blob: bbddbbc2579c0f3eb47e9a873c0bab137c8f1fe3 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/mesa-sha1.h"
#include "util/debug.h"
#include "util/disk_cache.h"
#include "util/u_atomic.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "ac_nir_to_llvm.h"
struct cache_entry {
union {
unsigned char sha1[20];
uint32_t sha1_dw[5];
};
uint32_t binary_sizes[MESA_SHADER_STAGES];
struct radv_shader_variant *variants[MESA_SHADER_STAGES];
char code[0];
};
void
radv_pipeline_cache_init(struct radv_pipeline_cache *cache,
struct radv_device *device)
{
cache->device = device;
pthread_mutex_init(&cache->mutex, NULL);
cache->modified = false;
cache->kernel_count = 0;
cache->total_size = 0;
cache->table_size = 1024;
const size_t byte_size = cache->table_size * sizeof(cache->hash_table[0]);
cache->hash_table = malloc(byte_size);
/* We don't consider allocation failure fatal, we just start with a 0-sized
* cache. Disable caching when we want to keep shader debug info, since
* we don't get the debug info on cached shaders. */
if (cache->hash_table == NULL ||
(device->instance->debug_flags & RADV_DEBUG_NO_CACHE))
cache->table_size = 0;
else
memset(cache->hash_table, 0, byte_size);
}
void
radv_pipeline_cache_finish(struct radv_pipeline_cache *cache)
{
for (unsigned i = 0; i < cache->table_size; ++i)
if (cache->hash_table[i]) {
for(int j = 0; j < MESA_SHADER_STAGES; ++j) {
if (cache->hash_table[i]->variants[j])
radv_shader_variant_destroy(cache->device,
cache->hash_table[i]->variants[j]);
}
vk_free(&cache->alloc, cache->hash_table[i]);
}
pthread_mutex_destroy(&cache->mutex);
free(cache->hash_table);
}
static uint32_t
entry_size(struct cache_entry *entry)
{
size_t ret = sizeof(*entry);
for (int i = 0; i < MESA_SHADER_STAGES; ++i)
if (entry->binary_sizes[i])
ret += entry->binary_sizes[i];
return ret;
}
void
radv_hash_shaders(unsigned char *hash,
const VkPipelineShaderStageCreateInfo **stages,
const struct radv_pipeline_layout *layout,
const struct radv_pipeline_key *key,
uint32_t flags)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
if (key)
_mesa_sha1_update(&ctx, key, sizeof(*key));
if (layout)
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
if (stages[i]) {
RADV_FROM_HANDLE(radv_shader_module, module, stages[i]->module);
const VkSpecializationInfo *spec_info = stages[i]->pSpecializationInfo;
_mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
_mesa_sha1_update(&ctx, stages[i]->pName, strlen(stages[i]->pName));
if (spec_info) {
_mesa_sha1_update(&ctx, spec_info->pMapEntries,
spec_info->mapEntryCount * sizeof spec_info->pMapEntries[0]);
_mesa_sha1_update(&ctx, spec_info->pData, spec_info->dataSize);
}
}
}
_mesa_sha1_update(&ctx, &flags, 4);
_mesa_sha1_final(&ctx, hash);
}
static struct cache_entry *
radv_pipeline_cache_search_unlocked(struct radv_pipeline_cache *cache,
const unsigned char *sha1)
{
const uint32_t mask = cache->table_size - 1;
const uint32_t start = (*(uint32_t *) sha1);
if (cache->table_size == 0)
return NULL;
for (uint32_t i = 0; i < cache->table_size; i++) {
const uint32_t index = (start + i) & mask;
struct cache_entry *entry = cache->hash_table[index];
if (!entry)
return NULL;
if (memcmp(entry->sha1, sha1, sizeof(entry->sha1)) == 0) {
return entry;
}
}
unreachable("hash table should never be full");
}
static struct cache_entry *
radv_pipeline_cache_search(struct radv_pipeline_cache *cache,
const unsigned char *sha1)
{
struct cache_entry *entry;
pthread_mutex_lock(&cache->mutex);
entry = radv_pipeline_cache_search_unlocked(cache, sha1);
pthread_mutex_unlock(&cache->mutex);
return entry;
}
static void
radv_pipeline_cache_set_entry(struct radv_pipeline_cache *cache,
struct cache_entry *entry)
{
const uint32_t mask = cache->table_size - 1;
const uint32_t start = entry->sha1_dw[0];
/* We'll always be able to insert when we get here. */
assert(cache->kernel_count < cache->table_size / 2);
for (uint32_t i = 0; i < cache->table_size; i++) {
const uint32_t index = (start + i) & mask;
if (!cache->hash_table[index]) {
cache->hash_table[index] = entry;
break;
}
}
cache->total_size += entry_size(entry);
cache->kernel_count++;
}
static VkResult
radv_pipeline_cache_grow(struct radv_pipeline_cache *cache)
{
const uint32_t table_size = cache->table_size * 2;
const uint32_t old_table_size = cache->table_size;
const size_t byte_size = table_size * sizeof(cache->hash_table[0]);
struct cache_entry **table;
struct cache_entry **old_table = cache->hash_table;
table = malloc(byte_size);
if (table == NULL)
return vk_error(cache->device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
cache->hash_table = table;
cache->table_size = table_size;
cache->kernel_count = 0;
cache->total_size = 0;
memset(cache->hash_table, 0, byte_size);
for (uint32_t i = 0; i < old_table_size; i++) {
struct cache_entry *entry = old_table[i];
if (!entry)
continue;
radv_pipeline_cache_set_entry(cache, entry);
}
free(old_table);
return VK_SUCCESS;
}
static void
radv_pipeline_cache_add_entry(struct radv_pipeline_cache *cache,
struct cache_entry *entry)
{
if (cache->kernel_count == cache->table_size / 2)
radv_pipeline_cache_grow(cache);
/* Failing to grow that hash table isn't fatal, but may mean we don't
* have enough space to add this new kernel. Only add it if there's room.
*/
if (cache->kernel_count < cache->table_size / 2)
radv_pipeline_cache_set_entry(cache, entry);
}
static bool
radv_is_cache_disabled(struct radv_device *device)
{
/* Pipeline caches can be disabled with RADV_DEBUG=nocache, with
* MESA_GLSL_CACHE_DISABLE=1, and when VK_AMD_shader_info is requested.
*/
return (device->instance->debug_flags & RADV_DEBUG_NO_CACHE);
}
/*
* Secure compiles cannot open files so we get the parent process to load the
* cache entry for us.
*/
static struct cache_entry *
radv_sc_read_from_disk_cache(struct radv_device *device, uint8_t *disk_sha1)
{
struct cache_entry *entry;
unsigned process = device->sc_state->secure_compile_thread_counter;
enum radv_secure_compile_type sc_type = RADV_SC_TYPE_READ_DISK_CACHE;
write(device->sc_state->secure_compile_processes[process].fd_secure_output,
&sc_type, sizeof(enum radv_secure_compile_type));
write(device->sc_state->secure_compile_processes[process].fd_secure_output,
disk_sha1, sizeof(uint8_t) * 20);
uint8_t found_cache_entry;
if (!radv_sc_read(device->sc_state->secure_compile_processes[process].fd_secure_input,
&found_cache_entry, sizeof(uint8_t), true))
return NULL;
if (found_cache_entry) {
size_t entry_size;
if (!radv_sc_read(device->sc_state->secure_compile_processes[process].fd_secure_input,
&entry_size, sizeof(size_t), true))
return NULL;
entry = malloc(entry_size);
if (!radv_sc_read(device->sc_state->secure_compile_processes[process].fd_secure_input,
entry, entry_size, true))
return NULL;
return entry;
}
return NULL;
}
/*
* Secure compiles cannot open files so we get the parent process to write to
* the disk cache for us.
*/
static void
radv_sc_write_to_disk_cache(struct radv_device *device, uint8_t *disk_sha1,
struct cache_entry *entry)
{
unsigned process = device->sc_state->secure_compile_thread_counter;
enum radv_secure_compile_type sc_type = RADV_SC_TYPE_WRITE_DISK_CACHE;
write(device->sc_state->secure_compile_processes[process].fd_secure_output,
&sc_type, sizeof(enum radv_secure_compile_type));
write(device->sc_state->secure_compile_processes[process].fd_secure_output,
disk_sha1, sizeof(uint8_t) * 20);
uint32_t size = entry_size(entry);
write(device->sc_state->secure_compile_processes[process].fd_secure_output,
&size, sizeof(uint32_t));
write(device->sc_state->secure_compile_processes[process].fd_secure_output,
entry, size);
}
bool
radv_create_shader_variants_from_pipeline_cache(struct radv_device *device,
struct radv_pipeline_cache *cache,
const unsigned char *sha1,
struct radv_shader_variant **variants,
bool *found_in_application_cache)
{
struct cache_entry *entry;
if (!cache) {
cache = device->mem_cache;
*found_in_application_cache = false;
}
pthread_mutex_lock(&cache->mutex);
entry = radv_pipeline_cache_search_unlocked(cache, sha1);
if (!entry) {
*found_in_application_cache = false;
/* Don't cache when we want debug info, since this isn't
* present in the cache.
*/
if (radv_is_cache_disabled(device) || !device->physical_device->disk_cache) {
pthread_mutex_unlock(&cache->mutex);
return false;
}
uint8_t disk_sha1[20];
disk_cache_compute_key(device->physical_device->disk_cache,
sha1, 20, disk_sha1);
if (radv_device_use_secure_compile(device->instance)) {
entry = radv_sc_read_from_disk_cache(device, disk_sha1);
} else {
entry = (struct cache_entry *)
disk_cache_get(device->physical_device->disk_cache,
disk_sha1, NULL);
}
if (!entry) {
pthread_mutex_unlock(&cache->mutex);
return false;
} else {
size_t size = entry_size(entry);
struct cache_entry *new_entry = vk_alloc(&cache->alloc, size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
if (!new_entry) {
free(entry);
pthread_mutex_unlock(&cache->mutex);
return false;
}
memcpy(new_entry, entry, entry_size(entry));
free(entry);
entry = new_entry;
if (!(device->instance->debug_flags & RADV_DEBUG_NO_MEMORY_CACHE) ||
cache != device->mem_cache)
radv_pipeline_cache_add_entry(cache, new_entry);
}
}
char *p = entry->code;
for(int i = 0; i < MESA_SHADER_STAGES; ++i) {
if (!entry->variants[i] && entry->binary_sizes[i]) {
struct radv_shader_binary *binary = calloc(1, entry->binary_sizes[i]);
memcpy(binary, p, entry->binary_sizes[i]);
p += entry->binary_sizes[i];
entry->variants[i] = radv_shader_variant_create(device, binary, false);
free(binary);
} else if (entry->binary_sizes[i]) {
p += entry->binary_sizes[i];
}
}
memcpy(variants, entry->variants, sizeof(entry->variants));
if (device->instance->debug_flags & RADV_DEBUG_NO_MEMORY_CACHE &&
cache == device->mem_cache)
vk_free(&cache->alloc, entry);
else {
for (int i = 0; i < MESA_SHADER_STAGES; ++i)
if (entry->variants[i])
p_atomic_inc(&entry->variants[i]->ref_count);
}
pthread_mutex_unlock(&cache->mutex);
return true;
}
void
radv_pipeline_cache_insert_shaders(struct radv_device *device,
struct radv_pipeline_cache *cache,
const unsigned char *sha1,
struct radv_shader_variant **variants,
struct radv_shader_binary *const *binaries)
{
if (!cache)
cache = device->mem_cache;
pthread_mutex_lock(&cache->mutex);
struct cache_entry *entry = radv_pipeline_cache_search_unlocked(cache, sha1);
if (entry) {
for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
if (entry->variants[i]) {
radv_shader_variant_destroy(cache->device, variants[i]);
variants[i] = entry->variants[i];
} else {
entry->variants[i] = variants[i];
}
if (variants[i])
p_atomic_inc(&variants[i]->ref_count);
}
pthread_mutex_unlock(&cache->mutex);
return;
}
/* Don't cache when we want debug info, since this isn't
* present in the cache.
*/
if (radv_is_cache_disabled(device)) {
pthread_mutex_unlock(&cache->mutex);
return;
}
size_t size = sizeof(*entry);
for (int i = 0; i < MESA_SHADER_STAGES; ++i)
if (variants[i])
size += binaries[i]->total_size;
entry = vk_alloc(&cache->alloc, size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
if (!entry) {
pthread_mutex_unlock(&cache->mutex);
return;
}
memset(entry, 0, sizeof(*entry));
memcpy(entry->sha1, sha1, 20);
char* p = entry->code;
for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
if (!variants[i])
continue;
entry->binary_sizes[i] = binaries[i]->total_size;
memcpy(p, binaries[i], binaries[i]->total_size);
p += binaries[i]->total_size;
}
/* Always add cache items to disk. This will allow collection of
* compiled shaders by third parties such as steam, even if the app
* implements its own pipeline cache.
*/
if (device->physical_device->disk_cache) {
uint8_t disk_sha1[20];
disk_cache_compute_key(device->physical_device->disk_cache, sha1, 20,
disk_sha1);
/* Write the cache item out to the parent of this forked
* process.
*/
if (radv_device_use_secure_compile(device->instance)) {
radv_sc_write_to_disk_cache(device, disk_sha1, entry);
} else {
disk_cache_put(device->physical_device->disk_cache,
disk_sha1, entry, entry_size(entry),
NULL);
}
}
if (device->instance->debug_flags & RADV_DEBUG_NO_MEMORY_CACHE &&
cache == device->mem_cache) {
vk_free2(&cache->alloc, NULL, entry);
pthread_mutex_unlock(&cache->mutex);
return;
}
/* We delay setting the variant so we have reproducible disk cache
* items.
*/
for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
if (!variants[i])
continue;
entry->variants[i] = variants[i];
p_atomic_inc(&variants[i]->ref_count);
}
radv_pipeline_cache_add_entry(cache, entry);
cache->modified = true;
pthread_mutex_unlock(&cache->mutex);
return;
}
struct cache_header {
uint32_t header_size;
uint32_t header_version;
uint32_t vendor_id;
uint32_t device_id;
uint8_t uuid[VK_UUID_SIZE];
};
bool
radv_pipeline_cache_load(struct radv_pipeline_cache *cache,
const void *data, size_t size)
{
struct radv_device *device = cache->device;
struct cache_header header;
if (size < sizeof(header))
return false;
memcpy(&header, data, sizeof(header));
if (header.header_size < sizeof(header))
return false;
if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
return false;
if (header.vendor_id != ATI_VENDOR_ID)
return false;
if (header.device_id != device->physical_device->rad_info.pci_id)
return false;
if (memcmp(header.uuid, device->physical_device->cache_uuid, VK_UUID_SIZE) != 0)
return false;
char *end = (void *) data + size;
char *p = (void *) data + header.header_size;
while (end - p >= sizeof(struct cache_entry)) {
struct cache_entry *entry = (struct cache_entry*)p;
struct cache_entry *dest_entry;
size_t size = entry_size(entry);
if(end - p < size)
break;
dest_entry = vk_alloc(&cache->alloc, size,
8, VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
if (dest_entry) {
memcpy(dest_entry, entry, size);
for (int i = 0; i < MESA_SHADER_STAGES; ++i)
dest_entry->variants[i] = NULL;
radv_pipeline_cache_add_entry(cache, dest_entry);
}
p += size;
}
return true;
}
VkResult radv_CreatePipelineCache(
VkDevice _device,
const VkPipelineCacheCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPipelineCache* pPipelineCache)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_pipeline_cache *cache;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
cache = vk_alloc2(&device->alloc, pAllocator,
sizeof(*cache), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (cache == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
if (pAllocator)
cache->alloc = *pAllocator;
else
cache->alloc = device->alloc;
radv_pipeline_cache_init(cache, device);
if (pCreateInfo->initialDataSize > 0) {
radv_pipeline_cache_load(cache,
pCreateInfo->pInitialData,
pCreateInfo->initialDataSize);
}
*pPipelineCache = radv_pipeline_cache_to_handle(cache);
return VK_SUCCESS;
}
void radv_DestroyPipelineCache(
VkDevice _device,
VkPipelineCache _cache,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
if (!cache)
return;
radv_pipeline_cache_finish(cache);
vk_free2(&device->alloc, pAllocator, cache);
}
VkResult radv_GetPipelineCacheData(
VkDevice _device,
VkPipelineCache _cache,
size_t* pDataSize,
void* pData)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
struct cache_header *header;
VkResult result = VK_SUCCESS;
pthread_mutex_lock(&cache->mutex);
const size_t size = sizeof(*header) + cache->total_size;
if (pData == NULL) {
pthread_mutex_unlock(&cache->mutex);
*pDataSize = size;
return VK_SUCCESS;
}
if (*pDataSize < sizeof(*header)) {
pthread_mutex_unlock(&cache->mutex);
*pDataSize = 0;
return VK_INCOMPLETE;
}
void *p = pData, *end = pData + *pDataSize;
header = p;
header->header_size = sizeof(*header);
header->header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE;
header->vendor_id = ATI_VENDOR_ID;
header->device_id = device->physical_device->rad_info.pci_id;
memcpy(header->uuid, device->physical_device->cache_uuid, VK_UUID_SIZE);
p += header->header_size;
struct cache_entry *entry;
for (uint32_t i = 0; i < cache->table_size; i++) {
if (!cache->hash_table[i])
continue;
entry = cache->hash_table[i];
const uint32_t size = entry_size(entry);
if (end < p + size) {
result = VK_INCOMPLETE;
break;
}
memcpy(p, entry, size);
for(int j = 0; j < MESA_SHADER_STAGES; ++j)
((struct cache_entry*)p)->variants[j] = NULL;
p += size;
}
*pDataSize = p - pData;
pthread_mutex_unlock(&cache->mutex);
return result;
}
static void
radv_pipeline_cache_merge(struct radv_pipeline_cache *dst,
struct radv_pipeline_cache *src)
{
for (uint32_t i = 0; i < src->table_size; i++) {
struct cache_entry *entry = src->hash_table[i];
if (!entry || radv_pipeline_cache_search(dst, entry->sha1))
continue;
radv_pipeline_cache_add_entry(dst, entry);
src->hash_table[i] = NULL;
}
}
VkResult radv_MergePipelineCaches(
VkDevice _device,
VkPipelineCache destCache,
uint32_t srcCacheCount,
const VkPipelineCache* pSrcCaches)
{
RADV_FROM_HANDLE(radv_pipeline_cache, dst, destCache);
for (uint32_t i = 0; i < srcCacheCount; i++) {
RADV_FROM_HANDLE(radv_pipeline_cache, src, pSrcCaches[i]);
radv_pipeline_cache_merge(dst, src);
}
return VK_SUCCESS;
}