blob: f3447f43b2190af65616cfaec9b69abe8b3baa8c [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "anv_private.h"
#include "util/list.h"
#include "util/ralloc.h"
/* This file contains utility functions for help debugging. They can be
* called from GDB or similar to help inspect images and buffers.
*
* To dump the framebuffers of an application after each render pass, all you
* have to do is the following
*
* 1) Start the application in GDB
* 2) Run until you get to the point where the rendering errors occur
* 3) Pause in GDB and set a breakpoint in anv_QueuePresentKHR
* 4) Continue until it reaches anv_QueuePresentKHR
* 5) Call anv_dump_start(queue->device, ANV_DUMP_FRAMEBUFFERS_BIT)
* 6) Continue until the next anv_QueuePresentKHR call
* 7) Call anv_dump_finish() to complete the dump and write files
*
* While it's a bit manual, the process does allow you to do some very
* valuable debugging by dumping every render target at the end of every
* render pass. It's worth noting that this assumes that the application
* creates all of the command buffers more-or-less in-order and between the
* two anv_QueuePresentKHR calls.
*/
struct dump_image {
struct list_head link;
const char *filename;
VkExtent2D extent;
VkImage image;
VkDeviceMemory memory;
};
static void
dump_image_init(struct anv_device *device, struct dump_image *image,
uint32_t width, uint32_t height, const char *filename)
{
VkDevice vk_device = anv_device_to_handle(device);
ASSERTED VkResult result;
image->filename = filename;
image->extent = (VkExtent2D) { width, height };
result = anv_CreateImage(vk_device,
&(VkImageCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.imageType = VK_IMAGE_TYPE_2D,
.format = VK_FORMAT_R8G8B8A8_UNORM,
.extent = (VkExtent3D) { width, height, 1 },
.mipLevels = 1,
.arrayLayers = 1,
.samples = 1,
.tiling = VK_IMAGE_TILING_LINEAR,
.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT,
.flags = 0,
}, NULL, &image->image);
assert(result == VK_SUCCESS);
VkMemoryRequirements reqs;
anv_GetImageMemoryRequirements(vk_device, image->image, &reqs);
result = anv_AllocateMemory(vk_device,
&(VkMemoryAllocateInfo) {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
.allocationSize = reqs.size,
.memoryTypeIndex = 0,
}, NULL, &image->memory);
assert(result == VK_SUCCESS);
result = anv_BindImageMemory(vk_device, image->image, image->memory, 0);
assert(result == VK_SUCCESS);
}
static void
dump_image_finish(struct anv_device *device, struct dump_image *image)
{
VkDevice vk_device = anv_device_to_handle(device);
anv_DestroyImage(vk_device, image->image, NULL);
anv_FreeMemory(vk_device, image->memory, NULL);
}
static void
dump_image_do_blit(struct anv_device *device, struct dump_image *image,
struct anv_cmd_buffer *cmd_buffer, struct anv_image *src,
VkImageAspectFlagBits aspect,
unsigned miplevel, unsigned array_layer)
{
PFN_vkCmdPipelineBarrier CmdPipelineBarrier =
(void *)anv_GetDeviceProcAddr(anv_device_to_handle(device),
"vkCmdPipelineBarrier");
CmdPipelineBarrier(anv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0, 0, NULL, 0, NULL, 1,
&(VkImageMemoryBarrier) {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.srcAccessMask = ~0,
.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcQueueFamilyIndex = 0,
.dstQueueFamilyIndex = 0,
.image = anv_image_to_handle(src),
.subresourceRange = (VkImageSubresourceRange) {
.aspectMask = aspect,
.baseMipLevel = miplevel,
.levelCount = 1,
.baseArrayLayer = array_layer,
.layerCount = 1,
},
});
/* We need to do a blit so the image needs to be declared as sampled. The
* only thing these are used for is making sure we create the correct
* views, so it should be find to just stomp it and set it back.
*/
VkImageUsageFlags old_usage = src->usage;
src->usage |= VK_IMAGE_USAGE_SAMPLED_BIT;
anv_CmdBlitImage(anv_cmd_buffer_to_handle(cmd_buffer),
anv_image_to_handle(src), VK_IMAGE_LAYOUT_GENERAL,
image->image, VK_IMAGE_LAYOUT_GENERAL, 1,
&(VkImageBlit) {
.srcSubresource = {
.aspectMask = aspect,
.mipLevel = miplevel,
.baseArrayLayer = array_layer,
.layerCount = 1,
},
.srcOffsets = {
{ 0, 0, 0 },
{ image->extent.width, image->extent.height, 1 },
},
.dstSubresource = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.mipLevel = 0,
.baseArrayLayer = 0,
.layerCount = 1,
},
.dstOffsets = {
{ 0, 0, 0 },
{ image->extent.width, image->extent.height, 1 },
},
}, VK_FILTER_NEAREST);
src->usage = old_usage;
CmdPipelineBarrier(anv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0, 0, NULL, 0, NULL, 1,
&(VkImageMemoryBarrier) {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_HOST_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcQueueFamilyIndex = 0,
.dstQueueFamilyIndex = 0,
.image = image->image,
.subresourceRange = (VkImageSubresourceRange) {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
});
}
static void
dump_image_write_to_ppm(struct anv_device *device, struct dump_image *image)
{
VkDevice vk_device = anv_device_to_handle(device);
ASSERTED VkResult result;
VkMemoryRequirements reqs;
anv_GetImageMemoryRequirements(vk_device, image->image, &reqs);
uint8_t *map;
result = anv_MapMemory(vk_device, image->memory, 0, reqs.size, 0, (void **)&map);
assert(result == VK_SUCCESS);
VkSubresourceLayout layout;
anv_GetImageSubresourceLayout(vk_device, image->image,
&(VkImageSubresource) {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.mipLevel = 0,
.arrayLayer = 0,
}, &layout);
map += layout.offset;
FILE *file = fopen(image->filename, "wb");
assert(file);
uint8_t *row = malloc(image->extent.width * 3);
assert(row);
fprintf(file, "P6\n%d %d\n255\n", image->extent.width, image->extent.height);
for (unsigned y = 0; y < image->extent.height; y++) {
for (unsigned x = 0; x < image->extent.width; x++) {
row[x * 3 + 0] = map[x * 4 + 0];
row[x * 3 + 1] = map[x * 4 + 1];
row[x * 3 + 2] = map[x * 4 + 2];
}
fwrite(row, 3, image->extent.width, file);
map += layout.rowPitch;
}
free(row);
fclose(file);
anv_UnmapMemory(vk_device, image->memory);
}
void
anv_dump_image_to_ppm(struct anv_device *device,
struct anv_image *image, unsigned miplevel,
unsigned array_layer, VkImageAspectFlagBits aspect,
const char *filename)
{
VkDevice vk_device = anv_device_to_handle(device);
ASSERTED VkResult result;
PFN_vkBeginCommandBuffer BeginCommandBuffer =
(void *)anv_GetDeviceProcAddr(anv_device_to_handle(device),
"vkBeginCommandBuffer");
PFN_vkEndCommandBuffer EndCommandBuffer =
(void *)anv_GetDeviceProcAddr(anv_device_to_handle(device),
"vkEndCommandBuffer");
const uint32_t width = anv_minify(image->extent.width, miplevel);
const uint32_t height = anv_minify(image->extent.height, miplevel);
struct dump_image dump;
dump_image_init(device, &dump, width, height, filename);
VkCommandPool commandPool;
result = anv_CreateCommandPool(vk_device,
&(VkCommandPoolCreateInfo) {
.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
.queueFamilyIndex = 0,
.flags = 0,
}, NULL, &commandPool);
assert(result == VK_SUCCESS);
VkCommandBuffer cmd;
result = anv_AllocateCommandBuffers(vk_device,
&(VkCommandBufferAllocateInfo) {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.commandPool = commandPool,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = 1,
}, &cmd);
assert(result == VK_SUCCESS);
result = BeginCommandBuffer(cmd,
&(VkCommandBufferBeginInfo) {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
});
assert(result == VK_SUCCESS);
dump_image_do_blit(device, &dump, anv_cmd_buffer_from_handle(cmd), image,
aspect, miplevel, array_layer);
result = EndCommandBuffer(cmd);
assert(result == VK_SUCCESS);
VkFence fence;
result = anv_CreateFence(vk_device,
&(VkFenceCreateInfo) {
.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
.flags = 0,
}, NULL, &fence);
assert(result == VK_SUCCESS);
result = anv_QueueSubmit(anv_queue_to_handle(&device->queue), 1,
&(VkSubmitInfo) {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.commandBufferCount = 1,
.pCommandBuffers = &cmd,
}, fence);
assert(result == VK_SUCCESS);
result = anv_WaitForFences(vk_device, 1, &fence, true, UINT64_MAX);
assert(result == VK_SUCCESS);
anv_DestroyFence(vk_device, fence, NULL);
anv_DestroyCommandPool(vk_device, commandPool, NULL);
dump_image_write_to_ppm(device, &dump);
dump_image_finish(device, &dump);
}
static pthread_mutex_t dump_mutex = PTHREAD_MUTEX_INITIALIZER;
static enum anv_dump_action dump_actions = 0;
/* Used to prevent recursive dumping */
static enum anv_dump_action dump_old_actions;
struct list_head dump_list;
static void *dump_ctx;
static struct anv_device *dump_device;
static unsigned dump_count;
void
anv_dump_start(struct anv_device *device, enum anv_dump_action actions)
{
pthread_mutex_lock(&dump_mutex);
dump_device = device;
dump_actions = actions;
list_inithead(&dump_list);
dump_ctx = ralloc_context(NULL);
dump_count = 0;
pthread_mutex_unlock(&dump_mutex);
}
void
anv_dump_finish()
{
anv_DeviceWaitIdle(anv_device_to_handle(dump_device));
pthread_mutex_lock(&dump_mutex);
list_for_each_entry(struct dump_image, dump, &dump_list, link) {
dump_image_write_to_ppm(dump_device, dump);
dump_image_finish(dump_device, dump);
}
dump_actions = 0;
dump_device = NULL;
list_inithead(&dump_list);
ralloc_free(dump_ctx);
dump_ctx = NULL;
pthread_mutex_unlock(&dump_mutex);
}
static bool
dump_lock(enum anv_dump_action action)
{
if (likely((dump_actions & action) == 0))
return false;
pthread_mutex_lock(&dump_mutex);
/* Prevent recursive dumping */
dump_old_actions = dump_actions;
dump_actions = 0;
return true;
}
static void
dump_unlock()
{
dump_actions = dump_old_actions;
pthread_mutex_unlock(&dump_mutex);
}
static void
dump_add_image(struct anv_cmd_buffer *cmd_buffer, struct anv_image *image,
VkImageAspectFlagBits aspect,
unsigned miplevel, unsigned array_layer, const char *filename)
{
const uint32_t width = anv_minify(image->extent.width, miplevel);
const uint32_t height = anv_minify(image->extent.height, miplevel);
struct dump_image *dump = ralloc(dump_ctx, struct dump_image);
dump_image_init(cmd_buffer->device, dump, width, height, filename);
dump_image_do_blit(cmd_buffer->device, dump, cmd_buffer, image,
aspect, miplevel, array_layer);
list_addtail(&dump->link, &dump_list);
}
void
anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer)
{
if (!dump_lock(ANV_DUMP_FRAMEBUFFERS_BIT))
return;
unsigned dump_idx = dump_count++;
for (unsigned i = 0; i < cmd_buffer->state.pass->attachment_count; i++) {
struct anv_image_view *iview = cmd_buffer->state.attachments[i].image_view;
uint32_t b;
for_each_bit(b, iview->image->aspects) {
VkImageAspectFlagBits aspect = (1 << b);
const char *suffix;
switch (aspect) {
case VK_IMAGE_ASPECT_COLOR_BIT: suffix = "c"; break;
case VK_IMAGE_ASPECT_DEPTH_BIT: suffix = "d"; break;
case VK_IMAGE_ASPECT_STENCIL_BIT: suffix = "s"; break;
case VK_IMAGE_ASPECT_PLANE_0_BIT: suffix = "c0"; break;
case VK_IMAGE_ASPECT_PLANE_1_BIT: suffix = "c1"; break;
case VK_IMAGE_ASPECT_PLANE_2_BIT: suffix = "c2"; break;
default:
unreachable("Invalid aspect");
}
char *filename = ralloc_asprintf(dump_ctx, "attachment%04d-%d%s.ppm",
dump_idx, i, suffix);
unsigned plane = anv_image_aspect_to_plane(iview->image->aspects, aspect);
dump_add_image(cmd_buffer, (struct anv_image *)iview->image, aspect,
iview->planes[plane].isl.base_level,
iview->planes[plane].isl.base_array_layer,
filename);
}
}
dump_unlock();
}