blob: 2423aa7378f7688d43d983f70213e92f74c4dbe1 [file] [log] [blame]
/****************************************************************************
* Copyright (C) 2014-2016 Intel Corporation. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* @file api.cpp
*
* @brief API implementation
*
******************************************************************************/
#include <cfloat>
#include <cmath>
#include <cstdio>
#include <new>
#include "core/api.h"
#include "core/backend.h"
#include "core/context.h"
#include "core/depthstencil.h"
#include "core/frontend.h"
#include "core/rasterizer.h"
#include "core/rdtsc_core.h"
#include "core/threads.h"
#include "core/tilemgr.h"
#include "core/clip.h"
#include "core/utils.h"
#include "common/os.h"
static const SWR_RECT g_MaxScissorRect = { 0, 0, KNOB_MAX_SCISSOR_X, KNOB_MAX_SCISSOR_Y };
void SetupDefaultState(SWR_CONTEXT *pContext);
static INLINE SWR_CONTEXT* GetContext(HANDLE hContext)
{
return (SWR_CONTEXT*)hContext;
}
void WakeAllThreads(SWR_CONTEXT *pContext)
{
pContext->FifosNotEmpty.notify_all();
}
//////////////////////////////////////////////////////////////////////////
/// @brief Create SWR Context.
/// @param pCreateInfo - pointer to creation info.
HANDLE SwrCreateContext(
SWR_CREATECONTEXT_INFO* pCreateInfo)
{
RDTSC_RESET();
RDTSC_INIT(0);
void* pContextMem = AlignedMalloc(sizeof(SWR_CONTEXT), KNOB_SIMD_WIDTH * 4);
memset(pContextMem, 0, sizeof(SWR_CONTEXT));
SWR_CONTEXT *pContext = new (pContextMem) SWR_CONTEXT();
pContext->privateStateSize = pCreateInfo->privateStateSize;
pContext->dcRing.Init(KNOB_MAX_DRAWS_IN_FLIGHT);
pContext->dsRing.Init(KNOB_MAX_DRAWS_IN_FLIGHT);
pContext->pMacroTileManagerArray = (MacroTileMgr*)AlignedMalloc(sizeof(MacroTileMgr) * KNOB_MAX_DRAWS_IN_FLIGHT, 64);
pContext->pDispatchQueueArray = (DispatchQueue*)AlignedMalloc(sizeof(DispatchQueue) * KNOB_MAX_DRAWS_IN_FLIGHT, 64);
for (uint32_t dc = 0; dc < KNOB_MAX_DRAWS_IN_FLIGHT; ++dc)
{
pContext->dcRing[dc].pArena = new CachingArena(pContext->cachingArenaAllocator);
new (&pContext->pMacroTileManagerArray[dc]) MacroTileMgr(*pContext->dcRing[dc].pArena);
new (&pContext->pDispatchQueueArray[dc]) DispatchQueue();
pContext->dsRing[dc].pArena = new CachingArena(pContext->cachingArenaAllocator);
}
pContext->threadInfo.MAX_WORKER_THREADS = KNOB_MAX_WORKER_THREADS;
pContext->threadInfo.MAX_NUMA_NODES = KNOB_MAX_NUMA_NODES;
pContext->threadInfo.MAX_CORES_PER_NUMA_NODE = KNOB_MAX_CORES_PER_NUMA_NODE;
pContext->threadInfo.MAX_THREADS_PER_CORE = KNOB_MAX_THREADS_PER_CORE;
pContext->threadInfo.SINGLE_THREADED = KNOB_SINGLE_THREADED;
if (pCreateInfo->pThreadInfo)
{
pContext->threadInfo = *pCreateInfo->pThreadInfo;
}
memset(&pContext->WaitLock, 0, sizeof(pContext->WaitLock));
memset(&pContext->FifosNotEmpty, 0, sizeof(pContext->FifosNotEmpty));
new (&pContext->WaitLock) std::mutex();
new (&pContext->FifosNotEmpty) std::condition_variable();
CreateThreadPool(pContext, &pContext->threadPool);
pContext->ppScratch = new uint8_t*[pContext->NumWorkerThreads];
pContext->pStats = (SWR_STATS*)AlignedMalloc(sizeof(SWR_STATS) * pContext->NumWorkerThreads, 64);
#if defined(KNOB_ENABLE_AR)
// Setup ArchRast thread contexts which includes +1 for API thread.
pContext->pArContext = new HANDLE[pContext->NumWorkerThreads+1];
pContext->pArContext[pContext->NumWorkerThreads] = ArchRast::CreateThreadContext(ArchRast::AR_THREAD::API);
#endif
// Allocate scratch space for workers.
///@note We could lazily allocate this but its rather small amount of memory.
for (uint32_t i = 0; i < pContext->NumWorkerThreads; ++i)
{
#if defined(_WIN32)
uint32_t numaNode = pContext->threadPool.pThreadData ?
pContext->threadPool.pThreadData[i].numaId : 0;
pContext->ppScratch[i] = (uint8_t*)VirtualAllocExNuma(
GetCurrentProcess(), nullptr, 32 * sizeof(KILOBYTE),
MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE,
numaNode);
#else
pContext->ppScratch[i] = (uint8_t*)AlignedMalloc(32 * sizeof(KILOBYTE), KNOB_SIMD_WIDTH * 4);
#endif
#if defined(KNOB_ENABLE_AR)
// Initialize worker thread context for ArchRast.
pContext->pArContext[i] = ArchRast::CreateThreadContext(ArchRast::AR_THREAD::WORKER);
#endif
}
// State setup AFTER context is fully initialized
SetupDefaultState(pContext);
// initialize hot tile manager
pContext->pHotTileMgr = new HotTileMgr();
// initialize function pointer tables
InitClearTilesTable();
// initialize callback functions
pContext->pfnLoadTile = pCreateInfo->pfnLoadTile;
pContext->pfnStoreTile = pCreateInfo->pfnStoreTile;
pContext->pfnClearTile = pCreateInfo->pfnClearTile;
pContext->pfnUpdateSoWriteOffset = pCreateInfo->pfnUpdateSoWriteOffset;
pContext->pfnUpdateStats = pCreateInfo->pfnUpdateStats;
pContext->pfnUpdateStatsFE = pCreateInfo->pfnUpdateStatsFE;
// pass pointer to bucket manager back to caller
#ifdef KNOB_ENABLE_RDTSC
pCreateInfo->pBucketMgr = &gBucketMgr;
#endif
pCreateInfo->contextSaveSize = sizeof(API_STATE);
StartThreadPool(pContext, &pContext->threadPool);
return (HANDLE)pContext;
}
void CopyState(DRAW_STATE& dst, const DRAW_STATE& src)
{
memcpy(&dst.state, &src.state, sizeof(API_STATE));
}
template<bool IsDraw>
void QueueWork(SWR_CONTEXT *pContext)
{
DRAW_CONTEXT* pDC = pContext->pCurDrawContext;
uint32_t dcIndex = pDC->drawId % KNOB_MAX_DRAWS_IN_FLIGHT;
if (IsDraw)
{
pDC->pTileMgr = &pContext->pMacroTileManagerArray[dcIndex];
pDC->pTileMgr->initialize();
}
// Each worker thread looks at a DC for both FE and BE work at different times and so we
// multiply threadDone by 2. When the threadDone counter has reached 0 then all workers
// have moved past this DC. (i.e. Each worker has checked this DC for both FE and BE work and
// then moved on if all work is done.)
pContext->pCurDrawContext->threadsDone = pContext->NumFEThreads + pContext->NumBEThreads;
if (IsDraw)
{
InterlockedIncrement((volatile LONG*)&pContext->drawsOutstandingFE);
}
_ReadWriteBarrier();
{
std::unique_lock<std::mutex> lock(pContext->WaitLock);
pContext->dcRing.Enqueue();
}
if (pContext->threadInfo.SINGLE_THREADED)
{
// flush denormals to 0
uint32_t mxcsr = _mm_getcsr();
_mm_setcsr(mxcsr | _MM_FLUSH_ZERO_ON | _MM_DENORMALS_ZERO_ON);
if (IsDraw)
{
uint32_t curDraw[2] = { pContext->pCurDrawContext->drawId, pContext->pCurDrawContext->drawId };
WorkOnFifoFE(pContext, 0, curDraw[0]);
WorkOnFifoBE(pContext, 0, curDraw[1], pContext->singleThreadLockedTiles, 0, 0);
}
else
{
uint32_t curDispatch = pContext->pCurDrawContext->drawId;
WorkOnCompute(pContext, 0, curDispatch);
}
// Dequeue the work here, if not already done, since we're single threaded (i.e. no workers).
while (CompleteDrawContext(pContext, pContext->pCurDrawContext) > 0) {}
// restore csr
_mm_setcsr(mxcsr);
}
else
{
AR_API_BEGIN(APIDrawWakeAllThreads, pDC->drawId);
WakeAllThreads(pContext);
AR_API_END(APIDrawWakeAllThreads, 1);
}
// Set current draw context to NULL so that next state call forces a new draw context to be created and populated.
pContext->pPrevDrawContext = pContext->pCurDrawContext;
pContext->pCurDrawContext = nullptr;
}
INLINE void QueueDraw(SWR_CONTEXT* pContext)
{
QueueWork<true>(pContext);
}
INLINE void QueueDispatch(SWR_CONTEXT* pContext)
{
QueueWork<false>(pContext);
}
DRAW_CONTEXT* GetDrawContext(SWR_CONTEXT *pContext, bool isSplitDraw = false)
{
AR_API_BEGIN(APIGetDrawContext, 0);
// If current draw context is null then need to obtain a new draw context to use from ring.
if (pContext->pCurDrawContext == nullptr)
{
// Need to wait for a free entry.
while (pContext->dcRing.IsFull())
{
_mm_pause();
}
uint64_t curDraw = pContext->dcRing.GetHead();
uint32_t dcIndex = curDraw % KNOB_MAX_DRAWS_IN_FLIGHT;
if ((pContext->frameCount - pContext->lastFrameChecked) > 2 ||
(curDraw - pContext->lastDrawChecked) > 0x10000)
{
// Take this opportunity to clean-up old arena allocations
pContext->cachingArenaAllocator.FreeOldBlocks();
pContext->lastFrameChecked = pContext->frameCount;
pContext->lastDrawChecked = curDraw;
}
DRAW_CONTEXT* pCurDrawContext = &pContext->dcRing[dcIndex];
pContext->pCurDrawContext = pCurDrawContext;
// Assign next available entry in DS ring to this DC.
uint32_t dsIndex = pContext->curStateId % KNOB_MAX_DRAWS_IN_FLIGHT;
pCurDrawContext->pState = &pContext->dsRing[dsIndex];
// Copy previous state to current state.
if (pContext->pPrevDrawContext)
{
DRAW_CONTEXT* pPrevDrawContext = pContext->pPrevDrawContext;
// If we're splitting our draw then we can just use the same state from the previous
// draw. In this case, we won't increment the DS ring index so the next non-split
// draw can receive the state.
if (isSplitDraw == false)
{
CopyState(*pCurDrawContext->pState, *pPrevDrawContext->pState);
// Should have been cleaned up previously
SWR_ASSERT(pCurDrawContext->pState->pArena->IsEmpty() == true);
pCurDrawContext->pState->pPrivateState = nullptr;
pContext->curStateId++; // Progress state ring index forward.
}
else
{
// If its a split draw then just copy the state pointer over
// since its the same draw.
pCurDrawContext->pState = pPrevDrawContext->pState;
SWR_ASSERT(pPrevDrawContext->cleanupState == false);
}
}
else
{
SWR_ASSERT(pCurDrawContext->pState->pArena->IsEmpty() == true);
pContext->curStateId++; // Progress state ring index forward.
}
SWR_ASSERT(pCurDrawContext->pArena->IsEmpty() == true);
// Reset dependency
pCurDrawContext->dependent = false;
pCurDrawContext->dependentFE = false;
pCurDrawContext->pContext = pContext;
pCurDrawContext->isCompute = false; // Dispatch has to set this to true.
pCurDrawContext->doneFE = false;
pCurDrawContext->FeLock = 0;
pCurDrawContext->threadsDone = 0;
pCurDrawContext->retireCallback.pfnCallbackFunc = nullptr;
pCurDrawContext->dynState.Reset(pContext->NumWorkerThreads);
// Assign unique drawId for this DC
pCurDrawContext->drawId = pContext->dcRing.GetHead();
pCurDrawContext->cleanupState = true;
}
else
{
SWR_ASSERT(isSplitDraw == false, "Split draw should only be used when obtaining a new DC");
}
AR_API_END(APIGetDrawContext, 0);
return pContext->pCurDrawContext;
}
API_STATE* GetDrawState(SWR_CONTEXT *pContext)
{
DRAW_CONTEXT* pDC = GetDrawContext(pContext);
SWR_ASSERT(pDC->pState != nullptr);
return &pDC->pState->state;
}
void SwrDestroyContext(HANDLE hContext)
{
SWR_CONTEXT *pContext = GetContext(hContext);
DRAW_CONTEXT* pDC = GetDrawContext(pContext);
pDC->FeWork.type = SHUTDOWN;
pDC->FeWork.pfnWork = ProcessShutdown;
//enqueue
QueueDraw(pContext);
DestroyThreadPool(pContext, &pContext->threadPool);
// free the fifos
for (uint32_t i = 0; i < KNOB_MAX_DRAWS_IN_FLIGHT; ++i)
{
AlignedFree(pContext->dcRing[i].dynState.pStats);
delete pContext->dcRing[i].pArena;
delete pContext->dsRing[i].pArena;
pContext->pMacroTileManagerArray[i].~MacroTileMgr();
pContext->pDispatchQueueArray[i].~DispatchQueue();
}
AlignedFree(pContext->pDispatchQueueArray);
AlignedFree(pContext->pMacroTileManagerArray);
// Free scratch space.
for (uint32_t i = 0; i < pContext->NumWorkerThreads; ++i)
{
#if defined(_WIN32)
VirtualFree(pContext->ppScratch[i], 0, MEM_RELEASE);
#else
AlignedFree(pContext->ppScratch[i]);
#endif
#if defined(KNOB_ENABLE_AR)
ArchRast::DestroyThreadContext(pContext->pArContext[i]);
#endif
}
delete[] pContext->ppScratch;
AlignedFree(pContext->pStats);
delete(pContext->pHotTileMgr);
pContext->~SWR_CONTEXT();
AlignedFree(GetContext(hContext));
}
void SWR_API SwrSaveState(
HANDLE hContext,
void* pOutputStateBlock,
size_t memSize)
{
SWR_CONTEXT *pContext = GetContext(hContext);
auto pSrc = GetDrawState(pContext);
SWR_ASSERT(pOutputStateBlock && memSize >= sizeof(*pSrc));
memcpy(pOutputStateBlock, pSrc, sizeof(*pSrc));
}
void SWR_API SwrRestoreState(
HANDLE hContext,
const void* pStateBlock,
size_t memSize)
{
SWR_CONTEXT *pContext = GetContext(hContext);
auto pDst = GetDrawState(pContext);
SWR_ASSERT(pStateBlock && memSize >= sizeof(*pDst));
memcpy(pDst, pStateBlock, sizeof(*pDst));
}
void SetupDefaultState(SWR_CONTEXT *pContext)
{
API_STATE* pState = GetDrawState(pContext);
pState->rastState.cullMode = SWR_CULLMODE_NONE;
pState->rastState.frontWinding = SWR_FRONTWINDING_CCW;
pState->depthBoundsState.depthBoundsTestEnable = false;
pState->depthBoundsState.depthBoundsTestMinValue = 0.0f;
pState->depthBoundsState.depthBoundsTestMaxValue = 1.0f;
}
void SwrSync(HANDLE hContext, PFN_CALLBACK_FUNC pfnFunc, uint64_t userData, uint64_t userData2, uint64_t userData3)
{
SWR_ASSERT(pfnFunc != nullptr);
SWR_CONTEXT *pContext = GetContext(hContext);
DRAW_CONTEXT* pDC = GetDrawContext(pContext);
AR_API_BEGIN(APISync, 0);
pDC->FeWork.type = SYNC;
pDC->FeWork.pfnWork = ProcessSync;
// Setup callback function
pDC->retireCallback.pfnCallbackFunc = pfnFunc;
pDC->retireCallback.userData = userData;
pDC->retireCallback.userData2 = userData2;
pDC->retireCallback.userData3 = userData3;
AR_API_EVENT(SwrSyncEvent(pDC->drawId));
//enqueue
QueueDraw(pContext);
AR_API_END(APISync, 1);
}
void SwrWaitForIdle(HANDLE hContext)
{
SWR_CONTEXT *pContext = GetContext(hContext);
AR_API_BEGIN(APIWaitForIdle, 0);
while (!pContext->dcRing.IsEmpty())
{
_mm_pause();
}
AR_API_END(APIWaitForIdle, 1);
}
void SwrWaitForIdleFE(HANDLE hContext)
{
SWR_CONTEXT *pContext = GetContext(hContext);
AR_API_BEGIN(APIWaitForIdle, 0);
while (pContext->drawsOutstandingFE > 0)
{
_mm_pause();
}
AR_API_END(APIWaitForIdle, 1);
}
void SwrSetVertexBuffers(
HANDLE hContext,
uint32_t numBuffers,
const SWR_VERTEX_BUFFER_STATE* pVertexBuffers)
{
API_STATE* pState = GetDrawState(GetContext(hContext));
for (uint32_t i = 0; i < numBuffers; ++i)
{
const SWR_VERTEX_BUFFER_STATE *pVB = &pVertexBuffers[i];
pState->vertexBuffers[pVB->index] = *pVB;
}
}
void SwrSetIndexBuffer(
HANDLE hContext,
const SWR_INDEX_BUFFER_STATE* pIndexBuffer)
{
API_STATE* pState = GetDrawState(GetContext(hContext));
pState->indexBuffer = *pIndexBuffer;
}
void SwrSetFetchFunc(
HANDLE hContext,
PFN_FETCH_FUNC pfnFetchFunc)
{
API_STATE* pState = GetDrawState(GetContext(hContext));
pState->pfnFetchFunc = pfnFetchFunc;
}
void SwrSetSoFunc(
HANDLE hContext,
PFN_SO_FUNC pfnSoFunc,
uint32_t streamIndex)
{
API_STATE* pState = GetDrawState(GetContext(hContext));
SWR_ASSERT(streamIndex < MAX_SO_STREAMS);
pState->pfnSoFunc[streamIndex] = pfnSoFunc;
}
void SwrSetSoState(
HANDLE hContext,
SWR_STREAMOUT_STATE* pSoState)
{
API_STATE* pState = GetDrawState(GetContext(hContext));
pState->soState = *pSoState;
}
void SwrSetSoBuffers(
HANDLE hContext,
SWR_STREAMOUT_BUFFER* pSoBuffer,
uint32_t slot)
{
API_STATE* pState = GetDrawState(GetContext(hContext));
SWR_ASSERT((slot < 4), "There are only 4 SO buffer slots [0, 3]\nSlot requested: %d", slot);
pState->soBuffer[slot] = *pSoBuffer;
}
void SwrSetVertexFunc(
HANDLE hContext,
PFN_VERTEX_FUNC pfnVertexFunc)
{
API_STATE* pState = GetDrawState(GetContext(hContext));
pState->pfnVertexFunc = pfnVertexFunc;
}
void SwrSetFrontendState(
HANDLE hContext,
SWR_FRONTEND_STATE *pFEState)
{
API_STATE* pState = GetDrawState(GetContext(hContext));
pState->frontendState = *pFEState;
}
void SwrSetGsState(
HANDLE hContext,
SWR_GS_STATE *pGSState)
{
API_STATE* pState = GetDrawState(GetContext(hContext));
pState->gsState = *pGSState;
}
void SwrSetGsFunc(
HANDLE hContext,
PFN_GS_FUNC pfnGsFunc)
{
API_STATE* pState = GetDrawState(GetContext(hContext));
pState->pfnGsFunc = pfnGsFunc;
}
void SwrSetCsFunc(
HANDLE hContext,
PFN_CS_FUNC pfnCsFunc,
uint32_t totalThreadsInGroup,
uint32_t totalSpillFillSize)
{
API_STATE* pState = GetDrawState(GetContext(hContext));
pState->pfnCsFunc = pfnCsFunc;
pState->totalThreadsInGroup = totalThreadsInGroup;
pState->totalSpillFillSize = totalSpillFillSize;
}
void SwrSetTsState(
HANDLE hContext,
SWR_TS_STATE *pState)
{
API_STATE* pApiState = GetDrawState(GetContext(hContext));
pApiState->tsState = *pState;
}
void SwrSetHsFunc(
HANDLE hContext,
PFN_HS_FUNC pfnFunc)
{
API_STATE* pApiState = GetDrawState(GetContext(hContext));
pApiState->pfnHsFunc = pfnFunc;
}
void SwrSetDsFunc(
HANDLE hContext,
PFN_DS_FUNC pfnFunc)
{
API_STATE* pApiState = GetDrawState(GetContext(hContext));
pApiState->pfnDsFunc = pfnFunc;
}
void SwrSetDepthStencilState(
HANDLE hContext,
SWR_DEPTH_STENCIL_STATE *pDSState)
{
API_STATE* pState = GetDrawState(GetContext(hContext));
pState->depthStencilState = *pDSState;
}
void SwrSetBackendState(
HANDLE hContext,
SWR_BACKEND_STATE *pBEState)
{
API_STATE* pState = GetDrawState(GetContext(hContext));
pState->backendState = *pBEState;
}
void SwrSetDepthBoundsState(
HANDLE hContext,
SWR_DEPTH_BOUNDS_STATE *pDBState)
{
API_STATE* pState = GetDrawState(GetContext(hContext));
pState->depthBoundsState = *pDBState;
}
void SwrSetPixelShaderState(
HANDLE hContext,
SWR_PS_STATE *pPSState)
{
API_STATE *pState = GetDrawState(GetContext(hContext));
pState->psState = *pPSState;
}
void SwrSetBlendState(
HANDLE hContext,
SWR_BLEND_STATE *pBlendState)
{
API_STATE *pState = GetDrawState(GetContext(hContext));
memcpy(&pState->blendState, pBlendState, sizeof(SWR_BLEND_STATE));
}
void SwrSetBlendFunc(
HANDLE hContext,
uint32_t renderTarget,
PFN_BLEND_JIT_FUNC pfnBlendFunc)
{
SWR_ASSERT(renderTarget < SWR_NUM_RENDERTARGETS);
API_STATE *pState = GetDrawState(GetContext(hContext));
pState->pfnBlendFunc[renderTarget] = pfnBlendFunc;
}
// update guardband multipliers for the viewport
void updateGuardbands(API_STATE *pState)
{
uint32_t numGbs = pState->gsState.emitsRenderTargetArrayIndex ? KNOB_NUM_VIEWPORTS_SCISSORS : 1;
for(uint32_t i = 0; i < numGbs; ++i)
{
// guardband center is viewport center
pState->gbState.left[i] = KNOB_GUARDBAND_WIDTH / pState->vp[i].width;
pState->gbState.right[i] = KNOB_GUARDBAND_WIDTH / pState->vp[i].width;
pState->gbState.top[i] = KNOB_GUARDBAND_HEIGHT / pState->vp[i].height;
pState->gbState.bottom[i] = KNOB_GUARDBAND_HEIGHT / pState->vp[i].height;
}
}
void SwrSetRastState(
HANDLE hContext,
const SWR_RASTSTATE *pRastState)
{
SWR_CONTEXT *pContext = GetContext(hContext);
API_STATE* pState = GetDrawState(pContext);
memcpy(&pState->rastState, pRastState, sizeof(SWR_RASTSTATE));
}
void SwrSetViewports(
HANDLE hContext,
uint32_t numViewports,
const SWR_VIEWPORT* pViewports,
const SWR_VIEWPORT_MATRICES* pMatrices)
{
SWR_ASSERT(numViewports <= KNOB_NUM_VIEWPORTS_SCISSORS,
"Invalid number of viewports.");
SWR_CONTEXT *pContext = GetContext(hContext);
API_STATE* pState = GetDrawState(pContext);
memcpy(&pState->vp[0], pViewports, sizeof(SWR_VIEWPORT) * numViewports);
// @todo Faster to copy portions of the SOA or just copy all of it?
memcpy(&pState->vpMatrices, pMatrices, sizeof(SWR_VIEWPORT_MATRICES));
updateGuardbands(pState);
}
void SwrSetScissorRects(
HANDLE hContext,
uint32_t numScissors,
const SWR_RECT* pScissors)
{
SWR_ASSERT(numScissors <= KNOB_NUM_VIEWPORTS_SCISSORS,
"Invalid number of scissor rects.");
API_STATE* pState = GetDrawState(GetContext(hContext));
memcpy(&pState->scissorRects[0], pScissors, numScissors * sizeof(pScissors[0]));
};
void SetupMacroTileScissors(DRAW_CONTEXT *pDC)
{
API_STATE *pState = &pDC->pState->state;
uint32_t numScissors = pState->gsState.emitsViewportArrayIndex ? KNOB_NUM_VIEWPORTS_SCISSORS : 1;
pState->scissorsTileAligned = true;
for (uint32_t index = 0; index < numScissors; ++index)
{
SWR_RECT &scissorInFixedPoint = pState->scissorsInFixedPoint[index];
// Set up scissor dimensions based on scissor or viewport
if (pState->rastState.scissorEnable)
{
scissorInFixedPoint = pState->scissorRects[index];
}
else
{
// the vp width and height must be added to origin un-rounded then the result round to -inf.
// The cast to int works for rounding assuming all [left, right, top, bottom] are positive.
scissorInFixedPoint.xmin = (int32_t)pState->vp[index].x;
scissorInFixedPoint.xmax = (int32_t)(pState->vp[index].x + pState->vp[index].width);
scissorInFixedPoint.ymin = (int32_t)pState->vp[index].y;
scissorInFixedPoint.ymax = (int32_t)(pState->vp[index].y + pState->vp[index].height);
}
// Clamp to max rect
scissorInFixedPoint &= g_MaxScissorRect;
// Test for tile alignment
bool tileAligned;
tileAligned = (scissorInFixedPoint.xmin % KNOB_TILE_X_DIM) == 0;
tileAligned &= (scissorInFixedPoint.ymin % KNOB_TILE_Y_DIM) == 0;
tileAligned &= (scissorInFixedPoint.xmax % KNOB_TILE_X_DIM) == 0;
tileAligned &= (scissorInFixedPoint.ymax % KNOB_TILE_Y_DIM) == 0;
pState->scissorsTileAligned &= tileAligned;
// Scale to fixed point
scissorInFixedPoint.xmin *= FIXED_POINT_SCALE;
scissorInFixedPoint.xmax *= FIXED_POINT_SCALE;
scissorInFixedPoint.ymin *= FIXED_POINT_SCALE;
scissorInFixedPoint.ymax *= FIXED_POINT_SCALE;
// Make scissor inclusive
scissorInFixedPoint.xmax -= 1;
scissorInFixedPoint.ymax -= 1;
}
}
// templated backend function tables
extern PFN_BACKEND_FUNC gBackendNullPs[SWR_MULTISAMPLE_TYPE_COUNT];
extern PFN_BACKEND_FUNC gBackendSingleSample[SWR_INPUT_COVERAGE_COUNT][2][2];
extern PFN_BACKEND_FUNC gBackendSampleRateTable[SWR_MULTISAMPLE_TYPE_COUNT][SWR_INPUT_COVERAGE_COUNT][2][2];
void SetupPipeline(DRAW_CONTEXT *pDC)
{
DRAW_STATE* pState = pDC->pState;
const SWR_RASTSTATE &rastState = pState->state.rastState;
const SWR_PS_STATE &psState = pState->state.psState;
BACKEND_FUNCS& backendFuncs = pState->backendFuncs;
// setup backend
if (psState.pfnPixelShader == nullptr)
{
backendFuncs.pfnBackend = gBackendNullPs[pState->state.rastState.sampleCount];
}
else
{
const uint32_t forcedSampleCount = (rastState.forcedSampleCount) ? 1 : 0;
const bool bMultisampleEnable = ((rastState.sampleCount > SWR_MULTISAMPLE_1X) || forcedSampleCount) ? 1 : 0;
const uint32_t centroid = ((psState.barycentricsMask & SWR_BARYCENTRIC_CENTROID_MASK) > 0) ? 1 : 0;
const uint32_t canEarlyZ = (psState.forceEarlyZ || (!psState.writesODepth && !psState.usesSourceDepth && !psState.usesUAV)) ? 1 : 0;
SWR_BARYCENTRICS_MASK barycentricsMask = (SWR_BARYCENTRICS_MASK)psState.barycentricsMask;
// select backend function
switch(psState.shadingRate)
{
case SWR_SHADING_RATE_PIXEL:
if(bMultisampleEnable)
{
// always need to generate I & J per sample for Z interpolation
barycentricsMask = (SWR_BARYCENTRICS_MASK)(barycentricsMask | SWR_BARYCENTRIC_PER_SAMPLE_MASK);
backendFuncs.pfnBackend = gBackendPixelRateTable[rastState.sampleCount][rastState.bIsCenterPattern][psState.inputCoverage]
[centroid][forcedSampleCount][canEarlyZ]
;
}
else
{
// always need to generate I & J per pixel for Z interpolation
barycentricsMask = (SWR_BARYCENTRICS_MASK)(barycentricsMask | SWR_BARYCENTRIC_PER_PIXEL_MASK);
backendFuncs.pfnBackend = gBackendSingleSample[psState.inputCoverage][centroid][canEarlyZ];
}
break;
case SWR_SHADING_RATE_SAMPLE:
SWR_ASSERT(rastState.bIsCenterPattern != true);
// always need to generate I & J per sample for Z interpolation
barycentricsMask = (SWR_BARYCENTRICS_MASK)(barycentricsMask | SWR_BARYCENTRIC_PER_SAMPLE_MASK);
backendFuncs.pfnBackend = gBackendSampleRateTable[rastState.sampleCount][psState.inputCoverage][centroid][canEarlyZ];
break;
default:
SWR_ASSERT(0 && "Invalid shading rate");
break;
}
}
PFN_PROCESS_PRIMS pfnBinner;
#if USE_SIMD16_FRONTEND
PFN_PROCESS_PRIMS_SIMD16 pfnBinner_simd16;
#endif
switch (pState->state.topology)
{
case TOP_POINT_LIST:
pState->pfnProcessPrims = ClipPoints;
pfnBinner = BinPoints;
#if USE_SIMD16_FRONTEND
pState->pfnProcessPrims_simd16 = ClipPoints_simd16;
pfnBinner_simd16 = BinPoints_simd16;
#endif
break;
case TOP_LINE_LIST:
case TOP_LINE_STRIP:
case TOP_LINE_LOOP:
case TOP_LINE_LIST_ADJ:
case TOP_LISTSTRIP_ADJ:
pState->pfnProcessPrims = ClipLines;
pfnBinner = BinLines;
#if USE_SIMD16_FRONTEND
pState->pfnProcessPrims_simd16 = ClipLines_simd16;
pfnBinner_simd16 = BinLines_simd16;
#endif
break;
default:
pState->pfnProcessPrims = ClipTriangles;
pfnBinner = GetBinTrianglesFunc((rastState.conservativeRast > 0));
#if USE_SIMD16_FRONTEND
pState->pfnProcessPrims_simd16 = ClipTriangles_simd16;
pfnBinner_simd16 = GetBinTrianglesFunc_simd16((rastState.conservativeRast > 0));
#endif
break;
};
// disable clipper if viewport transform is disabled
if (pState->state.frontendState.vpTransformDisable)
{
pState->pfnProcessPrims = pfnBinner;
#if USE_SIMD16_FRONTEND
pState->pfnProcessPrims_simd16 = pfnBinner_simd16;
#endif
}
if ((pState->state.psState.pfnPixelShader == nullptr) &&
(pState->state.depthStencilState.depthTestEnable == FALSE) &&
(pState->state.depthStencilState.depthWriteEnable == FALSE) &&
(pState->state.depthStencilState.stencilTestEnable == FALSE) &&
(pState->state.depthStencilState.stencilWriteEnable == FALSE) &&
(pState->state.backendState.numAttributes == 0))
{
pState->pfnProcessPrims = nullptr;
#if USE_SIMD16_FRONTEND
pState->pfnProcessPrims_simd16 = nullptr;
#endif
}
if (pState->state.soState.rasterizerDisable == true)
{
pState->pfnProcessPrims = nullptr;
#if USE_SIMD16_FRONTEND
pState->pfnProcessPrims_simd16 = nullptr;
#endif
}
// set up the frontend attribute count
pState->state.feNumAttributes = 0;
const SWR_BACKEND_STATE& backendState = pState->state.backendState;
if (backendState.swizzleEnable)
{
// attribute swizzling is enabled, iterate over the map and record the max attribute used
for (uint32_t i = 0; i < backendState.numAttributes; ++i)
{
pState->state.feNumAttributes = std::max(pState->state.feNumAttributes, (uint32_t)backendState.swizzleMap[i].sourceAttrib + 1);
}
}
else
{
pState->state.feNumAttributes = pState->state.backendState.numAttributes;
}
if (pState->state.soState.soEnable)
{
uint32_t streamMasks = 0;
for (uint32_t i = 0; i < 4; ++i)
{
streamMasks |= pState->state.soState.streamMasks[i];
}
DWORD maxAttrib;
if (_BitScanReverse(&maxAttrib, streamMasks))
{
pState->state.feNumAttributes = std::max(pState->state.feNumAttributes, (uint32_t)(maxAttrib + 1));
}
}
// complicated logic to test for cases where we don't need backing hottile memory for a draw
// have to check for the special case where depth/stencil test is enabled but depthwrite is disabled.
pState->state.depthHottileEnable = ((!(pState->state.depthStencilState.depthTestEnable &&
!pState->state.depthStencilState.depthWriteEnable &&
!pState->state.depthBoundsState.depthBoundsTestEnable &&
pState->state.depthStencilState.depthTestFunc == ZFUNC_ALWAYS)) &&
(pState->state.depthStencilState.depthTestEnable ||
pState->state.depthStencilState.depthWriteEnable ||
pState->state.depthBoundsState.depthBoundsTestEnable)) ? true : false;
pState->state.stencilHottileEnable = (((!(pState->state.depthStencilState.stencilTestEnable &&
!pState->state.depthStencilState.stencilWriteEnable &&
pState->state.depthStencilState.stencilTestFunc == ZFUNC_ALWAYS)) ||
// for stencil we have to check the double sided state as well
(!(pState->state.depthStencilState.doubleSidedStencilTestEnable &&
!pState->state.depthStencilState.stencilWriteEnable &&
pState->state.depthStencilState.backfaceStencilTestFunc == ZFUNC_ALWAYS))) &&
(pState->state.depthStencilState.stencilTestEnable ||
pState->state.depthStencilState.stencilWriteEnable)) ? true : false;
uint32_t numRTs = pState->state.psState.numRenderTargets;
pState->state.colorHottileEnable = 0;
if (psState.pfnPixelShader != nullptr)
{
for (uint32_t rt = 0; rt < numRTs; ++rt)
{
pState->state.colorHottileEnable |=
(!pState->state.blendState.renderTarget[rt].writeDisableAlpha ||
!pState->state.blendState.renderTarget[rt].writeDisableRed ||
!pState->state.blendState.renderTarget[rt].writeDisableGreen ||
!pState->state.blendState.renderTarget[rt].writeDisableBlue) ? (1 << rt) : 0;
}
}
// Setup depth quantization function
if (pState->state.depthHottileEnable)
{
switch (pState->state.rastState.depthFormat)
{
case R32_FLOAT_X8X24_TYPELESS: pState->state.pfnQuantizeDepth = QuantizeDepth < R32_FLOAT_X8X24_TYPELESS > ; break;
case R32_FLOAT: pState->state.pfnQuantizeDepth = QuantizeDepth < R32_FLOAT > ; break;
case R24_UNORM_X8_TYPELESS: pState->state.pfnQuantizeDepth = QuantizeDepth < R24_UNORM_X8_TYPELESS > ; break;
case R16_UNORM: pState->state.pfnQuantizeDepth = QuantizeDepth < R16_UNORM > ; break;
default: SWR_INVALID("Unsupported depth format for depth quantiztion.");
pState->state.pfnQuantizeDepth = QuantizeDepth < R32_FLOAT > ;
}
}
else
{
// set up pass-through quantize if depth isn't enabled
pState->state.pfnQuantizeDepth = QuantizeDepth < R32_FLOAT > ;
}
}
//////////////////////////////////////////////////////////////////////////
/// @brief InitDraw
/// @param pDC - Draw context to initialize for this draw.
void InitDraw(
DRAW_CONTEXT *pDC,
bool isSplitDraw)
{
// We don't need to re-setup the scissors/pipeline state again for split draw.
if (isSplitDraw == false)
{
SetupMacroTileScissors(pDC);
SetupPipeline(pDC);
}
}
//////////////////////////////////////////////////////////////////////////
/// @brief We can split the draw for certain topologies for better performance.
/// @param totalVerts - Total vertices for draw
/// @param topology - Topology used for draw
uint32_t MaxVertsPerDraw(
DRAW_CONTEXT* pDC,
uint32_t totalVerts,
PRIMITIVE_TOPOLOGY topology)
{
API_STATE& state = pDC->pState->state;
uint32_t vertsPerDraw = totalVerts;
if (state.soState.soEnable)
{
return totalVerts;
}
switch (topology)
{
case TOP_POINT_LIST:
case TOP_TRIANGLE_LIST:
vertsPerDraw = KNOB_MAX_PRIMS_PER_DRAW;
break;
case TOP_PATCHLIST_1:
case TOP_PATCHLIST_2:
case TOP_PATCHLIST_3:
case TOP_PATCHLIST_4:
case TOP_PATCHLIST_5:
case TOP_PATCHLIST_6:
case TOP_PATCHLIST_7:
case TOP_PATCHLIST_8:
case TOP_PATCHLIST_9:
case TOP_PATCHLIST_10:
case TOP_PATCHLIST_11:
case TOP_PATCHLIST_12:
case TOP_PATCHLIST_13:
case TOP_PATCHLIST_14:
case TOP_PATCHLIST_15:
case TOP_PATCHLIST_16:
case TOP_PATCHLIST_17:
case TOP_PATCHLIST_18:
case TOP_PATCHLIST_19:
case TOP_PATCHLIST_20:
case TOP_PATCHLIST_21:
case TOP_PATCHLIST_22:
case TOP_PATCHLIST_23:
case TOP_PATCHLIST_24:
case TOP_PATCHLIST_25:
case TOP_PATCHLIST_26:
case TOP_PATCHLIST_27:
case TOP_PATCHLIST_28:
case TOP_PATCHLIST_29:
case TOP_PATCHLIST_30:
case TOP_PATCHLIST_31:
case TOP_PATCHLIST_32:
if (pDC->pState->state.tsState.tsEnable)
{
uint32_t vertsPerPrim = topology - TOP_PATCHLIST_BASE;
vertsPerDraw = vertsPerPrim * KNOB_MAX_TESS_PRIMS_PER_DRAW;
}
break;
// The Primitive Assembly code can only handle 1 RECT at a time.
case TOP_RECT_LIST:
vertsPerDraw = 3;
break;
default:
// We are not splitting up draws for other topologies.
break;
}
return vertsPerDraw;
}
//////////////////////////////////////////////////////////////////////////
/// @brief DrawInstanced
/// @param hContext - Handle passed back from SwrCreateContext
/// @param topology - Specifies topology for draw.
/// @param numVerts - How many vertices to read sequentially from vertex data (per instance).
/// @param startVertex - Specifies start vertex for draw. (vertex data)
/// @param numInstances - How many instances to render.
/// @param startInstance - Which instance to start sequentially fetching from in each buffer (instanced data)
void DrawInstanced(
HANDLE hContext,
PRIMITIVE_TOPOLOGY topology,
uint32_t numVertices,
uint32_t startVertex,
uint32_t numInstances = 1,
uint32_t startInstance = 0)
{
if (KNOB_TOSS_DRAW)
{
return;
}
SWR_CONTEXT *pContext = GetContext(hContext);
DRAW_CONTEXT* pDC = GetDrawContext(pContext);
AR_API_BEGIN(APIDraw, pDC->drawId);
AR_API_EVENT(DrawInstancedEvent(pDC->drawId, topology, numVertices, startVertex, numInstances, startInstance));
uint32_t maxVertsPerDraw = MaxVertsPerDraw(pDC, numVertices, topology);
uint32_t primsPerDraw = GetNumPrims(topology, maxVertsPerDraw);
uint32_t remainingVerts = numVertices;
API_STATE *pState = &pDC->pState->state;
pState->topology = topology;
pState->forceFront = false;
// disable culling for points/lines
uint32_t oldCullMode = pState->rastState.cullMode;
if (topology == TOP_POINT_LIST)
{
pState->rastState.cullMode = SWR_CULLMODE_NONE;
pState->forceFront = true;
}
else if (topology == TOP_RECT_LIST)
{
pState->rastState.cullMode = SWR_CULLMODE_NONE;
}
int draw = 0;
while (remainingVerts)
{
uint32_t numVertsForDraw = (remainingVerts < maxVertsPerDraw) ?
remainingVerts : maxVertsPerDraw;
bool isSplitDraw = (draw > 0) ? true : false;
DRAW_CONTEXT* pDC = GetDrawContext(pContext, isSplitDraw);
InitDraw(pDC, isSplitDraw);
pDC->FeWork.type = DRAW;
pDC->FeWork.pfnWork = GetProcessDrawFunc(
false, // IsIndexed
false, // bEnableCutIndex
pState->tsState.tsEnable,
pState->gsState.gsEnable,
pState->soState.soEnable,
pDC->pState->pfnProcessPrims != nullptr);
pDC->FeWork.desc.draw.numVerts = numVertsForDraw;
pDC->FeWork.desc.draw.startVertex = startVertex;
pDC->FeWork.desc.draw.numInstances = numInstances;
pDC->FeWork.desc.draw.startInstance = startInstance;
pDC->FeWork.desc.draw.startPrimID = draw * primsPerDraw;
pDC->FeWork.desc.draw.startVertexID = draw * maxVertsPerDraw;
pDC->cleanupState = (remainingVerts == numVertsForDraw);
//enqueue DC
QueueDraw(pContext);
AR_API_EVENT(DrawInstancedSplitEvent(pDC->drawId));
remainingVerts -= numVertsForDraw;
draw++;
}
// restore culling state
pDC = GetDrawContext(pContext);
pDC->pState->state.rastState.cullMode = oldCullMode;
AR_API_END(APIDraw, numVertices * numInstances);
}
//////////////////////////////////////////////////////////////////////////
/// @brief SwrDraw
/// @param hContext - Handle passed back from SwrCreateContext
/// @param topology - Specifies topology for draw.
/// @param startVertex - Specifies start vertex in vertex buffer for draw.
/// @param primCount - Number of vertices.
void SwrDraw(
HANDLE hContext,
PRIMITIVE_TOPOLOGY topology,
uint32_t startVertex,
uint32_t numVertices)
{
DrawInstanced(hContext, topology, numVertices, startVertex);
}
//////////////////////////////////////////////////////////////////////////
/// @brief SwrDrawInstanced
/// @param hContext - Handle passed back from SwrCreateContext
/// @param topology - Specifies topology for draw.
/// @param numVertsPerInstance - How many vertices to read sequentially from vertex data.
/// @param numInstances - How many instances to render.
/// @param startVertex - Specifies start vertex for draw. (vertex data)
/// @param startInstance - Which instance to start sequentially fetching from in each buffer (instanced data)
void SwrDrawInstanced(
HANDLE hContext,
PRIMITIVE_TOPOLOGY topology,
uint32_t numVertsPerInstance,
uint32_t numInstances,
uint32_t startVertex,
uint32_t startInstance
)
{
DrawInstanced(hContext, topology, numVertsPerInstance, startVertex, numInstances, startInstance);
}
//////////////////////////////////////////////////////////////////////////
/// @brief DrawIndexedInstanced
/// @param hContext - Handle passed back from SwrCreateContext
/// @param topology - Specifies topology for draw.
/// @param numIndices - Number of indices to read sequentially from index buffer.
/// @param indexOffset - Starting index into index buffer.
/// @param baseVertex - Vertex in vertex buffer to consider as index "0". Note value is signed.
/// @param numInstances - Number of instances to render.
/// @param startInstance - Which instance to start sequentially fetching from in each buffer (instanced data)
void DrawIndexedInstance(
HANDLE hContext,
PRIMITIVE_TOPOLOGY topology,
uint32_t numIndices,
uint32_t indexOffset,
int32_t baseVertex,
uint32_t numInstances = 1,
uint32_t startInstance = 0)
{
if (KNOB_TOSS_DRAW)
{
return;
}
SWR_CONTEXT *pContext = GetContext(hContext);
DRAW_CONTEXT* pDC = GetDrawContext(pContext);
API_STATE* pState = &pDC->pState->state;
AR_API_BEGIN(APIDrawIndexed, pDC->drawId);
AR_API_EVENT(DrawIndexedInstancedEvent(pDC->drawId, topology, numIndices, indexOffset, baseVertex, numInstances, startInstance));
uint32_t maxIndicesPerDraw = MaxVertsPerDraw(pDC, numIndices, topology);
uint32_t primsPerDraw = GetNumPrims(topology, maxIndicesPerDraw);
uint32_t remainingIndices = numIndices;
uint32_t indexSize = 0;
switch (pState->indexBuffer.format)
{
case R32_UINT: indexSize = sizeof(uint32_t); break;
case R16_UINT: indexSize = sizeof(uint16_t); break;
case R8_UINT: indexSize = sizeof(uint8_t); break;
default:
SWR_INVALID("Invalid index buffer format: %d", pState->indexBuffer.format);
}
int draw = 0;
uint8_t *pIB = (uint8_t*)pState->indexBuffer.pIndices;
pIB += (uint64_t)indexOffset * (uint64_t)indexSize;
pState->topology = topology;
pState->forceFront = false;
// disable culling for points/lines
uint32_t oldCullMode = pState->rastState.cullMode;
if (topology == TOP_POINT_LIST)
{
pState->rastState.cullMode = SWR_CULLMODE_NONE;
pState->forceFront = true;
}
else if (topology == TOP_RECT_LIST)
{
pState->rastState.cullMode = SWR_CULLMODE_NONE;
}
while (remainingIndices)
{
uint32_t numIndicesForDraw = (remainingIndices < maxIndicesPerDraw) ?
remainingIndices : maxIndicesPerDraw;
// When breaking up draw, we need to obtain new draw context for each iteration.
bool isSplitDraw = (draw > 0) ? true : false;
pDC = GetDrawContext(pContext, isSplitDraw);
InitDraw(pDC, isSplitDraw);
pDC->FeWork.type = DRAW;
pDC->FeWork.pfnWork = GetProcessDrawFunc(
true, // IsIndexed
pState->frontendState.bEnableCutIndex,
pState->tsState.tsEnable,
pState->gsState.gsEnable,
pState->soState.soEnable,
pDC->pState->pfnProcessPrims != nullptr);
pDC->FeWork.desc.draw.pDC = pDC;
pDC->FeWork.desc.draw.numIndices = numIndicesForDraw;
pDC->FeWork.desc.draw.pIB = (int*)pIB;
pDC->FeWork.desc.draw.type = pDC->pState->state.indexBuffer.format;
pDC->FeWork.desc.draw.numInstances = numInstances;
pDC->FeWork.desc.draw.startInstance = startInstance;
pDC->FeWork.desc.draw.baseVertex = baseVertex;
pDC->FeWork.desc.draw.startPrimID = draw * primsPerDraw;
pDC->cleanupState = (remainingIndices == numIndicesForDraw);
//enqueue DC
QueueDraw(pContext);
AR_API_EVENT(DrawIndexedInstancedSplitEvent(pDC->drawId));
pIB += maxIndicesPerDraw * indexSize;
remainingIndices -= numIndicesForDraw;
draw++;
}
// Restore culling state
pDC = GetDrawContext(pContext);
pDC->pState->state.rastState.cullMode = oldCullMode;
AR_API_END(APIDrawIndexed, numIndices * numInstances);
}
//////////////////////////////////////////////////////////////////////////
/// @brief DrawIndexed
/// @param hContext - Handle passed back from SwrCreateContext
/// @param topology - Specifies topology for draw.
/// @param numIndices - Number of indices to read sequentially from index buffer.
/// @param indexOffset - Starting index into index buffer.
/// @param baseVertex - Vertex in vertex buffer to consider as index "0". Note value is signed.
void SwrDrawIndexed(
HANDLE hContext,
PRIMITIVE_TOPOLOGY topology,
uint32_t numIndices,
uint32_t indexOffset,
int32_t baseVertex
)
{
DrawIndexedInstance(hContext, topology, numIndices, indexOffset, baseVertex);
}
//////////////////////////////////////////////////////////////////////////
/// @brief SwrDrawIndexedInstanced
/// @param hContext - Handle passed back from SwrCreateContext
/// @param topology - Specifies topology for draw.
/// @param numIndices - Number of indices to read sequentially from index buffer.
/// @param numInstances - Number of instances to render.
/// @param indexOffset - Starting index into index buffer.
/// @param baseVertex - Vertex in vertex buffer to consider as index "0". Note value is signed.
/// @param startInstance - Which instance to start sequentially fetching from in each buffer (instanced data)
void SwrDrawIndexedInstanced(
HANDLE hContext,
PRIMITIVE_TOPOLOGY topology,
uint32_t numIndices,
uint32_t numInstances,
uint32_t indexOffset,
int32_t baseVertex,
uint32_t startInstance)
{
DrawIndexedInstance(hContext, topology, numIndices, indexOffset, baseVertex, numInstances, startInstance);
}
//////////////////////////////////////////////////////////////////////////
/// @brief SwrInvalidateTiles
/// @param hContext - Handle passed back from SwrCreateContext
/// @param attachmentMask - The mask specifies which surfaces attached to the hottiles to invalidate.
/// @param invalidateRect - The pixel-coordinate rectangle to invalidate. This will be expanded to
/// be hottile size-aligned.
void SWR_API SwrInvalidateTiles(
HANDLE hContext,
uint32_t attachmentMask,
const SWR_RECT& invalidateRect)
{
if (KNOB_TOSS_DRAW)
{
return;
}
SWR_CONTEXT *pContext = GetContext(hContext);
DRAW_CONTEXT* pDC = GetDrawContext(pContext);
pDC->FeWork.type = DISCARDINVALIDATETILES;
pDC->FeWork.pfnWork = ProcessDiscardInvalidateTiles;
pDC->FeWork.desc.discardInvalidateTiles.attachmentMask = attachmentMask;
pDC->FeWork.desc.discardInvalidateTiles.rect = invalidateRect;
pDC->FeWork.desc.discardInvalidateTiles.rect &= g_MaxScissorRect;
pDC->FeWork.desc.discardInvalidateTiles.newTileState = SWR_TILE_INVALID;
pDC->FeWork.desc.discardInvalidateTiles.createNewTiles = false;
pDC->FeWork.desc.discardInvalidateTiles.fullTilesOnly = false;
//enqueue
QueueDraw(pContext);
AR_API_EVENT(SwrInvalidateTilesEvent(pDC->drawId));
}
//////////////////////////////////////////////////////////////////////////
/// @brief SwrDiscardRect
/// @param hContext - Handle passed back from SwrCreateContext
/// @param attachmentMask - The mask specifies which surfaces attached to the hottiles to discard.
/// @param rect - The pixel-coordinate rectangle to discard. Only fully-covered hottiles will be
/// discarded.
void SWR_API SwrDiscardRect(
HANDLE hContext,
uint32_t attachmentMask,
const SWR_RECT& rect)
{
if (KNOB_TOSS_DRAW)
{
return;
}
SWR_CONTEXT *pContext = GetContext(hContext);
DRAW_CONTEXT* pDC = GetDrawContext(pContext);
// Queue a load to the hottile
pDC->FeWork.type = DISCARDINVALIDATETILES;
pDC->FeWork.pfnWork = ProcessDiscardInvalidateTiles;
pDC->FeWork.desc.discardInvalidateTiles.attachmentMask = attachmentMask;
pDC->FeWork.desc.discardInvalidateTiles.rect = rect;
pDC->FeWork.desc.discardInvalidateTiles.rect &= g_MaxScissorRect;
pDC->FeWork.desc.discardInvalidateTiles.newTileState = SWR_TILE_RESOLVED;
pDC->FeWork.desc.discardInvalidateTiles.createNewTiles = true;
pDC->FeWork.desc.discardInvalidateTiles.fullTilesOnly = true;
//enqueue
QueueDraw(pContext);
AR_API_EVENT(SwrDiscardRectEvent(pDC->drawId));
}
//////////////////////////////////////////////////////////////////////////
/// @brief SwrDispatch
/// @param hContext - Handle passed back from SwrCreateContext
/// @param threadGroupCountX - Number of thread groups dispatched in X direction
/// @param threadGroupCountY - Number of thread groups dispatched in Y direction
/// @param threadGroupCountZ - Number of thread groups dispatched in Z direction
void SwrDispatch(
HANDLE hContext,
uint32_t threadGroupCountX,
uint32_t threadGroupCountY,
uint32_t threadGroupCountZ)
{
if (KNOB_TOSS_DRAW)
{
return;
}
SWR_CONTEXT *pContext = GetContext(hContext);
DRAW_CONTEXT* pDC = GetDrawContext(pContext);
AR_API_BEGIN(APIDispatch, pDC->drawId);
AR_API_EVENT(DispatchEvent(pDC->drawId, threadGroupCountX, threadGroupCountY, threadGroupCountZ));
pDC->isCompute = true; // This is a compute context.
COMPUTE_DESC* pTaskData = (COMPUTE_DESC*)pDC->pArena->AllocAligned(sizeof(COMPUTE_DESC), 64);
pTaskData->threadGroupCountX = threadGroupCountX;
pTaskData->threadGroupCountY = threadGroupCountY;
pTaskData->threadGroupCountZ = threadGroupCountZ;
uint32_t totalThreadGroups = threadGroupCountX * threadGroupCountY * threadGroupCountZ;
uint32_t dcIndex = pDC->drawId % KNOB_MAX_DRAWS_IN_FLIGHT;
pDC->pDispatch = &pContext->pDispatchQueueArray[dcIndex];
pDC->pDispatch->initialize(totalThreadGroups, pTaskData, &ProcessComputeBE);
QueueDispatch(pContext);
AR_API_END(APIDispatch, threadGroupCountX * threadGroupCountY * threadGroupCountZ);
}
// Deswizzles, converts and stores current contents of the hot tiles to surface
// described by pState
void SWR_API SwrStoreTiles(
HANDLE hContext,
uint32_t attachmentMask,
SWR_TILE_STATE postStoreTileState,
const SWR_RECT& storeRect)
{
if (KNOB_TOSS_DRAW)
{
return;
}
SWR_CONTEXT *pContext = GetContext(hContext);
DRAW_CONTEXT* pDC = GetDrawContext(pContext);
AR_API_BEGIN(APIStoreTiles, pDC->drawId);
pDC->FeWork.type = STORETILES;
pDC->FeWork.pfnWork = ProcessStoreTiles;
pDC->FeWork.desc.storeTiles.attachmentMask = attachmentMask;
pDC->FeWork.desc.storeTiles.postStoreTileState = postStoreTileState;
pDC->FeWork.desc.storeTiles.rect = storeRect;
pDC->FeWork.desc.storeTiles.rect &= g_MaxScissorRect;
//enqueue
QueueDraw(pContext);
AR_API_EVENT(SwrStoreTilesEvent(pDC->drawId));
AR_API_END(APIStoreTiles, 1);
}
//////////////////////////////////////////////////////////////////////////
/// @brief SwrClearRenderTarget - Clear attached render targets / depth / stencil
/// @param hContext - Handle passed back from SwrCreateContext
/// @param attachmentMask - combination of SWR_ATTACHMENT_*_BIT attachments to clear
/// @param renderTargetArrayIndex - the RT array index to clear
/// @param clearColor - color use for clearing render targets
/// @param z - depth value use for clearing depth buffer
/// @param stencil - stencil value used for clearing stencil buffer
/// @param clearRect - The pixel-coordinate rectangle to clear in all cleared buffers
void SWR_API SwrClearRenderTarget(
HANDLE hContext,
uint32_t attachmentMask,
uint32_t renderTargetArrayIndex,
const float clearColor[4],
float z,
uint8_t stencil,
const SWR_RECT& clearRect)
{
if (KNOB_TOSS_DRAW)
{
return;
}
SWR_CONTEXT *pContext = GetContext(hContext);
DRAW_CONTEXT* pDC = GetDrawContext(pContext);
AR_API_BEGIN(APIClearRenderTarget, pDC->drawId);
pDC->FeWork.type = CLEAR;
pDC->FeWork.pfnWork = ProcessClear;
pDC->FeWork.desc.clear.rect = clearRect;
pDC->FeWork.desc.clear.rect &= g_MaxScissorRect;
pDC->FeWork.desc.clear.attachmentMask = attachmentMask;
pDC->FeWork.desc.clear.renderTargetArrayIndex = renderTargetArrayIndex;
pDC->FeWork.desc.clear.clearDepth = z;
pDC->FeWork.desc.clear.clearRTColor[0] = clearColor[0];
pDC->FeWork.desc.clear.clearRTColor[1] = clearColor[1];
pDC->FeWork.desc.clear.clearRTColor[2] = clearColor[2];
pDC->FeWork.desc.clear.clearRTColor[3] = clearColor[3];
pDC->FeWork.desc.clear.clearStencil = stencil;
// enqueue draw
QueueDraw(pContext);
AR_API_END(APIClearRenderTarget, 1);
}
//////////////////////////////////////////////////////////////////////////
/// @brief Returns a pointer to the private context state for the current
/// draw operation. This is used for external componets such as the
/// sampler.
/// SWR is responsible for the allocation of the private context state.
/// @param hContext - Handle passed back from SwrCreateContext
VOID* SwrGetPrivateContextState(
HANDLE hContext)
{
SWR_CONTEXT* pContext = GetContext(hContext);
DRAW_CONTEXT* pDC = GetDrawContext(pContext);
DRAW_STATE* pState = pDC->pState;
if (pState->pPrivateState == nullptr)
{
pState->pPrivateState = pState->pArena->AllocAligned(pContext->privateStateSize, KNOB_SIMD_WIDTH*sizeof(float));
}
return pState->pPrivateState;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Clients can use this to allocate memory for draw/dispatch
/// operations. The memory will automatically be freed once operation
/// has completed. Client can use this to allocate binding tables,
/// etc. needed for shader execution.
/// @param hContext - Handle passed back from SwrCreateContext
/// @param size - Size of allocation
/// @param align - Alignment needed for allocation.
VOID* SwrAllocDrawContextMemory(
HANDLE hContext,
uint32_t size,
uint32_t align)
{
SWR_CONTEXT* pContext = GetContext(hContext);
DRAW_CONTEXT* pDC = GetDrawContext(pContext);
return pDC->pState->pArena->AllocAligned(size, align);
}
//////////////////////////////////////////////////////////////////////////
/// @brief Enables stats counting
/// @param hContext - Handle passed back from SwrCreateContext
/// @param enable - If true then counts are incremented.
void SwrEnableStatsFE(
HANDLE hContext,
bool enable)
{
SWR_CONTEXT *pContext = GetContext(hContext);
DRAW_CONTEXT* pDC = GetDrawContext(pContext);
pDC->pState->state.enableStatsFE = enable;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Enables stats counting
/// @param hContext - Handle passed back from SwrCreateContext
/// @param enable - If true then counts are incremented.
void SwrEnableStatsBE(
HANDLE hContext,
bool enable)
{
SWR_CONTEXT *pContext = GetContext(hContext);
DRAW_CONTEXT* pDC = GetDrawContext(pContext);
pDC->pState->state.enableStatsBE = enable;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Mark end of frame - used for performance profiling
/// @param hContext - Handle passed back from SwrCreateContext
void SWR_API SwrEndFrame(
HANDLE hContext)
{
SWR_CONTEXT *pContext = GetContext(hContext);
DRAW_CONTEXT* pDC = GetDrawContext(pContext);
(void)pDC; // var used
RDTSC_ENDFRAME();
AR_API_EVENT(FrameEndEvent(pContext->frameCount, pDC->drawId));
pContext->frameCount++;
}