blob: 40633154745d86c15fa986c94e9f1ca90ebd72cc [file] [log] [blame]
/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* @file iris_resolve.c
*
* This file handles resolve tracking for main and auxiliary surfaces.
*
* It also handles our cache tracking. We have sets for the render cache,
* depth cache, and so on. If a BO is in a cache's set, then it may have
* data in that cache. The helpers take care of emitting flushes for
* render-to-texture, format reinterpretation issues, and other situations.
*/
#include "util/hash_table.h"
#include "util/set.h"
#include "iris_context.h"
#include "compiler/nir/nir.h"
/**
* Disable auxiliary buffers if a renderbuffer is also bound as a texture.
* This causes a self-dependency, where both rendering and sampling may
* concurrently read or write the CCS buffer, causing incorrect pixels.
*/
static bool
disable_rb_aux_buffer(struct iris_context *ice,
bool *draw_aux_buffer_disabled,
struct iris_resource *tex_res,
unsigned min_level, unsigned num_levels,
const char *usage)
{
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
bool found = false;
/* We only need to worry about color compression and fast clears. */
if (tex_res->aux.usage != ISL_AUX_USAGE_CCS_D &&
tex_res->aux.usage != ISL_AUX_USAGE_CCS_E &&
tex_res->aux.usage != ISL_AUX_USAGE_GFX12_CCS_E)
return false;
for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
struct iris_surface *surf = (void *) cso_fb->cbufs[i];
if (!surf)
continue;
struct iris_resource *rb_res = (void *) surf->base.texture;
if (rb_res->bo == tex_res->bo &&
surf->base.u.tex.level >= min_level &&
surf->base.u.tex.level < min_level + num_levels) {
found = draw_aux_buffer_disabled[i] = true;
}
}
if (found) {
perf_debug(&ice->dbg,
"Disabling CCS because a renderbuffer is also bound %s.\n",
usage);
}
return found;
}
static void
resolve_sampler_views(struct iris_context *ice,
struct iris_batch *batch,
struct iris_shader_state *shs,
const struct shader_info *info,
bool *draw_aux_buffer_disabled,
bool consider_framebuffer)
{
if (info == NULL)
return;
int i;
BITSET_FOREACH_SET(i, shs->bound_sampler_views, IRIS_MAX_TEXTURES) {
if (!BITSET_TEST(info->textures_used, i))
continue;
struct iris_sampler_view *isv = shs->textures[i];
if (isv->res->base.b.target != PIPE_BUFFER) {
if (consider_framebuffer) {
disable_rb_aux_buffer(ice, draw_aux_buffer_disabled, isv->res,
isv->view.base_level, isv->view.levels,
"for sampling");
}
iris_resource_prepare_texture(ice, isv->res, isv->view.format,
isv->view.base_level, isv->view.levels,
isv->view.base_array_layer,
isv->view.array_len);
}
iris_emit_buffer_barrier_for(batch, isv->res->bo,
IRIS_DOMAIN_SAMPLER_READ);
}
}
static void
resolve_image_views(struct iris_context *ice,
struct iris_batch *batch,
struct iris_shader_state *shs,
const struct shader_info *info)
{
if (info == NULL)
return;
const uint64_t images_used =
(info->images_used[0] | ((uint64_t)info->images_used[1]) << 32);
uint64_t views = shs->bound_image_views & images_used;
while (views) {
const int i = u_bit_scan64(&views);
struct pipe_image_view *pview = &shs->image[i].base;
struct iris_resource *res = (void *) pview->resource;
if (res->base.b.target != PIPE_BUFFER) {
unsigned num_layers =
pview->u.tex.last_layer - pview->u.tex.first_layer + 1;
enum isl_aux_usage aux_usage =
iris_image_view_aux_usage(ice, pview, info);
enum isl_format view_format = iris_image_view_get_format(ice, pview);
bool clear_supported = isl_aux_usage_has_fast_clears(aux_usage);
if (!iris_render_formats_color_compatible(view_format,
res->surf.format,
res->aux.clear_color,
res->aux.clear_color_unknown))
clear_supported = false;
/* Issues with compressed cube array image views, see
* https://gitlab.freedesktop.org/mesa/mesa/-/issues/7987
*/
if (pview->resource->target == PIPE_TEXTURE_CUBE_ARRAY)
clear_supported = false;
iris_resource_prepare_access(ice, res,
pview->u.tex.level, 1,
pview->u.tex.first_layer, num_layers,
aux_usage, clear_supported);
shs->image_aux_usage[i] = aux_usage;
} else {
shs->image_aux_usage[i] = ISL_AUX_USAGE_NONE;
}
iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_DATA_WRITE);
}
}
/**
* \brief Resolve buffers before drawing.
*
* Resolve the depth buffer's HiZ buffer, resolve the depth buffer of each
* enabled depth texture, and flush the render cache for any dirty textures.
*/
void
iris_predraw_resolve_inputs(struct iris_context *ice,
struct iris_batch *batch,
bool *draw_aux_buffer_disabled,
gl_shader_stage stage,
bool consider_framebuffer)
{
struct iris_shader_state *shs = &ice->state.shaders[stage];
const struct shader_info *info = iris_get_shader_info(ice, stage);
uint64_t stage_dirty = (IRIS_STAGE_DIRTY_BINDINGS_VS << stage) |
(consider_framebuffer ? IRIS_STAGE_DIRTY_BINDINGS_FS : 0);
if (ice->state.stage_dirty & stage_dirty) {
resolve_sampler_views(ice, batch, shs, info, draw_aux_buffer_disabled,
consider_framebuffer);
resolve_image_views(ice, batch, shs, info);
}
}
void
iris_predraw_resolve_framebuffer(struct iris_context *ice,
struct iris_batch *batch,
bool *draw_aux_buffer_disabled)
{
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
struct iris_screen *screen = (void *) ice->ctx.screen;
const struct intel_device_info *devinfo = screen->devinfo;
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_FRAGMENT];
const nir_shader *nir = ish->nir;
if (ice->state.dirty & IRIS_DIRTY_DEPTH_BUFFER) {
struct pipe_surface *zs_surf = cso_fb->zsbuf;
if (zs_surf) {
struct iris_resource *z_res, *s_res;
iris_get_depth_stencil_resources(zs_surf->texture, &z_res, &s_res);
unsigned num_layers =
zs_surf->u.tex.last_layer - zs_surf->u.tex.first_layer + 1;
if (z_res) {
iris_resource_prepare_render(ice, z_res, zs_surf->u.tex.level,
zs_surf->u.tex.first_layer,
num_layers, ice->state.hiz_usage);
iris_emit_buffer_barrier_for(batch, z_res->bo,
IRIS_DOMAIN_DEPTH_WRITE);
}
if (s_res) {
iris_emit_buffer_barrier_for(batch, s_res->bo,
IRIS_DOMAIN_DEPTH_WRITE);
}
}
}
if (devinfo->ver == 8 && nir->info.outputs_read != 0) {
for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
if (cso_fb->cbufs[i]) {
struct iris_surface *surf = (void *) cso_fb->cbufs[i];
struct iris_resource *res = (void *) cso_fb->cbufs[i]->texture;
iris_resource_prepare_texture(ice, res, surf->view.format,
surf->view.base_level, 1,
surf->view.base_array_layer,
surf->view.array_len);
}
}
}
if (ice->state.stage_dirty & IRIS_STAGE_DIRTY_BINDINGS_FS) {
for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
struct iris_surface *surf = (void *) cso_fb->cbufs[i];
if (!surf)
continue;
struct iris_resource *res = (void *) surf->base.texture;
enum isl_aux_usage aux_usage =
iris_resource_render_aux_usage(ice, res, surf->view.base_level,
surf->view.format,
draw_aux_buffer_disabled[i]);
if (ice->state.draw_aux_usage[i] != aux_usage) {
ice->state.draw_aux_usage[i] = aux_usage;
/* XXX: Need to track which bindings to make dirty */
ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER;
ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_BINDINGS;
}
iris_resource_prepare_render(ice, res, surf->view.base_level,
surf->view.base_array_layer,
surf->view.array_len,
aux_usage);
iris_cache_flush_for_render(batch, res->bo, aux_usage);
}
}
}
void
iris_postdraw_update_image_resolve_tracking(struct iris_context *ice,
gl_shader_stage stage)
{
struct iris_screen *screen = (void *) ice->ctx.screen;
ASSERTED const struct intel_device_info *devinfo = screen->devinfo;
assert(devinfo->ver >= 12);
const struct iris_shader_state *shs = &ice->state.shaders[stage];
const struct shader_info *info = iris_get_shader_info(ice, stage);
const uint64_t images_used = !info ? 0 :
(info->images_used[0] | ((uint64_t)info->images_used[1]) << 32);
uint64_t views = shs->bound_image_views & images_used;
while (views) {
const int i = u_bit_scan64(&views);
const struct pipe_image_view *pview = &shs->image[i].base;
struct iris_resource *res = (void *) pview->resource;
if (pview->shader_access & PIPE_IMAGE_ACCESS_WRITE &&
res->base.b.target != PIPE_BUFFER) {
unsigned num_layers =
pview->u.tex.last_layer - pview->u.tex.first_layer + 1;
iris_resource_finish_write(ice, res, pview->u.tex.level,
pview->u.tex.first_layer, num_layers,
shs->image_aux_usage[i]);
}
}
}
/**
* \brief Call this after drawing to mark which buffers need resolving
*
* If the depth buffer was written to and if it has an accompanying HiZ
* buffer, then mark that it needs a depth resolve.
*
* If the color buffer is a multisample window system buffer, then
* mark that it needs a downsample.
*
* Also mark any render targets which will be textured as needing a render
* cache flush.
*/
void
iris_postdraw_update_resolve_tracking(struct iris_context *ice)
{
struct iris_screen *screen = (void *) ice->ctx.screen;
const struct intel_device_info *devinfo = screen->devinfo;
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
// XXX: front buffer drawing?
bool may_have_resolved_depth =
ice->state.dirty & (IRIS_DIRTY_DEPTH_BUFFER |
IRIS_DIRTY_WM_DEPTH_STENCIL);
struct pipe_surface *zs_surf = cso_fb->zsbuf;
if (zs_surf) {
struct iris_resource *z_res, *s_res;
iris_get_depth_stencil_resources(zs_surf->texture, &z_res, &s_res);
unsigned num_layers =
zs_surf->u.tex.last_layer - zs_surf->u.tex.first_layer + 1;
if (z_res) {
if (may_have_resolved_depth && ice->state.depth_writes_enabled) {
iris_resource_finish_render(ice, z_res, zs_surf->u.tex.level,
zs_surf->u.tex.first_layer,
num_layers, ice->state.hiz_usage);
}
}
if (s_res) {
if (may_have_resolved_depth && ice->state.stencil_writes_enabled) {
iris_resource_finish_write(ice, s_res, zs_surf->u.tex.level,
zs_surf->u.tex.first_layer, num_layers,
s_res->aux.usage);
}
}
}
bool may_have_resolved_color =
ice->state.stage_dirty & IRIS_STAGE_DIRTY_BINDINGS_FS;
for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
struct iris_surface *surf = (void *) cso_fb->cbufs[i];
if (!surf)
continue;
struct iris_resource *res = (void *) surf->base.texture;
enum isl_aux_usage aux_usage = ice->state.draw_aux_usage[i];
if (may_have_resolved_color) {
union pipe_surface_desc *desc = &surf->base.u;
unsigned num_layers =
desc->tex.last_layer - desc->tex.first_layer + 1;
iris_resource_finish_render(ice, res, desc->tex.level,
desc->tex.first_layer, num_layers,
aux_usage);
}
}
if (devinfo->ver >= 12) {
for (gl_shader_stage stage = 0; stage < MESA_SHADER_COMPUTE; stage++) {
iris_postdraw_update_image_resolve_tracking(ice, stage);
}
}
}
void
iris_cache_flush_for_render(struct iris_batch *batch,
struct iris_bo *bo,
enum isl_aux_usage aux_usage)
{
iris_emit_buffer_barrier_for(batch, bo, IRIS_DOMAIN_RENDER_WRITE);
/* Check to see if this bo has been used by a previous rendering operation
* but with a different aux usage. If it has, flush the render cache so we
* ensure that it's only in there with one aux usage at a time.
*
* Even though it's not obvious, this can easily happen in practice.
* Suppose a client is blending on a surface with sRGB encode enabled on
* gfx9. This implies that you get AUX_USAGE_CCS_D at best. If the client
* then disables sRGB decode and continues blending we will flip on
* AUX_USAGE_CCS_E without doing any sort of resolve in-between (this is
* perfectly valid since CCS_E is a subset of CCS_D). However, this means
* that we have fragments in-flight which are rendering with UNORM+CCS_E
* and other fragments in-flight with SRGB+CCS_D on the same surface at the
* same time and the pixel scoreboard and color blender are trying to sort
* it all out. This ends badly (i.e. GPU hangs).
*
* There are comments in various docs which indicate that the render cache
* isn't 100% resilient to format changes. However, to date, we have never
* observed GPU hangs or even corruption to be associated with switching the
* format, only the aux usage. So we let that slide for now.
*/
void *v_aux_usage = (void *) (uintptr_t) aux_usage;
struct hash_entry *entry =
_mesa_hash_table_search_pre_hashed(batch->cache.render, bo->hash, bo);
if (!entry) {
_mesa_hash_table_insert_pre_hashed(batch->cache.render, bo->hash, bo,
v_aux_usage);
} else if (entry->data != v_aux_usage) {
iris_emit_pipe_control_flush(batch,
"cache tracker: aux usage mismatch",
PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_TILE_CACHE_FLUSH |
PIPE_CONTROL_CS_STALL);
entry->data = v_aux_usage;
}
}
static void
flush_ubos(struct iris_batch *batch,
struct iris_shader_state *shs)
{
uint32_t cbufs = shs->dirty_cbufs & shs->bound_cbufs;
while (cbufs) {
const int i = u_bit_scan(&cbufs);
struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
struct iris_resource *res = (void *)cbuf->buffer;
iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_PULL_CONSTANT_READ);
}
shs->dirty_cbufs = 0;
}
static void
flush_ssbos(struct iris_batch *batch,
struct iris_shader_state *shs)
{
uint32_t ssbos = shs->bound_ssbos;
while (ssbos) {
const int i = u_bit_scan(&ssbos);
struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
struct iris_resource *res = (void *)ssbo->buffer;
iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_DATA_WRITE);
}
}
void
iris_predraw_flush_buffers(struct iris_context *ice,
struct iris_batch *batch,
gl_shader_stage stage)
{
struct iris_shader_state *shs = &ice->state.shaders[stage];
if (ice->state.stage_dirty & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage))
flush_ubos(batch, shs);
if (ice->state.stage_dirty & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage))
flush_ssbos(batch, shs);
if (ice->state.streamout_active &&
(ice->state.dirty & IRIS_DIRTY_SO_BUFFERS)) {
for (int i = 0; i < 4; i++) {
struct iris_stream_output_target *tgt = (void *)ice->state.so_target[i];
if (tgt) {
struct iris_bo *bo = iris_resource_bo(tgt->base.buffer);
iris_emit_buffer_barrier_for(batch, bo, IRIS_DOMAIN_OTHER_WRITE);
}
}
}
}
static void
iris_resolve_color(struct iris_context *ice,
struct iris_batch *batch,
struct iris_resource *res,
unsigned level, unsigned layer,
enum isl_aux_op resolve_op)
{
//DBG("%s to mt %p level %u layer %u\n", __func__, mt, level, layer);
struct blorp_surf surf;
iris_blorp_surf_for_resource(&batch->screen->isl_dev, &surf,
&res->base.b, res->aux.usage, level, true);
iris_batch_maybe_flush(batch, 1500);
/* Ivybridge PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)":
*
* "Any transition from any value in {Clear, Render, Resolve} to a
* different value in {Clear, Render, Resolve} requires end of pipe
* synchronization."
*
* In other words, fast clear ops are not properly synchronized with
* other drawing. We need to use a PIPE_CONTROL to ensure that the
* contents of the previous draw hit the render target before we resolve
* and again afterwards to ensure that the resolve is complete before we
* do any more regular drawing.
*/
iris_emit_end_of_pipe_sync(batch, "color resolve: pre-flush",
PIPE_CONTROL_RENDER_TARGET_FLUSH);
/* Wa_1508744258
*
* Disable RHWO by setting 0x7010[14] by default except during resolve
* pass.
*
* We implement global disabling of the RHWO optimization during
* iris_init_render_context. We toggle it around the blorp resolve call.
*/
assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE ||
resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
batch->screen->vtbl.disable_rhwo_optimization(batch, false);
iris_batch_sync_region_start(batch);
struct blorp_batch blorp_batch;
blorp_batch_init(&ice->blorp, &blorp_batch, batch, 0);
blorp_ccs_resolve(&blorp_batch, &surf, level, layer, 1, res->surf.format,
resolve_op);
blorp_batch_finish(&blorp_batch);
/* See comment above */
iris_emit_end_of_pipe_sync(batch, "color resolve: post-flush",
PIPE_CONTROL_RENDER_TARGET_FLUSH);
batch->screen->vtbl.disable_rhwo_optimization(batch, true);
iris_batch_sync_region_end(batch);
}
static void
iris_mcs_partial_resolve(struct iris_context *ice,
struct iris_batch *batch,
struct iris_resource *res,
uint32_t start_layer,
uint32_t num_layers)
{
//DBG("%s to mt %p layers %u-%u\n", __func__, mt,
//start_layer, start_layer + num_layers - 1);
assert(isl_aux_usage_has_mcs(res->aux.usage));
iris_batch_maybe_flush(batch, 1500);
struct blorp_surf surf;
iris_blorp_surf_for_resource(&batch->screen->isl_dev, &surf,
&res->base.b, res->aux.usage, 0, true);
iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_RENDER_WRITE);
struct blorp_batch blorp_batch;
iris_batch_sync_region_start(batch);
blorp_batch_init(&ice->blorp, &blorp_batch, batch, 0);
blorp_mcs_partial_resolve(&blorp_batch, &surf, res->surf.format,
start_layer, num_layers);
blorp_batch_finish(&blorp_batch);
iris_batch_sync_region_end(batch);
}
bool
iris_sample_with_depth_aux(const struct intel_device_info *devinfo,
const struct iris_resource *res)
{
switch (res->aux.usage) {
case ISL_AUX_USAGE_HIZ_CCS_WT:
/* Always support sampling with HIZ_CCS_WT. Although the sampler
* doesn't comprehend HiZ, write-through means that the correct data
* will be in the CCS, and the sampler can simply rely on that.
*/
return true;
case ISL_AUX_USAGE_HIZ_CCS:
/* Without write-through, the CCS data may be out of sync with HiZ
* and the sampler won't see the correct data. Skip both.
*/
return false;
case ISL_AUX_USAGE_HIZ:
/* From the Broadwell PRM (Volume 2d: Command Reference: Structures
* RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
*
* "If this field is set to AUX_HIZ, Number of Multisamples must be
* MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
*
* There is no such blurb for 1D textures, but there is sufficient
* evidence that this is broken on SKL+.
*/
if (!devinfo->has_sample_with_hiz ||
res->surf.samples != 1 ||
res->surf.dim != ISL_SURF_DIM_2D)
return false;
/* Make sure that HiZ exists for all necessary miplevels. */
for (unsigned level = 0; level < res->surf.levels; ++level) {
if (!iris_resource_level_has_hiz(devinfo, res, level))
return false;
}
/* We can sample directly from HiZ in this case. */
return true;
default:
return false;
}
}
/**
* Perform a HiZ or depth resolve operation.
*
* For an overview of HiZ ops, see the following sections of the Sandy Bridge
* PRM, Volume 1, Part 2:
* - 7.5.3.1 Depth Buffer Clear
* - 7.5.3.2 Depth Buffer Resolve
* - 7.5.3.3 Hierarchical Depth Buffer Resolve
*/
void
iris_hiz_exec(struct iris_context *ice,
struct iris_batch *batch,
struct iris_resource *res,
unsigned int level, unsigned int start_layer,
unsigned int num_layers, enum isl_aux_op op,
bool update_clear_depth)
{
ASSERTED const struct intel_device_info *devinfo = batch->screen->devinfo;
assert(iris_resource_level_has_hiz(devinfo, res, level));
assert(op != ISL_AUX_OP_NONE);
UNUSED const char *name = NULL;
iris_batch_maybe_flush(batch, 1500);
switch (op) {
case ISL_AUX_OP_FULL_RESOLVE:
name = "depth resolve";
break;
case ISL_AUX_OP_AMBIGUATE:
name = "hiz ambiguate";
break;
case ISL_AUX_OP_FAST_CLEAR:
name = "depth clear";
break;
case ISL_AUX_OP_PARTIAL_RESOLVE:
case ISL_AUX_OP_NONE:
unreachable("Invalid HiZ op");
}
//DBG("%s %s to mt %p level %d layers %d-%d\n",
//__func__, name, mt, level, start_layer, start_layer + num_layers - 1);
/* The following stalls and flushes are only documented to be required
* for HiZ clear operations. However, they also seem to be required for
* resolve operations.
*
* From the Ivybridge PRM, volume 2, "Depth Buffer Clear":
*
* "If other rendering operations have preceded this clear, a
* PIPE_CONTROL with depth cache flush enabled, Depth Stall bit
* enabled must be issued before the rectangle primitive used for
* the depth buffer clear operation."
*
* Same applies for Gfx8 and Gfx9.
*/
iris_emit_pipe_control_flush(batch,
"hiz op: pre-flush",
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_CS_STALL);
iris_batch_sync_region_start(batch);
struct blorp_surf surf;
iris_blorp_surf_for_resource(&batch->screen->isl_dev, &surf,
&res->base.b, res->aux.usage, level, true);
struct blorp_batch blorp_batch;
enum blorp_batch_flags flags = 0;
flags |= update_clear_depth ? 0 : BLORP_BATCH_NO_UPDATE_CLEAR_COLOR;
blorp_batch_init(&ice->blorp, &blorp_batch, batch, flags);
blorp_hiz_op(&blorp_batch, &surf, level, start_layer, num_layers, op);
blorp_batch_finish(&blorp_batch);
/* The following stalls and flushes are only documented to be required
* for HiZ clear operations. However, they also seem to be required for
* resolve operations.
*
* From the Broadwell PRM, volume 7, "Depth Buffer Clear":
*
* "Depth buffer clear pass using any of the methods (WM_STATE,
* 3DSTATE_WM or 3DSTATE_WM_HZ_OP) must be followed by a
* PIPE_CONTROL command with DEPTH_STALL bit and Depth FLUSH bits
* "set" before starting to render. DepthStall and DepthFlush are
* not needed between consecutive depth clear passes nor is it
* required if the depth clear pass was done with
* 'full_surf_clear' bit set in the 3DSTATE_WM_HZ_OP."
*
* TODO: Such as the spec says, this could be conditional.
*/
iris_emit_pipe_control_flush(batch,
"hiz op: post flush",
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_STALL);
iris_batch_sync_region_end(batch);
}
/**
* Does the resource's slice have hiz enabled?
*/
bool
iris_resource_level_has_hiz(const struct intel_device_info *devinfo,
const struct iris_resource *res, uint32_t level)
{
iris_resource_check_level_layer(res, level, 0);
if (!isl_aux_usage_has_hiz(res->aux.usage))
return false;
/* Disable HiZ for LOD > 0 unless the width/height are 8x4 aligned.
* For LOD == 0, we can grow the dimensions to make it work.
*
* This doesn't appear to be necessary on Gfx11+. See details here:
* https://gitlab.freedesktop.org/mesa/mesa/-/issues/3788
*/
if (devinfo->ver < 11 && level > 0) {
if (u_minify(res->base.b.width0, level) & 7)
return false;
if (u_minify(res->base.b.height0, level) & 3)
return false;
}
return true;
}
/** \brief Assert that the level and layer are valid for the resource. */
void
iris_resource_check_level_layer(UNUSED const struct iris_resource *res,
UNUSED uint32_t level, UNUSED uint32_t layer)
{
assert(level < res->surf.levels);
assert(layer < util_num_layers(&res->base.b, level));
}
static inline uint32_t
miptree_level_range_length(const struct iris_resource *res,
uint32_t start_level, uint32_t num_levels)
{
assert(start_level < res->surf.levels);
if (num_levels == INTEL_REMAINING_LAYERS)
num_levels = res->surf.levels;
/* Check for overflow */
assert(start_level + num_levels >= start_level);
assert(start_level + num_levels <= res->surf.levels);
return num_levels;
}
static inline uint32_t
miptree_layer_range_length(const struct iris_resource *res, uint32_t level,
uint32_t start_layer, uint32_t num_layers)
{
assert(level <= res->base.b.last_level);
const uint32_t total_num_layers = iris_get_num_logical_layers(res, level);
assert(start_layer < total_num_layers);
if (num_layers == INTEL_REMAINING_LAYERS)
num_layers = total_num_layers - start_layer;
/* Check for overflow */
assert(start_layer + num_layers >= start_layer);
assert(start_layer + num_layers <= total_num_layers);
return num_layers;
}
bool
iris_has_invalid_primary(const struct iris_resource *res,
unsigned start_level, unsigned num_levels,
unsigned start_layer, unsigned num_layers)
{
if (res->aux.usage == ISL_AUX_USAGE_NONE)
return false;
/* Clamp the level range to fit the resource */
num_levels = miptree_level_range_length(res, start_level, num_levels);
for (uint32_t l = 0; l < num_levels; l++) {
const uint32_t level = start_level + l;
const uint32_t level_layers =
miptree_layer_range_length(res, level, start_layer, num_layers);
for (unsigned a = 0; a < level_layers; a++) {
enum isl_aux_state aux_state =
iris_resource_get_aux_state(res, level, start_layer + a);
if (!isl_aux_state_has_valid_primary(aux_state))
return true;
}
}
return false;
}
void
iris_resource_prepare_access(struct iris_context *ice,
struct iris_resource *res,
uint32_t start_level, uint32_t num_levels,
uint32_t start_layer, uint32_t num_layers,
enum isl_aux_usage aux_usage,
bool fast_clear_supported)
{
if (res->aux.usage == ISL_AUX_USAGE_NONE)
return;
/* We can't do resolves on the compute engine, so awkwardly, we have to
* do them on the render batch...
*/
struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
const uint32_t clamped_levels =
miptree_level_range_length(res, start_level, num_levels);
for (uint32_t l = 0; l < clamped_levels; l++) {
const uint32_t level = start_level + l;
const uint32_t level_layers =
miptree_layer_range_length(res, level, start_layer, num_layers);
for (uint32_t a = 0; a < level_layers; a++) {
const uint32_t layer = start_layer + a;
const enum isl_aux_state aux_state =
iris_resource_get_aux_state(res, level, layer);
const enum isl_aux_op aux_op =
isl_aux_prepare_access(aux_state, aux_usage, fast_clear_supported);
/* Prepare the aux buffer for a conditional or unconditional access.
* A conditional access is handled by assuming that the access will
* not evaluate to a no-op. If the access does in fact occur, the aux
* will be in the required state. If it does not, no data is lost
* because the aux_op performed is lossless.
*/
if (aux_op == ISL_AUX_OP_NONE) {
/* Nothing to do here. */
} else if (isl_aux_usage_has_mcs(res->aux.usage)) {
assert(aux_op == ISL_AUX_OP_PARTIAL_RESOLVE);
iris_mcs_partial_resolve(ice, batch, res, layer, 1);
} else if (isl_aux_usage_has_hiz(res->aux.usage)) {
iris_hiz_exec(ice, batch, res, level, layer, 1, aux_op, false);
} else if (res->aux.usage == ISL_AUX_USAGE_STC_CCS) {
unreachable("iris doesn't resolve STC_CCS resources");
} else {
assert(isl_aux_usage_has_ccs(res->aux.usage));
iris_resolve_color(ice, batch, res, level, layer, aux_op);
}
const enum isl_aux_state new_state =
isl_aux_state_transition_aux_op(aux_state, res->aux.usage, aux_op);
iris_resource_set_aux_state(ice, res, level, layer, 1, new_state);
}
}
}
void
iris_resource_finish_write(struct iris_context *ice,
struct iris_resource *res, uint32_t level,
uint32_t start_layer, uint32_t num_layers,
enum isl_aux_usage aux_usage)
{
if (res->aux.usage == ISL_AUX_USAGE_NONE)
return;
const uint32_t level_layers =
miptree_layer_range_length(res, level, start_layer, num_layers);
for (uint32_t a = 0; a < level_layers; a++) {
const uint32_t layer = start_layer + a;
const enum isl_aux_state aux_state =
iris_resource_get_aux_state(res, level, layer);
/* Transition the aux state for a conditional or unconditional write. A
* conditional write is handled by assuming that the write applies to
* only part of the render target. This prevents the new state from
* losing the types of compression that might exist in the current state
* (e.g. CLEAR). If the write evaluates to a no-op, the state will still
* be able to communicate when resolves are necessary (but it may
* falsely communicate this as well).
*/
const enum isl_aux_state new_aux_state =
isl_aux_state_transition_write(aux_state, aux_usage, false);
iris_resource_set_aux_state(ice, res, level, layer, 1, new_aux_state);
}
}
enum isl_aux_state
iris_resource_get_aux_state(const struct iris_resource *res,
uint32_t level, uint32_t layer)
{
iris_resource_check_level_layer(res, level, layer);
if (res->surf.usage & ISL_SURF_USAGE_DEPTH_BIT) {
assert(isl_aux_usage_has_hiz(res->aux.usage));
} else {
assert(res->surf.samples == 1 ||
res->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
}
return res->aux.state[level][layer];
}
void
iris_resource_set_aux_state(struct iris_context *ice,
struct iris_resource *res, uint32_t level,
uint32_t start_layer, uint32_t num_layers,
enum isl_aux_state aux_state)
{
struct iris_screen *screen = (void *) ice->ctx.screen;
ASSERTED const struct intel_device_info *devinfo = screen->devinfo;
num_layers = miptree_layer_range_length(res, level, start_layer, num_layers);
if (res->surf.usage & ISL_SURF_USAGE_DEPTH_BIT) {
assert(iris_resource_level_has_hiz(devinfo, res, level) ||
!isl_aux_state_has_valid_aux(aux_state));
} else {
assert(res->surf.samples == 1 ||
res->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
}
for (unsigned a = 0; a < num_layers; a++) {
if (res->aux.state[level][start_layer + a] != aux_state) {
res->aux.state[level][start_layer + a] = aux_state;
/* XXX: Need to track which bindings to make dirty */
ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER |
IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES |
IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES;
ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_BINDINGS;
}
}
if (res->mod_info && !res->mod_info->supports_clear_color) {
assert(res->mod_info->aux_usage != ISL_AUX_USAGE_NONE);
if (aux_state == ISL_AUX_STATE_CLEAR ||
aux_state == ISL_AUX_STATE_COMPRESSED_CLEAR ||
aux_state == ISL_AUX_STATE_PARTIAL_CLEAR) {
iris_mark_dirty_dmabuf(ice, &res->base.b);
}
}
}
enum isl_aux_usage
iris_resource_texture_aux_usage(struct iris_context *ice,
const struct iris_resource *res,
enum isl_format view_format,
unsigned start_level,
unsigned num_levels)
{
struct iris_screen *screen = (void *) ice->ctx.screen;
const struct intel_device_info *devinfo = screen->devinfo;
switch (res->aux.usage) {
case ISL_AUX_USAGE_HIZ:
case ISL_AUX_USAGE_HIZ_CCS:
case ISL_AUX_USAGE_HIZ_CCS_WT:
assert(res->surf.format == view_format);
return iris_sample_with_depth_aux(devinfo, res) ?
res->aux.usage : ISL_AUX_USAGE_NONE;
case ISL_AUX_USAGE_MCS:
case ISL_AUX_USAGE_MCS_CCS:
case ISL_AUX_USAGE_STC_CCS:
case ISL_AUX_USAGE_MC:
return res->aux.usage;
case ISL_AUX_USAGE_CCS_E:
case ISL_AUX_USAGE_GFX12_CCS_E:
/* If we don't have any unresolved color, report an aux usage of
* ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
* aux surface and we can save some bandwidth.
*/
if (!iris_has_invalid_primary(res, start_level, num_levels,
0, INTEL_REMAINING_LAYERS))
return ISL_AUX_USAGE_NONE;
/* On Gfx9 color buffers may be compressed by the hardware (lossless
* compression). There are, however, format restrictions and care needs
* to be taken that the sampler engine is capable for re-interpreting a
* buffer with format different the buffer was originally written with.
*
* For example, SRGB formats are not compressible and the sampler engine
* isn't capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case
* the underlying color buffer needs to be resolved so that the sampling
* surface can be sampled as non-compressed (i.e., without the auxiliary
* MCS buffer being set).
*/
if (isl_formats_are_ccs_e_compatible(devinfo, res->surf.format,
view_format))
return res->aux.usage;
break;
default:
break;
}
return ISL_AUX_USAGE_NONE;
}
enum isl_aux_usage
iris_image_view_aux_usage(struct iris_context *ice,
const struct pipe_image_view *pview,
const struct shader_info *info)
{
if (!info)
return ISL_AUX_USAGE_NONE;
const struct iris_screen *screen = (void *) ice->ctx.screen;
const struct intel_device_info *devinfo = screen->devinfo;
struct iris_resource *res = (void *) pview->resource;
const unsigned level = res->base.b.target != PIPE_BUFFER ?
pview->u.tex.level : 0;
bool uses_atomic_load_store =
ice->shaders.uncompiled[info->stage]->uses_atomic_load_store;
/* On GFX12, compressed surfaces supports non-atomic operations. GFX12HP and
* further, add support for all the operations.
*/
if (devinfo->verx10 < 125 && uses_atomic_load_store)
return ISL_AUX_USAGE_NONE;
/* If the image is read-only, and doesn't have any unresolved color,
* report ISL_AUX_USAGE_NONE. Bypassing useless aux can save bandwidth.
*/
if (!(pview->access & PIPE_IMAGE_ACCESS_WRITE) &&
!iris_has_invalid_primary(res, level, 1, 0, INTEL_REMAINING_LAYERS))
return ISL_AUX_USAGE_NONE;
if (res->aux.usage == ISL_AUX_USAGE_GFX12_CCS_E)
return res->aux.usage;
return ISL_AUX_USAGE_NONE;
}
bool
iris_can_sample_mcs_with_clear(const struct intel_device_info *devinfo,
const struct iris_resource *res)
{
assert(isl_aux_usage_has_mcs(res->aux.usage));
/* On TGL, the sampler has an issue with some 8 and 16bpp MSAA fast clears.
* See HSD 1707282275, wa_14013111325. Due to the use of
* format-reinterpretation, a simplified workaround is implemented.
*/
if (devinfo->ver >= 12 &&
isl_format_get_layout(res->surf.format)->bpb <= 16) {
return false;
}
return true;
}
static bool
formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
{
/* On gfx8 and earlier, the hardware was only capable of handling 0/1 clear
* values so sRGB curve application was a no-op for all fast-clearable
* formats.
*
* On gfx9+, the hardware supports arbitrary clear values. For sRGB clear
* values, the hardware interprets the floats, not as what would be
* returned from the sampler (or written by the shader), but as being
* between format conversion and sRGB curve application. This means that
* we can switch between sRGB and UNORM without having to whack the clear
* color.
*/
return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
}
void
iris_resource_prepare_texture(struct iris_context *ice,
struct iris_resource *res,
enum isl_format view_format,
uint32_t start_level, uint32_t num_levels,
uint32_t start_layer, uint32_t num_layers)
{
const struct iris_screen *screen = (void *) ice->ctx.screen;
const struct intel_device_info *devinfo = screen->devinfo;
enum isl_aux_usage aux_usage =
iris_resource_texture_aux_usage(ice, res, view_format,
start_level, num_levels);
bool clear_supported = isl_aux_usage_has_fast_clears(aux_usage);
/* Clear color is specified as ints or floats and the conversion is done by
* the sampler. If we have a texture view, we would have to perform the
* clear color conversion manually. Just disable clear color.
*/
if (!formats_are_fast_clear_compatible(res->surf.format, view_format))
clear_supported = false;
if (isl_aux_usage_has_mcs(aux_usage) &&
!iris_can_sample_mcs_with_clear(devinfo, res)) {
clear_supported = false;
}
iris_resource_prepare_access(ice, res, start_level, num_levels,
start_layer, num_layers,
aux_usage, clear_supported);
}
/* Whether or not rendering a color value with either format results in the
* same pixel. This can return false negatives.
*/
bool
iris_render_formats_color_compatible(enum isl_format a, enum isl_format b,
union isl_color_value color,
bool clear_color_unknown)
{
if (a == b)
return true;
/* A difference in color space doesn't matter for 0/1 values. */
if (!clear_color_unknown &&
isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b) &&
isl_color_value_is_zero_one(color, a)) {
return true;
}
/* Both formats may interpret the clear color as zero. */
if (!clear_color_unknown &&
isl_color_value_is_zero(color, a) &&
isl_color_value_is_zero(color, b)) {
return true;
}
return false;
}
enum isl_aux_usage
iris_resource_render_aux_usage(struct iris_context *ice,
struct iris_resource *res, uint32_t level,
enum isl_format render_format,
bool draw_aux_disabled)
{
struct iris_screen *screen = (void *) ice->ctx.screen;
const struct intel_device_info *devinfo = screen->devinfo;
if (draw_aux_disabled)
return ISL_AUX_USAGE_NONE;
switch (res->aux.usage) {
case ISL_AUX_USAGE_HIZ:
case ISL_AUX_USAGE_HIZ_CCS:
case ISL_AUX_USAGE_HIZ_CCS_WT:
assert(render_format == res->surf.format);
return iris_resource_level_has_hiz(devinfo, res, level) ?
res->aux.usage : ISL_AUX_USAGE_NONE;
case ISL_AUX_USAGE_STC_CCS:
assert(render_format == res->surf.format);
return res->aux.usage;
case ISL_AUX_USAGE_MCS:
case ISL_AUX_USAGE_MCS_CCS:
return res->aux.usage;
case ISL_AUX_USAGE_CCS_D:
case ISL_AUX_USAGE_CCS_E:
case ISL_AUX_USAGE_GFX12_CCS_E:
/* Disable CCS for some cases of texture-view rendering. On gfx12, HW
* may convert some subregions of shader output to fast-cleared blocks
* if CCS is enabled and the shader output matches the clear color.
* Existing fast-cleared blocks are correctly interpreted by the clear
* color and the resource format (see can_fast_clear_color). To avoid
* gaining new fast-cleared blocks that can't be interpreted by the
* resource format (and to avoid misinterpreting existing ones), shut
* off CCS when the interpretation of the clear color differs between
* the render_format and the resource format.
*/
if (!iris_render_formats_color_compatible(render_format,
res->surf.format,
res->aux.clear_color,
res->aux.clear_color_unknown)) {
return ISL_AUX_USAGE_NONE;
}
if (res->aux.usage == ISL_AUX_USAGE_CCS_D)
return ISL_AUX_USAGE_CCS_D;
if (isl_formats_are_ccs_e_compatible(devinfo, res->surf.format,
render_format)) {
return res->aux.usage;
}
FALLTHROUGH;
default:
return ISL_AUX_USAGE_NONE;
}
}
void
iris_resource_prepare_render(struct iris_context *ice,
struct iris_resource *res, uint32_t level,
uint32_t start_layer, uint32_t layer_count,
enum isl_aux_usage aux_usage)
{
iris_resource_prepare_access(ice, res, level, 1, start_layer,
layer_count, aux_usage,
isl_aux_usage_has_fast_clears(aux_usage));
}
void
iris_resource_finish_render(struct iris_context *ice,
struct iris_resource *res, uint32_t level,
uint32_t start_layer, uint32_t layer_count,
enum isl_aux_usage aux_usage)
{
iris_resource_finish_write(ice, res, level, start_layer, layer_count,
aux_usage);
}