blob: 79afde9b877197373f616896c0d07d13444091d5 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "util/mesa-sha1.h"
#include "util/os_time.h"
#include "common/intel_l3_config.h"
#include "common/intel_disasm.h"
#include "common/intel_sample_positions.h"
#include "anv_private.h"
#include "compiler/brw_nir.h"
#include "anv_nir.h"
#include "nir/nir_xfb_info.h"
#include "spirv/nir_spirv.h"
#include "vk_util.h"
/* Needed for SWIZZLE macros */
#include "program/prog_instruction.h"
// Shader functions
#define SPIR_V_MAGIC_NUMBER 0x07230203
struct anv_spirv_debug_data {
struct anv_device *device;
const struct vk_shader_module *module;
};
static void anv_spirv_nir_debug(void *private_data,
enum nir_spirv_debug_level level,
size_t spirv_offset,
const char *message)
{
struct anv_spirv_debug_data *debug_data = private_data;
struct anv_instance *instance = debug_data->device->physical->instance;
static const VkDebugReportFlagsEXT vk_flags[] = {
[NIR_SPIRV_DEBUG_LEVEL_INFO] = VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
[NIR_SPIRV_DEBUG_LEVEL_WARNING] = VK_DEBUG_REPORT_WARNING_BIT_EXT,
[NIR_SPIRV_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
};
char buffer[256];
snprintf(buffer, sizeof(buffer), "SPIR-V offset %lu: %s", (unsigned long) spirv_offset, message);
vk_debug_report(&instance->vk, vk_flags[level],
&debug_data->module->base,
0, 0, "anv", buffer);
}
/* Eventually, this will become part of anv_CreateShader. Unfortunately,
* we can't do that yet because we don't have the ability to copy nir.
*/
static nir_shader *
anv_shader_compile_to_nir(struct anv_device *device,
void *mem_ctx,
const struct vk_shader_module *module,
const char *entrypoint_name,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info)
{
const struct anv_physical_device *pdevice = device->physical;
const struct brw_compiler *compiler = pdevice->compiler;
const nir_shader_compiler_options *nir_options =
compiler->glsl_compiler_options[stage].NirOptions;
uint32_t *spirv = (uint32_t *) module->data;
assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
assert(module->size % 4 == 0);
uint32_t num_spec_entries = 0;
struct nir_spirv_specialization *spec_entries = NULL;
if (spec_info && spec_info->mapEntryCount > 0) {
num_spec_entries = spec_info->mapEntryCount;
spec_entries = calloc(num_spec_entries, sizeof(*spec_entries));
for (uint32_t i = 0; i < num_spec_entries; i++) {
VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
const void *data = spec_info->pData + entry.offset;
assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
spec_entries[i].id = spec_info->pMapEntries[i].constantID;
switch (entry.size) {
case 8:
spec_entries[i].value.u64 = *(const uint64_t *)data;
break;
case 4:
spec_entries[i].value.u32 = *(const uint32_t *)data;
break;
case 2:
spec_entries[i].value.u16 = *(const uint16_t *)data;
break;
case 1:
spec_entries[i].value.u8 = *(const uint8_t *)data;
break;
default:
assert(!"Invalid spec constant size");
break;
}
}
}
struct anv_spirv_debug_data spirv_debug_data = {
.device = device,
.module = module,
};
struct spirv_to_nir_options spirv_options = {
.frag_coord_is_sysval = true,
.caps = {
.demote_to_helper_invocation = true,
.derivative_group = true,
.descriptor_array_dynamic_indexing = true,
.descriptor_array_non_uniform_indexing = true,
.descriptor_indexing = true,
.device_group = true,
.draw_parameters = true,
.float16 = pdevice->info.ver >= 8,
.float64 = pdevice->info.ver >= 8,
.fragment_shader_sample_interlock = pdevice->info.ver >= 9,
.fragment_shader_pixel_interlock = pdevice->info.ver >= 9,
.geometry_streams = true,
.image_write_without_format = true,
.int8 = pdevice->info.ver >= 8,
.int16 = pdevice->info.ver >= 8,
.int64 = pdevice->info.ver >= 8,
.int64_atomics = pdevice->info.ver >= 9 && pdevice->use_softpin,
.integer_functions2 = pdevice->info.ver >= 8,
.min_lod = true,
.multiview = true,
.physical_storage_buffer_address = pdevice->has_a64_buffer_access,
.post_depth_coverage = pdevice->info.ver >= 9,
.runtime_descriptor_array = true,
.float_controls = pdevice->info.ver >= 8,
.shader_clock = true,
.shader_viewport_index_layer = true,
.stencil_export = pdevice->info.ver >= 9,
.storage_8bit = pdevice->info.ver >= 8,
.storage_16bit = pdevice->info.ver >= 8,
.subgroup_arithmetic = true,
.subgroup_basic = true,
.subgroup_ballot = true,
.subgroup_quad = true,
.subgroup_shuffle = true,
.subgroup_vote = true,
.tessellation = true,
.transform_feedback = pdevice->info.ver >= 8,
.variable_pointers = true,
.vk_memory_model = true,
.vk_memory_model_device_scope = true,
.workgroup_memory_explicit_layout = true,
},
.ubo_addr_format =
anv_nir_ubo_addr_format(pdevice, device->robust_buffer_access),
.ssbo_addr_format =
anv_nir_ssbo_addr_format(pdevice, device->robust_buffer_access),
.phys_ssbo_addr_format = nir_address_format_64bit_global,
.push_const_addr_format = nir_address_format_logical,
/* TODO: Consider changing this to an address format that has the NULL
* pointer equals to 0. That might be a better format to play nice
* with certain code / code generators.
*/
.shared_addr_format = nir_address_format_32bit_offset,
.debug = {
.func = anv_spirv_nir_debug,
.private_data = &spirv_debug_data,
},
};
nir_shader *nir =
spirv_to_nir(spirv, module->size / 4,
spec_entries, num_spec_entries,
stage, entrypoint_name, &spirv_options, nir_options);
if (!nir) {
free(spec_entries);
return NULL;
}
assert(nir->info.stage == stage);
nir_validate_shader(nir, "after spirv_to_nir");
nir_validate_ssa_dominance(nir, "after spirv_to_nir");
ralloc_steal(mem_ctx, nir);
free(spec_entries);
if (INTEL_DEBUG & intel_debug_flag_for_shader_stage(stage)) {
fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
gl_shader_stage_name(stage));
nir_print_shader(nir, stderr);
}
/* We have to lower away local constant initializers right before we
* inline functions. That way they get properly initialized at the top
* of the function and not at the top of its caller.
*/
NIR_PASS_V(nir, nir_lower_variable_initializers, nir_var_function_temp);
NIR_PASS_V(nir, nir_lower_returns);
NIR_PASS_V(nir, nir_inline_functions);
NIR_PASS_V(nir, nir_copy_prop);
NIR_PASS_V(nir, nir_opt_deref);
/* Pick off the single entrypoint that we want */
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (!func->is_entrypoint)
exec_node_remove(&func->node);
}
assert(exec_list_length(&nir->functions) == 1);
/* Now that we've deleted all but the main function, we can go ahead and
* lower the rest of the constant initializers. We do this here so that
* nir_remove_dead_variables and split_per_member_structs below see the
* corresponding stores.
*/
NIR_PASS_V(nir, nir_lower_variable_initializers, ~0);
/* Split member structs. We do this before lower_io_to_temporaries so that
* it doesn't lower system values to temporaries by accident.
*/
NIR_PASS_V(nir, nir_split_var_copies);
NIR_PASS_V(nir, nir_split_per_member_structs);
NIR_PASS_V(nir, nir_remove_dead_variables,
nir_var_shader_in | nir_var_shader_out | nir_var_system_value,
NULL);
NIR_PASS_V(nir, nir_propagate_invariant);
NIR_PASS_V(nir, nir_lower_io_to_temporaries,
nir_shader_get_entrypoint(nir), true, false);
NIR_PASS_V(nir, nir_lower_frexp);
/* Vulkan uses the separate-shader linking model */
nir->info.separate_shader = true;
brw_preprocess_nir(compiler, nir, NULL);
return nir;
}
VkResult
anv_pipeline_init(struct anv_pipeline *pipeline,
struct anv_device *device,
enum anv_pipeline_type type,
VkPipelineCreateFlags flags,
const VkAllocationCallbacks *pAllocator)
{
VkResult result;
memset(pipeline, 0, sizeof(*pipeline));
vk_object_base_init(&device->vk, &pipeline->base,
VK_OBJECT_TYPE_PIPELINE);
pipeline->device = device;
/* It's the job of the child class to provide actual backing storage for
* the batch by setting batch.start, batch.next, and batch.end.
*/
pipeline->batch.alloc = pAllocator ? pAllocator : &device->vk.alloc;
pipeline->batch.relocs = &pipeline->batch_relocs;
pipeline->batch.status = VK_SUCCESS;
result = anv_reloc_list_init(&pipeline->batch_relocs,
pipeline->batch.alloc);
if (result != VK_SUCCESS)
return result;
pipeline->mem_ctx = ralloc_context(NULL);
pipeline->type = type;
pipeline->flags = flags;
util_dynarray_init(&pipeline->executables, pipeline->mem_ctx);
return VK_SUCCESS;
}
void
anv_pipeline_finish(struct anv_pipeline *pipeline,
struct anv_device *device,
const VkAllocationCallbacks *pAllocator)
{
anv_reloc_list_finish(&pipeline->batch_relocs,
pAllocator ? pAllocator : &device->vk.alloc);
ralloc_free(pipeline->mem_ctx);
vk_object_base_finish(&pipeline->base);
}
void anv_DestroyPipeline(
VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
if (!pipeline)
return;
switch (pipeline->type) {
case ANV_PIPELINE_GRAPHICS: {
struct anv_graphics_pipeline *gfx_pipeline =
anv_pipeline_to_graphics(pipeline);
if (gfx_pipeline->blend_state.map)
anv_state_pool_free(&device->dynamic_state_pool, gfx_pipeline->blend_state);
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (gfx_pipeline->shaders[s])
anv_shader_bin_unref(device, gfx_pipeline->shaders[s]);
}
break;
}
case ANV_PIPELINE_COMPUTE: {
struct anv_compute_pipeline *compute_pipeline =
anv_pipeline_to_compute(pipeline);
if (compute_pipeline->cs)
anv_shader_bin_unref(device, compute_pipeline->cs);
break;
}
default:
unreachable("invalid pipeline type");
}
anv_pipeline_finish(pipeline, device, pAllocator);
vk_free2(&device->vk.alloc, pAllocator, pipeline);
}
static const uint32_t vk_to_gen_primitive_type[] = {
[VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
};
static void
populate_sampler_prog_key(const struct gen_device_info *devinfo,
struct brw_sampler_prog_key_data *key)
{
/* Almost all multisampled textures are compressed. The only time when we
* don't compress a multisampled texture is for 16x MSAA with a surface
* width greater than 8k which is a bit of an edge case. Since the sampler
* just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
* to tell the compiler to always assume compression.
*/
key->compressed_multisample_layout_mask = ~0;
/* SkyLake added support for 16x MSAA. With this came a new message for
* reading from a 16x MSAA surface with compression. The new message was
* needed because now the MCS data is 64 bits instead of 32 or lower as is
* the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
* message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
* so we can just use it unconditionally. This may not be quite as
* efficient but it saves us from recompiling.
*/
if (devinfo->ver >= 9)
key->msaa_16 = ~0;
/* XXX: Handle texture swizzle on HSW- */
for (int i = 0; i < MAX_SAMPLERS; i++) {
/* Assume color sampler, no swizzling. (Works for BDW+) */
key->swizzles[i] = SWIZZLE_XYZW;
}
}
static void
populate_base_prog_key(const struct gen_device_info *devinfo,
VkPipelineShaderStageCreateFlags flags,
bool robust_buffer_acccess,
struct brw_base_prog_key *key)
{
if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT)
key->subgroup_size_type = BRW_SUBGROUP_SIZE_VARYING;
else
key->subgroup_size_type = BRW_SUBGROUP_SIZE_API_CONSTANT;
key->robust_buffer_access = robust_buffer_acccess;
populate_sampler_prog_key(devinfo, &key->tex);
}
static void
populate_vs_prog_key(const struct gen_device_info *devinfo,
VkPipelineShaderStageCreateFlags flags,
bool robust_buffer_acccess,
struct brw_vs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(devinfo, flags, robust_buffer_acccess, &key->base);
/* XXX: Handle vertex input work-arounds */
/* XXX: Handle sampler_prog_key */
}
static void
populate_tcs_prog_key(const struct gen_device_info *devinfo,
VkPipelineShaderStageCreateFlags flags,
bool robust_buffer_acccess,
unsigned input_vertices,
struct brw_tcs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(devinfo, flags, robust_buffer_acccess, &key->base);
key->input_vertices = input_vertices;
}
static void
populate_tes_prog_key(const struct gen_device_info *devinfo,
VkPipelineShaderStageCreateFlags flags,
bool robust_buffer_acccess,
struct brw_tes_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(devinfo, flags, robust_buffer_acccess, &key->base);
}
static void
populate_gs_prog_key(const struct gen_device_info *devinfo,
VkPipelineShaderStageCreateFlags flags,
bool robust_buffer_acccess,
struct brw_gs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(devinfo, flags, robust_buffer_acccess, &key->base);
}
static void
populate_wm_prog_key(const struct gen_device_info *devinfo,
VkPipelineShaderStageCreateFlags flags,
bool robust_buffer_acccess,
const struct anv_subpass *subpass,
const VkPipelineMultisampleStateCreateInfo *ms_info,
struct brw_wm_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(devinfo, flags, robust_buffer_acccess, &key->base);
/* We set this to 0 here and set to the actual value before we call
* brw_compile_fs.
*/
key->input_slots_valid = 0;
/* Vulkan doesn't specify a default */
key->high_quality_derivatives = false;
/* XXX Vulkan doesn't appear to specify */
key->clamp_fragment_color = false;
key->ignore_sample_mask_out = false;
assert(subpass->color_count <= MAX_RTS);
for (uint32_t i = 0; i < subpass->color_count; i++) {
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
key->color_outputs_valid |= (1 << i);
}
key->nr_color_regions = subpass->color_count;
/* To reduce possible shader recompilations we would need to know if
* there is a SampleMask output variable to compute if we should emit
* code to workaround the issue that hardware disables alpha to coverage
* when there is SampleMask output.
*/
key->alpha_to_coverage = ms_info && ms_info->alphaToCoverageEnable;
/* Vulkan doesn't support fixed-function alpha test */
key->alpha_test_replicate_alpha = false;
if (ms_info) {
/* We should probably pull this out of the shader, but it's fairly
* harmless to compute it and then let dead-code take care of it.
*/
if (ms_info->rasterizationSamples > 1) {
key->persample_interp = ms_info->sampleShadingEnable &&
(ms_info->minSampleShading * ms_info->rasterizationSamples) > 1;
key->multisample_fbo = true;
}
key->frag_coord_adds_sample_pos = key->persample_interp;
}
}
static void
populate_cs_prog_key(const struct gen_device_info *devinfo,
VkPipelineShaderStageCreateFlags flags,
bool robust_buffer_acccess,
const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *rss_info,
struct brw_cs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_base_prog_key(devinfo, flags, robust_buffer_acccess, &key->base);
if (rss_info) {
assert(key->base.subgroup_size_type != BRW_SUBGROUP_SIZE_VARYING);
/* These enum values are expressly chosen to be equal to the subgroup
* size that they require.
*/
assert(rss_info->requiredSubgroupSize == 8 ||
rss_info->requiredSubgroupSize == 16 ||
rss_info->requiredSubgroupSize == 32);
key->base.subgroup_size_type = rss_info->requiredSubgroupSize;
} else if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT) {
/* If the client expressly requests full subgroups and they don't
* specify a subgroup size, we need to pick one. If they're requested
* varying subgroup sizes, we set it to UNIFORM and let the back-end
* compiler pick. Otherwise, we specify the API value of 32.
* Performance will likely be terrible in this case but there's nothing
* we can do about that. The client should have chosen a size.
*/
if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT)
key->base.subgroup_size_type = BRW_SUBGROUP_SIZE_UNIFORM;
else
key->base.subgroup_size_type = BRW_SUBGROUP_SIZE_REQUIRE_32;
}
}
struct anv_pipeline_stage {
gl_shader_stage stage;
const struct vk_shader_module *module;
const char *entrypoint;
const VkSpecializationInfo *spec_info;
unsigned char shader_sha1[20];
union brw_any_prog_key key;
struct {
gl_shader_stage stage;
unsigned char sha1[20];
} cache_key;
nir_shader *nir;
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
struct anv_pipeline_bind_map bind_map;
union brw_any_prog_data prog_data;
uint32_t num_stats;
struct brw_compile_stats stats[3];
char *disasm[3];
VkPipelineCreationFeedbackEXT feedback;
const unsigned *code;
};
static void
anv_pipeline_hash_shader(const struct vk_shader_module *module,
const char *entrypoint,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
_mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
_mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint));
_mesa_sha1_update(&ctx, &stage, sizeof(stage));
if (spec_info) {
_mesa_sha1_update(&ctx, spec_info->pMapEntries,
spec_info->mapEntryCount *
sizeof(*spec_info->pMapEntries));
_mesa_sha1_update(&ctx, spec_info->pData,
spec_info->dataSize);
}
_mesa_sha1_final(&ctx, sha1_out);
}
static void
anv_pipeline_hash_graphics(struct anv_graphics_pipeline *pipeline,
struct anv_pipeline_layout *layout,
struct anv_pipeline_stage *stages,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
_mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
sizeof(pipeline->subpass->view_mask));
if (layout)
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
const bool rba = pipeline->base.device->robust_buffer_access;
_mesa_sha1_update(&ctx, &rba, sizeof(rba));
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (stages[s].entrypoint) {
_mesa_sha1_update(&ctx, stages[s].shader_sha1,
sizeof(stages[s].shader_sha1));
_mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
}
}
_mesa_sha1_final(&ctx, sha1_out);
}
static void
anv_pipeline_hash_compute(struct anv_compute_pipeline *pipeline,
struct anv_pipeline_layout *layout,
struct anv_pipeline_stage *stage,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
if (layout)
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
const bool rba = pipeline->base.device->robust_buffer_access;
_mesa_sha1_update(&ctx, &rba, sizeof(rba));
_mesa_sha1_update(&ctx, stage->shader_sha1,
sizeof(stage->shader_sha1));
_mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
_mesa_sha1_final(&ctx, sha1_out);
}
static nir_shader *
anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
void *mem_ctx,
struct anv_pipeline_stage *stage)
{
const struct brw_compiler *compiler =
pipeline->device->physical->compiler;
const nir_shader_compiler_options *nir_options =
compiler->glsl_compiler_options[stage->stage].NirOptions;
nir_shader *nir;
nir = anv_device_search_for_nir(pipeline->device, cache,
nir_options,
stage->shader_sha1,
mem_ctx);
if (nir) {
assert(nir->info.stage == stage->stage);
return nir;
}
nir = anv_shader_compile_to_nir(pipeline->device,
mem_ctx,
stage->module,
stage->entrypoint,
stage->stage,
stage->spec_info);
if (nir) {
anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1);
return nir;
}
return NULL;
}
static void
anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
void *mem_ctx,
struct anv_pipeline_stage *stage,
struct anv_pipeline_layout *layout)
{
const struct anv_physical_device *pdevice = pipeline->device->physical;
const struct brw_compiler *compiler = pdevice->compiler;
struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
nir_shader *nir = stage->nir;
if (nir->info.stage == MESA_SHADER_FRAGMENT) {
/* Check if sample shading is enabled in the shader and toggle
* it on for the pipeline independent if sampleShadingEnable is set.
*/
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
if (nir->info.fs.uses_sample_shading)
anv_pipeline_to_graphics(pipeline)->sample_shading_enable = true;
NIR_PASS_V(nir, nir_lower_wpos_center,
anv_pipeline_to_graphics(pipeline)->sample_shading_enable);
NIR_PASS_V(nir, nir_lower_input_attachments,
&(nir_input_attachment_options) {
.use_fragcoord_sysval = true,
.use_layer_id_sysval = true,
});
}
NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, layout);
if (pipeline->type == ANV_PIPELINE_GRAPHICS) {
NIR_PASS_V(nir, anv_nir_lower_multiview,
anv_pipeline_to_graphics(pipeline));
}
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
NIR_PASS_V(nir, brw_nir_lower_image_load_store, compiler->devinfo, NULL);
NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_global,
nir_address_format_64bit_global);
NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_push_const,
nir_address_format_32bit_offset);
/* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
anv_nir_apply_pipeline_layout(pdevice,
pipeline->device->robust_buffer_access,
layout, nir, &stage->bind_map);
NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ubo,
anv_nir_ubo_addr_format(pdevice,
pipeline->device->robust_buffer_access));
NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ssbo,
anv_nir_ssbo_addr_format(pdevice,
pipeline->device->robust_buffer_access));
/* First run copy-prop to get rid of all of the vec() that address
* calculations often create and then constant-fold so that, when we
* get to anv_nir_lower_ubo_loads, we can detect constant offsets.
*/
NIR_PASS_V(nir, nir_copy_prop);
NIR_PASS_V(nir, nir_opt_constant_folding);
NIR_PASS_V(nir, anv_nir_lower_ubo_loads);
/* We don't support non-uniform UBOs and non-uniform SSBO access is
* handled naturally by falling back to A64 messages.
*/
NIR_PASS_V(nir, nir_lower_non_uniform_access,
nir_lower_non_uniform_texture_access |
nir_lower_non_uniform_image_access);
anv_nir_compute_push_layout(pdevice, pipeline->device->robust_buffer_access,
nir, prog_data, &stage->bind_map, mem_ctx);
stage->nir = nir;
}
static void
anv_pipeline_link_vs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *vs_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
brw_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_vs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_graphics_pipeline *pipeline,
struct anv_pipeline_stage *vs_stage)
{
/* When using Primitive Replication for multiview, each view gets its own
* position slot.
*/
uint32_t pos_slots = pipeline->use_primitive_replication ?
anv_subpass_view_count(pipeline->subpass) : 1;
brw_compute_vue_map(compiler->devinfo,
&vs_stage->prog_data.vs.base.vue_map,
vs_stage->nir->info.outputs_written,
vs_stage->nir->info.separate_shader,
pos_slots);
vs_stage->num_stats = 1;
struct brw_compile_vs_params params = {
.nir = vs_stage->nir,
.key = &vs_stage->key.vs,
.prog_data = &vs_stage->prog_data.vs,
.stats = vs_stage->stats,
.log_data = pipeline->base.device,
};
vs_stage->code = brw_compile_vs(compiler, mem_ctx, &params);
}
static void
merge_tess_info(struct shader_info *tes_info,
const struct shader_info *tcs_info)
{
/* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
*
* "PointMode. Controls generation of points rather than triangles
* or lines. This functionality defaults to disabled, and is
* enabled if either shader stage includes the execution mode.
*
* and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
* PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
* and OutputVertices, it says:
*
* "One mode must be set in at least one of the tessellation
* shader stages."
*
* So, the fields can be set in either the TCS or TES, but they must
* agree if set in both. Our backend looks at TES, so bitwise-or in
* the values from the TCS.
*/
assert(tcs_info->tess.tcs_vertices_out == 0 ||
tes_info->tess.tcs_vertices_out == 0 ||
tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tcs_info->tess.spacing == tes_info->tess.spacing);
tes_info->tess.spacing |= tcs_info->tess.spacing;
assert(tcs_info->tess.primitive_mode == 0 ||
tes_info->tess.primitive_mode == 0 ||
tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
tes_info->tess.ccw |= tcs_info->tess.ccw;
tes_info->tess.point_mode |= tcs_info->tess.point_mode;
}
static void
anv_pipeline_link_tcs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *tcs_stage,
struct anv_pipeline_stage *tes_stage)
{
assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
brw_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir);
nir_lower_patch_vertices(tes_stage->nir,
tcs_stage->nir->info.tess.tcs_vertices_out,
NULL);
/* Copy TCS info into the TES info */
merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
/* Whacking the key after cache lookup is a bit sketchy, but all of
* this comes from the SPIR-V, which is part of the hash used for the
* pipeline cache. So it should be safe.
*/
tcs_stage->key.tcs.tes_primitive_mode =
tes_stage->nir->info.tess.primitive_mode;
tcs_stage->key.tcs.quads_workaround =
compiler->devinfo->ver < 9 &&
tes_stage->nir->info.tess.primitive_mode == 7 /* GL_QUADS */ &&
tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL;
}
static void
anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *tcs_stage,
struct anv_pipeline_stage *prev_stage)
{
tcs_stage->key.tcs.outputs_written =
tcs_stage->nir->info.outputs_written;
tcs_stage->key.tcs.patch_outputs_written =
tcs_stage->nir->info.patch_outputs_written;
tcs_stage->num_stats = 1;
tcs_stage->code = brw_compile_tcs(compiler, device, mem_ctx,
&tcs_stage->key.tcs,
&tcs_stage->prog_data.tcs,
tcs_stage->nir, -1,
tcs_stage->stats, NULL);
}
static void
anv_pipeline_link_tes(const struct brw_compiler *compiler,
struct anv_pipeline_stage *tes_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
brw_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_tes(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *tes_stage,
struct anv_pipeline_stage *tcs_stage)
{
tes_stage->key.tes.inputs_read =
tcs_stage->nir->info.outputs_written;
tes_stage->key.tes.patch_inputs_read =
tcs_stage->nir->info.patch_outputs_written;
tes_stage->num_stats = 1;
tes_stage->code = brw_compile_tes(compiler, device, mem_ctx,
&tes_stage->key.tes,
&tcs_stage->prog_data.tcs.base.vue_map,
&tes_stage->prog_data.tes,
tes_stage->nir, -1,
tes_stage->stats, NULL);
}
static void
anv_pipeline_link_gs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *gs_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
brw_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir);
}
static void
anv_pipeline_compile_gs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *gs_stage,
struct anv_pipeline_stage *prev_stage)
{
brw_compute_vue_map(compiler->devinfo,
&gs_stage->prog_data.gs.base.vue_map,
gs_stage->nir->info.outputs_written,
gs_stage->nir->info.separate_shader, 1);
gs_stage->num_stats = 1;
gs_stage->code = brw_compile_gs(compiler, device, mem_ctx,
&gs_stage->key.gs,
&gs_stage->prog_data.gs,
gs_stage->nir, NULL, -1,
gs_stage->stats, NULL);
}
static void
anv_pipeline_link_fs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *stage)
{
unsigned num_rt_bindings;
struct anv_pipeline_binding rt_bindings[MAX_RTS];
if (stage->key.wm.nr_color_regions > 0) {
assert(stage->key.wm.nr_color_regions <= MAX_RTS);
for (unsigned rt = 0; rt < stage->key.wm.nr_color_regions; rt++) {
if (stage->key.wm.color_outputs_valid & BITFIELD_BIT(rt)) {
rt_bindings[rt] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.index = rt,
};
} else {
/* Setup a null render target */
rt_bindings[rt] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.index = UINT32_MAX,
};
}
}
num_rt_bindings = stage->key.wm.nr_color_regions;
} else {
/* Setup a null render target */
rt_bindings[0] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.index = UINT32_MAX,
};
num_rt_bindings = 1;
}
assert(num_rt_bindings <= MAX_RTS);
assert(stage->bind_map.surface_count == 0);
typed_memcpy(stage->bind_map.surface_to_descriptor,
rt_bindings, num_rt_bindings);
stage->bind_map.surface_count += num_rt_bindings;
/* Now that we've set up the color attachments, we can go through and
* eliminate any shader outputs that map to VK_ATTACHMENT_UNUSED in the
* hopes that dead code can clean them up in this and any earlier shader
* stages.
*/
nir_function_impl *impl = nir_shader_get_entrypoint(stage->nir);
bool deleted_output = false;
nir_foreach_shader_out_variable_safe(var, stage->nir) {
/* TODO: We don't delete depth/stencil writes. We probably could if the
* subpass doesn't have a depth/stencil attachment.
*/
if (var->data.location < FRAG_RESULT_DATA0)
continue;
const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
/* If this is the RT at location 0 and we have alpha to coverage
* enabled we still need that write because it will affect the coverage
* mask even if it's never written to a color target.
*/
if (rt == 0 && stage->key.wm.alpha_to_coverage)
continue;
const unsigned array_len =
glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
assert(rt + array_len <= MAX_RTS);
if (rt >= MAX_RTS || !(stage->key.wm.color_outputs_valid &
BITFIELD_RANGE(rt, array_len))) {
deleted_output = true;
var->data.mode = nir_var_function_temp;
exec_node_remove(&var->node);
exec_list_push_tail(&impl->locals, &var->node);
}
}
if (deleted_output)
nir_fixup_deref_modes(stage->nir);
/* We stored the number of subpass color attachments in nr_color_regions
* when calculating the key for caching. Now that we've computed the bind
* map, we can reduce this to the actual max before we go into the back-end
* compiler.
*/
stage->key.wm.nr_color_regions =
util_last_bit(stage->key.wm.color_outputs_valid);
}
static void
anv_pipeline_compile_fs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *fs_stage,
struct anv_pipeline_stage *prev_stage)
{
/* TODO: we could set this to 0 based on the information in nir_shader, but
* we need this before we call spirv_to_nir.
*/
assert(prev_stage);
fs_stage->key.wm.input_slots_valid =
prev_stage->prog_data.vue.vue_map.slots_valid;
struct brw_compile_fs_params params = {
.nir = fs_stage->nir,
.key = &fs_stage->key.wm,
.prog_data = &fs_stage->prog_data.wm,
.allow_spilling = true,
.stats = fs_stage->stats,
.log_data = device,
};
fs_stage->code = brw_compile_fs(compiler, mem_ctx, &params);
fs_stage->num_stats = (uint32_t)fs_stage->prog_data.wm.dispatch_8 +
(uint32_t)fs_stage->prog_data.wm.dispatch_16 +
(uint32_t)fs_stage->prog_data.wm.dispatch_32;
if (fs_stage->key.wm.color_outputs_valid == 0 &&
!fs_stage->prog_data.wm.has_side_effects &&
!fs_stage->prog_data.wm.uses_omask &&
!fs_stage->key.wm.alpha_to_coverage &&
!fs_stage->prog_data.wm.uses_kill &&
fs_stage->prog_data.wm.computed_depth_mode == BRW_PSCDEPTH_OFF &&
!fs_stage->prog_data.wm.computed_stencil) {
/* This fragment shader has no outputs and no side effects. Go ahead
* and return the code pointer so we don't accidentally think the
* compile failed but zero out prog_data which will set program_size to
* zero and disable the stage.
*/
memset(&fs_stage->prog_data, 0, sizeof(fs_stage->prog_data));
}
}
static void
anv_pipeline_add_executable(struct anv_pipeline *pipeline,
struct anv_pipeline_stage *stage,
struct brw_compile_stats *stats,
uint32_t code_offset)
{
char *nir = NULL;
if (stage->nir &&
(pipeline->flags &
VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
nir = nir_shader_as_str(stage->nir, pipeline->mem_ctx);
}
char *disasm = NULL;
if (stage->code &&
(pipeline->flags &
VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
char *stream_data = NULL;
size_t stream_size = 0;
FILE *stream = open_memstream(&stream_data, &stream_size);
uint32_t push_size = 0;
for (unsigned i = 0; i < 4; i++)
push_size += stage->bind_map.push_ranges[i].length;
if (push_size > 0) {
fprintf(stream, "Push constant ranges:\n");
for (unsigned i = 0; i < 4; i++) {
if (stage->bind_map.push_ranges[i].length == 0)
continue;
fprintf(stream, " RANGE%d (%dB): ", i,
stage->bind_map.push_ranges[i].length * 32);
switch (stage->bind_map.push_ranges[i].set) {
case ANV_DESCRIPTOR_SET_NULL:
fprintf(stream, "NULL");
break;
case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS:
fprintf(stream, "Vulkan push constants and API params");
break;
case ANV_DESCRIPTOR_SET_DESCRIPTORS:
fprintf(stream, "Descriptor buffer for set %d (start=%dB)",
stage->bind_map.push_ranges[i].index,
stage->bind_map.push_ranges[i].start * 32);
break;
case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS:
unreachable("gl_NumWorkgroups is never pushed");
case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS:
fprintf(stream, "Inline shader constant data (start=%dB)",
stage->bind_map.push_ranges[i].start * 32);
break;
case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
unreachable("Color attachments can't be pushed");
default:
fprintf(stream, "UBO (set=%d binding=%d start=%dB)",
stage->bind_map.push_ranges[i].set,
stage->bind_map.push_ranges[i].index,
stage->bind_map.push_ranges[i].start * 32);
break;
}
fprintf(stream, "\n");
}
fprintf(stream, "\n");
}
/* Creating this is far cheaper than it looks. It's perfectly fine to
* do it for every binary.
*/
intel_disassemble(&pipeline->device->info,
stage->code, code_offset, stream);
fclose(stream);
/* Copy it to a ralloc'd thing */
disasm = ralloc_size(pipeline->mem_ctx, stream_size + 1);
memcpy(disasm, stream_data, stream_size);
disasm[stream_size] = 0;
free(stream_data);
}
const struct anv_pipeline_executable exe = {
.stage = stage->stage,
.stats = *stats,
.nir = nir,
.disasm = disasm,
};
util_dynarray_append(&pipeline->executables,
struct anv_pipeline_executable, exe);
}
static void
anv_pipeline_add_executables(struct anv_pipeline *pipeline,
struct anv_pipeline_stage *stage,
struct anv_shader_bin *bin)
{
if (stage->stage == MESA_SHADER_FRAGMENT) {
/* We pull the prog data and stats out of the anv_shader_bin because
* the anv_pipeline_stage may not be fully populated if we successfully
* looked up the shader in a cache.
*/
const struct brw_wm_prog_data *wm_prog_data =
(const struct brw_wm_prog_data *)bin->prog_data;
struct brw_compile_stats *stats = bin->stats;
if (wm_prog_data->dispatch_8) {
anv_pipeline_add_executable(pipeline, stage, stats++, 0);
}
if (wm_prog_data->dispatch_16) {
anv_pipeline_add_executable(pipeline, stage, stats++,
wm_prog_data->prog_offset_16);
}
if (wm_prog_data->dispatch_32) {
anv_pipeline_add_executable(pipeline, stage, stats++,
wm_prog_data->prog_offset_32);
}
} else {
anv_pipeline_add_executable(pipeline, stage, bin->stats, 0);
}
}
static void
anv_pipeline_init_from_cached_graphics(struct anv_graphics_pipeline *pipeline)
{
/* TODO: Cache this pipeline-wide information. */
/* Primitive replication depends on information from all the shaders.
* Recover this bit from the fact that we have more than one position slot
* in the vertex shader when using it.
*/
assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
int pos_slots = 0;
const struct brw_vue_prog_data *vue_prog_data =
(const void *) pipeline->shaders[MESA_SHADER_VERTEX]->prog_data;
const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
for (int i = 0; i < vue_map->num_slots; i++) {
if (vue_map->slot_to_varying[i] == VARYING_SLOT_POS)
pos_slots++;
}
pipeline->use_primitive_replication = pos_slots > 1;
}
static VkResult
anv_pipeline_compile_graphics(struct anv_graphics_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info)
{
VkPipelineCreationFeedbackEXT pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
};
int64_t pipeline_start = os_time_get_nano();
const struct brw_compiler *compiler = pipeline->base.device->physical->compiler;
struct anv_pipeline_stage stages[MESA_SHADER_STAGES] = {};
pipeline->active_stages = 0;
VkResult result;
for (uint32_t i = 0; i < info->stageCount; i++) {
const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
pipeline->active_stages |= sinfo->stage;
int64_t stage_start = os_time_get_nano();
stages[stage].stage = stage;
stages[stage].module = vk_shader_module_from_handle(sinfo->module);
stages[stage].entrypoint = sinfo->pName;
stages[stage].spec_info = sinfo->pSpecializationInfo;
anv_pipeline_hash_shader(stages[stage].module,
stages[stage].entrypoint,
stage,
stages[stage].spec_info,
stages[stage].shader_sha1);
const struct gen_device_info *devinfo = &pipeline->base.device->info;
switch (stage) {
case MESA_SHADER_VERTEX:
populate_vs_prog_key(devinfo, sinfo->flags,
pipeline->base.device->robust_buffer_access,
&stages[stage].key.vs);
break;
case MESA_SHADER_TESS_CTRL:
populate_tcs_prog_key(devinfo, sinfo->flags,
pipeline->base.device->robust_buffer_access,
info->pTessellationState->patchControlPoints,
&stages[stage].key.tcs);
break;
case MESA_SHADER_TESS_EVAL:
populate_tes_prog_key(devinfo, sinfo->flags,
pipeline->base.device->robust_buffer_access,
&stages[stage].key.tes);
break;
case MESA_SHADER_GEOMETRY:
populate_gs_prog_key(devinfo, sinfo->flags,
pipeline->base.device->robust_buffer_access,
&stages[stage].key.gs);
break;
case MESA_SHADER_FRAGMENT: {
const bool raster_enabled =
!info->pRasterizationState->rasterizerDiscardEnable;
populate_wm_prog_key(devinfo, sinfo->flags,
pipeline->base.device->robust_buffer_access,
pipeline->subpass,
raster_enabled ? info->pMultisampleState : NULL,
&stages[stage].key.wm);
break;
}
default:
unreachable("Invalid graphics shader stage");
}
stages[stage].feedback.duration += os_time_get_nano() - stage_start;
stages[stage].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
}
if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
unsigned char sha1[20];
anv_pipeline_hash_graphics(pipeline, layout, stages, sha1);
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
stages[s].cache_key.stage = s;
memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
}
const bool skip_cache_lookup =
(pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
if (!skip_cache_lookup) {
unsigned found = 0;
unsigned cache_hits = 0;
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
int64_t stage_start = os_time_get_nano();
bool cache_hit;
struct anv_shader_bin *bin =
anv_device_search_for_kernel(pipeline->base.device, cache,
&stages[s].cache_key,
sizeof(stages[s].cache_key), &cache_hit);
if (bin) {
found++;
pipeline->shaders[s] = bin;
}
if (cache_hit) {
cache_hits++;
stages[s].feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
if (found == __builtin_popcount(pipeline->active_stages)) {
if (cache_hits == found) {
pipeline_feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
}
/* We found all our shaders in the cache. We're done. */
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
anv_pipeline_add_executables(&pipeline->base, &stages[s],
pipeline->shaders[s]);
}
anv_pipeline_init_from_cached_graphics(pipeline);
goto done;
} else if (found > 0) {
/* We found some but not all of our shaders. This shouldn't happen
* most of the time but it can if we have a partially populated
* pipeline cache.
*/
assert(found < __builtin_popcount(pipeline->active_stages));
vk_debug_report(&pipeline->base.device->physical->instance->vk,
VK_DEBUG_REPORT_WARNING_BIT_EXT |
VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
&cache->base, 0, 0, "anv",
"Found a partial pipeline in the cache. This is "
"most likely caused by an incomplete pipeline cache "
"import or export");
/* We're going to have to recompile anyway, so just throw away our
* references to the shaders in the cache. We'll get them out of the
* cache again as part of the compilation process.
*/
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
stages[s].feedback.flags = 0;
if (pipeline->shaders[s]) {
anv_shader_bin_unref(pipeline->base.device, pipeline->shaders[s]);
pipeline->shaders[s] = NULL;
}
}
}
}
if (info->flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_EXT)
return VK_PIPELINE_COMPILE_REQUIRED_EXT;
void *pipeline_ctx = ralloc_context(NULL);
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
int64_t stage_start = os_time_get_nano();
assert(stages[s].stage == s);
assert(pipeline->shaders[s] == NULL);
stages[s].bind_map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = stages[s].surface_to_descriptor,
.sampler_to_descriptor = stages[s].sampler_to_descriptor
};
stages[s].nir = anv_pipeline_stage_get_nir(&pipeline->base, cache,
pipeline_ctx,
&stages[s]);
if (stages[s].nir == NULL) {
result = vk_error(VK_ERROR_UNKNOWN);
goto fail;
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
/* Walk backwards to link */
struct anv_pipeline_stage *next_stage = NULL;
for (int s = MESA_SHADER_STAGES - 1; s >= 0; s--) {
if (!stages[s].entrypoint)
continue;
switch (s) {
case MESA_SHADER_VERTEX:
anv_pipeline_link_vs(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_TESS_CTRL:
anv_pipeline_link_tcs(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_TESS_EVAL:
anv_pipeline_link_tes(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_GEOMETRY:
anv_pipeline_link_gs(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_FRAGMENT:
anv_pipeline_link_fs(compiler, &stages[s]);
break;
default:
unreachable("Invalid graphics shader stage");
}
next_stage = &stages[s];
}
if (pipeline->base.device->info.ver >= 12 &&
pipeline->subpass->view_mask != 0) {
/* For some pipelines HW Primitive Replication can be used instead of
* instancing to implement Multiview. This depend on how viewIndex is
* used in all the active shaders, so this check can't be done per
* individual shaders.
*/
nir_shader *shaders[MESA_SHADER_STAGES] = {};
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++)
shaders[s] = stages[s].nir;
pipeline->use_primitive_replication =
anv_check_for_primitive_replication(shaders, pipeline);
} else {
pipeline->use_primitive_replication = false;
}
struct anv_pipeline_stage *prev_stage = NULL;
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
int64_t stage_start = os_time_get_nano();
void *stage_ctx = ralloc_context(NULL);
anv_pipeline_lower_nir(&pipeline->base, stage_ctx, &stages[s], layout);
if (prev_stage && compiler->glsl_compiler_options[s].NirOptions->unify_interfaces) {
prev_stage->nir->info.outputs_written |= stages[s].nir->info.inputs_read &
~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
stages[s].nir->info.inputs_read |= prev_stage->nir->info.outputs_written &
~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
prev_stage->nir->info.patch_outputs_written |= stages[s].nir->info.patch_inputs_read;
stages[s].nir->info.patch_inputs_read |= prev_stage->nir->info.patch_outputs_written;
}
ralloc_free(stage_ctx);
stages[s].feedback.duration += os_time_get_nano() - stage_start;
prev_stage = &stages[s];
}
prev_stage = NULL;
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
int64_t stage_start = os_time_get_nano();
void *stage_ctx = ralloc_context(NULL);
nir_xfb_info *xfb_info = NULL;
if (s == MESA_SHADER_VERTEX ||
s == MESA_SHADER_TESS_EVAL ||
s == MESA_SHADER_GEOMETRY)
xfb_info = nir_gather_xfb_info(stages[s].nir, stage_ctx);
switch (s) {
case MESA_SHADER_VERTEX:
anv_pipeline_compile_vs(compiler, stage_ctx, pipeline,
&stages[s]);
break;
case MESA_SHADER_TESS_CTRL:
anv_pipeline_compile_tcs(compiler, stage_ctx, pipeline->base.device,
&stages[s], prev_stage);
break;
case MESA_SHADER_TESS_EVAL:
anv_pipeline_compile_tes(compiler, stage_ctx, pipeline->base.device,
&stages[s], prev_stage);
break;
case MESA_SHADER_GEOMETRY:
anv_pipeline_compile_gs(compiler, stage_ctx, pipeline->base.device,
&stages[s], prev_stage);
break;
case MESA_SHADER_FRAGMENT:
anv_pipeline_compile_fs(compiler, stage_ctx, pipeline->base.device,
&stages[s], prev_stage);
break;
default:
unreachable("Invalid graphics shader stage");
}
if (stages[s].code == NULL) {
ralloc_free(stage_ctx);
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail;
}
anv_nir_validate_push_layout(&stages[s].prog_data.base,
&stages[s].bind_map);
struct anv_shader_bin *bin =
anv_device_upload_kernel(pipeline->base.device, cache, s,
&stages[s].cache_key,
sizeof(stages[s].cache_key),
stages[s].code,
stages[s].prog_data.base.program_size,
&stages[s].prog_data.base,
brw_prog_data_size(s),
stages[s].stats, stages[s].num_stats,
xfb_info, &stages[s].bind_map);
if (!bin) {
ralloc_free(stage_ctx);
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail;
}
anv_pipeline_add_executables(&pipeline->base, &stages[s], bin);
pipeline->shaders[s] = bin;
ralloc_free(stage_ctx);
stages[s].feedback.duration += os_time_get_nano() - stage_start;
prev_stage = &stages[s];
}
ralloc_free(pipeline_ctx);
done:
if (pipeline->shaders[MESA_SHADER_FRAGMENT] &&
pipeline->shaders[MESA_SHADER_FRAGMENT]->prog_data->program_size == 0) {
/* This can happen if we decided to implicitly disable the fragment
* shader. See anv_pipeline_compile_fs().
*/
anv_shader_bin_unref(pipeline->base.device,
pipeline->shaders[MESA_SHADER_FRAGMENT]);
pipeline->shaders[MESA_SHADER_FRAGMENT] = NULL;
pipeline->active_stages &= ~VK_SHADER_STAGE_FRAGMENT_BIT;
}
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
if (create_feedback) {
*create_feedback->pPipelineCreationFeedback = pipeline_feedback;
assert(info->stageCount == create_feedback->pipelineStageCreationFeedbackCount);
for (uint32_t i = 0; i < info->stageCount; i++) {
gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
}
}
return VK_SUCCESS;
fail:
ralloc_free(pipeline_ctx);
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (pipeline->shaders[s])
anv_shader_bin_unref(pipeline->base.device, pipeline->shaders[s]);
}
return result;
}
static void
shared_type_info(const struct glsl_type *type, unsigned *size, unsigned *align)
{
assert(glsl_type_is_vector_or_scalar(type));
uint32_t comp_size = glsl_type_is_boolean(type)
? 4 : glsl_get_bit_size(type) / 8;
unsigned length = glsl_get_vector_elements(type);
*size = comp_size * length,
*align = comp_size * (length == 3 ? 4 : length);
}
VkResult
anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkComputePipelineCreateInfo *info,
const struct vk_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
VkPipelineCreationFeedbackEXT pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
};
int64_t pipeline_start = os_time_get_nano();
const struct brw_compiler *compiler = pipeline->base.device->physical->compiler;
struct anv_pipeline_stage stage = {
.stage = MESA_SHADER_COMPUTE,
.module = module,
.entrypoint = entrypoint,
.spec_info = spec_info,
.cache_key = {
.stage = MESA_SHADER_COMPUTE,
},
.feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
},
};
anv_pipeline_hash_shader(stage.module,
stage.entrypoint,
MESA_SHADER_COMPUTE,
stage.spec_info,
stage.shader_sha1);
struct anv_shader_bin *bin = NULL;
const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *rss_info =
vk_find_struct_const(info->stage.pNext,
PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT);
populate_cs_prog_key(&pipeline->base.device->info, info->stage.flags,
pipeline->base.device->robust_buffer_access,
rss_info, &stage.key.cs);
ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
const bool skip_cache_lookup =
(pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1);
bool cache_hit = false;
if (!skip_cache_lookup) {
bin = anv_device_search_for_kernel(pipeline->base.device, cache,
&stage.cache_key,
sizeof(stage.cache_key),
&cache_hit);
}
if (bin == NULL &&
(info->flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_EXT))
return VK_PIPELINE_COMPILE_REQUIRED_EXT;
void *mem_ctx = ralloc_context(NULL);
if (bin == NULL) {
int64_t stage_start = os_time_get_nano();
stage.bind_map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = stage.surface_to_descriptor,
.sampler_to_descriptor = stage.sampler_to_descriptor
};
/* Set up a binding for the gl_NumWorkGroups */
stage.bind_map.surface_count = 1;
stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
};
stage.nir = anv_pipeline_stage_get_nir(&pipeline->base, cache, mem_ctx, &stage);
if (stage.nir == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_UNKNOWN);
}
NIR_PASS_V(stage.nir, anv_nir_add_base_work_group_id);
anv_pipeline_lower_nir(&pipeline->base, mem_ctx, &stage, layout);
if (!stage.nir->info.shared_memory_explicit_layout) {
NIR_PASS_V(stage.nir, nir_lower_vars_to_explicit_types,
nir_var_mem_shared, shared_type_info);
}
NIR_PASS_V(stage.nir, nir_lower_explicit_io,
nir_var_mem_shared, nir_address_format_32bit_offset);
if (stage.nir->info.cs.zero_initialize_shared_memory &&
stage.nir->info.shared_size > 0) {
/* The effective Shared Local Memory size is at least 1024 bytes and
* is always rounded to a power of two, so it is OK to align the size
* used by the shader to chunk_size -- which does simplify the logic.
*/
const unsigned chunk_size = 16;
const unsigned shared_size = ALIGN(stage.nir->info.shared_size, chunk_size);
assert(shared_size <=
calculate_gen_slm_size(compiler->devinfo->ver, stage.nir->info.shared_size));
NIR_PASS_V(stage.nir, nir_zero_initialize_shared_memory,
shared_size, chunk_size);
}
NIR_PASS_V(stage.nir, brw_nir_lower_cs_intrinsics);
stage.num_stats = 1;
struct brw_compile_cs_params params = {
.nir = stage.nir,
.key = &stage.key.cs,
.prog_data = &stage.prog_data.cs,
.stats = stage.stats,
.log_data = pipeline->base.device,
};
stage.code = brw_compile_cs(compiler, mem_ctx, &params);
if (stage.code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
anv_nir_validate_push_layout(&stage.prog_data.base, &stage.bind_map);
if (!stage.prog_data.cs.uses_num_work_groups) {
assert(stage.bind_map.surface_to_descriptor[0].set ==
ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS);
stage.bind_map.surface_to_descriptor[0].set = ANV_DESCRIPTOR_SET_NULL;
}
const unsigned code_size = stage.prog_data.base.program_size;
bin = anv_device_upload_kernel(pipeline->base.device, cache,
MESA_SHADER_COMPUTE,
&stage.cache_key, sizeof(stage.cache_key),
stage.code, code_size,
&stage.prog_data.base,
sizeof(stage.prog_data.cs),
stage.stats, stage.num_stats,
NULL, &stage.bind_map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
stage.feedback.duration = os_time_get_nano() - stage_start;
}
anv_pipeline_add_executables(&pipeline->base, &stage, bin);
ralloc_free(mem_ctx);
if (cache_hit) {
stage.feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
pipeline_feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
}
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
if (create_feedback) {
*create_feedback->pPipelineCreationFeedback = pipeline_feedback;
assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
}
pipeline->cs = bin;
return VK_SUCCESS;
}
struct anv_cs_parameters
anv_cs_parameters(const struct anv_compute_pipeline *pipeline)
{
const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
struct anv_cs_parameters cs_params = {};
cs_params.group_size = cs_prog_data->local_size[0] *
cs_prog_data->local_size[1] *
cs_prog_data->local_size[2];
cs_params.simd_size =
brw_cs_simd_size_for_group_size(&pipeline->base.device->info,
cs_prog_data, cs_params.group_size);
cs_params.threads = DIV_ROUND_UP(cs_params.group_size, cs_params.simd_size);
return cs_params;
}
/**
* Copy pipeline state not marked as dynamic.
* Dynamic state is pipeline state which hasn't been provided at pipeline
* creation time, but is dynamically provided afterwards using various
* vkCmdSet* functions.
*
* The set of state considered "non_dynamic" is determined by the pieces of
* state that have their corresponding VkDynamicState enums omitted from
* VkPipelineDynamicStateCreateInfo::pDynamicStates.
*
* @param[out] pipeline Destination non_dynamic state.
* @param[in] pCreateInfo Source of non_dynamic state to be copied.
*/
static void
copy_non_dynamic_state(struct anv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
struct anv_subpass *subpass = pipeline->subpass;
pipeline->dynamic_state = default_dynamic_state;
if (pCreateInfo->pDynamicState) {
/* Remove all of the states that are marked as dynamic */
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
for (uint32_t s = 0; s < count; s++) {
states &= ~anv_cmd_dirty_bit_for_vk_dynamic_state(
pCreateInfo->pDynamicState->pDynamicStates[s]);
}
}
struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pViewportState is [...] NULL if the pipeline
* has rasterization disabled.
*/
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
assert(pCreateInfo->pViewportState);
dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
if (states & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT) {
typed_memcpy(dynamic->viewport.viewports,
pCreateInfo->pViewportState->pViewports,
pCreateInfo->pViewportState->viewportCount);
}
dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
if (states & ANV_CMD_DIRTY_DYNAMIC_SCISSOR) {
typed_memcpy(dynamic->scissor.scissors,
pCreateInfo->pViewportState->pScissors,
pCreateInfo->pViewportState->scissorCount);
}
}
if (states & ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH) {
assert(pCreateInfo->pRasterizationState);
dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS) {
assert(pCreateInfo->pRasterizationState);
dynamic->depth_bias.bias =
pCreateInfo->pRasterizationState->depthBiasConstantFactor;
dynamic->depth_bias.clamp =
pCreateInfo->pRasterizationState->depthBiasClamp;
dynamic->depth_bias.slope =
pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_CULL_MODE) {
assert(pCreateInfo->pRasterizationState);
dynamic->cull_mode =
pCreateInfo->pRasterizationState->cullMode;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_FRONT_FACE) {
assert(pCreateInfo->pRasterizationState);
dynamic->front_face =
pCreateInfo->pRasterizationState->frontFace;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY) {
assert(pCreateInfo->pInputAssemblyState);
bool has_tess = false;
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
const VkPipelineShaderStageCreateInfo *sinfo = &pCreateInfo->pStages[i];
gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL)
has_tess = true;
}
if (has_tess) {
const VkPipelineTessellationStateCreateInfo *tess_info =
pCreateInfo->pTessellationState;
dynamic->primitive_topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
} else {
dynamic->primitive_topology = pCreateInfo->pInputAssemblyState->topology;
}
}
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pColorBlendState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is
* created against does not use any color attachments.
*/
bool uses_color_att = false;
for (unsigned i = 0; i < subpass->color_count; ++i) {
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
uses_color_att = true;
break;
}
}
if (uses_color_att &&
!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
assert(pCreateInfo->pColorBlendState);
if (states & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS)
typed_memcpy(dynamic->blend_constants,
pCreateInfo->pColorBlendState->blendConstants, 4);
}
/* If there is no depthstencil attachment, then don't read
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
* no need to override the depthstencil defaults in
* anv_pipeline::dynamic_state when there is no depthstencil attachment.
*
* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pDepthStencilState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is created
* against does not use a depth/stencil attachment.
*/
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
subpass->depth_stencil_attachment) {
assert(pCreateInfo->pDepthStencilState);
if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS) {
dynamic->depth_bounds.min =
pCreateInfo->pDepthStencilState->minDepthBounds;
dynamic->depth_bounds.max =
pCreateInfo->pDepthStencilState->maxDepthBounds;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK) {
dynamic->stencil_compare_mask.front =
pCreateInfo->pDepthStencilState->front.compareMask;
dynamic->stencil_compare_mask.back =
pCreateInfo->pDepthStencilState->back.compareMask;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK) {
dynamic->stencil_write_mask.front =
pCreateInfo->pDepthStencilState->front.writeMask;
dynamic->stencil_write_mask.back =
pCreateInfo->pDepthStencilState->back.writeMask;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE) {
dynamic->stencil_reference.front =
pCreateInfo->pDepthStencilState->front.reference;
dynamic->stencil_reference.back =
pCreateInfo->pDepthStencilState->back.reference;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE) {
dynamic->depth_test_enable =
pCreateInfo->pDepthStencilState->depthTestEnable;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE) {
dynamic->depth_write_enable =
pCreateInfo->pDepthStencilState->depthWriteEnable;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP) {
dynamic->depth_compare_op =
pCreateInfo->pDepthStencilState->depthCompareOp;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) {
dynamic->depth_bounds_test_enable =
pCreateInfo->pDepthStencilState->depthBoundsTestEnable;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE) {
dynamic->stencil_test_enable =
pCreateInfo->pDepthStencilState->stencilTestEnable;
}
if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_OP) {
const VkPipelineDepthStencilStateCreateInfo *info =
pCreateInfo->pDepthStencilState;
memcpy(&dynamic->stencil_op.front, &info->front,
sizeof(dynamic->stencil_op.front));
memcpy(&dynamic->stencil_op.back, &info->back,
sizeof(dynamic->stencil_op.back));
}
}
const VkPipelineRasterizationLineStateCreateInfoEXT *line_state =
vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
if (line_state) {
if (states & ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE) {
dynamic->line_stipple.factor = line_state->lineStippleFactor;
dynamic->line_stipple.pattern = line_state->lineStipplePattern;
}
}
const VkPipelineMultisampleStateCreateInfo *ms_info =
pCreateInfo->pMultisampleState;
if (states & ANV_CMD_DIRTY_DYNAMIC_SAMPLE_LOCATIONS) {
const VkPipelineSampleLocationsStateCreateInfoEXT *sl_info = ms_info ?
vk_find_struct_const(ms_info, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT) : NULL;
if (sl_info) {
dynamic->sample_locations.samples =
sl_info->sampleLocationsInfo.sampleLocationsCount;
const VkSampleLocationEXT *positions =
sl_info->sampleLocationsInfo.pSampleLocations;
for (uint32_t i = 0; i < dynamic->sample_locations.samples; i++) {
dynamic->sample_locations.locations[i].x = positions[i].x;
dynamic->sample_locations.locations[i].y = positions[i].y;
}
}
}
/* Ensure we always have valid values for sample_locations. */
if (pipeline->base.device->vk.enabled_extensions.EXT_sample_locations &&
dynamic->sample_locations.samples == 0) {
dynamic->sample_locations.samples =
ms_info ? ms_info->rasterizationSamples : 1;
const struct intel_sample_position *positions =
intel_get_sample_positions(dynamic->sample_locations.samples);
for (uint32_t i = 0; i < dynamic->sample_locations.samples; i++) {
dynamic->sample_locations.locations[i].x = positions[i].x;
dynamic->sample_locations.locations[i].y = positions[i].y;
}
}
pipeline->dynamic_state_mask = states;
/* For now that only state that can be either dynamic or baked in the
* pipeline is the sample location.
*/
pipeline->static_state_mask = states & ANV_CMD_DIRTY_DYNAMIC_SAMPLE_LOCATIONS;
}
static void
anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
{
#ifdef DEBUG
struct anv_render_pass *renderpass = NULL;
struct anv_subpass *subpass = NULL;
/* Assert that all required members of VkGraphicsPipelineCreateInfo are
* present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
*/
assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
renderpass = anv_render_pass_from_handle(info->renderPass);
assert(renderpass);
assert(info->subpass < renderpass->subpass_count);
subpass = &renderpass->subpasses[info->subpass];
assert(info->stageCount >= 1);
assert(info->pVertexInputState);
assert(info->pInputAssemblyState);
assert(info->pRasterizationState);
if (!info->pRasterizationState->rasterizerDiscardEnable) {
assert(info->pViewportState);
assert(info->pMultisampleState);
if (subpass && subpass->depth_stencil_attachment)
assert(info->pDepthStencilState);
if (subpass && subpass->color_count > 0) {
bool all_color_unused = true;
for (int i = 0; i < subpass->color_count; i++) {
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
all_color_unused = false;
}
/* pColorBlendState is ignored if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is
* created against does not use any color attachments.
*/
assert(info->pColorBlendState || all_color_unused);
}
}
for (uint32_t i = 0; i < info->stageCount; ++i) {
switch (info->pStages[i].stage) {
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
assert(info->pTessellationState);
break;
default:
break;
}
}
#endif
}
/**
* Calculate the desired L3 partitioning based on the current state of the
* pipeline. For now this simply returns the conservative defaults calculated
* by get_default_l3_weights(), but we could probably do better by gathering
* more statistics from the pipeline state (e.g. guess of expected URB usage
* and bound surfaces), or by using feed-back from performance counters.
*/
void
anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
{
const struct gen_device_info *devinfo = &pipeline->device->info;
const struct intel_l3_weights w =
intel_get_default_l3_weights(devinfo, true, needs_slm);
pipeline->l3_config = intel_get_l3_config(devinfo, w);
}
VkResult
anv_graphics_pipeline_init(struct anv_graphics_pipeline *pipeline,
struct anv_device *device,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *alloc)
{
VkResult result;
anv_pipeline_validate_create_info(pCreateInfo);
result = anv_pipeline_init(&pipeline->base, device,
ANV_PIPELINE_GRAPHICS, pCreateInfo->flags,
alloc);
if (result != VK_SUCCESS)
return result;
anv_batch_set_storage(&pipeline->base.batch, ANV_NULL_ADDRESS,
pipeline->batch_data, sizeof(pipeline->batch_data));
ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
assert(pCreateInfo->subpass < render_pass->subpass_count);
pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
assert(pCreateInfo->pRasterizationState);
copy_non_dynamic_state(pipeline, pCreateInfo);
pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState->depthClampEnable;
/* Previously we enabled depth clipping when !depthClampEnable.
* DepthClipStateCreateInfo now makes depth clipping explicit so if the
* clipping info is available, use its enable value to determine clipping,
* otherwise fallback to the previous !depthClampEnable logic.
*/
const VkPipelineRasterizationDepthClipStateCreateInfoEXT *clip_info =
vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
pipeline->depth_clip_enable = clip_info ? clip_info->depthClipEnable : !pipeline->depth_clamp_enable;
pipeline->sample_shading_enable =
!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
pCreateInfo->pMultisampleState &&
pCreateInfo->pMultisampleState->sampleShadingEnable;
/* When we free the pipeline, we detect stages based on the NULL status
* of various prog_data pointers. Make them NULL by default.
*/
memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
result = anv_pipeline_compile_graphics(pipeline, cache, pCreateInfo);
if (result != VK_SUCCESS) {
anv_pipeline_finish(&pipeline->base, device, alloc);
return result;
}
assert(pipeline->shaders[MESA_SHADER_VERTEX]);
anv_pipeline_setup_l3_config(&pipeline->base, false);
const VkPipelineVertexInputStateCreateInfo *vi_info =
pCreateInfo->pVertexInputState;
const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
pipeline->vb_used = 0;
for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
const VkVertexInputAttributeDescription *desc =
&vi_info->pVertexAttributeDescriptions[i];
if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location)))
pipeline->vb_used |= 1 << desc->binding;
}
for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *desc =
&vi_info->pVertexBindingDescriptions[i];
pipeline->vb[desc->binding].stride = desc->stride;
/* Step rate is programmed per vertex element (attribute), not
* binding. Set up a map of which bindings step per instance, for
* reference by vertex element setup. */
switch (desc->inputRate) {
default:
case VK_VERTEX_INPUT_RATE_VERTEX:
pipeline->vb[desc->binding].instanced = false;
break;
case VK_VERTEX_INPUT_RATE_INSTANCE:
pipeline->vb[desc->binding].instanced = true;
break;
}
pipeline->vb[desc->binding].instance_divisor = 1;
}
const VkPipelineVertexInputDivisorStateCreateInfoEXT *vi_div_state =
vk_find_struct_const(vi_info->pNext,
PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
if (vi_div_state) {
for (uint32_t i = 0; i < vi_div_state->vertexBindingDivisorCount; i++) {
const VkVertexInputBindingDivisorDescriptionEXT *desc =
&vi_div_state->pVertexBindingDivisors[i];
pipeline->vb[desc->binding].instance_divisor = desc->divisor;
}
}
/* Our implementation of VK_KHR_multiview uses instancing to draw the
* different views. If the client asks for instancing, we need to multiply
* the instance divisor by the number of views ensure that we repeat the
* client's per-instance data once for each view.
*/
if (pipeline->subpass->view_mask && !pipeline->use_primitive_replication) {
const uint32_t view_count = anv_subpass_view_count(pipeline->subpass);
for (uint32_t vb = 0; vb < MAX_VBS; vb++) {
if (pipeline->vb[vb].instanced)
pipeline->vb[vb].instance_divisor *= view_count;
}
}
const VkPipelineInputAssemblyStateCreateInfo *ia_info =
pCreateInfo->pInputAssemblyState;
const VkPipelineTessellationStateCreateInfo *tess_info =
pCreateInfo->pTessellationState;
pipeline->primitive_restart = ia_info->primitiveRestartEnable;
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
else
pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
return VK_SUCCESS;
}
#define WRITE_STR(field, ...) ({ \
memset(field, 0, sizeof(field)); \
UNUSED int i = snprintf(field, sizeof(field), __VA_ARGS__); \
assert(i > 0 && i < sizeof(field)); \
})
VkResult anv_GetPipelineExecutablePropertiesKHR(
VkDevice device,
const VkPipelineInfoKHR* pPipelineInfo,
uint32_t* pExecutableCount,
VkPipelineExecutablePropertiesKHR* pProperties)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, pPipelineInfo->pipeline);
VK_OUTARRAY_MAKE(out, pProperties, pExecutableCount);
util_dynarray_foreach (&pipeline->executables, struct anv_pipeline_executable, exe) {
vk_outarray_append(&out, props) {
gl_shader_stage stage = exe->stage;
props->stages = mesa_to_vk_shader_stage(stage);
unsigned simd_width = exe->stats.dispatch_width;
if (stage == MESA_SHADER_FRAGMENT) {
WRITE_STR(props->name, "%s%d %s",
simd_width ? "SIMD" : "vec",
simd_width ? simd_width : 4,
_mesa_shader_stage_to_string(stage));
} else {
WRITE_STR(props->name, "%s", _mesa_shader_stage_to_string(stage));
}
WRITE_STR(props->description, "%s%d %s shader",
simd_width ? "SIMD" : "vec",
simd_width ? simd_width : 4,
_mesa_shader_stage_to_string(stage));
/* The compiler gives us a dispatch width of 0 for vec4 but Vulkan
* wants a subgroup size of 1.
*/
props->subgroupSize = MAX2(simd_width, 1);
}
}
return vk_outarray_status(&out);
}
static const struct anv_pipeline_executable *
anv_pipeline_get_executable(struct anv_pipeline *pipeline, uint32_t index)
{
assert(index < util_dynarray_num_elements(&pipeline->executables,
struct anv_pipeline_executable));
return util_dynarray_element(
&pipeline->executables, struct anv_pipeline_executable, index);
}
VkResult anv_GetPipelineExecutableStatisticsKHR(
VkDevice device,
const VkPipelineExecutableInfoKHR* pExecutableInfo,
uint32_t* pStatisticCount,
VkPipelineExecutableStatisticKHR* pStatistics)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
VK_OUTARRAY_MAKE(out, pStatistics, pStatisticCount);
const struct anv_pipeline_executable *exe =
anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
const struct brw_stage_prog_data *prog_data;
switch (pipeline->type) {
case ANV_PIPELINE_GRAPHICS: {
prog_data = anv_pipeline_to_graphics(pipeline)->shaders[exe->stage]->prog_data;
break;
}
case ANV_PIPELINE_COMPUTE: {
prog_data = anv_pipeline_to_compute(pipeline)->cs->prog_data;
break;
}
default:
unreachable("invalid pipeline type");
}
vk_outarray_append(&out, stat) {
WRITE_STR(stat->name, "Instruction Count");
WRITE_STR(stat->description,
"Number of GEN instructions in the final generated "
"shader executable.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.instructions;
}
vk_outarray_append(&out, stat) {
WRITE_STR(stat->name, "SEND Count");
WRITE_STR(stat->description,
"Number of instructions in the final generated shader "
"executable which access external units such as the "
"constant cache or the sampler.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.sends;
}
vk_outarray_append(&out, stat) {
WRITE_STR(stat->name, "Loop Count");
WRITE_STR(stat->description,
"Number of loops (not unrolled) in the final generated "
"shader executable.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.loops;
}
vk_outarray_append(&out, stat) {
WRITE_STR(stat->name, "Cycle Count");
WRITE_STR(stat->description,
"Estimate of the number of EU cycles required to execute "
"the final generated executable. This is an estimate only "
"and may vary greatly from actual run-time performance.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.cycles;
}
vk_outarray_append(&out, stat) {
WRITE_STR(stat->name, "Spill Count");
WRITE_STR(stat->description,
"Number of scratch spill operations. This gives a rough "
"estimate of the cost incurred due to spilling temporary "
"values to memory. If this is non-zero, you may want to "
"adjust your shader to reduce register pressure.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.spills;
}
vk_outarray_append(&out, stat) {
WRITE_STR(stat->name, "Fill Count");
WRITE_STR(stat->description,
"Number of scratch fill operations. This gives a rough "
"estimate of the cost incurred due to spilling temporary "
"values to memory. If this is non-zero, you may want to "
"adjust your shader to reduce register pressure.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = exe->stats.fills;
}
vk_outarray_append(&out, stat) {
WRITE_STR(stat->name, "Scratch Memory Size");
WRITE_STR(stat->description,
"Number of bytes of scratch memory required by the "
"generated shader executable. If this is non-zero, you "
"may want to adjust your shader to reduce register "
"pressure.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = prog_data->total_scratch;
}
if (exe->stage == MESA_SHADER_COMPUTE) {
vk_outarray_append(&out, stat) {
WRITE_STR(stat->name, "Workgroup Memory Size");
WRITE_STR(stat->description,
"Number of bytes of workgroup shared memory used by this "
"compute shader including any padding.");
stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
stat->value.u64 = prog_data->total_shared;
}
}
return vk_outarray_status(&out);
}
static bool
write_ir_text(VkPipelineExecutableInternalRepresentationKHR* ir,
const char *data)
{
ir->isText = VK_TRUE;
size_t data_len = strlen(data) + 1;
if (ir->pData == NULL) {
ir->dataSize = data_len;
return true;
}
strncpy(ir->pData, data, ir->dataSize);
if (ir->dataSize < data_len)
return false;
ir->dataSize = data_len;
return true;
}
VkResult anv_GetPipelineExecutableInternalRepresentationsKHR(
VkDevice device,
const VkPipelineExecutableInfoKHR* pExecutableInfo,
uint32_t* pInternalRepresentationCount,
VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
{
ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
VK_OUTARRAY_MAKE(out, pInternalRepresentations,
pInternalRepresentationCount);
bool incomplete_text = false;
const struct anv_pipeline_executable *exe =
anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
if (exe->nir) {
vk_outarray_append(&out, ir) {
WRITE_STR(ir->name, "Final NIR");
WRITE_STR(ir->description,
"Final NIR before going into the back-end compiler");
if (!write_ir_text(ir, exe->nir))
incomplete_text = true;
}
}
if (exe->disasm) {
vk_outarray_append(&out, ir) {
WRITE_STR(ir->name, "GEN Assembly");
WRITE_STR(ir->description,
"Final GEN assembly for the generated shader binary");
if (!write_ir_text(ir, exe->disasm))
incomplete_text = true;
}
}
return incomplete_text ? VK_INCOMPLETE : vk_outarray_status(&out);
}