blob: 2349be95849a2d13d1077c8c8e4d7d36e142cdaa [file] [log] [blame]
/*
* Copyright 2013 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "tgsi/tgsi_parse.h"
#include "util/u_async_debug.h"
#include "util/u_memory.h"
#include "util/u_upload_mgr.h"
#include "amd_kernel_code_t.h"
#include "si_build_pm4.h"
#include "si_compute.h"
#define COMPUTE_DBG(rscreen, fmt, args...) \
do { \
if ((rscreen->debug_flags & DBG(COMPUTE))) fprintf(stderr, fmt, ##args); \
} while (0);
struct dispatch_packet {
uint16_t header;
uint16_t setup;
uint16_t workgroup_size_x;
uint16_t workgroup_size_y;
uint16_t workgroup_size_z;
uint16_t reserved0;
uint32_t grid_size_x;
uint32_t grid_size_y;
uint32_t grid_size_z;
uint32_t private_segment_size;
uint32_t group_segment_size;
uint64_t kernel_object;
uint64_t kernarg_address;
uint64_t reserved2;
};
static const amd_kernel_code_t *si_compute_get_code_object(
const struct si_compute *program,
uint64_t symbol_offset)
{
if (!program->use_code_object_v2) {
return NULL;
}
return (const amd_kernel_code_t*)
(program->shader.binary.code + symbol_offset);
}
static void code_object_to_config(const amd_kernel_code_t *code_object,
struct si_shader_config *out_config) {
uint32_t rsrc1 = code_object->compute_pgm_resource_registers;
uint32_t rsrc2 = code_object->compute_pgm_resource_registers >> 32;
out_config->num_sgprs = code_object->wavefront_sgpr_count;
out_config->num_vgprs = code_object->workitem_vgpr_count;
out_config->float_mode = G_00B028_FLOAT_MODE(rsrc1);
out_config->rsrc1 = rsrc1;
out_config->lds_size = MAX2(out_config->lds_size, G_00B84C_LDS_SIZE(rsrc2));
out_config->rsrc2 = rsrc2;
out_config->scratch_bytes_per_wave =
align(code_object->workitem_private_segment_byte_size * 64, 1024);
}
/* Asynchronous compute shader compilation. */
static void si_create_compute_state_async(void *job, int thread_index)
{
struct si_compute *program = (struct si_compute *)job;
struct si_shader *shader = &program->shader;
struct si_shader_selector sel;
struct ac_llvm_compiler *compiler;
struct pipe_debug_callback *debug = &program->compiler_ctx_state.debug;
struct si_screen *sscreen = program->screen;
assert(!debug->debug_message || debug->async);
assert(thread_index >= 0);
assert(thread_index < ARRAY_SIZE(sscreen->compiler));
compiler = &sscreen->compiler[thread_index];
memset(&sel, 0, sizeof(sel));
sel.screen = sscreen;
if (program->ir_type == PIPE_SHADER_IR_TGSI) {
tgsi_scan_shader(program->ir.tgsi, &sel.info);
sel.tokens = program->ir.tgsi;
} else {
assert(program->ir_type == PIPE_SHADER_IR_NIR);
sel.nir = program->ir.nir;
si_nir_scan_shader(sel.nir, &sel.info);
si_lower_nir(&sel);
}
/* Store the declared LDS size into tgsi_shader_info for the shader
* cache to include it.
*/
sel.info.properties[TGSI_PROPERTY_CS_LOCAL_SIZE] = program->local_size;
sel.type = PIPE_SHADER_COMPUTE;
si_get_active_slot_masks(&sel.info,
&program->active_const_and_shader_buffers,
&program->active_samplers_and_images);
program->shader.selector = &sel;
program->shader.is_monolithic = true;
program->uses_grid_size = sel.info.uses_grid_size;
program->uses_block_size = sel.info.uses_block_size;
program->uses_bindless_samplers = sel.info.uses_bindless_samplers;
program->uses_bindless_images = sel.info.uses_bindless_images;
program->variable_group_size =
sel.info.properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] == 0;
void *ir_binary = si_get_ir_binary(&sel);
/* Try to load the shader from the shader cache. */
mtx_lock(&sscreen->shader_cache_mutex);
if (ir_binary &&
si_shader_cache_load_shader(sscreen, ir_binary, shader)) {
mtx_unlock(&sscreen->shader_cache_mutex);
si_shader_dump_stats_for_shader_db(shader, debug);
si_shader_dump(sscreen, shader, debug, PIPE_SHADER_COMPUTE,
stderr, true);
if (si_shader_binary_upload(sscreen, shader))
program->shader.compilation_failed = true;
} else {
mtx_unlock(&sscreen->shader_cache_mutex);
if (si_shader_create(sscreen, compiler, &program->shader, debug)) {
program->shader.compilation_failed = true;
if (program->ir_type == PIPE_SHADER_IR_TGSI)
FREE(program->ir.tgsi);
program->shader.selector = NULL;
return;
}
bool scratch_enabled = shader->config.scratch_bytes_per_wave > 0;
unsigned user_sgprs = SI_NUM_RESOURCE_SGPRS +
(sel.info.uses_grid_size ? 3 : 0) +
(sel.info.uses_block_size ? 3 : 0);
shader->config.rsrc1 =
S_00B848_VGPRS((shader->config.num_vgprs - 1) / 4) |
S_00B848_SGPRS((shader->config.num_sgprs - 1) / 8) |
S_00B848_DX10_CLAMP(1) |
S_00B848_FLOAT_MODE(shader->config.float_mode);
shader->config.rsrc2 =
S_00B84C_USER_SGPR(user_sgprs) |
S_00B84C_SCRATCH_EN(scratch_enabled) |
S_00B84C_TGID_X_EN(sel.info.uses_block_id[0]) |
S_00B84C_TGID_Y_EN(sel.info.uses_block_id[1]) |
S_00B84C_TGID_Z_EN(sel.info.uses_block_id[2]) |
S_00B84C_TIDIG_COMP_CNT(sel.info.uses_thread_id[2] ? 2 :
sel.info.uses_thread_id[1] ? 1 : 0) |
S_00B84C_LDS_SIZE(shader->config.lds_size);
if (ir_binary) {
mtx_lock(&sscreen->shader_cache_mutex);
if (!si_shader_cache_insert_shader(sscreen, ir_binary, shader, true))
FREE(ir_binary);
mtx_unlock(&sscreen->shader_cache_mutex);
}
}
if (program->ir_type == PIPE_SHADER_IR_TGSI)
FREE(program->ir.tgsi);
program->shader.selector = NULL;
}
static void *si_create_compute_state(
struct pipe_context *ctx,
const struct pipe_compute_state *cso)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_screen *sscreen = (struct si_screen *)ctx->screen;
struct si_compute *program = CALLOC_STRUCT(si_compute);
pipe_reference_init(&program->reference, 1);
program->screen = (struct si_screen *)ctx->screen;
program->ir_type = cso->ir_type;
program->local_size = cso->req_local_mem;
program->private_size = cso->req_private_mem;
program->input_size = cso->req_input_mem;
program->use_code_object_v2 = cso->ir_type == PIPE_SHADER_IR_NATIVE;
if (cso->ir_type != PIPE_SHADER_IR_NATIVE) {
if (cso->ir_type == PIPE_SHADER_IR_TGSI) {
program->ir.tgsi = tgsi_dup_tokens(cso->prog);
if (!program->ir.tgsi) {
FREE(program);
return NULL;
}
} else {
assert(cso->ir_type == PIPE_SHADER_IR_NIR);
program->ir.nir = (struct nir_shader *) cso->prog;
}
program->compiler_ctx_state.debug = sctx->debug;
program->compiler_ctx_state.is_debug_context = sctx->is_debug;
p_atomic_inc(&sscreen->num_shaders_created);
si_schedule_initial_compile(sctx, PIPE_SHADER_COMPUTE,
&program->ready,
&program->compiler_ctx_state,
program, si_create_compute_state_async);
} else {
const struct pipe_llvm_program_header *header;
const char *code;
header = cso->prog;
code = cso->prog + sizeof(struct pipe_llvm_program_header);
ac_elf_read(code, header->num_bytes, &program->shader.binary);
if (program->use_code_object_v2) {
const amd_kernel_code_t *code_object =
si_compute_get_code_object(program, 0);
code_object_to_config(code_object, &program->shader.config);
if (program->shader.binary.reloc_count != 0) {
fprintf(stderr, "Error: %d unsupported relocations\n",
program->shader.binary.reloc_count);
FREE(program);
return NULL;
}
} else {
si_shader_binary_read_config(&program->shader.binary,
&program->shader.config, 0);
}
si_shader_dump(sctx->screen, &program->shader, &sctx->debug,
PIPE_SHADER_COMPUTE, stderr, true);
if (si_shader_binary_upload(sctx->screen, &program->shader) < 0) {
fprintf(stderr, "LLVM failed to upload shader\n");
FREE(program);
return NULL;
}
}
return program;
}
static void si_bind_compute_state(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context*)ctx;
struct si_compute *program = (struct si_compute*)state;
sctx->cs_shader_state.program = program;
if (!program)
return;
/* Wait because we need active slot usage masks. */
if (program->ir_type != PIPE_SHADER_IR_NATIVE)
util_queue_fence_wait(&program->ready);
si_set_active_descriptors(sctx,
SI_DESCS_FIRST_COMPUTE +
SI_SHADER_DESCS_CONST_AND_SHADER_BUFFERS,
program->active_const_and_shader_buffers);
si_set_active_descriptors(sctx,
SI_DESCS_FIRST_COMPUTE +
SI_SHADER_DESCS_SAMPLERS_AND_IMAGES,
program->active_samplers_and_images);
}
static void si_set_global_binding(
struct pipe_context *ctx, unsigned first, unsigned n,
struct pipe_resource **resources,
uint32_t **handles)
{
unsigned i;
struct si_context *sctx = (struct si_context*)ctx;
struct si_compute *program = sctx->cs_shader_state.program;
assert(first + n <= MAX_GLOBAL_BUFFERS);
if (!resources) {
for (i = 0; i < n; i++) {
pipe_resource_reference(&program->global_buffers[first + i], NULL);
}
return;
}
for (i = 0; i < n; i++) {
uint64_t va;
uint32_t offset;
pipe_resource_reference(&program->global_buffers[first + i], resources[i]);
va = r600_resource(resources[i])->gpu_address;
offset = util_le32_to_cpu(*handles[i]);
va += offset;
va = util_cpu_to_le64(va);
memcpy(handles[i], &va, sizeof(va));
}
}
static void si_initialize_compute(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
uint64_t bc_va;
radeon_set_sh_reg_seq(cs, R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0, 2);
/* R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0 / SE1 */
radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
radeon_emit(cs, S_00B85C_SH0_CU_EN(0xffff) | S_00B85C_SH1_CU_EN(0xffff));
if (sctx->chip_class >= CIK) {
/* Also set R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE2 / SE3 */
radeon_set_sh_reg_seq(cs,
R_00B864_COMPUTE_STATIC_THREAD_MGMT_SE2, 2);
radeon_emit(cs, S_00B864_SH0_CU_EN(0xffff) |
S_00B864_SH1_CU_EN(0xffff));
radeon_emit(cs, S_00B868_SH0_CU_EN(0xffff) |
S_00B868_SH1_CU_EN(0xffff));
}
/* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID
* and is now per pipe, so it should be handled in the
* kernel if we want to use something other than the default value,
* which is now 0x22f.
*/
if (sctx->chip_class <= SI) {
/* XXX: This should be:
* (number of compute units) * 4 * (waves per simd) - 1 */
radeon_set_sh_reg(cs, R_00B82C_COMPUTE_MAX_WAVE_ID,
0x190 /* Default value */);
}
/* Set the pointer to border colors. */
bc_va = sctx->border_color_buffer->gpu_address;
if (sctx->chip_class >= CIK) {
radeon_set_uconfig_reg_seq(cs, R_030E00_TA_CS_BC_BASE_ADDR, 2);
radeon_emit(cs, bc_va >> 8); /* R_030E00_TA_CS_BC_BASE_ADDR */
radeon_emit(cs, S_030E04_ADDRESS(bc_va >> 40)); /* R_030E04_TA_CS_BC_BASE_ADDR_HI */
} else {
if (sctx->screen->info.si_TA_CS_BC_BASE_ADDR_allowed) {
radeon_set_config_reg(cs, R_00950C_TA_CS_BC_BASE_ADDR,
bc_va >> 8);
}
}
sctx->cs_shader_state.emitted_program = NULL;
sctx->cs_shader_state.initialized = true;
}
static bool si_setup_compute_scratch_buffer(struct si_context *sctx,
struct si_shader *shader,
struct si_shader_config *config)
{
uint64_t scratch_bo_size, scratch_needed;
scratch_bo_size = 0;
scratch_needed = config->scratch_bytes_per_wave * sctx->scratch_waves;
if (sctx->compute_scratch_buffer)
scratch_bo_size = sctx->compute_scratch_buffer->b.b.width0;
if (scratch_bo_size < scratch_needed) {
r600_resource_reference(&sctx->compute_scratch_buffer, NULL);
sctx->compute_scratch_buffer =
si_aligned_buffer_create(&sctx->screen->b,
SI_RESOURCE_FLAG_UNMAPPABLE,
PIPE_USAGE_DEFAULT,
scratch_needed, 256);
if (!sctx->compute_scratch_buffer)
return false;
}
if (sctx->compute_scratch_buffer != shader->scratch_bo && scratch_needed) {
uint64_t scratch_va = sctx->compute_scratch_buffer->gpu_address;
si_shader_apply_scratch_relocs(shader, scratch_va);
if (si_shader_binary_upload(sctx->screen, shader))
return false;
r600_resource_reference(&shader->scratch_bo,
sctx->compute_scratch_buffer);
}
return true;
}
static bool si_switch_compute_shader(struct si_context *sctx,
struct si_compute *program,
struct si_shader *shader,
const amd_kernel_code_t *code_object,
unsigned offset)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
struct si_shader_config inline_config = {0};
struct si_shader_config *config;
uint64_t shader_va;
if (sctx->cs_shader_state.emitted_program == program &&
sctx->cs_shader_state.offset == offset)
return true;
if (program->ir_type != PIPE_SHADER_IR_NATIVE) {
config = &shader->config;
} else {
unsigned lds_blocks;
config = &inline_config;
if (code_object) {
code_object_to_config(code_object, config);
} else {
si_shader_binary_read_config(&shader->binary, config, offset);
}
lds_blocks = config->lds_size;
/* XXX: We are over allocating LDS. For SI, the shader reports
* LDS in blocks of 256 bytes, so if there are 4 bytes lds
* allocated in the shader and 4 bytes allocated by the state
* tracker, then we will set LDS_SIZE to 512 bytes rather than 256.
*/
if (sctx->chip_class <= SI) {
lds_blocks += align(program->local_size, 256) >> 8;
} else {
lds_blocks += align(program->local_size, 512) >> 9;
}
/* TODO: use si_multiwave_lds_size_workaround */
assert(lds_blocks <= 0xFF);
config->rsrc2 &= C_00B84C_LDS_SIZE;
config->rsrc2 |= S_00B84C_LDS_SIZE(lds_blocks);
}
if (!si_setup_compute_scratch_buffer(sctx, shader, config))
return false;
if (shader->scratch_bo) {
COMPUTE_DBG(sctx->screen, "Waves: %u; Scratch per wave: %u bytes; "
"Total Scratch: %u bytes\n", sctx->scratch_waves,
config->scratch_bytes_per_wave,
config->scratch_bytes_per_wave *
sctx->scratch_waves);
radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
shader->scratch_bo, RADEON_USAGE_READWRITE,
RADEON_PRIO_SCRATCH_BUFFER);
}
/* Prefetch the compute shader to TC L2.
*
* We should also prefetch graphics shaders if a compute dispatch was
* the last command, and the compute shader if a draw call was the last
* command. However, that would add more complexity and we're likely
* to get a shader state change in that case anyway.
*/
if (sctx->chip_class >= CIK) {
cik_prefetch_TC_L2_async(sctx, &program->shader.bo->b.b,
0, program->shader.bo->b.b.width0);
}
shader_va = shader->bo->gpu_address + offset;
if (program->use_code_object_v2) {
/* Shader code is placed after the amd_kernel_code_t
* struct. */
shader_va += sizeof(amd_kernel_code_t);
}
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, shader->bo,
RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
radeon_set_sh_reg_seq(cs, R_00B830_COMPUTE_PGM_LO, 2);
radeon_emit(cs, shader_va >> 8);
radeon_emit(cs, S_00B834_DATA(shader_va >> 40));
radeon_set_sh_reg_seq(cs, R_00B848_COMPUTE_PGM_RSRC1, 2);
radeon_emit(cs, config->rsrc1);
radeon_emit(cs, config->rsrc2);
COMPUTE_DBG(sctx->screen, "COMPUTE_PGM_RSRC1: 0x%08x "
"COMPUTE_PGM_RSRC2: 0x%08x\n", config->rsrc1, config->rsrc2);
radeon_set_sh_reg(cs, R_00B860_COMPUTE_TMPRING_SIZE,
S_00B860_WAVES(sctx->scratch_waves)
| S_00B860_WAVESIZE(config->scratch_bytes_per_wave >> 10));
sctx->cs_shader_state.emitted_program = program;
sctx->cs_shader_state.offset = offset;
sctx->cs_shader_state.uses_scratch =
config->scratch_bytes_per_wave != 0;
return true;
}
static void setup_scratch_rsrc_user_sgprs(struct si_context *sctx,
const amd_kernel_code_t *code_object,
unsigned user_sgpr)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
uint64_t scratch_va = sctx->compute_scratch_buffer->gpu_address;
unsigned max_private_element_size = AMD_HSA_BITS_GET(
code_object->code_properties,
AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE);
uint32_t scratch_dword0 = scratch_va & 0xffffffff;
uint32_t scratch_dword1 =
S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) |
S_008F04_SWIZZLE_ENABLE(1);
/* Disable address clamping */
uint32_t scratch_dword2 = 0xffffffff;
uint32_t scratch_dword3 =
S_008F0C_INDEX_STRIDE(3) |
S_008F0C_ADD_TID_ENABLE(1);
if (sctx->chip_class >= GFX9) {
assert(max_private_element_size == 1); /* always 4 bytes on GFX9 */
} else {
scratch_dword3 |= S_008F0C_ELEMENT_SIZE(max_private_element_size);
if (sctx->chip_class < VI) {
/* BUF_DATA_FORMAT is ignored, but it cannot be
* BUF_DATA_FORMAT_INVALID. */
scratch_dword3 |=
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_8);
}
}
radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0 +
(user_sgpr * 4), 4);
radeon_emit(cs, scratch_dword0);
radeon_emit(cs, scratch_dword1);
radeon_emit(cs, scratch_dword2);
radeon_emit(cs, scratch_dword3);
}
static void si_setup_user_sgprs_co_v2(struct si_context *sctx,
const amd_kernel_code_t *code_object,
const struct pipe_grid_info *info,
uint64_t kernel_args_va)
{
struct si_compute *program = sctx->cs_shader_state.program;
struct radeon_cmdbuf *cs = sctx->gfx_cs;
static const enum amd_code_property_mask_t workgroup_count_masks [] = {
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X,
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y,
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z
};
unsigned i, user_sgpr = 0;
if (AMD_HSA_BITS_GET(code_object->code_properties,
AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER)) {
if (code_object->workitem_private_segment_byte_size > 0) {
setup_scratch_rsrc_user_sgprs(sctx, code_object,
user_sgpr);
}
user_sgpr += 4;
}
if (AMD_HSA_BITS_GET(code_object->code_properties,
AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR)) {
struct dispatch_packet dispatch;
unsigned dispatch_offset;
struct r600_resource *dispatch_buf = NULL;
uint64_t dispatch_va;
/* Upload dispatch ptr */
memset(&dispatch, 0, sizeof(dispatch));
dispatch.workgroup_size_x = util_cpu_to_le16(info->block[0]);
dispatch.workgroup_size_y = util_cpu_to_le16(info->block[1]);
dispatch.workgroup_size_z = util_cpu_to_le16(info->block[2]);
dispatch.grid_size_x = util_cpu_to_le32(info->grid[0] * info->block[0]);
dispatch.grid_size_y = util_cpu_to_le32(info->grid[1] * info->block[1]);
dispatch.grid_size_z = util_cpu_to_le32(info->grid[2] * info->block[2]);
dispatch.private_segment_size = util_cpu_to_le32(program->private_size);
dispatch.group_segment_size = util_cpu_to_le32(program->local_size);
dispatch.kernarg_address = util_cpu_to_le64(kernel_args_va);
u_upload_data(sctx->b.const_uploader, 0, sizeof(dispatch),
256, &dispatch, &dispatch_offset,
(struct pipe_resource**)&dispatch_buf);
if (!dispatch_buf) {
fprintf(stderr, "Error: Failed to allocate dispatch "
"packet.");
}
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, dispatch_buf,
RADEON_USAGE_READ, RADEON_PRIO_CONST_BUFFER);
dispatch_va = dispatch_buf->gpu_address + dispatch_offset;
radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0 +
(user_sgpr * 4), 2);
radeon_emit(cs, dispatch_va);
radeon_emit(cs, S_008F04_BASE_ADDRESS_HI(dispatch_va >> 32) |
S_008F04_STRIDE(0));
r600_resource_reference(&dispatch_buf, NULL);
user_sgpr += 2;
}
if (AMD_HSA_BITS_GET(code_object->code_properties,
AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR)) {
radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0 +
(user_sgpr * 4), 2);
radeon_emit(cs, kernel_args_va);
radeon_emit(cs, S_008F04_BASE_ADDRESS_HI (kernel_args_va >> 32) |
S_008F04_STRIDE(0));
user_sgpr += 2;
}
for (i = 0; i < 3 && user_sgpr < 16; i++) {
if (code_object->code_properties & workgroup_count_masks[i]) {
radeon_set_sh_reg_seq(cs,
R_00B900_COMPUTE_USER_DATA_0 +
(user_sgpr * 4), 1);
radeon_emit(cs, info->grid[i]);
user_sgpr += 1;
}
}
}
static bool si_upload_compute_input(struct si_context *sctx,
const amd_kernel_code_t *code_object,
const struct pipe_grid_info *info)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
struct si_compute *program = sctx->cs_shader_state.program;
struct r600_resource *input_buffer = NULL;
unsigned kernel_args_size;
unsigned num_work_size_bytes = program->use_code_object_v2 ? 0 : 36;
uint32_t kernel_args_offset = 0;
uint32_t *kernel_args;
void *kernel_args_ptr;
uint64_t kernel_args_va;
unsigned i;
/* The extra num_work_size_bytes are for work group / work item size information */
kernel_args_size = program->input_size + num_work_size_bytes;
u_upload_alloc(sctx->b.const_uploader, 0, kernel_args_size,
sctx->screen->info.tcc_cache_line_size,
&kernel_args_offset,
(struct pipe_resource**)&input_buffer, &kernel_args_ptr);
if (unlikely(!kernel_args_ptr))
return false;
kernel_args = (uint32_t*)kernel_args_ptr;
kernel_args_va = input_buffer->gpu_address + kernel_args_offset;
if (!code_object) {
for (i = 0; i < 3; i++) {
kernel_args[i] = util_cpu_to_le32(info->grid[i]);
kernel_args[i + 3] = util_cpu_to_le32(info->grid[i] * info->block[i]);
kernel_args[i + 6] = util_cpu_to_le32(info->block[i]);
}
}
memcpy(kernel_args + (num_work_size_bytes / 4), info->input,
program->input_size);
for (i = 0; i < (kernel_args_size / 4); i++) {
COMPUTE_DBG(sctx->screen, "input %u : %u\n", i,
kernel_args[i]);
}
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, input_buffer,
RADEON_USAGE_READ, RADEON_PRIO_CONST_BUFFER);
if (code_object) {
si_setup_user_sgprs_co_v2(sctx, code_object, info, kernel_args_va);
} else {
radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, 2);
radeon_emit(cs, kernel_args_va);
radeon_emit(cs, S_008F04_BASE_ADDRESS_HI (kernel_args_va >> 32) |
S_008F04_STRIDE(0));
}
r600_resource_reference(&input_buffer, NULL);
return true;
}
static void si_setup_tgsi_grid(struct si_context *sctx,
const struct pipe_grid_info *info)
{
struct si_compute *program = sctx->cs_shader_state.program;
struct radeon_cmdbuf *cs = sctx->gfx_cs;
unsigned grid_size_reg = R_00B900_COMPUTE_USER_DATA_0 +
4 * SI_NUM_RESOURCE_SGPRS;
unsigned block_size_reg = grid_size_reg +
/* 12 bytes = 3 dwords. */
12 * program->uses_grid_size;
if (info->indirect) {
if (program->uses_grid_size) {
uint64_t base_va = r600_resource(info->indirect)->gpu_address;
uint64_t va = base_va + info->indirect_offset;
int i;
radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
r600_resource(info->indirect),
RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
for (i = 0; i < 3; ++i) {
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_MEM) |
COPY_DATA_DST_SEL(COPY_DATA_REG));
radeon_emit(cs, (va + 4 * i));
radeon_emit(cs, (va + 4 * i) >> 32);
radeon_emit(cs, (grid_size_reg >> 2) + i);
radeon_emit(cs, 0);
}
}
} else {
if (program->uses_grid_size) {
radeon_set_sh_reg_seq(cs, grid_size_reg, 3);
radeon_emit(cs, info->grid[0]);
radeon_emit(cs, info->grid[1]);
radeon_emit(cs, info->grid[2]);
}
if (program->variable_group_size && program->uses_block_size) {
radeon_set_sh_reg_seq(cs, block_size_reg, 3);
radeon_emit(cs, info->block[0]);
radeon_emit(cs, info->block[1]);
radeon_emit(cs, info->block[2]);
}
}
}
static void si_emit_dispatch_packets(struct si_context *sctx,
const struct pipe_grid_info *info)
{
struct si_screen *sscreen = sctx->screen;
struct radeon_cmdbuf *cs = sctx->gfx_cs;
bool render_cond_bit = sctx->render_cond && !sctx->render_cond_force_off;
unsigned waves_per_threadgroup =
DIV_ROUND_UP(info->block[0] * info->block[1] * info->block[2], 64);
unsigned compute_resource_limits =
S_00B854_SIMD_DEST_CNTL(waves_per_threadgroup % 4 == 0);
if (sctx->chip_class >= CIK) {
unsigned num_cu_per_se = sscreen->info.num_good_compute_units /
sscreen->info.max_se;
/* Force even distribution on all SIMDs in CU if the workgroup
* size is 64. This has shown some good improvements if # of CUs
* per SE is not a multiple of 4.
*/
if (num_cu_per_se % 4 && waves_per_threadgroup == 1)
compute_resource_limits |= S_00B854_FORCE_SIMD_DIST(1);
}
radeon_set_sh_reg(cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
compute_resource_limits);
radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(info->block[0]));
radeon_emit(cs, S_00B820_NUM_THREAD_FULL(info->block[1]));
radeon_emit(cs, S_00B824_NUM_THREAD_FULL(info->block[2]));
unsigned dispatch_initiator =
S_00B800_COMPUTE_SHADER_EN(1) |
S_00B800_FORCE_START_AT_000(1) |
/* If the KMD allows it (there is a KMD hw register for it),
* allow launching waves out-of-order. (same as Vulkan) */
S_00B800_ORDER_MODE(sctx->chip_class >= CIK);
if (info->indirect) {
uint64_t base_va = r600_resource(info->indirect)->gpu_address;
radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
r600_resource(info->indirect),
RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0) |
PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, 1);
radeon_emit(cs, base_va);
radeon_emit(cs, base_va >> 32);
radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 1, render_cond_bit) |
PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, info->indirect_offset);
radeon_emit(cs, dispatch_initiator);
} else {
radeon_emit(cs, PKT3(PKT3_DISPATCH_DIRECT, 3, render_cond_bit) |
PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, info->grid[0]);
radeon_emit(cs, info->grid[1]);
radeon_emit(cs, info->grid[2]);
radeon_emit(cs, dispatch_initiator);
}
}
static void si_launch_grid(
struct pipe_context *ctx, const struct pipe_grid_info *info)
{
struct si_context *sctx = (struct si_context*)ctx;
struct si_compute *program = sctx->cs_shader_state.program;
const amd_kernel_code_t *code_object =
si_compute_get_code_object(program, info->pc);
int i;
/* HW bug workaround when CS threadgroups > 256 threads and async
* compute isn't used, i.e. only one compute job can run at a time.
* If async compute is possible, the threadgroup size must be limited
* to 256 threads on all queues to avoid the bug.
* Only SI and certain CIK chips are affected.
*/
bool cs_regalloc_hang =
(sctx->chip_class == SI ||
sctx->family == CHIP_BONAIRE ||
sctx->family == CHIP_KABINI) &&
info->block[0] * info->block[1] * info->block[2] > 256;
if (cs_regalloc_hang)
sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
SI_CONTEXT_CS_PARTIAL_FLUSH;
if (program->ir_type != PIPE_SHADER_IR_NATIVE &&
program->shader.compilation_failed)
return;
if (sctx->last_num_draw_calls != sctx->num_draw_calls) {
si_update_fb_dirtiness_after_rendering(sctx);
sctx->last_num_draw_calls = sctx->num_draw_calls;
}
si_decompress_textures(sctx, 1 << PIPE_SHADER_COMPUTE);
/* Add buffer sizes for memory checking in need_cs_space. */
si_context_add_resource_size(sctx, &program->shader.bo->b.b);
/* TODO: add the scratch buffer */
if (info->indirect) {
si_context_add_resource_size(sctx, info->indirect);
/* Indirect buffers use TC L2 on GFX9, but not older hw. */
if (sctx->chip_class <= VI &&
r600_resource(info->indirect)->TC_L2_dirty) {
sctx->flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
r600_resource(info->indirect)->TC_L2_dirty = false;
}
}
si_need_gfx_cs_space(sctx);
if (!sctx->cs_shader_state.initialized)
si_initialize_compute(sctx);
if (sctx->flags)
si_emit_cache_flush(sctx);
if (!si_switch_compute_shader(sctx, program, &program->shader,
code_object, info->pc))
return;
si_upload_compute_shader_descriptors(sctx);
si_emit_compute_shader_pointers(sctx);
if (si_is_atom_dirty(sctx, &sctx->atoms.s.render_cond)) {
sctx->atoms.s.render_cond.emit(sctx);
si_set_atom_dirty(sctx, &sctx->atoms.s.render_cond, false);
}
if ((program->input_size ||
program->ir_type == PIPE_SHADER_IR_NATIVE) &&
unlikely(!si_upload_compute_input(sctx, code_object, info))) {
return;
}
/* Global buffers */
for (i = 0; i < MAX_GLOBAL_BUFFERS; i++) {
struct r600_resource *buffer =
r600_resource(program->global_buffers[i]);
if (!buffer) {
continue;
}
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, buffer,
RADEON_USAGE_READWRITE,
RADEON_PRIO_COMPUTE_GLOBAL);
}
if (program->ir_type != PIPE_SHADER_IR_NATIVE)
si_setup_tgsi_grid(sctx, info);
si_emit_dispatch_packets(sctx, info);
if (unlikely(sctx->current_saved_cs)) {
si_trace_emit(sctx);
si_log_compute_state(sctx, sctx->log);
}
sctx->compute_is_busy = true;
sctx->num_compute_calls++;
if (sctx->cs_shader_state.uses_scratch)
sctx->num_spill_compute_calls++;
if (cs_regalloc_hang)
sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH;
}
void si_destroy_compute(struct si_compute *program)
{
if (program->ir_type != PIPE_SHADER_IR_NATIVE) {
util_queue_drop_job(&program->screen->shader_compiler_queue,
&program->ready);
util_queue_fence_destroy(&program->ready);
}
si_shader_destroy(&program->shader);
FREE(program);
}
static void si_delete_compute_state(struct pipe_context *ctx, void* state){
struct si_compute *program = (struct si_compute *)state;
struct si_context *sctx = (struct si_context*)ctx;
if (!state)
return;
if (program == sctx->cs_shader_state.program)
sctx->cs_shader_state.program = NULL;
if (program == sctx->cs_shader_state.emitted_program)
sctx->cs_shader_state.emitted_program = NULL;
si_compute_reference(&program, NULL);
}
static void si_set_compute_resources(struct pipe_context * ctx_,
unsigned start, unsigned count,
struct pipe_surface ** surfaces) { }
void si_init_compute_functions(struct si_context *sctx)
{
sctx->b.create_compute_state = si_create_compute_state;
sctx->b.delete_compute_state = si_delete_compute_state;
sctx->b.bind_compute_state = si_bind_compute_state;
sctx->b.set_compute_resources = si_set_compute_resources;
sctx->b.set_global_binding = si_set_global_binding;
sctx->b.launch_grid = si_launch_grid;
}