0, /*client_address*/
&mem->bo);
if (result != VK_SUCCESS)
goto fail;
goto success;
#endif // VK_USE_PLATFORM_FUCHSIA
}
if (host_ptr_info && host_ptr_info->handleType) {
if (host_ptr_info->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
result = vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
goto fail;
}
assert(host_ptr_info->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
result = anv_device_import_bo_from_host_ptr(device,
host_ptr_info->pHostPointer,
pAllocateInfo->allocationSize,
alloc_flags,
client_address,
&mem->bo);
if (result != VK_SUCCESS)
goto fail;
mem->host_ptr = host_ptr_info->pHostPointer;
goto success;
}
/* Set ALLOC_LOCAL_MEM flag if heap has device local bit set and requested
* memory property flag has DEVICE_LOCAL_BIT set.
*/
if (mem_type->propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT)
alloc_flags |= ANV_BO_ALLOC_LOCAL_MEM;
#if defined(__linux__) && !defined(ANDROID) && defined(USE_MAGMA)
/* Dedicated allocation provides access to magma image */
if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
/* If we deferred magma image creation, do it now. */
if (image->magma_linux.is_external && !image->magma_linux.gem_handle) {
uint64_t drm_format = 0;
switch (image->vk.format) {
/* TODO(fxbug.dev/71878) - proper SRGB handling */
case VK_FORMAT_R8G8B8A8_UNORM:
case VK_FORMAT_R8G8B8A8_SRGB:
drm_format = DRM_FORMAT_ABGR8888;
break;
case VK_FORMAT_B8G8R8A8_UNORM:
case VK_FORMAT_B8G8R8A8_SRGB:
drm_format = DRM_FORMAT_ARGB8888;
break;
}
if (!drm_format) {
/* magma image creation will fail */
mesa_logd("No DRM format for VkFormat 0x%x", image->vk.format);
}
const uint64_t kFlags = get_create_image_flags_from_usage(image->vk.usage);
uint64_t modifier_list[2] = { image->vk.drm_format_mod, DRM_FORMAT_MOD_INVALID };
image->magma_linux.gem_handle = anv_gem_create_image(device,
drm_format,
modifier_list,
image->vk.extent.width,
image->vk.extent.height,
kFlags);
if (!image->magma_linux.gem_handle) {
mesa_logd("anv_gem_create_image failed");
result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
goto fail;
}
{
uint64_t drm_format_modifier = 0;
uint32_t bytes_per_row = 0;
int ret = anv_gem_get_image_info(device,
image->magma_linux.gem_handle,
&drm_format_modifier,
&bytes_per_row, &image->magma_linux.is_cache_coherent);
if (ret != 0) {
mesa_logd("anv_gem_get_image_info failed: %d", ret);
result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
goto fail;
}
assert(drm_format_modifier == image->vk.drm_format_mod);
}
}
if (image->magma_linux.is_external) {
assert(image->magma_linux.gem_handle);
if (!image->magma_linux.is_cache_coherent)
alloc_flags |= ANV_BO_UNCACHED;
/* Ownership of GEM handle will be transferred when the memory is bound */
mem->dedicated.image = image;
mem->dedicated.alloc_flags = alloc_flags;
/* Placeholder struct BO */
result = anv_device_alloc_bo(device, "placeholder", 4096, alloc_flags, 0, &mem->bo);
if (result != VK_SUCCESS)
goto fail;
goto success;
}
}
#endif
/* Regular allocate (not importing memory). */
result = anv_device_alloc_bo(device, "user", pAllocateInfo->allocationSize,
alloc_flags, client_address, &mem->bo);
if (result != VK_SUCCESS)
goto fail;
if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
/* Some legacy (non-modifiers) consumers need the tiling to be set on
* the BO. In this case, we have a dedicated allocation.
*/
if (image->vk.wsi_legacy_scanout) {
const struct isl_surf *surf = &image->planes[0].primary_surface.isl;
result = anv_device_set_bo_tiling(device, mem->bo,
surf->row_pitch_B,
surf->tiling);
if (result != VK_SUCCESS) {
anv_device_release_bo(device, mem->bo);
goto fail;
}
}
}
success:
mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
if (mem_heap_used > mem_heap->size) {
p_atomic_add(&mem_heap->used, -mem->bo->size);
anv_device_release_bo(device, mem->bo);
result = vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
"Out of heap memory");
goto fail;
}
pthread_mutex_lock(&device->mutex);
list_addtail(&mem->link, &device->memory_objects);
pthread_mutex_unlock(&device->mutex);
*pMem = anv_device_memory_to_handle(mem);
return VK_SUCCESS;
fail:
vk_object_free(&device->vk, pAllocator, mem);
return result;
}
VkResult anv_GetMemoryFdKHR(
VkDevice device_h,
const VkMemoryGetFdInfoKHR* pGetFdInfo,
int* pFd)
{
ANV_FROM_HANDLE(anv_device, dev, device_h);
ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
#if defined(__linux__) && !defined(ANDROID) && defined(USE_MAGMA)
/* If dedicated image is valid here, the device memory is a placeholder because
* the memory hasn't been bound to the image yet.
*/
if (mem->dedicated.image) {
assert(mem->dedicated.image->magma_linux.gem_handle);
int fd = anv_gem_handle_to_fd(dev, mem->dedicated.image->magma_linux.gem_handle);
if (fd < 0)
return vk_error(dev, VK_ERROR_TOO_MANY_OBJECTS);
*pFd = fd;
return VK_SUCCESS;
}
#endif
return anv_device_export_bo(dev, mem->bo, pFd);
}
VkResult anv_GetMemoryFdPropertiesKHR(
VkDevice _device,
VkExternalMemoryHandleTypeFlagBits handleType,
int fd,
VkMemoryFdPropertiesKHR* pMemoryFdProperties)
{
ANV_FROM_HANDLE(anv_device, device, _device);
switch (handleType) {
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
/* dma-buf can be imported as any memory type */
pMemoryFdProperties->memoryTypeBits =
(1 << device->physical->memory.type_count) - 1;
return VK_SUCCESS;
default:
/* The valid usage section for this function says:
*
* "handleType must not be one of the handle types defined as
* opaque."
*
* So opaque handle types fall into the default "unsupported" case.
*/
return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
}
}
VkResult anv_GetMemoryHostPointerPropertiesEXT(
VkDevice _device,
VkExternalMemoryHandleTypeFlagBits handleType,
const void* pHostPointer,
VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
{
ANV_FROM_HANDLE(anv_device, device, _device);
assert(pMemoryHostPointerProperties->sType ==
VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
switch (handleType) {
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
/* Host memory can be imported as any memory type. */
pMemoryHostPointerProperties->memoryTypeBits =
(1ull << device->physical->memory.type_count) - 1;
return VK_SUCCESS;
default:
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
}
}
void anv_FreeMemory(
VkDevice _device,
VkDeviceMemory _mem,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
if (mem == NULL)
return;
pthread_mutex_lock(&device->mutex);
list_del(&mem->link);
pthread_mutex_unlock(&device->mutex);
if (mem->map)
anv_UnmapMemory(_device, _mem);
p_atomic_add(&device->physical->memory.heaps[mem->type->heapIndex].used,
-mem->bo->size);
anv_device_release_bo(device, mem->bo);
#if defined(ANDROID) && ANDROID_API_LEVEL >= 26
if (mem->ahw)
AHardwareBuffer_release(mem->ahw);
#endif
vk_object_free(&device->vk, pAllocator, mem);
}
VkResult anv_MapMemory(
VkDevice _device,
VkDeviceMemory _memory,
VkDeviceSize offset,
VkDeviceSize size,
VkMemoryMapFlags flags,
void** ppData)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
if (mem == NULL) {
*ppData = NULL;
return VK_SUCCESS;
}
if (mem->host_ptr) {
*ppData = mem->host_ptr + offset;
return VK_SUCCESS;
}
if (size == VK_WHOLE_SIZE)
size = mem->bo->size - offset;
/* From the Vulkan spec version 1.0.32 docs for MapMemory:
*
* * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
* assert(size != 0);
* * If size is not equal to VK_WHOLE_SIZE, size must be less than or
* equal to the size of the memory minus offset
*/
assert(size > 0);
assert(offset + size <= mem->bo->size);
if (size != (size_t)size) {
return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED,
"requested size 0x%"PRIx64" does not fit in %u bits",
size, (unsigned)(sizeof(size_t) * 8));
}
/* From the Vulkan 1.2.194 spec:
*
* "memory must not be currently host mapped"
*/
if (mem->map != NULL) {
return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED,
"Memory object already mapped.");
}
uint32_t gem_flags = 0;
if (!device->info.has_llc &&
(mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
gem_flags |= I915_MMAP_WC;
/* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
uint64_t map_offset;
if (!device->physical->has_mmap_offset)
map_offset = offset & ~4095ull;
else
map_offset = 0;
assert(offset >= map_offset);
uint64_t map_size = (offset + size) - map_offset;
/* Let's map whole pages */
map_size = align_u64(map_size, 4096);
void *map;
VkResult result = anv_device_map_bo(device, mem->bo, map_offset,
map_size, gem_flags, &map);
if (result != VK_SUCCESS)
return result;
mem->map = map;
mem->map_size = map_size;
mem->map_delta = (offset - map_offset);
*ppData = mem->map + mem->map_delta;
return VK_SUCCESS;
}
void anv_UnmapMemory(
VkDevice _device,
VkDeviceMemory _memory)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
if (mem == NULL || mem->host_ptr)
return;
anv_device_unmap_bo(device, mem->bo, mem->map, mem->map_size);
mem->map = NULL;
mem->map_size = 0;
mem->map_delta = 0;
}
VkResult anv_FlushMappedMemoryRanges(
VkDevice _device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange* pMemoryRanges)
{
ANV_FROM_HANDLE(anv_device, device, _device);
if (!device->physical->memory.need_clflush)
return VK_SUCCESS;
/* Make sure the writes we're flushing have landed. */
__builtin_ia32_mfence();
for (uint32_t i = 0; i < memoryRangeCount; i++) {
ANV_FROM_HANDLE(anv_device_memory, mem, pMemoryRanges[i].memory);
if (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
continue;
uint64_t map_offset = pMemoryRanges[i].offset + mem->map_delta;
if (map_offset >= mem->map_size)
continue;
intel_clflush_range(mem->map + map_offset,
MIN2(pMemoryRanges[i].size,
mem->map_size - map_offset));
}
return VK_SUCCESS;
}
VkResult anv_InvalidateMappedMemoryRanges(
VkDevice _device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange* pMemoryRanges)
{
ANV_FROM_HANDLE(anv_device, device, _device);
if (!device->physical->memory.need_clflush)
return VK_SUCCESS;
for (uint32_t i = 0; i < memoryRangeCount; i++) {
ANV_FROM_HANDLE(anv_device_memory, mem, pMemoryRanges[i].memory);
if (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
continue;
uint64_t map_offset = pMemoryRanges[i].offset + mem->map_delta;
if (map_offset >= mem->map_size)
continue;
intel_invalidate_range(mem->map + map_offset,
MIN2(pMemoryRanges[i].size,
mem->map_size - map_offset));
}
/* Make sure no reads get moved up above the invalidate. */
__builtin_ia32_mfence();
return VK_SUCCESS;
}
void anv_GetDeviceMemoryCommitment(
VkDevice device,
VkDeviceMemory memory,
VkDeviceSize* pCommittedMemoryInBytes)
{
*pCommittedMemoryInBytes = 0;
}
static void
anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
{
ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
if (mem) {
assert(pBindInfo->memoryOffset < mem->bo->size);
assert(mem->bo->size - pBindInfo->memoryOffset >= buffer->vk.size);
buffer->address = (struct anv_address) {
.bo = mem->bo,
.offset = pBindInfo->memoryOffset,
};
} else {
buffer->address = ANV_NULL_ADDRESS;
}
}
VkResult anv_BindBufferMemory2(
VkDevice device,
uint32_t bindInfoCount,
const VkBindBufferMemoryInfo* pBindInfos)
{
for (uint32_t i = 0; i < bindInfoCount; i++)
anv_bind_buffer_memory(&pBindInfos[i]);
return VK_SUCCESS;
}
VkResult anv_QueueBindSparse(
VkQueue _queue,
uint32_t bindInfoCount,
const VkBindSparseInfo* pBindInfo,
VkFence fence)
{
ANV_FROM_HANDLE(anv_queue, queue, _queue);
if (vk_device_is_lost(&queue->device->vk))
return VK_ERROR_DEVICE_LOST;
return vk_error(queue, VK_ERROR_FEATURE_NOT_PRESENT);
}
// Event functions
VkResult anv_CreateEvent(
VkDevice _device,
const VkEventCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkEvent* pEvent)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_event *event;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
event = vk_object_alloc(&device->vk, pAllocator, sizeof(*event),
VK_OBJECT_TYPE_EVENT);
if (event == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
event->state = anv_state_pool_alloc(&device->dynamic_state_pool,
sizeof(uint64_t), 8);
*(uint64_t *)event->state.map = VK_EVENT_RESET;
*pEvent = anv_event_to_handle(event);
return VK_SUCCESS;
}
void anv_DestroyEvent(
VkDevice _device,
VkEvent _event,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_event, event, _event);
if (!event)
return;
anv_state_pool_free(&device->dynamic_state_pool, event->state);
vk_object_free(&device->vk, pAllocator, event);
}
VkResult anv_GetEventStatus(
VkDevice _device,
VkEvent _event)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_event, event, _event);
if (vk_device_is_lost(&device->vk))
return VK_ERROR_DEVICE_LOST;
return *(uint64_t *)event->state.map;
}
VkResult anv_SetEvent(
VkDevice _device,
VkEvent _event)
{
ANV_FROM_HANDLE(anv_event, event, _event);
*(uint64_t *)event->state.map = VK_EVENT_SET;
return VK_SUCCESS;
}
VkResult anv_ResetEvent(
VkDevice _device,
VkEvent _event)
{
ANV_FROM_HANDLE(anv_event, event, _event);
*(uint64_t *)event->state.map = VK_EVENT_RESET;
return VK_SUCCESS;
}
// Buffer functions
static void
anv_get_buffer_memory_requirements(struct anv_device *device,
VkDeviceSize size,
VkBufferUsageFlags usage,
VkMemoryRequirements2* pMemoryRequirements)
{
/* The Vulkan spec (git aaed022) says:
*
* memoryTypeBits is a bitfield and contains one bit set for every
* supported memory type for the resource. The bit `1<<i` is set if and
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
* structure for the physical device is supported.
*/
uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
/* Base alignment requirement of a cache line */
uint32_t alignment = 16;
if (usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
alignment = MAX2(alignment, ANV_UBO_ALIGNMENT);
pMemoryRequirements->memoryRequirements.size = size;
pMemoryRequirements->memoryRequirements.alignment = alignment;
/* Storage and Uniform buffers should have their size aligned to
* 32-bits to avoid boundary checks when last DWord is not complete.
* This would ensure that not internal padding would be needed for
* 16-bit types.
*/
if (device->robust_buffer_access &&
(usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
pMemoryRequirements->memoryRequirements.size = align_u64(size, 4);
pMemoryRequirements->memoryRequirements.memoryTypeBits = memory_types;
vk_foreach_struct(ext, pMemoryRequirements->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
VkMemoryDedicatedRequirements *requirements = (void *)ext;
requirements->prefersDedicatedAllocation = false;
requirements->requiresDedicatedAllocation = false;
break;
}
default:
anv_debug_ignored_stype(ext->sType);
break;
}
}
}
void anv_GetBufferMemoryRequirements2(
VkDevice _device,
const VkBufferMemoryRequirementsInfo2* pInfo,
VkMemoryRequirements2* pMemoryRequirements)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
anv_get_buffer_memory_requirements(device,
buffer->vk.size,
buffer->vk.usage,
pMemoryRequirements);
}
void anv_GetDeviceBufferMemoryRequirementsKHR(
VkDevice _device,
const VkDeviceBufferMemoryRequirements* pInfo,
VkMemoryRequirements2* pMemoryRequirements)
{
ANV_FROM_HANDLE(anv_device, device, _device);
anv_get_buffer_memory_requirements(device,
pInfo->pCreateInfo->size,
pInfo->pCreateInfo->usage,
pMemoryRequirements);
}
VkResult anv_CreateBuffer(
VkDevice _device,
const VkBufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkBuffer* pBuffer)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_buffer *buffer;
/* Don't allow creating buffers bigger than our address space. The real
* issue here is that we may align up the buffer size and we don't want
* doing so to cause roll-over. However, no one has any business
* allocating a buffer larger than our GTT size.
*/
if (pCreateInfo->size > device->physical->gtt_size)
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
buffer = vk_buffer_create(&device->vk, pCreateInfo,
pAllocator, sizeof(*buffer));
if (buffer == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
buffer->address = ANV_NULL_ADDRESS;
*pBuffer = anv_buffer_to_handle(buffer);
return VK_SUCCESS;
}
void anv_DestroyBuffer(
VkDevice _device,
VkBuffer _buffer,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
if (!buffer)
return;
vk_buffer_destroy(&device->vk, pAllocator, &buffer->vk);
}
VkDeviceAddress anv_GetBufferDeviceAddress(
VkDevice device,
const VkBufferDeviceAddressInfo* pInfo)
{
ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
assert(!anv_address_is_null(buffer->address));
assert(anv_bo_is_pinned(buffer->address.bo));
return anv_address_physical(buffer->address);
}
uint64_t anv_GetBufferOpaqueCaptureAddress(
VkDevice device,
const VkBufferDeviceAddressInfo* pInfo)
{
return 0;
}
uint64_t anv_GetDeviceMemoryOpaqueCaptureAddress(
VkDevice device,
const VkDeviceMemoryOpaqueCaptureAddressInfo* pInfo)
{
ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
assert(anv_bo_is_pinned(memory->bo));
assert(memory->bo->has_client_visible_address);
return intel_48b_address(memory->bo->offset);
}
void
anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
enum isl_format format,
struct isl_swizzle swizzle,
isl_surf_usage_flags_t usage,
struct anv_address address,
uint32_t range, uint32_t stride)
{
isl_buffer_fill_state(&device->isl_dev, state.map,
.address = anv_address_physical(address),
.mocs = isl_mocs(&device->isl_dev, usage,
address.bo && address.bo->is_external),
.size_B = range,
.format = format,
.swizzle = swizzle,
.stride_B = stride);
}
void anv_DestroySampler(
VkDevice _device,
VkSampler _sampler,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
if (!sampler)
return;
if (sampler->bindless_state.map) {
anv_state_pool_free(&device->dynamic_state_pool,
sampler->bindless_state);
}
if (sampler->custom_border_color.map) {
anv_state_reserved_pool_free(&device->custom_border_colors,
sampler->custom_border_color);
}
vk_object_free(&device->vk, pAllocator, sampler);
}
static const VkTimeDomainEXT anv_time_domains[] = {
VK_TIME_DOMAIN_DEVICE_EXT,
VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
#ifdef CLOCK_MONOTONIC_RAW
VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
#endif
};
VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
VkPhysicalDevice physicalDevice,
uint32_t *pTimeDomainCount,
VkTimeDomainEXT *pTimeDomains)
{
int d;
VK_OUTARRAY_MAKE_TYPED(VkTimeDomainEXT, out, pTimeDomains, pTimeDomainCount);
for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
vk_outarray_append_typed(VkTimeDomainEXT, &out, i) {
*i = anv_time_domains[d];
}
}
return vk_outarray_status(&out);
}
static uint64_t
anv_clock_gettime(clockid_t clock_id)
{
struct timespec current;
int ret;
ret = clock_gettime(clock_id, &current);
#ifdef CLOCK_MONOTONIC_RAW
if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
ret = clock_gettime(CLOCK_MONOTONIC, &current);
#endif
if (ret < 0)
return 0;
return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
}
VkResult anv_GetCalibratedTimestampsEXT(
VkDevice _device,
uint32_t timestampCount,
const VkCalibratedTimestampInfoEXT *pTimestampInfos,
uint64_t *pTimestamps,
uint64_t *pMaxDeviation)
{
ANV_FROM_HANDLE(anv_device, device, _device);
uint64_t timestamp_frequency = device->info.timestamp_frequency;
int ret;
int d;
uint64_t begin, end;
uint64_t max_clock_period = 0;
struct anv_timestamp_query* query_ptr = NULL;
#if USE_MAGMA
struct anv_timestamp_query query = {};
ret = anv_gem_query_timestamp(device->fd, &query);
assert(ret == 0);
query_ptr = &query;
#endif
if (query_ptr) {
begin = query_ptr->monotonic_raw_timestamp[0];
} else {
#ifdef CLOCK_MONOTONIC_RAW
begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
#else
begin = anv_clock_gettime(CLOCK_MONOTONIC);
#endif
}
for (d = 0; d < timestampCount; d++) {
switch (pTimestampInfos[d].timeDomain) {
case VK_TIME_DOMAIN_DEVICE_EXT:
if (query_ptr) {
pTimestamps[d] = query_ptr->device_timestamp;
} else {
#if USE_MAGMA
assert(false); // query_ptr should be set
#else
ret = anv_gem_reg_read(device->fd, TIMESTAMP | I915_REG_READ_8B_WA,
&pTimestamps[d]);
if (ret != 0) {
return anv_device_set_lost(&device->vk, "Failed to read the "
"TIMESTAMP register: %m");
}
#endif
}
uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
max_clock_period = MAX2(max_clock_period, device_period);
break;
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
if (query_ptr) {
pTimestamps[d] = query_ptr->monotonic_timestamp;
} else {
pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
}
max_clock_period = MAX2(max_clock_period, 1);
break;
#ifdef CLOCK_MONOTONIC_RAW
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
pTimestamps[d] = begin;
break;
#endif
default:
pTimestamps[d] = 0;
break;
}
}
if (query_ptr) {
end = query_ptr->monotonic_raw_timestamp[1];
} else {
#ifdef CLOCK_MONOTONIC_RAW
end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
#else
end = anv_clock_gettime(CLOCK_MONOTONIC);
#endif
}
/*
* The maximum deviation is the sum of the interval over which we
* perform the sampling and the maximum period of any sampled
* clock. That's because the maximum skew between any two sampled
* clock edges is when the sampled clock with the largest period is
* sampled at the end of that period but right at the beginning of the
* sampling interval and some other clock is sampled right at the
* beginning of its sampling period and right at the end of the
* sampling interval. Let's assume the GPU has the longest clock
* period and that the application is sampling GPU and monotonic:
*
* s e
* w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
* Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
*
* g
* 0 1 2 3
* GPU -----_____-----_____-----_____-----_____
*
* m
* x y z 0 1 2 3 4 5 6 7 8 9 a b c
* Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
*
* Interval <----------------->
* Deviation <-------------------------->
*
* s = read(raw) 2
* g = read(GPU) 1
* m = read(monotonic) 2
* e = read(raw) b
*
* We round the sample interval up by one tick to cover sampling error
* in the interval clock
*/
uint64_t sample_interval = end - begin + 1;
*pMaxDeviation = sample_interval + max_clock_period;
return VK_SUCCESS;
}
void anv_GetPhysicalDeviceMultisamplePropertiesEXT(
VkPhysicalDevice physicalDevice,
VkSampleCountFlagBits samples,
VkMultisamplePropertiesEXT* pMultisampleProperties)
{
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
assert(pMultisampleProperties->sType ==
VK_STRUCTURE_TYPE_MULTISAMPLE_PROPERTIES_EXT);
VkExtent2D grid_size;
if (samples & isl_device_get_sample_counts(&physical_device->isl_dev)) {
grid_size.width = 1;
grid_size.height = 1;
} else {
grid_size.width = 0;
grid_size.height = 0;
}
pMultisampleProperties->maxSampleLocationGridSize = grid_size;
vk_foreach_struct(ext, pMultisampleProperties->pNext)
anv_debug_ignored_stype(ext->sType);
}
/* vk_icd.h does not declare this function, so we declare it here to
* suppress Wmissing-prototypes.
*/
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
{
/* For the full details on loader interface versioning, see
* <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
* What follows is a condensed summary, to help you navigate the large and
* confusing official doc.
*
* - Loader interface v0 is incompatible with later versions. We don't
* support it.
*
* - In loader interface v1:
* - The first ICD entrypoint called by the loader is
* vk_icdGetInstanceProcAddr(). The ICD must statically expose this
* entrypoint.
* - The ICD must statically expose no other Vulkan symbol unless it is
* linked with -Bsymbolic.
* - Each dispatchable Vulkan handle created by the ICD must be
* a pointer to a struct whose first member is VK_LOADER_DATA. The
* ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
* - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
* vkDestroySurfaceKHR(). The ICD must be capable of working with
* such loader-managed surfaces.
*
* - Loader interface v2 differs from v1 in:
* - The first ICD entrypoint called by the loader is
* vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
* statically expose this entrypoint.
*
* - Loader interface v3 differs from v2 in:
* - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
* vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
* because the loader no longer does so.
*
* - Loader interface v4 differs from v3 in:
* - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
*
* - Loader interface v5 differs from v4 in:
* - The ICD must support Vulkan API version 1.1 and must not return
* VK_ERROR_INCOMPATIBLE_DRIVER from vkCreateInstance() unless a
* Vulkan Loader with interface v4 or smaller is being used and the
* application provides an API version that is greater than 1.0.
*/
*pSupportedVersion = MIN2(*pSupportedVersion, 5u);
return VK_SUCCESS;
}
VkResult anv_GetPhysicalDeviceFragmentShadingRatesKHR(
VkPhysicalDevice physicalDevice,
uint32_t* pFragmentShadingRateCount,
VkPhysicalDeviceFragmentShadingRateKHR* pFragmentShadingRates)
{
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceFragmentShadingRateKHR, out,
pFragmentShadingRates, pFragmentShadingRateCount);
#define append_rate(_samples, _width, _height) \
do { \
vk_outarray_append_typed(VkPhysicalDeviceFragmentShadingRateKHR, &out, __r) { \
__r->sampleCounts = _samples; \
__r->fragmentSize = (VkExtent2D) { \
.width = _width, \
.height = _height, \
}; \
} \
} while (0)
VkSampleCountFlags sample_counts =
isl_device_get_sample_counts(&physical_device->isl_dev);
/* BSpec 47003: There are a number of restrictions on the sample count
* based off the coarse pixel size.
*/
static const VkSampleCountFlags cp_size_sample_limits[] = {
[1] = ISL_SAMPLE_COUNT_16_BIT | ISL_SAMPLE_COUNT_8_BIT |
ISL_SAMPLE_COUNT_4_BIT | ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT,
[2] = ISL_SAMPLE_COUNT_4_BIT | ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT,
[4] = ISL_SAMPLE_COUNT_4_BIT | ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT,
[8] = ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT,
[16] = ISL_SAMPLE_COUNT_1_BIT,
};
for (uint32_t x = 4; x >= 1; x /= 2) {
for (uint32_t y = 4; y >= 1; y /= 2) {
if (physical_device->info.has_coarse_pixel_primitive_and_cb) {
/* BSpec 47003:
* "CPsize 1x4 and 4x1 are not supported"
*/
if ((x == 1 && y == 4) || (x == 4 && y == 1))
continue;
/* For size {1, 1}, the sample count must be ~0
*
* 4x2 is also a specially case.
*/
if (x == 1 && y == 1)
append_rate(~0, x, y);
else if (x == 4 && y == 2)
append_rate(ISL_SAMPLE_COUNT_1_BIT, x, y);
else
append_rate(cp_size_sample_limits[x * y], x, y);
} else {
/* For size {1, 1}, the sample count must be ~0 */
if (x == 1 && y == 1)
append_rate(~0, x, y);
else
append_rate(sample_counts, x, y);
}
}
}
#undef append_rate
return vk_outarray_status(&out);
}