blob: 0feebefc575a4607f32061ca9f9a8debf8e70194 [file] [log] [blame]
/*
* Copyright © 2013 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/ralloc.h"
#include "main/macros.h" /* Needed for MAX3 and MAX2 for format_rgb9e5 */
#include "util/format_rgb9e5.h"
#include "blorp_priv.h"
#include "compiler/brw_eu_defines.h"
#include "blorp_nir_builder.h"
#define FILE_DEBUG_FLAG DEBUG_BLORP
struct brw_blorp_const_color_prog_key
{
enum blorp_shader_type shader_type; /* Must be BLORP_SHADER_TYPE_CLEAR */
bool use_simd16_replicated_data;
bool pad[3];
};
static bool
blorp_params_get_clear_kernel(struct blorp_context *blorp,
struct blorp_params *params,
bool use_replicated_data)
{
const struct brw_blorp_const_color_prog_key blorp_key = {
.shader_type = BLORP_SHADER_TYPE_CLEAR,
.use_simd16_replicated_data = use_replicated_data,
};
if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
&params->wm_prog_kernel, &params->wm_prog_data))
return true;
void *mem_ctx = ralloc_context(NULL);
nir_builder b;
nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
b.shader->info.name = ralloc_strdup(b.shader, "BLORP-clear");
nir_variable *v_color =
BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
nir_variable *frag_color = nir_variable_create(b.shader, nir_var_shader_out,
glsl_vec4_type(),
"gl_FragColor");
frag_color->data.location = FRAG_RESULT_COLOR;
nir_copy_var(&b, frag_color, v_color);
struct brw_wm_prog_key wm_key;
brw_blorp_init_wm_prog_key(&wm_key);
struct brw_wm_prog_data prog_data;
unsigned program_size;
const unsigned *program =
blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, use_replicated_data,
&prog_data, &program_size);
bool result =
blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
program, program_size,
&prog_data.base, sizeof(prog_data),
&params->wm_prog_kernel, &params->wm_prog_data);
ralloc_free(mem_ctx);
return result;
}
struct layer_offset_vs_key {
enum blorp_shader_type shader_type;
unsigned num_inputs;
};
/* In the case of doing attachment clears, we are using a surface state that
* is handed to us so we can't set (and don't even know) the base array layer.
* In order to do a layered clear in this scenario, we need some way of adding
* the base array layer to the instance id. Unfortunately, our hardware has
* no real concept of "base instance", so we have to do it manually in a
* vertex shader.
*/
static bool
blorp_params_get_layer_offset_vs(struct blorp_context *blorp,
struct blorp_params *params)
{
struct layer_offset_vs_key blorp_key = {
.shader_type = BLORP_SHADER_TYPE_LAYER_OFFSET_VS,
};
if (params->wm_prog_data)
blorp_key.num_inputs = params->wm_prog_data->num_varying_inputs;
if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
&params->vs_prog_kernel, &params->vs_prog_data))
return true;
void *mem_ctx = ralloc_context(NULL);
nir_builder b;
nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_VERTEX, NULL);
b.shader->info.name = ralloc_strdup(b.shader, "BLORP-layer-offset-vs");
const struct glsl_type *uvec4_type = glsl_vector_type(GLSL_TYPE_UINT, 4);
/* First we deal with the header which has instance and base instance */
nir_variable *a_header = nir_variable_create(b.shader, nir_var_shader_in,
uvec4_type, "header");
a_header->data.location = VERT_ATTRIB_GENERIC0;
nir_variable *v_layer = nir_variable_create(b.shader, nir_var_shader_out,
glsl_int_type(), "layer_id");
v_layer->data.location = VARYING_SLOT_LAYER;
/* Compute the layer id */
nir_ssa_def *header = nir_load_var(&b, a_header);
nir_ssa_def *base_layer = nir_channel(&b, header, 0);
nir_ssa_def *instance = nir_channel(&b, header, 1);
nir_store_var(&b, v_layer, nir_iadd(&b, instance, base_layer), 0x1);
/* Then we copy the vertex from the next slot to VARYING_SLOT_POS */
nir_variable *a_vertex = nir_variable_create(b.shader, nir_var_shader_in,
glsl_vec4_type(), "a_vertex");
a_vertex->data.location = VERT_ATTRIB_GENERIC1;
nir_variable *v_pos = nir_variable_create(b.shader, nir_var_shader_out,
glsl_vec4_type(), "v_pos");
v_pos->data.location = VARYING_SLOT_POS;
nir_copy_var(&b, v_pos, a_vertex);
/* Then we copy everything else */
for (unsigned i = 0; i < blorp_key.num_inputs; i++) {
nir_variable *a_in = nir_variable_create(b.shader, nir_var_shader_in,
uvec4_type, "input");
a_in->data.location = VERT_ATTRIB_GENERIC2 + i;
nir_variable *v_out = nir_variable_create(b.shader, nir_var_shader_out,
uvec4_type, "output");
v_out->data.location = VARYING_SLOT_VAR0 + i;
nir_copy_var(&b, v_out, a_in);
}
struct brw_vs_prog_data vs_prog_data;
memset(&vs_prog_data, 0, sizeof(vs_prog_data));
unsigned program_size;
const unsigned *program =
blorp_compile_vs(blorp, mem_ctx, b.shader, &vs_prog_data, &program_size);
bool result =
blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
program, program_size,
&vs_prog_data.base.base, sizeof(vs_prog_data),
&params->vs_prog_kernel, &params->vs_prog_data);
ralloc_free(mem_ctx);
return result;
}
/* The x0, y0, x1, and y1 parameters must already be populated with the render
* area of the framebuffer to be cleared.
*/
static void
get_fast_clear_rect(const struct isl_device *dev,
const struct isl_surf *aux_surf,
unsigned *x0, unsigned *y0,
unsigned *x1, unsigned *y1)
{
unsigned int x_align, y_align;
unsigned int x_scaledown, y_scaledown;
/* Only single sampled surfaces need to (and actually can) be resolved. */
if (aux_surf->usage == ISL_SURF_USAGE_CCS_BIT) {
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
* Target(s)", beneath the "Fast Color Clear" bullet (p327):
*
* Clear pass must have a clear rectangle that must follow
* alignment rules in terms of pixels and lines as shown in the
* table below. Further, the clear-rectangle height and width
* must be multiple of the following dimensions. If the height
* and width of the render target being cleared do not meet these
* requirements, an MCS buffer can be created such that it
* follows the requirement and covers the RT.
*
* The alignment size in the table that follows is related to the
* alignment size that is baked into the CCS surface format but with X
* alignment multiplied by 16 and Y alignment multiplied by 32.
*/
x_align = isl_format_get_layout(aux_surf->format)->bw;
y_align = isl_format_get_layout(aux_surf->format)->bh;
x_align *= 16;
/* SKL+ line alignment requirement for Y-tiled are half those of the prior
* generations.
*/
if (dev->info->gen >= 9)
y_align *= 16;
else
y_align *= 32;
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
* Target(s)", beneath the "Fast Color Clear" bullet (p327):
*
* In order to optimize the performance MCS buffer (when bound to
* 1X RT) clear similarly to MCS buffer clear for MSRT case,
* clear rect is required to be scaled by the following factors
* in the horizontal and vertical directions:
*
* The X and Y scale down factors in the table that follows are each
* equal to half the alignment value computed above.
*/
x_scaledown = x_align / 2;
y_scaledown = y_align / 2;
/* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
* Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
* Clear of Non-MultiSampled Render Target Restrictions":
*
* Clear rectangle must be aligned to two times the number of
* pixels in the table shown below due to 16x16 hashing across the
* slice.
*/
x_align *= 2;
y_align *= 2;
} else {
assert(aux_surf->usage == ISL_SURF_USAGE_MCS_BIT);
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
* Target(s)", beneath the "MSAA Compression" bullet (p326):
*
* Clear pass for this case requires that scaled down primitive
* is sent down with upper left co-ordinate to coincide with
* actual rectangle being cleared. For MSAA, clear rectangle’s
* height and width need to as show in the following table in
* terms of (width,height) of the RT.
*
* MSAA Width of Clear Rect Height of Clear Rect
* 2X Ceil(1/8*width) Ceil(1/2*height)
* 4X Ceil(1/8*width) Ceil(1/2*height)
* 8X Ceil(1/2*width) Ceil(1/2*height)
* 16X width Ceil(1/2*height)
*
* The text "with upper left co-ordinate to coincide with actual
* rectangle being cleared" is a little confusing--it seems to imply
* that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
* feed the pipeline using the rectangle (x,y) to
* (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
* the number of samples. Experiments indicate that this is not
* quite correct; actually, what the hardware appears to do is to
* align whatever rectangle is sent down the pipeline to the nearest
* multiple of 2x2 blocks, and then scale it up by a factor of N
* horizontally and 2 vertically. So the resulting alignment is 4
* vertically and either 4 or 16 horizontally, and the scaledown
* factor is 2 vertically and either 2 or 8 horizontally.
*/
switch (aux_surf->format) {
case ISL_FORMAT_MCS_2X:
case ISL_FORMAT_MCS_4X:
x_scaledown = 8;
break;
case ISL_FORMAT_MCS_8X:
x_scaledown = 2;
break;
case ISL_FORMAT_MCS_16X:
x_scaledown = 1;
break;
default:
unreachable("Unexpected MCS format for fast clear");
}
y_scaledown = 2;
x_align = x_scaledown * 2;
y_align = y_scaledown * 2;
}
*x0 = ROUND_DOWN_TO(*x0, x_align) / x_scaledown;
*y0 = ROUND_DOWN_TO(*y0, y_align) / y_scaledown;
*x1 = ALIGN(*x1, x_align) / x_scaledown;
*y1 = ALIGN(*y1, y_align) / y_scaledown;
}
void
blorp_fast_clear(struct blorp_batch *batch,
const struct blorp_surf *surf, enum isl_format format,
uint32_t level, uint32_t start_layer, uint32_t num_layers,
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
{
/* Ensure that all layers undergoing the clear have an auxiliary buffer. */
assert(start_layer + num_layers <=
MAX2(surf->aux_surf->logical_level0_px.depth >> level,
surf->aux_surf->logical_level0_px.array_len));
struct blorp_params params;
blorp_params_init(&params);
params.num_layers = num_layers;
params.x0 = x0;
params.y0 = y0;
params.x1 = x1;
params.y1 = y1;
memset(&params.wm_inputs.clear_color, 0xff, 4*sizeof(float));
params.fast_clear_op = BLORP_FAST_CLEAR_OP_CLEAR;
get_fast_clear_rect(batch->blorp->isl_dev, surf->aux_surf,
&params.x0, &params.y0, &params.x1, &params.y1);
if (!blorp_params_get_clear_kernel(batch->blorp, &params, true))
return;
brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
start_layer, format, true);
params.num_samples = params.dst.surf.samples;
batch->blorp->exec(batch, &params);
}
static union isl_color_value
swizzle_color_value(union isl_color_value src, struct isl_swizzle swizzle)
{
union isl_color_value dst = { .u32 = { 0, } };
/* We assign colors in ABGR order so that the first one will be taken in
* RGBA precedence order. According to the PRM docs for shader channel
* select, this matches Haswell hardware behavior.
*/
if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
dst.u32[swizzle.a - ISL_CHANNEL_SELECT_RED] = src.u32[3];
if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
dst.u32[swizzle.b - ISL_CHANNEL_SELECT_RED] = src.u32[2];
if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
dst.u32[swizzle.g - ISL_CHANNEL_SELECT_RED] = src.u32[1];
if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
dst.u32[swizzle.r - ISL_CHANNEL_SELECT_RED] = src.u32[0];
return dst;
}
void
blorp_clear(struct blorp_batch *batch,
const struct blorp_surf *surf,
enum isl_format format, struct isl_swizzle swizzle,
uint32_t level, uint32_t start_layer, uint32_t num_layers,
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
union isl_color_value clear_color,
const bool color_write_disable[4])
{
struct blorp_params params;
blorp_params_init(&params);
/* Manually apply the clear destination swizzle. This way swizzled clears
* will work for swizzles which we can't normally use for rendering and it
* also ensures that they work on pre-Haswell hardware which can't swizlle
* at all.
*/
clear_color = swizzle_color_value(clear_color, swizzle);
swizzle = ISL_SWIZZLE_IDENTITY;
if (format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
clear_color.u32[0] = float3_to_rgb9e5(clear_color.f32);
format = ISL_FORMAT_R32_UINT;
} else if (format == ISL_FORMAT_A4B4G4R4_UNORM) {
/* Broadwell and earlier cannot render to this format so we need to work
* around it by swapping the colors around and using B4G4R4A4 instead.
*/
const struct isl_swizzle ARGB = ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE);
clear_color = swizzle_color_value(clear_color, ARGB);
format = ISL_FORMAT_B4G4R4A4_UNORM;
}
memcpy(&params.wm_inputs.clear_color, clear_color.f32, sizeof(float) * 4);
bool use_simd16_replicated_data = true;
/* From the SNB PRM (Vol4_Part1):
*
* "Replicated data (Message Type = 111) is only supported when
* accessing tiled memory. Using this Message Type to access linear
* (untiled) memory is UNDEFINED."
*/
if (surf->surf->tiling == ISL_TILING_LINEAR)
use_simd16_replicated_data = false;
/* Replicated clears don't work yet before gen6 */
if (batch->blorp->isl_dev->info->gen < 6)
use_simd16_replicated_data = false;
/* Constant color writes ignore everyting in blend and color calculator
* state. This is not documented.
*/
if (color_write_disable) {
for (unsigned i = 0; i < 4; i++) {
params.color_write_disable[i] = color_write_disable[i];
if (color_write_disable[i])
use_simd16_replicated_data = false;
}
}
if (!blorp_params_get_clear_kernel(batch->blorp, &params,
use_simd16_replicated_data))
return;
if (!blorp_ensure_sf_program(batch->blorp, &params))
return;
while (num_layers > 0) {
brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
start_layer, format, true);
params.dst.view.swizzle = swizzle;
params.x0 = x0;
params.y0 = y0;
params.x1 = x1;
params.y1 = y1;
/* The MinLOD and MinimumArrayElement don't work properly for cube maps.
* Convert them to a single slice on gen4.
*/
if (batch->blorp->isl_dev->info->gen == 4 &&
(params.dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT)) {
blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params.dst);
if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
/* This is gen4 so there is no multisampling and sa == px. */
params.x0 += params.dst.tile_x_sa;
params.y0 += params.dst.tile_y_sa;
params.x1 += params.dst.tile_x_sa;
params.y1 += params.dst.tile_y_sa;
}
}
params.num_samples = params.dst.surf.samples;
/* We may be restricted on the number of layers we can bind at any one
* time. In particular, Sandy Bridge has a maximum number of layers of
* 512 but a maximum 3D texture size is much larger.
*/
params.num_layers = MIN2(params.dst.view.array_len, num_layers);
batch->blorp->exec(batch, &params);
start_layer += params.num_layers;
num_layers -= params.num_layers;
}
}
void
blorp_clear_depth_stencil(struct blorp_batch *batch,
const struct blorp_surf *depth,
const struct blorp_surf *stencil,
uint32_t level, uint32_t start_layer,
uint32_t num_layers,
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
bool clear_depth, float depth_value,
uint8_t stencil_mask, uint8_t stencil_value)
{
struct blorp_params params;
blorp_params_init(&params);
params.x0 = x0;
params.y0 = y0;
params.x1 = x1;
params.y1 = y1;
if (ISL_DEV_GEN(batch->blorp->isl_dev) == 6) {
/* For some reason, Sandy Bridge gets occlusion queries wrong if we
* don't have a shader. In particular, it records samples even though
* we disable statistics in 3DSTATE_WM. Give it the usual clear shader
* to work around the issue.
*/
if (!blorp_params_get_clear_kernel(batch->blorp, &params, false))
return;
}
while (num_layers > 0) {
params.num_layers = num_layers;
if (stencil_mask) {
brw_blorp_surface_info_init(batch->blorp, &params.stencil, stencil,
level, start_layer,
ISL_FORMAT_UNSUPPORTED, true);
params.stencil_mask = stencil_mask;
params.stencil_ref = stencil_value;
params.dst.surf.samples = params.stencil.surf.samples;
params.dst.surf.logical_level0_px =
params.stencil.surf.logical_level0_px;
params.dst.view = params.depth.view;
params.num_samples = params.stencil.surf.samples;
/* We may be restricted on the number of layers we can bind at any
* one time. In particular, Sandy Bridge has a maximum number of
* layers of 512 but a maximum 3D texture size is much larger.
*/
if (params.stencil.view.array_len < params.num_layers)
params.num_layers = params.stencil.view.array_len;
}
if (clear_depth) {
brw_blorp_surface_info_init(batch->blorp, &params.depth, depth,
level, start_layer,
ISL_FORMAT_UNSUPPORTED, true);
params.z = depth_value;
params.depth_format =
isl_format_get_depth_format(depth->surf->format, false);
params.dst.surf.samples = params.depth.surf.samples;
params.dst.surf.logical_level0_px =
params.depth.surf.logical_level0_px;
params.dst.view = params.depth.view;
params.num_samples = params.depth.surf.samples;
/* We may be restricted on the number of layers we can bind at any
* one time. In particular, Sandy Bridge has a maximum number of
* layers of 512 but a maximum 3D texture size is much larger.
*/
if (params.depth.view.array_len < params.num_layers)
params.num_layers = params.depth.view.array_len;
}
batch->blorp->exec(batch, &params);
start_layer += params.num_layers;
num_layers -= params.num_layers;
}
}
bool
blorp_can_hiz_clear_depth(uint8_t gen, enum isl_format format,
uint32_t num_samples,
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
{
/* This function currently doesn't support any gen prior to gen8 */
assert(gen >= 8);
if (gen == 8 && format == ISL_FORMAT_R16_UNORM) {
/* Apply the D16 alignment restrictions. On BDW, HiZ has an 8x4 sample
* block with the following property: as the number of samples increases,
* the number of pixels representable by this block decreases by a factor
* of the sample dimensions. Sample dimensions scale following the MSAA
* interleaved pattern.
*
* Sample|Sample|Pixel
* Count |Dim |Dim
* ===================
* 1 | 1x1 | 8x4
* 2 | 2x1 | 4x4
* 4 | 2x2 | 4x2
* 8 | 4x2 | 2x2
* 16 | 4x4 | 2x1
*
* Table: Pixel Dimensions in a HiZ Sample Block Pre-SKL
*/
const struct isl_extent2d sa_block_dim =
isl_get_interleaved_msaa_px_size_sa(num_samples);
const uint8_t align_px_w = 8 / sa_block_dim.w;
const uint8_t align_px_h = 4 / sa_block_dim.h;
/* Fast depth clears clear an entire sample block at a time. As a result,
* the rectangle must be aligned to the dimensions of the encompassing
* pixel block for a successful operation.
*
* Fast clears can still work if the upper-left corner is aligned and the
* bottom-rigtht corner touches the edge of a depth buffer whose extent
* is unaligned. This is because each miplevel in the depth buffer is
* padded by the Pixel Dim (similar to a standard compressed texture).
* In this case, the clear rectangle could be padded by to match the full
* depth buffer extent but to support multiple clearing techniques, we
* chose to be unaware of the depth buffer's extent and thus don't handle
* this case.
*/
if (x0 % align_px_w || y0 % align_px_h ||
x1 % align_px_w || y1 % align_px_h)
return false;
}
return true;
}
/* Given a depth stencil attachment, this function performs a fast depth clear
* on a depth portion and a regular clear on the stencil portion. When
* performing a fast depth clear on the depth portion, the HiZ buffer is simply
* tagged as cleared so the depth clear value is not actually needed.
*/
void
blorp_gen8_hiz_clear_attachments(struct blorp_batch *batch,
uint32_t num_samples,
uint32_t x0, uint32_t y0,
uint32_t x1, uint32_t y1,
bool clear_depth, bool clear_stencil,
uint8_t stencil_value)
{
assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
struct blorp_params params;
blorp_params_init(&params);
params.num_layers = 1;
params.hiz_op = BLORP_HIZ_OP_DEPTH_CLEAR;
params.x0 = x0;
params.y0 = y0;
params.x1 = x1;
params.y1 = y1;
params.num_samples = num_samples;
params.depth.enabled = clear_depth;
params.stencil.enabled = clear_stencil;
params.stencil_ref = stencil_value;
batch->blorp->exec(batch, &params);
}
/** Clear active color/depth/stencili attachments
*
* This function performs a clear operation on the currently bound
* color/depth/stencil attachments. It is assumed that any information passed
* in here is valid, consistent, and in-bounds relative to the currently
* attached depth/stencil. The binding_table_offset parameter is the 32-bit
* offset relative to surface state base address where pre-baked binding table
* that we are to use lives. If clear_color is false, binding_table_offset
* must point to a binding table with one entry which is a valid null surface
* that matches the currently bound depth and stencil.
*/
void
blorp_clear_attachments(struct blorp_batch *batch,
uint32_t binding_table_offset,
enum isl_format depth_format,
uint32_t num_samples,
uint32_t start_layer, uint32_t num_layers,
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
bool clear_color, union isl_color_value color_value,
bool clear_depth, float depth_value,
uint8_t stencil_mask, uint8_t stencil_value)
{
struct blorp_params params;
blorp_params_init(&params);
assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
params.x0 = x0;
params.y0 = y0;
params.x1 = x1;
params.y1 = y1;
params.use_pre_baked_binding_table = true;
params.pre_baked_binding_table_offset = binding_table_offset;
params.num_layers = num_layers;
params.num_samples = num_samples;
if (clear_color) {
params.dst.enabled = true;
memcpy(&params.wm_inputs.clear_color, color_value.f32, sizeof(float) * 4);
/* Unfortunately, without knowing whether or not our destination surface
* is tiled or not, we have to assume it may be linear. This means no
* SIMD16_REPDATA for us. :-(
*/
if (!blorp_params_get_clear_kernel(batch->blorp, &params, false))
return;
}
if (clear_depth) {
params.depth.enabled = true;
params.z = depth_value;
params.depth_format = isl_format_get_depth_format(depth_format, false);
}
if (stencil_mask) {
params.stencil.enabled = true;
params.stencil_mask = stencil_mask;
params.stencil_ref = stencil_value;
}
if (!blorp_params_get_layer_offset_vs(batch->blorp, &params))
return;
params.vs_inputs.base_layer = start_layer;
batch->blorp->exec(batch, &params);
}
static void
prepare_ccs_resolve(struct blorp_batch * const batch,
struct blorp_params * const params,
const struct blorp_surf * const surf,
const uint32_t level, const uint32_t layer,
const enum isl_format format,
const enum blorp_fast_clear_op resolve_op)
{
blorp_params_init(params);
brw_blorp_surface_info_init(batch->blorp, &params->dst, surf,
level, layer, format, true);
/* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
*
* A rectangle primitive must be scaled down by the following factors
* with respect to render target being resolved.
*
* The scaledown factors in the table that follows are related to the block
* size of the CCS format. For IVB and HSW, we divide by two, for BDW we
* multiply by 8 and 16. On Sky Lake, we multiply by 8.
*/
const struct isl_format_layout *aux_fmtl =
isl_format_get_layout(params->dst.aux_surf.format);
assert(aux_fmtl->txc == ISL_TXC_CCS);
unsigned x_scaledown, y_scaledown;
if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 9) {
x_scaledown = aux_fmtl->bw * 8;
y_scaledown = aux_fmtl->bh * 8;
} else if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) {
x_scaledown = aux_fmtl->bw * 8;
y_scaledown = aux_fmtl->bh * 16;
} else {
x_scaledown = aux_fmtl->bw / 2;
y_scaledown = aux_fmtl->bh / 2;
}
params->x0 = params->y0 = 0;
params->x1 = minify(params->dst.aux_surf.logical_level0_px.width, level);
params->y1 = minify(params->dst.aux_surf.logical_level0_px.height, level);
params->x1 = ALIGN(params->x1, x_scaledown) / x_scaledown;
params->y1 = ALIGN(params->y1, y_scaledown) / y_scaledown;
if (batch->blorp->isl_dev->info->gen >= 9) {
assert(resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_FULL ||
resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL);
} else {
/* Broadwell and earlier do not have a partial resolve */
assert(resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_FULL);
}
params->fast_clear_op = resolve_op;
/* Note: there is no need to initialize push constants because it doesn't
* matter what data gets dispatched to the render target. However, we must
* ensure that the fragment shader delivers the data using the "replicated
* color" message.
*/
if (!blorp_params_get_clear_kernel(batch->blorp, params, true))
return;
}
void
blorp_ccs_resolve(struct blorp_batch *batch,
struct blorp_surf *surf, uint32_t level, uint32_t layer,
enum isl_format format,
enum blorp_fast_clear_op resolve_op)
{
struct blorp_params params;
prepare_ccs_resolve(batch, &params, surf, level, layer, format, resolve_op);
batch->blorp->exec(batch, &params);
}
void
blorp_ccs_resolve_attachment(struct blorp_batch *batch,
const uint32_t binding_table_offset,
struct blorp_surf * const surf,
const uint32_t level, const uint32_t num_layers,
const enum isl_format format,
const enum blorp_fast_clear_op resolve_op)
{
struct blorp_params params;
prepare_ccs_resolve(batch, &params, surf, level, 0, format, resolve_op);
params.use_pre_baked_binding_table = true;
params.pre_baked_binding_table_offset = binding_table_offset;
params.num_layers = num_layers;
batch->blorp->exec(batch, &params);
}
struct blorp_mcs_partial_resolve_key
{
enum blorp_shader_type shader_type;
uint32_t num_samples;
};
static bool
blorp_params_get_mcs_partial_resolve_kernel(struct blorp_context *blorp,
struct blorp_params *params)
{
const struct blorp_mcs_partial_resolve_key blorp_key = {
.shader_type = BLORP_SHADER_TYPE_MCS_PARTIAL_RESOLVE,
.num_samples = params->num_samples,
};
if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
&params->wm_prog_kernel, &params->wm_prog_data))
return true;
void *mem_ctx = ralloc_context(NULL);
nir_builder b;
nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
b.shader->info.name = ralloc_strdup(b.shader, "BLORP-mcs-partial-resolve");
nir_variable *v_color =
BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
nir_variable *frag_color =
nir_variable_create(b.shader, nir_var_shader_out,
glsl_vec4_type(), "gl_FragColor");
frag_color->data.location = FRAG_RESULT_COLOR;
/* Do an MCS fetch and check if it is equal to the magic clear value */
nir_ssa_def *mcs =
blorp_nir_txf_ms_mcs(&b, nir_f2i32(&b, blorp_nir_frag_coord(&b)),
nir_load_layer_id(&b));
nir_ssa_def *is_clear =
blorp_nir_mcs_is_clear_color(&b, mcs, blorp_key.num_samples);
/* If we aren't the clear value, discard. */
nir_intrinsic_instr *discard =
nir_intrinsic_instr_create(b.shader, nir_intrinsic_discard_if);
discard->src[0] = nir_src_for_ssa(nir_inot(&b, is_clear));
nir_builder_instr_insert(&b, &discard->instr);
nir_copy_var(&b, frag_color, v_color);
struct brw_wm_prog_key wm_key;
brw_blorp_init_wm_prog_key(&wm_key);
wm_key.tex.compressed_multisample_layout_mask = 1;
wm_key.tex.msaa_16 = blorp_key.num_samples == 16;
wm_key.multisample_fbo = true;
struct brw_wm_prog_data prog_data;
unsigned program_size;
const unsigned *program =
blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, false,
&prog_data, &program_size);
bool result =
blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
program, program_size,
&prog_data.base, sizeof(prog_data),
&params->wm_prog_kernel, &params->wm_prog_data);
ralloc_free(mem_ctx);
return result;
}
void
blorp_mcs_partial_resolve(struct blorp_batch *batch,
struct blorp_surf *surf,
enum isl_format format,
uint32_t start_layer, uint32_t num_layers)
{
struct blorp_params params;
blorp_params_init(&params);
assert(batch->blorp->isl_dev->info->gen >= 7);
params.x0 = 0;
params.y0 = 0;
params.x1 = surf->surf->logical_level0_px.width;
params.y1 = surf->surf->logical_level0_px.height;
brw_blorp_surface_info_init(batch->blorp, &params.src, surf, 0,
start_layer, format, false);
brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, 0,
start_layer, format, true);
params.num_samples = params.dst.surf.samples;
params.num_layers = num_layers;
memcpy(&params.wm_inputs.clear_color,
surf->clear_color.f32, sizeof(float) * 4);
if (!blorp_params_get_mcs_partial_resolve_kernel(batch->blorp, &params))
return;
batch->blorp->exec(batch, &params);
}