blob: a8c1d480bfa5cf4f6e0d54515c02e9ea270b2f76 [file] [log] [blame]
/*
* Copyright © 2017, Google Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <hardware/gralloc.h>
#if ANDROID_API_LEVEL >= 26
#include <hardware/gralloc1.h>
#include <grallocusage/GrallocUsageConversion.h>
#endif
#include <hardware/hardware.h>
#include <hardware/hwvulkan.h>
#include <vulkan/vk_android_native_buffer.h>
#include <vulkan/vk_icd.h>
#include <sync/sync.h>
#include "anv_private.h"
#include "vk_format_info.h"
#include "vk_util.h"
static int anv_hal_open(const struct hw_module_t* mod, const char* id, struct hw_device_t** dev);
static int anv_hal_close(struct hw_device_t *dev);
static void UNUSED
static_asserts(void)
{
STATIC_ASSERT(HWVULKAN_DISPATCH_MAGIC == ICD_LOADER_MAGIC);
}
PUBLIC struct hwvulkan_module_t HAL_MODULE_INFO_SYM = {
.common = {
.tag = HARDWARE_MODULE_TAG,
.module_api_version = HWVULKAN_MODULE_API_VERSION_0_1,
.hal_api_version = HARDWARE_MAKE_API_VERSION(1, 0),
.id = HWVULKAN_HARDWARE_MODULE_ID,
.name = "Intel Vulkan HAL",
.author = "Intel",
.methods = &(hw_module_methods_t) {
.open = anv_hal_open,
},
},
};
/* If any bits in test_mask are set, then unset them and return true. */
static inline bool
unmask32(uint32_t *inout_mask, uint32_t test_mask)
{
uint32_t orig_mask = *inout_mask;
*inout_mask &= ~test_mask;
return *inout_mask != orig_mask;
}
static int
anv_hal_open(const struct hw_module_t* mod, const char* id,
struct hw_device_t** dev)
{
assert(mod == &HAL_MODULE_INFO_SYM.common);
assert(strcmp(id, HWVULKAN_DEVICE_0) == 0);
hwvulkan_device_t *hal_dev = malloc(sizeof(*hal_dev));
if (!hal_dev)
return -1;
*hal_dev = (hwvulkan_device_t) {
.common = {
.tag = HARDWARE_DEVICE_TAG,
.version = HWVULKAN_DEVICE_API_VERSION_0_1,
.module = &HAL_MODULE_INFO_SYM.common,
.close = anv_hal_close,
},
.EnumerateInstanceExtensionProperties = anv_EnumerateInstanceExtensionProperties,
.CreateInstance = anv_CreateInstance,
.GetInstanceProcAddr = anv_GetInstanceProcAddr,
};
*dev = &hal_dev->common;
return 0;
}
static int
anv_hal_close(struct hw_device_t *dev)
{
/* hwvulkan.h claims that hw_device_t::close() is never called. */
return -1;
}
#if ANDROID_API_LEVEL >= 26
static VkResult
get_ahw_buffer_format_properties(
VkDevice device_h,
const struct AHardwareBuffer *buffer,
VkAndroidHardwareBufferFormatPropertiesANDROID *pProperties)
{
ANV_FROM_HANDLE(anv_device, device, device_h);
/* Get a description of buffer contents . */
AHardwareBuffer_Desc desc;
AHardwareBuffer_describe(buffer, &desc);
/* Verify description. */
uint64_t gpu_usage =
AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE |
AHARDWAREBUFFER_USAGE_GPU_COLOR_OUTPUT |
AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER;
/* "Buffer must be a valid Android hardware buffer object with at least
* one of the AHARDWAREBUFFER_USAGE_GPU_* usage flags."
*/
if (!(desc.usage & (gpu_usage)))
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
/* Fill properties fields based on description. */
VkAndroidHardwareBufferFormatPropertiesANDROID *p = pProperties;
p->format = vk_format_from_android(desc.format, desc.usage);
const struct anv_format *anv_format = anv_get_format(p->format);
p->externalFormat = (uint64_t) (uintptr_t) anv_format;
/* Default to OPTIMAL tiling but set to linear in case
* of AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER usage.
*/
VkImageTiling tiling = VK_IMAGE_TILING_OPTIMAL;
if (desc.usage & AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER)
tiling = VK_IMAGE_TILING_LINEAR;
p->formatFeatures =
anv_get_image_format_features(&device->info, p->format, anv_format,
tiling);
/* "Images can be created with an external format even if the Android hardware
* buffer has a format which has an equivalent Vulkan format to enable
* consistent handling of images from sources that might use either category
* of format. However, all images created with an external format are subject
* to the valid usage requirements associated with external formats, even if
* the Android hardware buffer’s format has a Vulkan equivalent."
*
* "The formatFeatures member *must* include
* VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT and at least one of
* VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT or
* VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT"
*/
p->formatFeatures |=
VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT;
/* "Implementations may not always be able to determine the color model,
* numerical range, or chroma offsets of the image contents, so the values
* in VkAndroidHardwareBufferFormatPropertiesANDROID are only suggestions.
* Applications should treat these values as sensible defaults to use in
* the absence of more reliable information obtained through some other
* means."
*/
p->samplerYcbcrConversionComponents.r = VK_COMPONENT_SWIZZLE_IDENTITY;
p->samplerYcbcrConversionComponents.g = VK_COMPONENT_SWIZZLE_IDENTITY;
p->samplerYcbcrConversionComponents.b = VK_COMPONENT_SWIZZLE_IDENTITY;
p->samplerYcbcrConversionComponents.a = VK_COMPONENT_SWIZZLE_IDENTITY;
p->suggestedYcbcrModel = VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601;
p->suggestedYcbcrRange = VK_SAMPLER_YCBCR_RANGE_ITU_FULL;
p->suggestedXChromaOffset = VK_CHROMA_LOCATION_MIDPOINT;
p->suggestedYChromaOffset = VK_CHROMA_LOCATION_MIDPOINT;
return VK_SUCCESS;
}
VkResult
anv_GetAndroidHardwareBufferPropertiesANDROID(
VkDevice device_h,
const struct AHardwareBuffer *buffer,
VkAndroidHardwareBufferPropertiesANDROID *pProperties)
{
ANV_FROM_HANDLE(anv_device, dev, device_h);
struct anv_physical_device *pdevice = &dev->instance->physicalDevice;
VkAndroidHardwareBufferFormatPropertiesANDROID *format_prop =
vk_find_struct(pProperties->pNext,
ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_ANDROID);
/* Fill format properties of an Android hardware buffer. */
if (format_prop)
get_ahw_buffer_format_properties(device_h, buffer, format_prop);
/* NOTE - We support buffers with only one handle but do not error on
* multiple handle case. Reason is that we want to support YUV formats
* where we have many logical planes but they all point to the same
* buffer, like is the case with VK_FORMAT_G8_B8R8_2PLANE_420_UNORM.
*/
const native_handle_t *handle =
AHardwareBuffer_getNativeHandle(buffer);
int dma_buf = (handle && handle->numFds) ? handle->data[0] : -1;
if (dma_buf < 0)
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
/* All memory types. */
uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
pProperties->allocationSize = lseek(dma_buf, 0, SEEK_END);
pProperties->memoryTypeBits = memory_types;
return VK_SUCCESS;
}
VkResult
anv_GetMemoryAndroidHardwareBufferANDROID(
VkDevice device_h,
const VkMemoryGetAndroidHardwareBufferInfoANDROID *pInfo,
struct AHardwareBuffer **pBuffer)
{
ANV_FROM_HANDLE(anv_device_memory, mem, pInfo->memory);
/* Some quotes from Vulkan spec:
*
* "If the device memory was created by importing an Android hardware
* buffer, vkGetMemoryAndroidHardwareBufferANDROID must return that same
* Android hardware buffer object."
*
* "VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID must
* have been included in VkExportMemoryAllocateInfo::handleTypes when
* memory was created."
*/
if (mem->ahw) {
*pBuffer = mem->ahw;
/* Increase refcount. */
AHardwareBuffer_acquire(mem->ahw);
return VK_SUCCESS;
}
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
#endif
/* Construct ahw usage mask from image usage bits, see
* 'AHardwareBuffer Usage Equivalence' in Vulkan spec.
*/
uint64_t
anv_ahw_usage_from_vk_usage(const VkImageCreateFlags vk_create,
const VkImageUsageFlags vk_usage)
{
uint64_t ahw_usage = 0;
#if ANDROID_API_LEVEL >= 26
if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT)
ahw_usage |= AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE;
if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
ahw_usage |= AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE;
if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
ahw_usage |= AHARDWAREBUFFER_USAGE_GPU_COLOR_OUTPUT;
if (vk_create & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
ahw_usage |= AHARDWAREBUFFER_USAGE_GPU_CUBE_MAP;
if (vk_create & VK_IMAGE_CREATE_PROTECTED_BIT)
ahw_usage |= AHARDWAREBUFFER_USAGE_PROTECTED_CONTENT;
/* No usage bits set - set at least one GPU usage. */
if (ahw_usage == 0)
ahw_usage = AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE;
#endif
return ahw_usage;
}
/*
* Called from anv_AllocateMemory when import AHardwareBuffer.
*/
VkResult
anv_import_ahw_memory(VkDevice device_h,
struct anv_device_memory *mem,
const VkImportAndroidHardwareBufferInfoANDROID *info)
{
#if ANDROID_API_LEVEL >= 26
ANV_FROM_HANDLE(anv_device, device, device_h);
/* Import from AHardwareBuffer to anv_device_memory. */
const native_handle_t *handle =
AHardwareBuffer_getNativeHandle(info->buffer);
/* NOTE - We support buffers with only one handle but do not error on
* multiple handle case. Reason is that we want to support YUV formats
* where we have many logical planes but they all point to the same
* buffer, like is the case with VK_FORMAT_G8_B8R8_2PLANE_420_UNORM.
*/
int dma_buf = (handle && handle->numFds) ? handle->data[0] : -1;
if (dma_buf < 0)
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
uint64_t bo_flags = ANV_BO_EXTERNAL;
if (device->instance->physicalDevice.supports_48bit_addresses)
bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
if (device->instance->physicalDevice.use_softpin)
bo_flags |= EXEC_OBJECT_PINNED;
VkResult result = anv_bo_cache_import(device, &device->bo_cache,
dma_buf, bo_flags, &mem->bo);
assert(VK_SUCCESS);
/* "If the vkAllocateMemory command succeeds, the implementation must
* acquire a reference to the imported hardware buffer, which it must
* release when the device memory object is freed. If the command fails,
* the implementation must not retain a reference."
*/
AHardwareBuffer_acquire(info->buffer);
mem->ahw = info->buffer;
return VK_SUCCESS;
#else
return VK_ERROR_EXTENSION_NOT_PRESENT;
#endif
}
VkResult
anv_create_ahw_memory(VkDevice device_h,
struct anv_device_memory *mem,
const VkMemoryAllocateInfo *pAllocateInfo)
{
#if ANDROID_API_LEVEL >= 26
ANV_FROM_HANDLE(anv_device, dev, device_h);
const VkMemoryDedicatedAllocateInfo *dedicated_info =
vk_find_struct_const(pAllocateInfo->pNext,
MEMORY_DEDICATED_ALLOCATE_INFO);
uint32_t w = 0;
uint32_t h = 1;
uint32_t layers = 1;
uint32_t format = 0;
uint64_t usage = 0;
/* If caller passed dedicated information. */
if (dedicated_info && dedicated_info->image) {
ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
w = image->extent.width;
h = image->extent.height;
layers = image->array_size;
format = android_format_from_vk(image->vk_format);
usage = anv_ahw_usage_from_vk_usage(image->create_flags, image->usage);
} else if (dedicated_info && dedicated_info->buffer) {
ANV_FROM_HANDLE(anv_buffer, buffer, dedicated_info->buffer);
w = buffer->size;
format = AHARDWAREBUFFER_FORMAT_BLOB;
usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN |
AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN;
} else {
w = pAllocateInfo->allocationSize;
format = AHARDWAREBUFFER_FORMAT_BLOB;
usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN |
AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN;
}
struct AHardwareBuffer *ahw = NULL;
struct AHardwareBuffer_Desc desc = {
.width = w,
.height = h,
.layers = layers,
.format = format,
.usage = usage,
};
if (AHardwareBuffer_allocate(&desc, &ahw) != 0)
return VK_ERROR_OUT_OF_HOST_MEMORY;
mem->ahw = ahw;
return VK_SUCCESS;
#else
return VK_ERROR_EXTENSION_NOT_PRESENT;
#endif
}
VkResult
anv_image_from_external(
VkDevice device_h,
const VkImageCreateInfo *base_info,
const struct VkExternalMemoryImageCreateInfo *create_info,
const VkAllocationCallbacks *alloc,
VkImage *out_image_h)
{
#if ANDROID_API_LEVEL >= 26
ANV_FROM_HANDLE(anv_device, device, device_h);
const struct VkExternalFormatANDROID *ext_info =
vk_find_struct_const(base_info->pNext, EXTERNAL_FORMAT_ANDROID);
if (ext_info && ext_info->externalFormat != 0) {
assert(base_info->format == VK_FORMAT_UNDEFINED);
assert(base_info->imageType == VK_IMAGE_TYPE_2D);
assert(base_info->usage == VK_IMAGE_USAGE_SAMPLED_BIT);
assert(base_info->tiling == VK_IMAGE_TILING_OPTIMAL);
}
struct anv_image_create_info anv_info = {
.vk_info = base_info,
.isl_extra_usage_flags = ISL_SURF_USAGE_DISABLE_AUX_BIT,
.external_format = true,
};
VkImage image_h;
VkResult result = anv_image_create(device_h, &anv_info, alloc, &image_h);
if (result != VK_SUCCESS)
return result;
*out_image_h = image_h;
return VK_SUCCESS;
#else
return VK_ERROR_EXTENSION_NOT_PRESENT;
#endif
}
VkResult
anv_image_from_gralloc(VkDevice device_h,
const VkImageCreateInfo *base_info,
const VkNativeBufferANDROID *gralloc_info,
const VkAllocationCallbacks *alloc,
VkImage *out_image_h)
{
ANV_FROM_HANDLE(anv_device, device, device_h);
VkImage image_h = VK_NULL_HANDLE;
struct anv_image *image = NULL;
struct anv_bo *bo = NULL;
VkResult result;
struct anv_image_create_info anv_info = {
.vk_info = base_info,
.isl_extra_usage_flags = ISL_SURF_USAGE_DISABLE_AUX_BIT,
};
if (gralloc_info->handle->numFds != 1) {
return vk_errorf(device->instance, device,
VK_ERROR_INVALID_EXTERNAL_HANDLE,
"VkNativeBufferANDROID::handle::numFds is %d, "
"expected 1", gralloc_info->handle->numFds);
}
/* Do not close the gralloc handle's dma_buf. The lifetime of the dma_buf
* must exceed that of the gralloc handle, and we do not own the gralloc
* handle.
*/
int dma_buf = gralloc_info->handle->data[0];
uint64_t bo_flags = ANV_BO_EXTERNAL;
if (device->instance->physicalDevice.supports_48bit_addresses)
bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
if (device->instance->physicalDevice.use_softpin)
bo_flags |= EXEC_OBJECT_PINNED;
result = anv_bo_cache_import(device, &device->bo_cache, dma_buf, bo_flags, &bo);
if (result != VK_SUCCESS) {
return vk_errorf(device->instance, device, result,
"failed to import dma-buf from VkNativeBufferANDROID");
}
int i915_tiling = anv_gem_get_tiling(device, bo->gem_handle);
switch (i915_tiling) {
case I915_TILING_NONE:
anv_info.isl_tiling_flags = ISL_TILING_LINEAR_BIT;
break;
case I915_TILING_X:
anv_info.isl_tiling_flags = ISL_TILING_X_BIT;
break;
case I915_TILING_Y:
anv_info.isl_tiling_flags = ISL_TILING_Y0_BIT;
break;
case -1:
result = vk_errorf(device->instance, device,
VK_ERROR_INVALID_EXTERNAL_HANDLE,
"DRM_IOCTL_I915_GEM_GET_TILING failed for "
"VkNativeBufferANDROID");
goto fail_tiling;
default:
result = vk_errorf(device->instance, device,
VK_ERROR_INVALID_EXTERNAL_HANDLE,
"DRM_IOCTL_I915_GEM_GET_TILING returned unknown "
"tiling %d for VkNativeBufferANDROID", i915_tiling);
goto fail_tiling;
}
enum isl_format format = anv_get_isl_format(&device->info,
base_info->format,
VK_IMAGE_ASPECT_COLOR_BIT,
base_info->tiling);
assert(format != ISL_FORMAT_UNSUPPORTED);
anv_info.stride = gralloc_info->stride *
(isl_format_get_layout(format)->bpb / 8);
result = anv_image_create(device_h, &anv_info, alloc, &image_h);
image = anv_image_from_handle(image_h);
if (result != VK_SUCCESS)
goto fail_create;
if (bo->size < image->size) {
result = vk_errorf(device->instance, device,
VK_ERROR_INVALID_EXTERNAL_HANDLE,
"dma-buf from VkNativeBufferANDROID is too small for "
"VkImage: %"PRIu64"B < %"PRIu64"B",
bo->size, image->size);
goto fail_size;
}
assert(image->n_planes == 1);
assert(image->planes[0].address.offset == 0);
image->planes[0].address.bo = bo;
image->planes[0].bo_is_owned = true;
/* We need to set the WRITE flag on window system buffers so that GEM will
* know we're writing to them and synchronize uses on other rings (for
* example, if the display server uses the blitter ring).
*
* If this function fails and if the imported bo was resident in the cache,
* we should avoid updating the bo's flags. Therefore, we defer updating
* the flags until success is certain.
*
*/
bo->flags &= ~EXEC_OBJECT_ASYNC;
bo->flags |= EXEC_OBJECT_WRITE;
/* Don't clobber the out-parameter until success is certain. */
*out_image_h = image_h;
return VK_SUCCESS;
fail_size:
anv_DestroyImage(device_h, image_h, alloc);
fail_create:
fail_tiling:
anv_bo_cache_release(device, &device->bo_cache, bo);
return result;
}
VkResult
format_supported_with_usage(VkDevice device_h, VkFormat format,
VkImageUsageFlags imageUsage)
{
ANV_FROM_HANDLE(anv_device, device, device_h);
struct anv_physical_device *phys_dev = &device->instance->physicalDevice;
VkPhysicalDevice phys_dev_h = anv_physical_device_to_handle(phys_dev);
VkResult result;
const VkPhysicalDeviceImageFormatInfo2 image_format_info = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2,
.format = format,
.type = VK_IMAGE_TYPE_2D,
.tiling = VK_IMAGE_TILING_OPTIMAL,
.usage = imageUsage,
};
VkImageFormatProperties2 image_format_props = {
.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2,
};
/* Check that requested format and usage are supported. */
result = anv_GetPhysicalDeviceImageFormatProperties2(phys_dev_h,
&image_format_info, &image_format_props);
if (result != VK_SUCCESS) {
return vk_errorf(device->instance, device, result,
"anv_GetPhysicalDeviceImageFormatProperties2 failed "
"inside %s", __func__);
}
return VK_SUCCESS;
}
static VkResult
setup_gralloc0_usage(VkFormat format, VkImageUsageFlags imageUsage,
int *grallocUsage)
{
/* WARNING: Android's libvulkan.so hardcodes the VkImageUsageFlags
* returned to applications via VkSurfaceCapabilitiesKHR::supportedUsageFlags.
* The relevant code in libvulkan/swapchain.cpp contains this fun comment:
*
* TODO(jessehall): I think these are right, but haven't thought hard
* about it. Do we need to query the driver for support of any of
* these?
*
* Any disagreement between this function and the hardcoded
* VkSurfaceCapabilitiesKHR:supportedUsageFlags causes tests
* dEQP-VK.wsi.android.swapchain.*.image_usage to fail.
*/
if (unmask32(&imageUsage, VK_IMAGE_USAGE_TRANSFER_DST_BIT |
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT))
*grallocUsage |= GRALLOC_USAGE_HW_RENDER;
if (unmask32(&imageUsage, VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_STORAGE_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
*grallocUsage |= GRALLOC_USAGE_HW_TEXTURE;
/* All VkImageUsageFlags not explicitly checked here are unsupported for
* gralloc swapchains.
*/
if (imageUsage != 0) {
return vk_errorf(device->instance, device, VK_ERROR_FORMAT_NOT_SUPPORTED,
"unsupported VkImageUsageFlags(0x%x) for gralloc "
"swapchain", imageUsage);
}
/* The below formats support GRALLOC_USAGE_HW_FB (that is, display
* scanout). This short list of formats is univserally supported on Intel
* but is incomplete. The full set of supported formats is dependent on
* kernel and hardware.
*
* FINISHME: Advertise all display-supported formats.
*/
switch (format) {
case VK_FORMAT_B8G8R8A8_UNORM:
case VK_FORMAT_B5G6R5_UNORM_PACK16:
case VK_FORMAT_R8G8B8A8_UNORM:
case VK_FORMAT_R8G8B8A8_SRGB:
*grallocUsage |= GRALLOC_USAGE_HW_FB |
GRALLOC_USAGE_HW_COMPOSER |
GRALLOC_USAGE_EXTERNAL_DISP;
break;
default:
intel_logw("%s: unsupported format=%d", __func__, format);
}
if (*grallocUsage == 0)
return VK_ERROR_FORMAT_NOT_SUPPORTED;
return VK_SUCCESS;
}
#if ANDROID_API_LEVEL >= 26
VkResult anv_GetSwapchainGrallocUsage2ANDROID(
VkDevice device_h,
VkFormat format,
VkImageUsageFlags imageUsage,
VkSwapchainImageUsageFlagsANDROID swapchainImageUsage,
uint64_t* grallocConsumerUsage,
uint64_t* grallocProducerUsage)
{
ANV_FROM_HANDLE(anv_device, device, device_h);
VkResult result;
*grallocConsumerUsage = 0;
*grallocProducerUsage = 0;
intel_logd("%s: format=%d, usage=0x%x", __func__, format, imageUsage);
result = format_supported_with_usage(device_h, format, imageUsage);
if (result != VK_SUCCESS)
return result;
int32_t grallocUsage = 0;
result = setup_gralloc0_usage(format, imageUsage, &grallocUsage);
if (result != VK_SUCCESS)
return result;
android_convertGralloc0To1Usage(grallocUsage, grallocProducerUsage,
grallocConsumerUsage);
return VK_SUCCESS;
}
#endif
VkResult anv_GetSwapchainGrallocUsageANDROID(
VkDevice device_h,
VkFormat format,
VkImageUsageFlags imageUsage,
int* grallocUsage)
{
ANV_FROM_HANDLE(anv_device, device, device_h);
struct anv_physical_device *phys_dev = &device->instance->physicalDevice;
VkPhysicalDevice phys_dev_h = anv_physical_device_to_handle(phys_dev);
VkResult result;
*grallocUsage = 0;
intel_logd("%s: format=%d, usage=0x%x", __func__, format, imageUsage);
result = format_supported_with_usage(device_h, format, imageUsage);
if (result != VK_SUCCESS)
return result;
return setup_gralloc0_usage(format, imageUsage, grallocUsage);
}
VkResult
anv_AcquireImageANDROID(
VkDevice device_h,
VkImage image_h,
int nativeFenceFd,
VkSemaphore semaphore_h,
VkFence fence_h)
{
ANV_FROM_HANDLE(anv_device, device, device_h);
VkResult result = VK_SUCCESS;
if (nativeFenceFd != -1) {
/* As a simple, firstpass implementation of VK_ANDROID_native_buffer, we
* block on the nativeFenceFd. This may introduce latency and is
* definitiely inefficient, yet it's correct.
*
* FINISHME(chadv): Import the nativeFenceFd into the VkSemaphore and
* VkFence.
*/
if (sync_wait(nativeFenceFd, /*timeout*/ -1) < 0) {
result = vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
"%s: failed to wait on nativeFenceFd=%d",
__func__, nativeFenceFd);
}
/* From VK_ANDROID_native_buffer's pseudo spec
* (https://source.android.com/devices/graphics/implement-vulkan):
*
* The driver takes ownership of the fence fd and is responsible for
* closing it [...] even if vkAcquireImageANDROID fails and returns
* an error.
*/
close(nativeFenceFd);
if (result != VK_SUCCESS)
return result;
}
if (semaphore_h || fence_h) {
/* Thanks to implicit sync, the image is ready for GPU access. But we
* must still put the semaphore into the "submit" state; otherwise the
* client may get unexpected behavior if the client later uses it as
* a wait semaphore.
*
* Because we blocked above on the nativeFenceFd, the image is also
* ready for foreign-device access (including CPU access). But we must
* still signal the fence; otherwise the client may get unexpected
* behavior if the client later waits on it.
*
* For some values of anv_semaphore_type, we must submit the semaphore
* to execbuf in order to signal it. Likewise for anv_fence_type.
* Instead of open-coding here the signal operation for each
* anv_semaphore_type and anv_fence_type, we piggy-back on
* vkQueueSubmit.
*/
const VkSubmitInfo submit = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.waitSemaphoreCount = 0,
.commandBufferCount = 0,
.signalSemaphoreCount = (semaphore_h ? 1 : 0),
.pSignalSemaphores = &semaphore_h,
};
result = anv_QueueSubmit(anv_queue_to_handle(&device->queue), 1,
&submit, fence_h);
if (result != VK_SUCCESS) {
return vk_errorf(device->instance, device, result,
"anv_QueueSubmit failed inside %s", __func__);
}
}
return VK_SUCCESS;
}
VkResult
anv_QueueSignalReleaseImageANDROID(
VkQueue queue,
uint32_t waitSemaphoreCount,
const VkSemaphore* pWaitSemaphores,
VkImage image,
int* pNativeFenceFd)
{
VkResult result;
if (waitSemaphoreCount == 0)
goto done;
result = anv_QueueSubmit(queue, 1,
&(VkSubmitInfo) {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.waitSemaphoreCount = 1,
.pWaitSemaphores = pWaitSemaphores,
},
(VkFence) VK_NULL_HANDLE);
if (result != VK_SUCCESS)
return result;
done:
if (pNativeFenceFd) {
/* We can rely implicit on sync because above we submitted all
* semaphores to the queue.
*/
*pNativeFenceFd = -1;
}
return VK_SUCCESS;
}