blob: 1ab57fb4e85c6426beb1331a2af7156e274feddf [file] [log] [blame]
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "anv_private.h"
static bool
lookup_blorp_shader(struct blorp_batch *batch,
const void *key, uint32_t key_size,
uint32_t *kernel_out, void *prog_data_out)
{
struct blorp_context *blorp = batch->blorp;
struct anv_device *device = blorp->driver_ctx;
/* The default cache must be a real cache */
assert(device->default_pipeline_cache.cache);
struct anv_shader_bin *bin =
anv_pipeline_cache_search(&device->default_pipeline_cache, key, key_size);
if (!bin)
return false;
/* The cache already has a reference and it's not going anywhere so there
* is no need to hold a second reference.
*/
anv_shader_bin_unref(device, bin);
*kernel_out = bin->kernel.offset;
*(const struct brw_stage_prog_data **)prog_data_out = bin->prog_data;
return true;
}
static bool
upload_blorp_shader(struct blorp_batch *batch,
const void *key, uint32_t key_size,
const void *kernel, uint32_t kernel_size,
const struct brw_stage_prog_data *prog_data,
uint32_t prog_data_size,
uint32_t *kernel_out, void *prog_data_out)
{
struct blorp_context *blorp = batch->blorp;
struct anv_device *device = blorp->driver_ctx;
/* The blorp cache must be a real cache */
assert(device->default_pipeline_cache.cache);
struct anv_pipeline_bind_map bind_map = {
.surface_count = 0,
.sampler_count = 0,
};
struct anv_shader_bin *bin =
anv_pipeline_cache_upload_kernel(&device->default_pipeline_cache,
key, key_size, kernel, kernel_size,
NULL, 0,
prog_data, prog_data_size,
NULL, 0, NULL, &bind_map);
if (!bin)
return false;
/* The cache already has a reference and it's not going anywhere so there
* is no need to hold a second reference.
*/
anv_shader_bin_unref(device, bin);
*kernel_out = bin->kernel.offset;
*(const struct brw_stage_prog_data **)prog_data_out = bin->prog_data;
return true;
}
void
anv_device_init_blorp(struct anv_device *device)
{
blorp_init(&device->blorp, device, &device->isl_dev);
device->blorp.compiler = device->instance->physicalDevice.compiler;
device->blorp.lookup_shader = lookup_blorp_shader;
device->blorp.upload_shader = upload_blorp_shader;
switch (device->info.gen) {
case 7:
if (device->info.is_haswell) {
device->blorp.exec = gen75_blorp_exec;
} else {
device->blorp.exec = gen7_blorp_exec;
}
break;
case 8:
device->blorp.exec = gen8_blorp_exec;
break;
case 9:
device->blorp.exec = gen9_blorp_exec;
break;
case 10:
device->blorp.exec = gen10_blorp_exec;
break;
case 11:
device->blorp.exec = gen11_blorp_exec;
break;
default:
unreachable("Unknown hardware generation");
}
}
void
anv_device_finish_blorp(struct anv_device *device)
{
blorp_finish(&device->blorp);
}
static void
get_blorp_surf_for_anv_buffer(struct anv_device *device,
struct anv_buffer *buffer, uint64_t offset,
uint32_t width, uint32_t height,
uint32_t row_pitch, enum isl_format format,
struct blorp_surf *blorp_surf,
struct isl_surf *isl_surf)
{
const struct isl_format_layout *fmtl =
isl_format_get_layout(format);
bool ok UNUSED;
/* ASTC is the only format which doesn't support linear layouts.
* Create an equivalently sized surface with ISL to get around this.
*/
if (fmtl->txc == ISL_TXC_ASTC) {
/* Use an equivalently sized format */
format = ISL_FORMAT_R32G32B32A32_UINT;
assert(fmtl->bpb == isl_format_get_layout(format)->bpb);
/* Shrink the dimensions for the new format */
width = DIV_ROUND_UP(width, fmtl->bw);
height = DIV_ROUND_UP(height, fmtl->bh);
}
*blorp_surf = (struct blorp_surf) {
.surf = isl_surf,
.addr = {
.buffer = buffer->address.bo,
.offset = buffer->address.offset + offset,
.mocs = anv_mocs_for_bo(device, buffer->address.bo),
},
};
ok = isl_surf_init(&device->isl_dev, isl_surf,
.dim = ISL_SURF_DIM_2D,
.format = format,
.width = width,
.height = height,
.depth = 1,
.levels = 1,
.array_len = 1,
.samples = 1,
.row_pitch_B = row_pitch,
.usage = ISL_SURF_USAGE_TEXTURE_BIT |
ISL_SURF_USAGE_RENDER_TARGET_BIT,
.tiling_flags = ISL_TILING_LINEAR_BIT);
assert(ok);
}
/* Pick something high enough that it won't be used in core and low enough it
* will never map to an extension.
*/
#define ANV_IMAGE_LAYOUT_EXPLICIT_AUX (VkImageLayout)10000000
static struct blorp_address
anv_to_blorp_address(struct anv_address addr)
{
return (struct blorp_address) {
.buffer = addr.bo,
.offset = addr.offset,
};
}
static void
get_blorp_surf_for_anv_image(const struct anv_device *device,
const struct anv_image *image,
VkImageAspectFlags aspect,
VkImageLayout layout,
enum isl_aux_usage aux_usage,
struct blorp_surf *blorp_surf)
{
uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
if (layout != ANV_IMAGE_LAYOUT_EXPLICIT_AUX)
aux_usage = anv_layout_to_aux_usage(&device->info, image, aspect, layout);
const struct anv_surface *surface = &image->planes[plane].surface;
*blorp_surf = (struct blorp_surf) {
.surf = &surface->isl,
.addr = {
.buffer = image->planes[plane].address.bo,
.offset = image->planes[plane].address.offset + surface->offset,
.mocs = anv_mocs_for_bo(device, image->planes[plane].address.bo),
},
};
if (aux_usage != ISL_AUX_USAGE_NONE) {
const struct anv_surface *aux_surface = &image->planes[plane].aux_surface;
blorp_surf->aux_surf = &aux_surface->isl,
blorp_surf->aux_addr = (struct blorp_address) {
.buffer = image->planes[plane].address.bo,
.offset = image->planes[plane].address.offset + aux_surface->offset,
.mocs = anv_mocs_for_bo(device, image->planes[plane].address.bo),
};
blorp_surf->aux_usage = aux_usage;
/* If we're doing a partial resolve, then we need the indirect clear
* color. If we are doing a fast clear and want to store/update the
* clear color, we also pass the address to blorp, otherwise it will only
* stomp the CCS to a particular value and won't care about format or
* clear value
*/
if (aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
const struct anv_address clear_color_addr =
anv_image_get_clear_color_addr(device, image, aspect);
blorp_surf->clear_color_addr = anv_to_blorp_address(clear_color_addr);
} else if (aspect & VK_IMAGE_ASPECT_DEPTH_BIT
&& device->info.gen >= 10) {
/* Vulkan always clears to 1.0. On gen < 10, we set that directly in
* the state packet. For gen >= 10, must provide the clear value in a
* buffer. We have a single global buffer that stores the 1.0 value.
*/
const struct anv_address clear_color_addr = (struct anv_address) {
.bo = (struct anv_bo *)&device->hiz_clear_bo
};
blorp_surf->clear_color_addr = anv_to_blorp_address(clear_color_addr);
}
}
}
static bool
get_blorp_surf_for_anv_shadow_image(const struct anv_device *device,
const struct anv_image *image,
VkImageAspectFlags aspect,
struct blorp_surf *blorp_surf)
{
uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
if (image->planes[plane].shadow_surface.isl.size_B == 0)
return false;
*blorp_surf = (struct blorp_surf) {
.surf = &image->planes[plane].shadow_surface.isl,
.addr = {
.buffer = image->planes[plane].address.bo,
.offset = image->planes[plane].address.offset +
image->planes[plane].shadow_surface.offset,
.mocs = anv_mocs_for_bo(device, image->planes[plane].address.bo),
},
};
return true;
}
void anv_CmdCopyImage(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage dstImage,
VkImageLayout dstImageLayout,
uint32_t regionCount,
const VkImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
ANV_FROM_HANDLE(anv_image, dst_image, dstImage);
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
for (unsigned r = 0; r < regionCount; r++) {
VkOffset3D srcOffset =
anv_sanitize_image_offset(src_image->type, pRegions[r].srcOffset);
VkOffset3D dstOffset =
anv_sanitize_image_offset(dst_image->type, pRegions[r].dstOffset);
VkExtent3D extent =
anv_sanitize_image_extent(src_image->type, pRegions[r].extent);
const uint32_t dst_level = pRegions[r].dstSubresource.mipLevel;
unsigned dst_base_layer, layer_count;
if (dst_image->type == VK_IMAGE_TYPE_3D) {
dst_base_layer = pRegions[r].dstOffset.z;
layer_count = pRegions[r].extent.depth;
} else {
dst_base_layer = pRegions[r].dstSubresource.baseArrayLayer;
layer_count =
anv_get_layerCount(dst_image, &pRegions[r].dstSubresource);
}
const uint32_t src_level = pRegions[r].srcSubresource.mipLevel;
unsigned src_base_layer;
if (src_image->type == VK_IMAGE_TYPE_3D) {
src_base_layer = pRegions[r].srcOffset.z;
} else {
src_base_layer = pRegions[r].srcSubresource.baseArrayLayer;
assert(layer_count ==
anv_get_layerCount(src_image, &pRegions[r].srcSubresource));
}
VkImageAspectFlags src_mask = pRegions[r].srcSubresource.aspectMask,
dst_mask = pRegions[r].dstSubresource.aspectMask;
assert(anv_image_aspects_compatible(src_mask, dst_mask));
if (util_bitcount(src_mask) > 1) {
uint32_t aspect_bit;
anv_foreach_image_aspect_bit(aspect_bit, src_image, src_mask) {
struct blorp_surf src_surf, dst_surf;
get_blorp_surf_for_anv_image(cmd_buffer->device,
src_image, 1UL << aspect_bit,
srcImageLayout, ISL_AUX_USAGE_NONE,
&src_surf);
get_blorp_surf_for_anv_image(cmd_buffer->device,
dst_image, 1UL << aspect_bit,
dstImageLayout, ISL_AUX_USAGE_NONE,
&dst_surf);
anv_cmd_buffer_mark_image_written(cmd_buffer, dst_image,
1UL << aspect_bit,
dst_surf.aux_usage, dst_level,
dst_base_layer, layer_count);
for (unsigned i = 0; i < layer_count; i++) {
blorp_copy(&batch, &src_surf, src_level, src_base_layer + i,
&dst_surf, dst_level, dst_base_layer + i,
srcOffset.x, srcOffset.y,
dstOffset.x, dstOffset.y,
extent.width, extent.height);
}
struct blorp_surf dst_shadow_surf;
if (get_blorp_surf_for_anv_shadow_image(cmd_buffer->device,
dst_image,
1UL << aspect_bit,
&dst_shadow_surf)) {
for (unsigned i = 0; i < layer_count; i++) {
blorp_copy(&batch, &src_surf, src_level, src_base_layer + i,
&dst_shadow_surf, dst_level, dst_base_layer + i,
srcOffset.x, srcOffset.y,
dstOffset.x, dstOffset.y,
extent.width, extent.height);
}
}
}
} else {
struct blorp_surf src_surf, dst_surf;
get_blorp_surf_for_anv_image(cmd_buffer->device, src_image, src_mask,
srcImageLayout, ISL_AUX_USAGE_NONE,
&src_surf);
get_blorp_surf_for_anv_image(cmd_buffer->device, dst_image, dst_mask,
dstImageLayout, ISL_AUX_USAGE_NONE,
&dst_surf);
anv_cmd_buffer_mark_image_written(cmd_buffer, dst_image, dst_mask,
dst_surf.aux_usage, dst_level,
dst_base_layer, layer_count);
for (unsigned i = 0; i < layer_count; i++) {
blorp_copy(&batch, &src_surf, src_level, src_base_layer + i,
&dst_surf, dst_level, dst_base_layer + i,
srcOffset.x, srcOffset.y,
dstOffset.x, dstOffset.y,
extent.width, extent.height);
}
struct blorp_surf dst_shadow_surf;
if (get_blorp_surf_for_anv_shadow_image(cmd_buffer->device,
dst_image, dst_mask,
&dst_shadow_surf)) {
for (unsigned i = 0; i < layer_count; i++) {
blorp_copy(&batch, &src_surf, src_level, src_base_layer + i,
&dst_shadow_surf, dst_level, dst_base_layer + i,
srcOffset.x, srcOffset.y,
dstOffset.x, dstOffset.y,
extent.width, extent.height);
}
}
}
}
blorp_batch_finish(&batch);
}
static void
copy_buffer_to_image(struct anv_cmd_buffer *cmd_buffer,
struct anv_buffer *anv_buffer,
struct anv_image *anv_image,
VkImageLayout image_layout,
uint32_t regionCount,
const VkBufferImageCopy* pRegions,
bool buffer_to_image)
{
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
struct {
struct blorp_surf surf;
uint32_t level;
VkOffset3D offset;
} image, buffer, *src, *dst;
buffer.level = 0;
buffer.offset = (VkOffset3D) { 0, 0, 0 };
if (buffer_to_image) {
src = &buffer;
dst = &image;
} else {
src = &image;
dst = &buffer;
}
for (unsigned r = 0; r < regionCount; r++) {
const VkImageAspectFlags aspect = pRegions[r].imageSubresource.aspectMask;
get_blorp_surf_for_anv_image(cmd_buffer->device, anv_image, aspect,
image_layout, ISL_AUX_USAGE_NONE,
&image.surf);
image.offset =
anv_sanitize_image_offset(anv_image->type, pRegions[r].imageOffset);
image.level = pRegions[r].imageSubresource.mipLevel;
VkExtent3D extent =
anv_sanitize_image_extent(anv_image->type, pRegions[r].imageExtent);
if (anv_image->type != VK_IMAGE_TYPE_3D) {
image.offset.z = pRegions[r].imageSubresource.baseArrayLayer;
extent.depth =
anv_get_layerCount(anv_image, &pRegions[r].imageSubresource);
}
const enum isl_format buffer_format =
anv_get_isl_format(&cmd_buffer->device->info, anv_image->vk_format,
aspect, VK_IMAGE_TILING_LINEAR);
const VkExtent3D bufferImageExtent = {
.width = pRegions[r].bufferRowLength ?
pRegions[r].bufferRowLength : extent.width,
.height = pRegions[r].bufferImageHeight ?
pRegions[r].bufferImageHeight : extent.height,
};
const struct isl_format_layout *buffer_fmtl =
isl_format_get_layout(buffer_format);
const uint32_t buffer_row_pitch =
DIV_ROUND_UP(bufferImageExtent.width, buffer_fmtl->bw) *
(buffer_fmtl->bpb / 8);
const uint32_t buffer_layer_stride =
DIV_ROUND_UP(bufferImageExtent.height, buffer_fmtl->bh) *
buffer_row_pitch;
struct isl_surf buffer_isl_surf;
get_blorp_surf_for_anv_buffer(cmd_buffer->device,
anv_buffer, pRegions[r].bufferOffset,
extent.width, extent.height,
buffer_row_pitch, buffer_format,
&buffer.surf, &buffer_isl_surf);
bool dst_has_shadow = false;
struct blorp_surf dst_shadow_surf;
if (&image == dst) {
anv_cmd_buffer_mark_image_written(cmd_buffer, anv_image,
aspect, dst->surf.aux_usage,
dst->level,
dst->offset.z, extent.depth);
dst_has_shadow =
get_blorp_surf_for_anv_shadow_image(cmd_buffer->device,
anv_image, aspect,
&dst_shadow_surf);
}
for (unsigned z = 0; z < extent.depth; z++) {
blorp_copy(&batch, &src->surf, src->level, src->offset.z,
&dst->surf, dst->level, dst->offset.z,
src->offset.x, src->offset.y, dst->offset.x, dst->offset.y,
extent.width, extent.height);
if (dst_has_shadow) {
blorp_copy(&batch, &src->surf, src->level, src->offset.z,
&dst_shadow_surf, dst->level, dst->offset.z,
src->offset.x, src->offset.y,
dst->offset.x, dst->offset.y,
extent.width, extent.height);
}
image.offset.z++;
buffer.surf.addr.offset += buffer_layer_stride;
}
}
blorp_batch_finish(&batch);
}
void anv_CmdCopyBufferToImage(
VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkImage dstImage,
VkImageLayout dstImageLayout,
uint32_t regionCount,
const VkBufferImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
ANV_FROM_HANDLE(anv_image, dst_image, dstImage);
copy_buffer_to_image(cmd_buffer, src_buffer, dst_image, dstImageLayout,
regionCount, pRegions, true);
}
void anv_CmdCopyImageToBuffer(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkBuffer dstBuffer,
uint32_t regionCount,
const VkBufferImageCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
copy_buffer_to_image(cmd_buffer, dst_buffer, src_image, srcImageLayout,
regionCount, pRegions, false);
cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_BUFFER_WRITES;
}
static bool
flip_coords(unsigned *src0, unsigned *src1, unsigned *dst0, unsigned *dst1)
{
bool flip = false;
if (*src0 > *src1) {
unsigned tmp = *src0;
*src0 = *src1;
*src1 = tmp;
flip = !flip;
}
if (*dst0 > *dst1) {
unsigned tmp = *dst0;
*dst0 = *dst1;
*dst1 = tmp;
flip = !flip;
}
return flip;
}
void anv_CmdBlitImage(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage dstImage,
VkImageLayout dstImageLayout,
uint32_t regionCount,
const VkImageBlit* pRegions,
VkFilter filter)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
ANV_FROM_HANDLE(anv_image, dst_image, dstImage);
struct blorp_surf src, dst;
enum blorp_filter blorp_filter;
switch (filter) {
case VK_FILTER_NEAREST:
blorp_filter = BLORP_FILTER_NEAREST;
break;
case VK_FILTER_LINEAR:
blorp_filter = BLORP_FILTER_BILINEAR;
break;
default:
unreachable("Invalid filter");
}
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
for (unsigned r = 0; r < regionCount; r++) {
const VkImageSubresourceLayers *src_res = &pRegions[r].srcSubresource;
const VkImageSubresourceLayers *dst_res = &pRegions[r].dstSubresource;
assert(anv_image_aspects_compatible(src_res->aspectMask,
dst_res->aspectMask));
uint32_t aspect_bit;
anv_foreach_image_aspect_bit(aspect_bit, src_image, src_res->aspectMask) {
get_blorp_surf_for_anv_image(cmd_buffer->device,
src_image, 1U << aspect_bit,
srcImageLayout, ISL_AUX_USAGE_NONE, &src);
get_blorp_surf_for_anv_image(cmd_buffer->device,
dst_image, 1U << aspect_bit,
dstImageLayout, ISL_AUX_USAGE_NONE, &dst);
struct anv_format_plane src_format =
anv_get_format_plane(&cmd_buffer->device->info, src_image->vk_format,
1U << aspect_bit, src_image->tiling);
struct anv_format_plane dst_format =
anv_get_format_plane(&cmd_buffer->device->info, dst_image->vk_format,
1U << aspect_bit, dst_image->tiling);
unsigned dst_start, dst_end;
if (dst_image->type == VK_IMAGE_TYPE_3D) {
assert(dst_res->baseArrayLayer == 0);
dst_start = pRegions[r].dstOffsets[0].z;
dst_end = pRegions[r].dstOffsets[1].z;
} else {
dst_start = dst_res->baseArrayLayer;
dst_end = dst_start + anv_get_layerCount(dst_image, dst_res);
}
unsigned src_start, src_end;
if (src_image->type == VK_IMAGE_TYPE_3D) {
assert(src_res->baseArrayLayer == 0);
src_start = pRegions[r].srcOffsets[0].z;
src_end = pRegions[r].srcOffsets[1].z;
} else {
src_start = src_res->baseArrayLayer;
src_end = src_start + anv_get_layerCount(src_image, src_res);
}
bool flip_z = flip_coords(&src_start, &src_end, &dst_start, &dst_end);
float src_z_step = (float)(src_end + 1 - src_start) /
(float)(dst_end + 1 - dst_start);
if (flip_z) {
src_start = src_end;
src_z_step *= -1;
}
unsigned src_x0 = pRegions[r].srcOffsets[0].x;
unsigned src_x1 = pRegions[r].srcOffsets[1].x;
unsigned dst_x0 = pRegions[r].dstOffsets[0].x;
unsigned dst_x1 = pRegions[r].dstOffsets[1].x;
bool flip_x = flip_coords(&src_x0, &src_x1, &dst_x0, &dst_x1);
unsigned src_y0 = pRegions[r].srcOffsets[0].y;
unsigned src_y1 = pRegions[r].srcOffsets[1].y;
unsigned dst_y0 = pRegions[r].dstOffsets[0].y;
unsigned dst_y1 = pRegions[r].dstOffsets[1].y;
bool flip_y = flip_coords(&src_y0, &src_y1, &dst_y0, &dst_y1);
const unsigned num_layers = dst_end - dst_start;
anv_cmd_buffer_mark_image_written(cmd_buffer, dst_image,
1U << aspect_bit,
dst.aux_usage,
dst_res->mipLevel,
dst_start, num_layers);
for (unsigned i = 0; i < num_layers; i++) {
unsigned dst_z = dst_start + i;
unsigned src_z = src_start + i * src_z_step;
blorp_blit(&batch, &src, src_res->mipLevel, src_z,
src_format.isl_format, src_format.swizzle,
&dst, dst_res->mipLevel, dst_z,
dst_format.isl_format, dst_format.swizzle,
src_x0, src_y0, src_x1, src_y1,
dst_x0, dst_y0, dst_x1, dst_y1,
blorp_filter, flip_x, flip_y);
}
}
}
blorp_batch_finish(&batch);
}
static enum isl_format
isl_format_for_size(unsigned size_B)
{
switch (size_B) {
case 4: return ISL_FORMAT_R32_UINT;
case 8: return ISL_FORMAT_R32G32_UINT;
case 16: return ISL_FORMAT_R32G32B32A32_UINT;
default:
unreachable("Not a power-of-two format size");
}
}
/**
* Returns the greatest common divisor of a and b that is a power of two.
*/
static uint64_t
gcd_pow2_u64(uint64_t a, uint64_t b)
{
assert(a > 0 || b > 0);
unsigned a_log2 = ffsll(a) - 1;
unsigned b_log2 = ffsll(b) - 1;
/* If either a or b is 0, then a_log2 or b_log2 till be UINT_MAX in which
* case, the MIN2() will take the other one. If both are 0 then we will
* hit the assert above.
*/
return 1 << MIN2(a_log2, b_log2);
}
/* This is maximum possible width/height our HW can handle */
#define MAX_SURFACE_DIM (1ull << 14)
void anv_CmdCopyBuffer(
VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkBuffer dstBuffer,
uint32_t regionCount,
const VkBufferCopy* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
for (unsigned r = 0; r < regionCount; r++) {
struct blorp_address src = {
.buffer = src_buffer->address.bo,
.offset = src_buffer->address.offset + pRegions[r].srcOffset,
.mocs = anv_mocs_for_bo(cmd_buffer->device, src_buffer->address.bo),
};
struct blorp_address dst = {
.buffer = dst_buffer->address.bo,
.offset = dst_buffer->address.offset + pRegions[r].dstOffset,
.mocs = anv_mocs_for_bo(cmd_buffer->device, dst_buffer->address.bo),
};
blorp_buffer_copy(&batch, src, dst, pRegions[r].size);
}
blorp_batch_finish(&batch);
cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_BUFFER_WRITES;
}
void anv_CmdUpdateBuffer(
VkCommandBuffer commandBuffer,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
VkDeviceSize dataSize,
const void* pData)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
/* We can't quite grab a full block because the state stream needs a
* little data at the top to build its linked list.
*/
const uint32_t max_update_size =
cmd_buffer->device->dynamic_state_pool.block_size - 64;
assert(max_update_size < MAX_SURFACE_DIM * 4);
/* We're about to read data that was written from the CPU. Flush the
* texture cache so we don't get anything stale.
*/
cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
while (dataSize) {
const uint32_t copy_size = MIN2(dataSize, max_update_size);
struct anv_state tmp_data =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, copy_size, 64);
memcpy(tmp_data.map, pData, copy_size);
struct blorp_address src = {
.buffer = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
.offset = tmp_data.offset,
.mocs = cmd_buffer->device->default_mocs,
};
struct blorp_address dst = {
.buffer = dst_buffer->address.bo,
.offset = dst_buffer->address.offset + dstOffset,
.mocs = anv_mocs_for_bo(cmd_buffer->device, dst_buffer->address.bo),
};
blorp_buffer_copy(&batch, src, dst, copy_size);
dataSize -= copy_size;
dstOffset += copy_size;
pData = (void *)pData + copy_size;
}
blorp_batch_finish(&batch);
cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_BUFFER_WRITES;
}
void anv_CmdFillBuffer(
VkCommandBuffer commandBuffer,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
VkDeviceSize fillSize,
uint32_t data)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
struct blorp_surf surf;
struct isl_surf isl_surf;
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
fillSize = anv_buffer_get_range(dst_buffer, dstOffset, fillSize);
/* From the Vulkan spec:
*
* "size is the number of bytes to fill, and must be either a multiple
* of 4, or VK_WHOLE_SIZE to fill the range from offset to the end of
* the buffer. If VK_WHOLE_SIZE is used and the remaining size of the
* buffer is not a multiple of 4, then the nearest smaller multiple is
* used."
*/
fillSize &= ~3ull;
/* First, we compute the biggest format that can be used with the
* given offsets and size.
*/
int bs = 16;
bs = gcd_pow2_u64(bs, dstOffset);
bs = gcd_pow2_u64(bs, fillSize);
enum isl_format isl_format = isl_format_for_size(bs);
union isl_color_value color = {
.u32 = { data, data, data, data },
};
const uint64_t max_fill_size = MAX_SURFACE_DIM * MAX_SURFACE_DIM * bs;
while (fillSize >= max_fill_size) {
get_blorp_surf_for_anv_buffer(cmd_buffer->device,
dst_buffer, dstOffset,
MAX_SURFACE_DIM, MAX_SURFACE_DIM,
MAX_SURFACE_DIM * bs, isl_format,
&surf, &isl_surf);
blorp_clear(&batch, &surf, isl_format, ISL_SWIZZLE_IDENTITY,
0, 0, 1, 0, 0, MAX_SURFACE_DIM, MAX_SURFACE_DIM,
color, NULL);
fillSize -= max_fill_size;
dstOffset += max_fill_size;
}
uint64_t height = fillSize / (MAX_SURFACE_DIM * bs);
assert(height < MAX_SURFACE_DIM);
if (height != 0) {
const uint64_t rect_fill_size = height * MAX_SURFACE_DIM * bs;
get_blorp_surf_for_anv_buffer(cmd_buffer->device,
dst_buffer, dstOffset,
MAX_SURFACE_DIM, height,
MAX_SURFACE_DIM * bs, isl_format,
&surf, &isl_surf);
blorp_clear(&batch, &surf, isl_format, ISL_SWIZZLE_IDENTITY,
0, 0, 1, 0, 0, MAX_SURFACE_DIM, height,
color, NULL);
fillSize -= rect_fill_size;
dstOffset += rect_fill_size;
}
if (fillSize != 0) {
const uint32_t width = fillSize / bs;
get_blorp_surf_for_anv_buffer(cmd_buffer->device,
dst_buffer, dstOffset,
width, 1,
width * bs, isl_format,
&surf, &isl_surf);
blorp_clear(&batch, &surf, isl_format, ISL_SWIZZLE_IDENTITY,
0, 0, 1, 0, 0, width, 1,
color, NULL);
}
blorp_batch_finish(&batch);
cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_BUFFER_WRITES;
}
void anv_CmdClearColorImage(
VkCommandBuffer commandBuffer,
VkImage _image,
VkImageLayout imageLayout,
const VkClearColorValue* pColor,
uint32_t rangeCount,
const VkImageSubresourceRange* pRanges)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, image, _image);
static const bool color_write_disable[4] = { false, false, false, false };
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
for (unsigned r = 0; r < rangeCount; r++) {
if (pRanges[r].aspectMask == 0)
continue;
assert(pRanges[r].aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
struct blorp_surf surf;
get_blorp_surf_for_anv_image(cmd_buffer->device,
image, pRanges[r].aspectMask,
imageLayout, ISL_AUX_USAGE_NONE, &surf);
struct anv_format_plane src_format =
anv_get_format_plane(&cmd_buffer->device->info, image->vk_format,
VK_IMAGE_ASPECT_COLOR_BIT, image->tiling);
unsigned base_layer = pRanges[r].baseArrayLayer;
unsigned layer_count = anv_get_layerCount(image, &pRanges[r]);
for (unsigned i = 0; i < anv_get_levelCount(image, &pRanges[r]); i++) {
const unsigned level = pRanges[r].baseMipLevel + i;
const unsigned level_width = anv_minify(image->extent.width, level);
const unsigned level_height = anv_minify(image->extent.height, level);
if (image->type == VK_IMAGE_TYPE_3D) {
base_layer = 0;
layer_count = anv_minify(image->extent.depth, level);
}
anv_cmd_buffer_mark_image_written(cmd_buffer, image,
pRanges[r].aspectMask,
surf.aux_usage, level,
base_layer, layer_count);
blorp_clear(&batch, &surf,
src_format.isl_format, src_format.swizzle,
level, base_layer, layer_count,
0, 0, level_width, level_height,
vk_to_isl_color(*pColor), color_write_disable);
}
}
blorp_batch_finish(&batch);
}
void anv_CmdClearDepthStencilImage(
VkCommandBuffer commandBuffer,
VkImage image_h,
VkImageLayout imageLayout,
const VkClearDepthStencilValue* pDepthStencil,
uint32_t rangeCount,
const VkImageSubresourceRange* pRanges)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, image, image_h);
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
struct blorp_surf depth, stencil, stencil_shadow;
if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
get_blorp_surf_for_anv_image(cmd_buffer->device,
image, VK_IMAGE_ASPECT_DEPTH_BIT,
imageLayout, ISL_AUX_USAGE_NONE, &depth);
} else {
memset(&depth, 0, sizeof(depth));
}
bool has_stencil_shadow = false;
if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
get_blorp_surf_for_anv_image(cmd_buffer->device,
image, VK_IMAGE_ASPECT_STENCIL_BIT,
imageLayout, ISL_AUX_USAGE_NONE, &stencil);
has_stencil_shadow =
get_blorp_surf_for_anv_shadow_image(cmd_buffer->device, image,
VK_IMAGE_ASPECT_STENCIL_BIT,
&stencil_shadow);
} else {
memset(&stencil, 0, sizeof(stencil));
}
for (unsigned r = 0; r < rangeCount; r++) {
if (pRanges[r].aspectMask == 0)
continue;
bool clear_depth = pRanges[r].aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT;
bool clear_stencil = pRanges[r].aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT;
unsigned base_layer = pRanges[r].baseArrayLayer;
unsigned layer_count = anv_get_layerCount(image, &pRanges[r]);
for (unsigned i = 0; i < anv_get_levelCount(image, &pRanges[r]); i++) {
const unsigned level = pRanges[r].baseMipLevel + i;
const unsigned level_width = anv_minify(image->extent.width, level);
const unsigned level_height = anv_minify(image->extent.height, level);
if (image->type == VK_IMAGE_TYPE_3D)
layer_count = anv_minify(image->extent.depth, level);
blorp_clear_depth_stencil(&batch, &depth, &stencil,
level, base_layer, layer_count,
0, 0, level_width, level_height,
clear_depth, pDepthStencil->depth,
clear_stencil ? 0xff : 0,
pDepthStencil->stencil);
if (clear_stencil && has_stencil_shadow) {
union isl_color_value stencil_color = {
.u32 = { pDepthStencil->stencil, },
};
blorp_clear(&batch, &stencil_shadow,
ISL_FORMAT_R8_UINT, ISL_SWIZZLE_IDENTITY,
level, base_layer, layer_count,
0, 0, level_width, level_height,
stencil_color, NULL);
}
}
}
blorp_batch_finish(&batch);
}
VkResult
anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
uint32_t num_entries,
uint32_t *state_offset,
struct anv_state *bt_state)
{
*bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer, num_entries,
state_offset);
if (bt_state->map == NULL) {
/* We ran out of space. Grab a new binding table block. */
VkResult result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
if (result != VK_SUCCESS)
return result;
/* Re-emit state base addresses so we get the new surface state base
* address before we start emitting binding tables etc.
*/
anv_cmd_buffer_emit_state_base_address(cmd_buffer);
*bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer, num_entries,
state_offset);
assert(bt_state->map != NULL);
}
return VK_SUCCESS;
}
static VkResult
binding_table_for_surface_state(struct anv_cmd_buffer *cmd_buffer,
struct anv_state surface_state,
uint32_t *bt_offset)
{
uint32_t state_offset;
struct anv_state bt_state;
VkResult result =
anv_cmd_buffer_alloc_blorp_binding_table(cmd_buffer, 1, &state_offset,
&bt_state);
if (result != VK_SUCCESS)
return result;
uint32_t *bt_map = bt_state.map;
bt_map[0] = surface_state.offset + state_offset;
*bt_offset = bt_state.offset;
return VK_SUCCESS;
}
static void
clear_color_attachment(struct anv_cmd_buffer *cmd_buffer,
struct blorp_batch *batch,
const VkClearAttachment *attachment,
uint32_t rectCount, const VkClearRect *pRects)
{
const struct anv_subpass *subpass = cmd_buffer->state.subpass;
const uint32_t color_att = attachment->colorAttachment;
assert(color_att < subpass->color_count);
const uint32_t att_idx = subpass->color_attachments[color_att].attachment;
if (att_idx == VK_ATTACHMENT_UNUSED)
return;
struct anv_render_pass_attachment *pass_att =
&cmd_buffer->state.pass->attachments[att_idx];
struct anv_attachment_state *att_state =
&cmd_buffer->state.attachments[att_idx];
uint32_t binding_table;
VkResult result =
binding_table_for_surface_state(cmd_buffer, att_state->color.state,
&binding_table);
if (result != VK_SUCCESS)
return;
union isl_color_value clear_color =
vk_to_isl_color(attachment->clearValue.color);
/* If multiview is enabled we ignore baseArrayLayer and layerCount */
if (subpass->view_mask) {
uint32_t view_idx;
for_each_bit(view_idx, subpass->view_mask) {
for (uint32_t r = 0; r < rectCount; ++r) {
const VkOffset2D offset = pRects[r].rect.offset;
const VkExtent2D extent = pRects[r].rect.extent;
blorp_clear_attachments(batch, binding_table,
ISL_FORMAT_UNSUPPORTED, pass_att->samples,
view_idx, 1,
offset.x, offset.y,
offset.x + extent.width,
offset.y + extent.height,
true, clear_color, false, 0.0f, 0, 0);
}
}
return;
}
for (uint32_t r = 0; r < rectCount; ++r) {
const VkOffset2D offset = pRects[r].rect.offset;
const VkExtent2D extent = pRects[r].rect.extent;
assert(pRects[r].layerCount != VK_REMAINING_ARRAY_LAYERS);
blorp_clear_attachments(batch, binding_table,
ISL_FORMAT_UNSUPPORTED, pass_att->samples,
pRects[r].baseArrayLayer,
pRects[r].layerCount,
offset.x, offset.y,
offset.x + extent.width, offset.y + extent.height,
true, clear_color, false, 0.0f, 0, 0);
}
}
static void
clear_depth_stencil_attachment(struct anv_cmd_buffer *cmd_buffer,
struct blorp_batch *batch,
const VkClearAttachment *attachment,
uint32_t rectCount, const VkClearRect *pRects)
{
static const union isl_color_value color_value = { .u32 = { 0, } };
const struct anv_subpass *subpass = cmd_buffer->state.subpass;
if (!subpass->depth_stencil_attachment)
return;
const uint32_t att_idx = subpass->depth_stencil_attachment->attachment;
assert(att_idx != VK_ATTACHMENT_UNUSED);
struct anv_render_pass_attachment *pass_att =
&cmd_buffer->state.pass->attachments[att_idx];
bool clear_depth = attachment->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT;
bool clear_stencil = attachment->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT;
enum isl_format depth_format = ISL_FORMAT_UNSUPPORTED;
if (clear_depth) {
depth_format = anv_get_isl_format(&cmd_buffer->device->info,
pass_att->format,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_TILING_OPTIMAL);
}
uint32_t binding_table;
VkResult result =
binding_table_for_surface_state(cmd_buffer,
cmd_buffer->state.null_surface_state,
&binding_table);
if (result != VK_SUCCESS)
return;
/* If multiview is enabled we ignore baseArrayLayer and layerCount */
if (subpass->view_mask) {
uint32_t view_idx;
for_each_bit(view_idx, subpass->view_mask) {
for (uint32_t r = 0; r < rectCount; ++r) {
const VkOffset2D offset = pRects[r].rect.offset;
const VkExtent2D extent = pRects[r].rect.extent;
VkClearDepthStencilValue value = attachment->clearValue.depthStencil;
blorp_clear_attachments(batch, binding_table,
depth_format, pass_att->samples,
view_idx, 1,
offset.x, offset.y,
offset.x + extent.width,
offset.y + extent.height,
false, color_value,
clear_depth, value.depth,
clear_stencil ? 0xff : 0, value.stencil);
}
}
return;
}
for (uint32_t r = 0; r < rectCount; ++r) {
const VkOffset2D offset = pRects[r].rect.offset;
const VkExtent2D extent = pRects[r].rect.extent;
VkClearDepthStencilValue value = attachment->clearValue.depthStencil;
assert(pRects[r].layerCount != VK_REMAINING_ARRAY_LAYERS);
blorp_clear_attachments(batch, binding_table,
depth_format, pass_att->samples,
pRects[r].baseArrayLayer,
pRects[r].layerCount,
offset.x, offset.y,
offset.x + extent.width, offset.y + extent.height,
false, color_value,
clear_depth, value.depth,
clear_stencil ? 0xff : 0, value.stencil);
}
}
void anv_CmdClearAttachments(
VkCommandBuffer commandBuffer,
uint32_t attachmentCount,
const VkClearAttachment* pAttachments,
uint32_t rectCount,
const VkClearRect* pRects)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
/* Because this gets called within a render pass, we tell blorp not to
* trash our depth and stencil buffers.
*/
struct blorp_batch batch;
enum blorp_batch_flags flags = BLORP_BATCH_NO_EMIT_DEPTH_STENCIL;
if (cmd_buffer->state.conditional_render_enabled) {
anv_cmd_emit_conditional_render_predicate(cmd_buffer);
flags |= BLORP_BATCH_PREDICATE_ENABLE;
}
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, flags);
for (uint32_t a = 0; a < attachmentCount; ++a) {
if (pAttachments[a].aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
assert(pAttachments[a].aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
clear_color_attachment(cmd_buffer, &batch,
&pAttachments[a],
rectCount, pRects);
} else {
clear_depth_stencil_attachment(cmd_buffer, &batch,
&pAttachments[a],
rectCount, pRects);
}
}
blorp_batch_finish(&batch);
}
enum subpass_stage {
SUBPASS_STAGE_LOAD,
SUBPASS_STAGE_DRAW,
SUBPASS_STAGE_RESOLVE,
};
void
anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *src_image,
enum isl_aux_usage src_aux_usage,
uint32_t src_level, uint32_t src_base_layer,
const struct anv_image *dst_image,
enum isl_aux_usage dst_aux_usage,
uint32_t dst_level, uint32_t dst_base_layer,
VkImageAspectFlagBits aspect,
uint32_t src_x, uint32_t src_y,
uint32_t dst_x, uint32_t dst_y,
uint32_t width, uint32_t height,
uint32_t layer_count,
enum blorp_filter filter)
{
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
assert(src_image->type == VK_IMAGE_TYPE_2D);
assert(src_image->samples > 1);
assert(dst_image->type == VK_IMAGE_TYPE_2D);
assert(dst_image->samples == 1);
assert(src_image->n_planes == dst_image->n_planes);
assert(!src_image->format->can_ycbcr);
assert(!dst_image->format->can_ycbcr);
struct blorp_surf src_surf, dst_surf;
get_blorp_surf_for_anv_image(cmd_buffer->device, src_image, aspect,
ANV_IMAGE_LAYOUT_EXPLICIT_AUX,
src_aux_usage, &src_surf);
if (src_aux_usage == ISL_AUX_USAGE_MCS) {
src_surf.clear_color_addr = anv_to_blorp_address(
anv_image_get_clear_color_addr(cmd_buffer->device, src_image,
VK_IMAGE_ASPECT_COLOR_BIT));
}
get_blorp_surf_for_anv_image(cmd_buffer->device, dst_image, aspect,
ANV_IMAGE_LAYOUT_EXPLICIT_AUX,
dst_aux_usage, &dst_surf);
anv_cmd_buffer_mark_image_written(cmd_buffer, dst_image,
aspect, dst_aux_usage,
dst_level, dst_base_layer, layer_count);
if (filter == BLORP_FILTER_NONE) {
/* If no explicit filter is provided, then it's implied by the type of
* the source image.
*/
if ((src_surf.surf->usage & ISL_SURF_USAGE_DEPTH_BIT) ||
(src_surf.surf->usage & ISL_SURF_USAGE_STENCIL_BIT) ||
isl_format_has_int_channel(src_surf.surf->format)) {
filter = BLORP_FILTER_SAMPLE_0;
} else {
filter = BLORP_FILTER_AVERAGE;
}
}
for (uint32_t l = 0; l < layer_count; l++) {
blorp_blit(&batch,
&src_surf, src_level, src_base_layer + l,
ISL_FORMAT_UNSUPPORTED, ISL_SWIZZLE_IDENTITY,
&dst_surf, dst_level, dst_base_layer + l,
ISL_FORMAT_UNSUPPORTED, ISL_SWIZZLE_IDENTITY,
src_x, src_y, src_x + width, src_y + height,
dst_x, dst_y, dst_x + width, dst_y + height,
filter, false, false);
}
blorp_batch_finish(&batch);
}
void anv_CmdResolveImage(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage dstImage,
VkImageLayout dstImageLayout,
uint32_t regionCount,
const VkImageResolve* pRegions)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
ANV_FROM_HANDLE(anv_image, dst_image, dstImage);
assert(!src_image->format->can_ycbcr);
for (uint32_t r = 0; r < regionCount; r++) {
assert(pRegions[r].srcSubresource.aspectMask ==
pRegions[r].dstSubresource.aspectMask);
assert(anv_get_layerCount(src_image, &pRegions[r].srcSubresource) ==
anv_get_layerCount(dst_image, &pRegions[r].dstSubresource));
const uint32_t layer_count =
anv_get_layerCount(dst_image, &pRegions[r].dstSubresource);
uint32_t aspect_bit;
anv_foreach_image_aspect_bit(aspect_bit, src_image,
pRegions[r].srcSubresource.aspectMask) {
enum isl_aux_usage src_aux_usage =
anv_layout_to_aux_usage(&cmd_buffer->device->info, src_image,
(1 << aspect_bit), srcImageLayout);
enum isl_aux_usage dst_aux_usage =
anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_image,
(1 << aspect_bit), dstImageLayout);
anv_image_msaa_resolve(cmd_buffer,
src_image, src_aux_usage,
pRegions[r].srcSubresource.mipLevel,
pRegions[r].srcSubresource.baseArrayLayer,
dst_image, dst_aux_usage,
pRegions[r].dstSubresource.mipLevel,
pRegions[r].dstSubresource.baseArrayLayer,
(1 << aspect_bit),
pRegions[r].srcOffset.x,
pRegions[r].srcOffset.y,
pRegions[r].dstOffset.x,
pRegions[r].dstOffset.y,
pRegions[r].extent.width,
pRegions[r].extent.height,
layer_count, BLORP_FILTER_NONE);
}
}
}
static enum isl_aux_usage
fast_clear_aux_usage(const struct anv_image *image,
VkImageAspectFlagBits aspect)
{
uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
return ISL_AUX_USAGE_CCS_D;
else
return image->planes[plane].aux_usage;
}
void
anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
uint32_t base_level, uint32_t level_count,
uint32_t base_layer, uint32_t layer_count)
{
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
/* We don't know who touched the main surface last so flush a bunch of
* caches to ensure we get good data.
*/
cmd_buffer->state.pending_pipe_bits |=
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT |
ANV_PIPE_DATA_CACHE_FLUSH_BIT |
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
struct blorp_surf surf;
get_blorp_surf_for_anv_image(cmd_buffer->device,
image, aspect,
VK_IMAGE_LAYOUT_GENERAL,
ISL_AUX_USAGE_NONE, &surf);
assert(surf.aux_usage == ISL_AUX_USAGE_NONE);
struct blorp_surf shadow_surf;
get_blorp_surf_for_anv_shadow_image(cmd_buffer->device,
image, aspect, &shadow_surf);
for (uint32_t l = 0; l < level_count; l++) {
const uint32_t level = base_level + l;
const VkExtent3D extent = {
.width = anv_minify(image->extent.width, level),
.height = anv_minify(image->extent.height, level),
.depth = anv_minify(image->extent.depth, level),
};
if (image->type == VK_IMAGE_TYPE_3D)
layer_count = extent.depth;
for (uint32_t a = 0; a < layer_count; a++) {
const uint32_t layer = base_layer + a;
blorp_copy(&batch, &surf, level, layer,
&shadow_surf, level, layer,
0, 0, 0, 0, extent.width, extent.height);
}
}
/* We just wrote to the buffer with the render cache. Flush it. */
cmd_buffer->state.pending_pipe_bits |=
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
blorp_batch_finish(&batch);
}
void
anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
enum isl_aux_usage aux_usage,
enum isl_format format, struct isl_swizzle swizzle,
uint32_t level, uint32_t base_layer, uint32_t layer_count,
VkRect2D area, union isl_color_value clear_color)
{
assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
/* We don't support planar images with multisampling yet */
assert(image->n_planes == 1);
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
struct blorp_surf surf;
get_blorp_surf_for_anv_image(cmd_buffer->device, image, aspect,
ANV_IMAGE_LAYOUT_EXPLICIT_AUX,
aux_usage, &surf);
anv_cmd_buffer_mark_image_written(cmd_buffer, image, aspect, aux_usage,
level, base_layer, layer_count);
blorp_clear(&batch, &surf, format, anv_swizzle_for_render(swizzle),
level, base_layer, layer_count,
area.offset.x, area.offset.y,
area.offset.x + area.extent.width,
area.offset.y + area.extent.height,
clear_color, NULL);
blorp_batch_finish(&batch);
}
void
anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlags aspects,
enum isl_aux_usage depth_aux_usage,
uint32_t level,
uint32_t base_layer, uint32_t layer_count,
VkRect2D area,
float depth_value, uint8_t stencil_value)
{
assert(image->aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
VK_IMAGE_ASPECT_STENCIL_BIT));
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
struct blorp_surf depth = {};
if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
get_blorp_surf_for_anv_image(cmd_buffer->device,
image, VK_IMAGE_ASPECT_DEPTH_BIT,
ANV_IMAGE_LAYOUT_EXPLICIT_AUX,
depth_aux_usage, &depth);
depth.clear_color.f32[0] = ANV_HZ_FC_VAL;
}
struct blorp_surf stencil = {};
if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
get_blorp_surf_for_anv_image(cmd_buffer->device,
image, VK_IMAGE_ASPECT_STENCIL_BIT,
ANV_IMAGE_LAYOUT_EXPLICIT_AUX,
ISL_AUX_USAGE_NONE, &stencil);
}
blorp_clear_depth_stencil(&batch, &depth, &stencil,
level, base_layer, layer_count,
area.offset.x, area.offset.y,
area.offset.x + area.extent.width,
area.offset.y + area.extent.height,
aspects & VK_IMAGE_ASPECT_DEPTH_BIT,
depth_value,
(aspects & VK_IMAGE_ASPECT_STENCIL_BIT) ? 0xff : 0,
stencil_value);
struct blorp_surf stencil_shadow;
if ((aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
get_blorp_surf_for_anv_shadow_image(cmd_buffer->device, image,
VK_IMAGE_ASPECT_STENCIL_BIT,
&stencil_shadow)) {
union isl_color_value stencil_color = {
.u32 = { stencil_value },
};
blorp_clear(&batch, &stencil_shadow,
ISL_FORMAT_R8_UINT, ISL_SWIZZLE_IDENTITY,
level, base_layer, layer_count,
area.offset.x, area.offset.y,
area.offset.x + area.extent.width,
area.offset.y + area.extent.height,
stencil_color, NULL);
}
blorp_batch_finish(&batch);
}
void
anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect, uint32_t level,
uint32_t base_layer, uint32_t layer_count,
enum isl_aux_op hiz_op)
{
assert(aspect == VK_IMAGE_ASPECT_DEPTH_BIT);
assert(base_layer + layer_count <= anv_image_aux_layers(image, aspect, level));
assert(anv_image_aspect_to_plane(image->aspects,
VK_IMAGE_ASPECT_DEPTH_BIT) == 0);
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
struct blorp_surf surf;
get_blorp_surf_for_anv_image(cmd_buffer->device,
image, VK_IMAGE_ASPECT_DEPTH_BIT,
ANV_IMAGE_LAYOUT_EXPLICIT_AUX,
ISL_AUX_USAGE_HIZ, &surf);
surf.clear_color.f32[0] = ANV_HZ_FC_VAL;
blorp_hiz_op(&batch, &surf, level, base_layer, layer_count, hiz_op);
blorp_batch_finish(&batch);
}
void
anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlags aspects,
uint32_t level,
uint32_t base_layer, uint32_t layer_count,
VkRect2D area, uint8_t stencil_value)
{
assert(image->aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
VK_IMAGE_ASPECT_STENCIL_BIT));
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
struct blorp_surf depth = {};
if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
assert(base_layer + layer_count <=
anv_image_aux_layers(image, VK_IMAGE_ASPECT_DEPTH_BIT, level));
get_blorp_surf_for_anv_image(cmd_buffer->device,
image, VK_IMAGE_ASPECT_DEPTH_BIT,
ANV_IMAGE_LAYOUT_EXPLICIT_AUX,
ISL_AUX_USAGE_HIZ, &depth);
depth.clear_color.f32[0] = ANV_HZ_FC_VAL;
}
struct blorp_surf stencil = {};
if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
get_blorp_surf_for_anv_image(cmd_buffer->device,
image, VK_IMAGE_ASPECT_STENCIL_BIT,
ANV_IMAGE_LAYOUT_EXPLICIT_AUX,
ISL_AUX_USAGE_NONE, &stencil);
}
/* From the Sky Lake PRM Volume 7, "Depth Buffer Clear":
*
* "The following is required when performing a depth buffer clear with
* using the WM_STATE or 3DSTATE_WM:
*
* * If other rendering operations have preceded this clear, a
* PIPE_CONTROL with depth cache flush enabled, Depth Stall bit
* enabled must be issued before the rectangle primitive used for
* the depth buffer clear operation.
* * [...]"
*
* Even though the PRM only says that this is required if using 3DSTATE_WM
* and a 3DPRIMITIVE, the GPU appears to also need this to avoid occasional
* hangs when doing a clear with WM_HZ_OP.
*/
cmd_buffer->state.pending_pipe_bits |=
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | ANV_PIPE_DEPTH_STALL_BIT;
blorp_hiz_clear_depth_stencil(&batch, &depth, &stencil,
level, base_layer, layer_count,
area.offset.x, area.offset.y,
area.offset.x + area.extent.width,
area.offset.y + area.extent.height,
aspects & VK_IMAGE_ASPECT_DEPTH_BIT,
ANV_HZ_FC_VAL,
aspects & VK_IMAGE_ASPECT_STENCIL_BIT,
stencil_value);
blorp_batch_finish(&batch);
/* From the SKL PRM, Depth Buffer Clear:
*
* "Depth Buffer Clear Workaround
*
* Depth buffer clear pass using any of the methods (WM_STATE,
* 3DSTATE_WM or 3DSTATE_WM_HZ_OP) must be followed by a PIPE_CONTROL
* command with DEPTH_STALL bit and Depth FLUSH bits “set” before
* starting to render. DepthStall and DepthFlush are not needed between
* consecutive depth clear passes nor is it required if the depth-clear
* pass was done with “full_surf_clear” bit set in the
* 3DSTATE_WM_HZ_OP."
*
* Even though the PRM provides a bunch of conditions under which this is
* supposedly unnecessary, we choose to perform the flush unconditionally
* just to be safe.
*/
cmd_buffer->state.pending_pipe_bits |=
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | ANV_PIPE_DEPTH_STALL_BIT;
}
void
anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
enum isl_format format,
VkImageAspectFlagBits aspect,
uint32_t base_layer, uint32_t layer_count,
enum isl_aux_op mcs_op, union isl_color_value *clear_value,
bool predicate)
{
assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
assert(image->samples > 1);
assert(base_layer + layer_count <= anv_image_aux_layers(image, aspect, 0));
/* Multisampling with multi-planar formats is not supported */
assert(image->n_planes == 1);
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer,
predicate ? BLORP_BATCH_PREDICATE_ENABLE : 0);
struct blorp_surf surf;
get_blorp_surf_for_anv_image(cmd_buffer->device, image, aspect,
ANV_IMAGE_LAYOUT_EXPLICIT_AUX,
ISL_AUX_USAGE_MCS, &surf);
/* Blorp will store the clear color for us if we provide the clear color
* address and we are doing a fast clear. So we save the clear value into
* the blorp surface. However, in some situations we want to do a fast clear
* without changing the clear value stored in the state buffer. For those
* cases, we set the clear color address pointer to NULL, so blorp will not
* try to store a garbage color.
*/
if (mcs_op == ISL_AUX_OP_FAST_CLEAR) {
if (clear_value)
surf.clear_color = *clear_value;
else
surf.clear_color_addr.buffer = NULL;
}
/* From the Sky Lake PRM Vol. 7, "Render Target Fast Clear":
*
* "After Render target fast clear, pipe-control with color cache
* write-flush must be issued before sending any DRAW commands on
* that render target."
*
* This comment is a bit cryptic and doesn't really tell you what's going
* or what's really needed. It appears that fast clear ops are not
* properly synchronized with other drawing. This means that we cannot
* have a fast clear operation in the pipe at the same time as other
* regular drawing operations. We need to use a PIPE_CONTROL to ensure
* that the contents of the previous draw hit the render target before we
* resolve and then use a second PIPE_CONTROL after the resolve to ensure
* that it is completed before any additional drawing occurs.
*/
cmd_buffer->state.pending_pipe_bits |=
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
switch (mcs_op) {
case ISL_AUX_OP_FAST_CLEAR:
blorp_fast_clear(&batch, &surf, format,
0, base_layer, layer_count,
0, 0, image->extent.width, image->extent.height);
break;
case ISL_AUX_OP_PARTIAL_RESOLVE:
blorp_mcs_partial_resolve(&batch, &surf, format,
base_layer, layer_count);
break;
case ISL_AUX_OP_FULL_RESOLVE:
case ISL_AUX_OP_AMBIGUATE:
default:
unreachable("Unsupported MCS operation");
}
cmd_buffer->state.pending_pipe_bits |=
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
blorp_batch_finish(&batch);
}
void
anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
enum isl_format format,
VkImageAspectFlagBits aspect, uint32_t level,
uint32_t base_layer, uint32_t layer_count,
enum isl_aux_op ccs_op, union isl_color_value *clear_value,
bool predicate)
{
assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
assert(image->samples == 1);
assert(level < anv_image_aux_levels(image, aspect));
/* Multi-LOD YcBcR is not allowed */
assert(image->n_planes == 1 || level == 0);
assert(base_layer + layer_count <=
anv_image_aux_layers(image, aspect, level));
uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
uint32_t width_div = image->format->planes[plane].denominator_scales[0];
uint32_t height_div = image->format->planes[plane].denominator_scales[1];
uint32_t level_width = anv_minify(image->extent.width, level) / width_div;
uint32_t level_height = anv_minify(image->extent.height, level) / height_div;
struct blorp_batch batch;
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer,
predicate ? BLORP_BATCH_PREDICATE_ENABLE : 0);
struct blorp_surf surf;
get_blorp_surf_for_anv_image(cmd_buffer->device, image, aspect,
ANV_IMAGE_LAYOUT_EXPLICIT_AUX,
fast_clear_aux_usage(image, aspect),
&surf);
/* Blorp will store the clear color for us if we provide the clear color
* address and we are doing a fast clear. So we save the clear value into
* the blorp surface. However, in some situations we want to do a fast clear
* without changing the clear value stored in the state buffer. For those
* cases, we set the clear color address pointer to NULL, so blorp will not
* try to store a garbage color.
*/
if (ccs_op == ISL_AUX_OP_FAST_CLEAR) {
if (clear_value)
surf.clear_color = *clear_value;
else
surf.clear_color_addr.buffer = NULL;
}
/* From the Sky Lake PRM Vol. 7, "Render Target Fast Clear":
*
* "After Render target fast clear, pipe-control with color cache
* write-flush must be issued before sending any DRAW commands on
* that render target."
*
* This comment is a bit cryptic and doesn't really tell you what's going
* or what's really needed. It appears that fast clear ops are not
* properly synchronized with other drawing. This means that we cannot
* have a fast clear operation in the pipe at the same time as other
* regular drawing operations. We need to use a PIPE_CONTROL to ensure
* that the contents of the previous draw hit the render target before we
* resolve and then use a second PIPE_CONTROL after the resolve to ensure
* that it is completed before any additional drawing occurs.
*/
cmd_buffer->state.pending_pipe_bits |=
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
switch (ccs_op) {
case ISL_AUX_OP_FAST_CLEAR:
blorp_fast_clear(&batch, &surf, format,
level, base_layer, layer_count,
0, 0, level_width, level_height);
break;
case ISL_AUX_OP_FULL_RESOLVE:
case ISL_AUX_OP_PARTIAL_RESOLVE:
blorp_ccs_resolve(&batch, &surf, level, base_layer, layer_count,
format, ccs_op);
break;
case ISL_AUX_OP_AMBIGUATE:
for (uint32_t a = 0; a < layer_count; a++) {
const uint32_t layer = base_layer + a;
blorp_ccs_ambiguate(&batch, &surf, level, layer);
}
break;
default:
unreachable("Unsupported CCS operation");
}
cmd_buffer->state.pending_pipe_bits |=
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
blorp_batch_finish(&batch);
}