blob: 6d202a6a01594d74603f54c9fb2e3a14de226257 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "anv_nir.h"
#include "program/prog_parameter.h"
#include "nir/nir_builder.h"
#include "compiler/brw_nir.h"
#include "util/mesa-sha1.h"
#include "util/set.h"
/* Sampler tables don't actually have a maximum size but we pick one just so
* that we don't end up emitting too much state on-the-fly.
*/
#define MAX_SAMPLER_TABLE_SIZE 128
#define BINDLESS_OFFSET 255
struct apply_pipeline_layout_state {
const struct anv_physical_device *pdevice;
const struct anv_pipeline_layout *layout;
bool add_bounds_checks;
nir_address_format desc_addr_format;
nir_address_format ssbo_addr_format;
nir_address_format ubo_addr_format;
/* Place to flag lowered instructions so we don't lower them twice */
struct set *lowered_instrs;
bool uses_constants;
bool has_dynamic_buffers;
uint8_t constants_offset;
struct {
bool desc_buffer_used;
uint8_t desc_offset;
uint8_t *use_count;
uint8_t *surface_offsets;
uint8_t *sampler_offsets;
} set[MAX_SETS];
};
static nir_address_format
addr_format_for_desc_type(VkDescriptorType desc_type,
struct apply_pipeline_layout_state *state)
{
switch (desc_type) {
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
return state->ssbo_addr_format;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
return state->ubo_addr_format;
case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT:
return state->desc_addr_format;
default:
unreachable("Unsupported descriptor type");
}
}
static void
add_binding(struct apply_pipeline_layout_state *state,
uint32_t set, uint32_t binding)
{
const struct anv_descriptor_set_binding_layout *bind_layout =
&state->layout->set[set].layout->binding[binding];
if (state->set[set].use_count[binding] < UINT8_MAX)
state->set[set].use_count[binding]++;
/* Only flag the descriptor buffer as used if there's actually data for
* this binding. This lets us be lazy and call this function constantly
* without worrying about unnecessarily enabling the buffer.
*/
if (anv_descriptor_size(bind_layout))
state->set[set].desc_buffer_used = true;
}
static void
add_deref_src_binding(struct apply_pipeline_layout_state *state, nir_src src)
{
nir_deref_instr *deref = nir_src_as_deref(src);
nir_variable *var = nir_deref_instr_get_variable(deref);
add_binding(state, var->data.descriptor_set, var->data.binding);
}
static void
add_tex_src_binding(struct apply_pipeline_layout_state *state,
nir_tex_instr *tex, nir_tex_src_type deref_src_type)
{
int deref_src_idx = nir_tex_instr_src_index(tex, deref_src_type);
if (deref_src_idx < 0)
return;
add_deref_src_binding(state, tex->src[deref_src_idx].src);
}
static bool
get_used_bindings(UNUSED nir_builder *_b, nir_instr *instr, void *_state)
{
struct apply_pipeline_layout_state *state = _state;
switch (instr->type) {
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_vulkan_resource_index:
add_binding(state, nir_intrinsic_desc_set(intrin),
nir_intrinsic_binding(intrin));
break;
case nir_intrinsic_image_deref_load:
case nir_intrinsic_image_deref_store:
case nir_intrinsic_image_deref_atomic_add:
case nir_intrinsic_image_deref_atomic_imin:
case nir_intrinsic_image_deref_atomic_umin:
case nir_intrinsic_image_deref_atomic_imax:
case nir_intrinsic_image_deref_atomic_umax:
case nir_intrinsic_image_deref_atomic_and:
case nir_intrinsic_image_deref_atomic_or:
case nir_intrinsic_image_deref_atomic_xor:
case nir_intrinsic_image_deref_atomic_exchange:
case nir_intrinsic_image_deref_atomic_comp_swap:
case nir_intrinsic_image_deref_size:
case nir_intrinsic_image_deref_samples:
case nir_intrinsic_image_deref_load_param_intel:
case nir_intrinsic_image_deref_load_raw_intel:
case nir_intrinsic_image_deref_store_raw_intel:
add_deref_src_binding(state, intrin->src[0]);
break;
case nir_intrinsic_load_constant:
state->uses_constants = true;
break;
default:
break;
}
break;
}
case nir_instr_type_tex: {
nir_tex_instr *tex = nir_instr_as_tex(instr);
add_tex_src_binding(state, tex, nir_tex_src_texture_deref);
add_tex_src_binding(state, tex, nir_tex_src_sampler_deref);
break;
}
default:
break;
}
return false;
}
static nir_intrinsic_instr *
find_descriptor_for_index_src(nir_src src,
struct apply_pipeline_layout_state *state)
{
nir_intrinsic_instr *intrin = nir_src_as_intrinsic(src);
while (intrin && intrin->intrinsic == nir_intrinsic_vulkan_resource_reindex)
intrin = nir_src_as_intrinsic(intrin->src[0]);
if (!intrin || intrin->intrinsic != nir_intrinsic_vulkan_resource_index)
return NULL;
return intrin;
}
static bool
descriptor_has_bti(nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
assert(intrin->intrinsic == nir_intrinsic_vulkan_resource_index);
uint32_t set = nir_intrinsic_desc_set(intrin);
uint32_t binding = nir_intrinsic_binding(intrin);
const struct anv_descriptor_set_binding_layout *bind_layout =
&state->layout->set[set].layout->binding[binding];
uint32_t surface_index;
if (bind_layout->data & ANV_DESCRIPTOR_INLINE_UNIFORM)
surface_index = state->set[set].desc_offset;
else
surface_index = state->set[set].surface_offsets[binding];
/* Only lower to a BTI message if we have a valid binding table index. */
return surface_index < MAX_BINDING_TABLE_SIZE;
}
static nir_address_format
descriptor_address_format(nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
assert(intrin->intrinsic == nir_intrinsic_vulkan_resource_index);
uint32_t set = nir_intrinsic_desc_set(intrin);
uint32_t binding = nir_intrinsic_binding(intrin);
const struct anv_descriptor_set_binding_layout *bind_layout =
&state->layout->set[set].layout->binding[binding];
return addr_format_for_desc_type(bind_layout->type, state);
}
static nir_intrinsic_instr *
nir_deref_find_descriptor(nir_deref_instr *deref,
struct apply_pipeline_layout_state *state)
{
while (1) {
/* Nothing we will use this on has a variable */
assert(deref->deref_type != nir_deref_type_var);
nir_deref_instr *parent = nir_src_as_deref(deref->parent);
if (!parent)
break;
deref = parent;
}
assert(deref->deref_type == nir_deref_type_cast);
nir_intrinsic_instr *intrin = nir_src_as_intrinsic(deref->parent);
if (!intrin || intrin->intrinsic != nir_intrinsic_load_vulkan_descriptor)
return false;
return find_descriptor_for_index_src(intrin->src[0], state);
}
static nir_ssa_def *
build_load_descriptor_mem(nir_builder *b,
nir_ssa_def *desc_addr, unsigned desc_offset,
unsigned num_components, unsigned bit_size,
struct apply_pipeline_layout_state *state)
{
switch (state->desc_addr_format) {
case nir_address_format_64bit_global_32bit_offset: {
nir_ssa_def *base_addr =
nir_pack_64_2x32(b, nir_channels(b, desc_addr, 0x3));
nir_ssa_def *offset32 =
nir_iadd_imm(b, nir_channel(b, desc_addr, 3), desc_offset);
return nir_load_global_constant_offset(b, num_components, bit_size,
base_addr, offset32,
.align_mul = 8,
.align_offset = desc_offset % 8);
}
case nir_address_format_32bit_index_offset: {
nir_ssa_def *surface_index = nir_channel(b, desc_addr, 0);
nir_ssa_def *offset32 =
nir_iadd_imm(b, nir_channel(b, desc_addr, 1), desc_offset);
return nir_load_ubo(b, num_components, bit_size,
surface_index, offset32,
.align_mul = 8,
.align_offset = desc_offset % 8,
.range_base = 0,
.range = ~0);
}
default:
unreachable("Unsupported address format");
}
}
/** Build a Vulkan resource index
*
* A "resource index" is the term used by our SPIR-V parser and the relevant
* NIR intrinsics for a reference into a descriptor set. It acts much like a
* deref in NIR except that it accesses opaque descriptors instead of memory.
*
* Coming out of SPIR-V, both the resource indices (in the form of
* vulkan_resource_[re]index intrinsics) and the memory derefs (in the form
* of nir_deref_instr) use the same vector component/bit size. The meaning
* of those values for memory derefs (nir_deref_instr) is given by the
* nir_address_format associated with the descriptor type. For resource
* indices, it's an entirely internal to ANV encoding which describes, in some
* sense, the address of the descriptor. Thanks to the NIR/SPIR-V rules, it
* must be packed into the same size SSA values as a memory address. For this
* reason, the actual encoding may depend both on the address format for
* memory derefs and the descriptor address format.
*
* The load_vulkan_descriptor intrinsic exists to provide a transition point
* between these two forms of derefs: descriptor and memory.
*/
static nir_ssa_def *
build_res_index(nir_builder *b, uint32_t set, uint32_t binding,
nir_ssa_def *array_index, nir_address_format addr_format,
struct apply_pipeline_layout_state *state)
{
const struct anv_descriptor_set_binding_layout *bind_layout =
&state->layout->set[set].layout->binding[binding];
uint32_t array_size = bind_layout->array_size;
switch (addr_format) {
case nir_address_format_64bit_global_32bit_offset:
case nir_address_format_64bit_bounded_global: {
uint32_t set_idx;
switch (state->desc_addr_format) {
case nir_address_format_64bit_global_32bit_offset:
set_idx = set;
break;
case nir_address_format_32bit_index_offset:
assert(state->set[set].desc_offset < MAX_BINDING_TABLE_SIZE);
set_idx = state->set[set].desc_offset;
break;
default:
unreachable("Unsupported address format");
}
assert(bind_layout->dynamic_offset_index < MAX_DYNAMIC_BUFFERS);
uint32_t dynamic_offset_index = 0xff; /* No dynamic offset */
if (bind_layout->dynamic_offset_index >= 0) {
dynamic_offset_index =
state->layout->set[set].dynamic_offset_start +
bind_layout->dynamic_offset_index;
}
const uint32_t packed = (set_idx << 16) | dynamic_offset_index;
return nir_vec4(b, nir_imm_int(b, packed),
nir_imm_int(b, bind_layout->descriptor_offset),
nir_imm_int(b, array_size - 1),
array_index);
}
case nir_address_format_32bit_index_offset: {
assert(state->desc_addr_format == nir_address_format_32bit_index_offset);
if (bind_layout->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
uint32_t surface_index = state->set[set].desc_offset;
return nir_imm_ivec2(b, surface_index,
bind_layout->descriptor_offset);
} else {
uint32_t surface_index = state->set[set].surface_offsets[binding];
assert(array_size > 0 && array_size <= UINT16_MAX);
assert(surface_index <= UINT16_MAX);
uint32_t packed = ((array_size - 1) << 16) | surface_index;
return nir_vec2(b, array_index, nir_imm_int(b, packed));
}
}
default:
unreachable("Unsupported address format");
}
}
struct res_index_defs {
nir_ssa_def *set_idx;
nir_ssa_def *dyn_offset_base;
nir_ssa_def *desc_offset_base;
nir_ssa_def *array_index;
};
static struct res_index_defs
unpack_res_index(nir_builder *b, nir_ssa_def *index)
{
struct res_index_defs defs;
nir_ssa_def *packed = nir_channel(b, index, 0);
defs.set_idx = nir_extract_u16(b, packed, nir_imm_int(b, 1));
defs.dyn_offset_base = nir_extract_u16(b, packed, nir_imm_int(b, 0));
defs.desc_offset_base = nir_channel(b, index, 1);
defs.array_index = nir_umin(b, nir_channel(b, index, 2),
nir_channel(b, index, 3));
return defs;
}
/** Adjust a Vulkan resource index
*
* This is the equivalent of nir_deref_type_ptr_as_array for resource indices.
* For array descriptors, it allows us to adjust the array index. Thanks to
* variable pointers, we cannot always fold this re-index operation into the
* vulkan_resource_index intrinsic and we have to do it based on nothing but
* the address format.
*/
static nir_ssa_def *
build_res_reindex(nir_builder *b, nir_ssa_def *orig, nir_ssa_def *delta,
nir_address_format addr_format)
{
switch (addr_format) {
case nir_address_format_64bit_global_32bit_offset:
case nir_address_format_64bit_bounded_global:
return nir_vec4(b, nir_channel(b, orig, 0),
nir_channel(b, orig, 1),
nir_channel(b, orig, 2),
nir_iadd(b, nir_channel(b, orig, 3), delta));
case nir_address_format_32bit_index_offset:
return nir_vec2(b, nir_iadd(b, nir_channel(b, orig, 0), delta),
nir_channel(b, orig, 1));
default:
unreachable("Unhandled address format");
}
}
/** Get the address for a descriptor given its resource index
*
* Because of the re-indexing operations, we can't bounds check descriptor
* array access until we have the final index. That means we end up doing the
* bounds check here, if needed. See unpack_res_index() for more details.
*
* This function takes both a bind_layout and a desc_type which are used to
* determine the descriptor stride for array descriptors. The bind_layout is
* optional for buffer descriptor types.
*/
static nir_ssa_def *
build_desc_addr(nir_builder *b,
const struct anv_descriptor_set_binding_layout *bind_layout,
const VkDescriptorType desc_type,
nir_ssa_def *index, nir_address_format addr_format,
struct apply_pipeline_layout_state *state)
{
switch (addr_format) {
case nir_address_format_64bit_global_32bit_offset:
case nir_address_format_64bit_bounded_global: {
struct res_index_defs res = unpack_res_index(b, index);
nir_ssa_def *desc_offset = res.desc_offset_base;
if (desc_type != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
/* Compute the actual descriptor offset. For inline uniform blocks,
* the array index is ignored as they are only allowed to be a single
* descriptor (not an array) and there is no concept of a "stride".
*
* We use the bind_layout, if available, because it provides a more
* accurate descriptor size.
*/
const unsigned stride = bind_layout ?
anv_descriptor_size(bind_layout) :
anv_descriptor_type_size(state->pdevice, desc_type);
desc_offset =
nir_iadd(b, desc_offset, nir_imul_imm(b, res.array_index, stride));
}
switch (state->desc_addr_format) {
case nir_address_format_64bit_global_32bit_offset: {
nir_ssa_def *base_addr =
nir_load_desc_set_address_intel(b, res.set_idx);
return nir_vec4(b, nir_unpack_64_2x32_split_x(b, base_addr),
nir_unpack_64_2x32_split_y(b, base_addr),
nir_imm_int(b, UINT32_MAX),
desc_offset);
}
case nir_address_format_32bit_index_offset:
return nir_vec2(b, res.set_idx, desc_offset);
default:
unreachable("Unhandled address format");
}
}
case nir_address_format_32bit_index_offset:
assert(desc_type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT);
assert(state->desc_addr_format == nir_address_format_32bit_index_offset);
return index;
default:
unreachable("Unhandled address format");
}
}
/** Convert a Vulkan resource index into a buffer address
*
* In some cases, this does a memory load from the descriptor set and, in
* others, it simply converts from one form to another.
*
* See build_res_index for details about each resource index format.
*/
static nir_ssa_def *
build_buffer_addr_for_res_index(nir_builder *b,
const VkDescriptorType desc_type,
nir_ssa_def *res_index,
nir_address_format addr_format,
struct apply_pipeline_layout_state *state)
{
if (desc_type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
assert(addr_format == state->desc_addr_format);
return build_desc_addr(b, NULL, desc_type, res_index, addr_format, state);
} else if (addr_format == nir_address_format_32bit_index_offset) {
nir_ssa_def *array_index = nir_channel(b, res_index, 0);
nir_ssa_def *packed = nir_channel(b, res_index, 1);
nir_ssa_def *array_max = nir_extract_u16(b, packed, nir_imm_int(b, 1));
nir_ssa_def *surface_index = nir_extract_u16(b, packed, nir_imm_int(b, 0));
if (state->add_bounds_checks)
array_index = nir_umin(b, array_index, array_max);
return nir_vec2(b, nir_iadd(b, surface_index, array_index),
nir_imm_int(b, 0));
}
nir_ssa_def *desc_addr =
build_desc_addr(b, NULL, desc_type, res_index, addr_format, state);
nir_ssa_def *desc = build_load_descriptor_mem(b, desc_addr, 0, 4, 32, state);
if (state->has_dynamic_buffers) {
struct res_index_defs res = unpack_res_index(b, res_index);
/* This shader has dynamic offsets and we have no way of knowing
* (save from the dynamic offset base index) if this buffer has a
* dynamic offset.
*/
nir_ssa_def *dyn_offset_idx =
nir_iadd(b, res.dyn_offset_base, res.array_index);
if (state->add_bounds_checks) {
dyn_offset_idx = nir_umin(b, dyn_offset_idx,
nir_imm_int(b, MAX_DYNAMIC_BUFFERS));
}
nir_ssa_def *dyn_load =
nir_load_push_constant(b, 1, 32, nir_imul_imm(b, dyn_offset_idx, 4),
.base = offsetof(struct anv_push_constants, dynamic_offsets),
.range = MAX_DYNAMIC_BUFFERS * 4);
nir_ssa_def *dynamic_offset =
nir_bcsel(b, nir_ieq_imm(b, res.dyn_offset_base, 0xff),
nir_imm_int(b, 0), dyn_load);
/* The dynamic offset gets added to the base pointer so that we
* have a sliding window range.
*/
nir_ssa_def *base_ptr =
nir_pack_64_2x32(b, nir_channels(b, desc, 0x3));
base_ptr = nir_iadd(b, base_ptr, nir_u2u64(b, dynamic_offset));
desc = nir_vec4(b, nir_unpack_64_2x32_split_x(b, base_ptr),
nir_unpack_64_2x32_split_y(b, base_ptr),
nir_channel(b, desc, 2),
nir_channel(b, desc, 3));
}
/* The last element of the vec4 is always zero.
*
* See also struct anv_address_range_descriptor
*/
return nir_vec4(b, nir_channel(b, desc, 0),
nir_channel(b, desc, 1),
nir_channel(b, desc, 2),
nir_imm_int(b, 0));
}
/** Loads descriptor memory for a variable-based deref chain
*
* The deref chain has to terminate at a variable with a descriptor_set and
* binding set. This is used for images, textures, and samplers.
*/
static nir_ssa_def *
build_load_var_deref_descriptor_mem(nir_builder *b, nir_deref_instr *deref,
unsigned desc_offset,
unsigned num_components, unsigned bit_size,
struct apply_pipeline_layout_state *state)
{
nir_variable *var = nir_deref_instr_get_variable(deref);
const uint32_t set = var->data.descriptor_set;
const uint32_t binding = var->data.binding;
const struct anv_descriptor_set_binding_layout *bind_layout =
&state->layout->set[set].layout->binding[binding];
nir_ssa_def *array_index;
if (deref->deref_type != nir_deref_type_var) {
assert(deref->deref_type == nir_deref_type_array);
assert(nir_deref_instr_parent(deref)->deref_type == nir_deref_type_var);
assert(deref->arr.index.is_ssa);
array_index = deref->arr.index.ssa;
} else {
array_index = nir_imm_int(b, 0);
}
/* It doesn't really matter what address format we choose as everything
* will constant-fold nicely. Choose one that uses the actual descriptor
* buffer so we don't run into issues index/offset assumptions.
*/
const nir_address_format addr_format =
nir_address_format_64bit_bounded_global;
nir_ssa_def *res_index =
build_res_index(b, set, binding, array_index, addr_format, state);
nir_ssa_def *desc_addr =
build_desc_addr(b, bind_layout, bind_layout->type,
res_index, addr_format, state);
return build_load_descriptor_mem(b, desc_addr, desc_offset,
num_components, bit_size, state);
}
/** A recursive form of build_res_index()
*
* This recursively walks a resource [re]index chain and builds the resource
* index. It places the new code with the resource [re]index operation in the
* hopes of better CSE. This means the cursor is not where you left it when
* this function returns.
*/
static nir_ssa_def *
build_res_index_for_chain(nir_builder *b, nir_intrinsic_instr *intrin,
nir_address_format addr_format,
uint32_t *set, uint32_t *binding,
struct apply_pipeline_layout_state *state)
{
if (intrin->intrinsic == nir_intrinsic_vulkan_resource_index) {
b->cursor = nir_before_instr(&intrin->instr);
assert(intrin->src[0].is_ssa);
*set = nir_intrinsic_desc_set(intrin);
*binding = nir_intrinsic_binding(intrin);
return build_res_index(b, *set, *binding, intrin->src[0].ssa,
addr_format, state);
} else {
assert(intrin->intrinsic == nir_intrinsic_vulkan_resource_reindex);
nir_intrinsic_instr *parent = nir_src_as_intrinsic(intrin->src[0]);
nir_ssa_def *index =
build_res_index_for_chain(b, parent, addr_format,
set, binding, state);
b->cursor = nir_before_instr(&intrin->instr);
assert(intrin->src[1].is_ssa);
return build_res_reindex(b, index, intrin->src[1].ssa, addr_format);
}
}
/** Builds a buffer address for a given vulkan [re]index intrinsic
*
* The cursor is not where you left it when this function returns.
*/
static nir_ssa_def *
build_buffer_addr_for_idx_intrin(nir_builder *b,
nir_intrinsic_instr *idx_intrin,
nir_address_format addr_format,
struct apply_pipeline_layout_state *state)
{
uint32_t set = UINT32_MAX, binding = UINT32_MAX;
nir_ssa_def *res_index =
build_res_index_for_chain(b, idx_intrin, addr_format,
&set, &binding, state);
const struct anv_descriptor_set_binding_layout *bind_layout =
&state->layout->set[set].layout->binding[binding];
return build_buffer_addr_for_res_index(b, bind_layout->type,
res_index, addr_format, state);
}
/** Builds a buffer address for deref chain
*
* This assumes that you can chase the chain all the way back to the original
* vulkan_resource_index intrinsic.
*
* The cursor is not where you left it when this function returns.
*/
static nir_ssa_def *
build_buffer_addr_for_deref(nir_builder *b, nir_deref_instr *deref,
nir_address_format addr_format,
struct apply_pipeline_layout_state *state)
{
nir_deref_instr *parent = nir_deref_instr_parent(deref);
if (parent) {
nir_ssa_def *addr =
build_buffer_addr_for_deref(b, parent, addr_format, state);
b->cursor = nir_before_instr(&deref->instr);
return nir_explicit_io_address_from_deref(b, deref, addr, addr_format);
}
nir_intrinsic_instr *load_desc = nir_src_as_intrinsic(deref->parent);
assert(load_desc->intrinsic == nir_intrinsic_load_vulkan_descriptor);
nir_intrinsic_instr *idx_intrin = nir_src_as_intrinsic(load_desc->src[0]);
b->cursor = nir_before_instr(&deref->instr);
return build_buffer_addr_for_idx_intrin(b, idx_intrin, addr_format, state);
}
static bool
try_lower_direct_buffer_intrinsic(nir_builder *b,
nir_intrinsic_instr *intrin, bool is_atomic,
struct apply_pipeline_layout_state *state)
{
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
if (!nir_deref_mode_is_one_of(deref, nir_var_mem_ubo | nir_var_mem_ssbo))
return false;
nir_intrinsic_instr *desc = nir_deref_find_descriptor(deref, state);
if (desc == NULL) {
/* We should always be able to find the descriptor for UBO access. */
assert(nir_deref_mode_is_one_of(deref, nir_var_mem_ssbo));
return false;
}
nir_address_format addr_format = descriptor_address_format(desc, state);
if (nir_deref_mode_is(deref, nir_var_mem_ssbo)) {
/* 64-bit atomics only support A64 messages so we can't lower them to
* the index+offset model.
*/
if (is_atomic && nir_dest_bit_size(intrin->dest) == 64)
return false;
/* Normal binding table-based messages can't handle non-uniform access
* so we have to fall back to A64.
*/
if (nir_intrinsic_access(intrin) & ACCESS_NON_UNIFORM)
return false;
if (!descriptor_has_bti(desc, state))
return false;
/* Rewrite to 32bit_index_offset whenever we can */
addr_format = nir_address_format_32bit_index_offset;
} else {
assert(nir_deref_mode_is(deref, nir_var_mem_ubo));
/* Rewrite to 32bit_index_offset whenever we can */
if (descriptor_has_bti(desc, state))
addr_format = nir_address_format_32bit_index_offset;
}
nir_ssa_def *addr =
build_buffer_addr_for_deref(b, deref, addr_format, state);
b->cursor = nir_before_instr(&intrin->instr);
nir_lower_explicit_io_instr(b, intrin, addr, addr_format);
return true;
}
static bool
lower_direct_buffer_instr(nir_builder *b, nir_instr *instr, void *_state)
{
struct apply_pipeline_layout_state *state = _state;
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_deref:
case nir_intrinsic_store_deref:
return try_lower_direct_buffer_intrinsic(b, intrin, false, state);
case nir_intrinsic_deref_atomic_add:
case nir_intrinsic_deref_atomic_imin:
case nir_intrinsic_deref_atomic_umin:
case nir_intrinsic_deref_atomic_imax:
case nir_intrinsic_deref_atomic_umax:
case nir_intrinsic_deref_atomic_and:
case nir_intrinsic_deref_atomic_or:
case nir_intrinsic_deref_atomic_xor:
case nir_intrinsic_deref_atomic_exchange:
case nir_intrinsic_deref_atomic_comp_swap:
case nir_intrinsic_deref_atomic_fmin:
case nir_intrinsic_deref_atomic_fmax:
case nir_intrinsic_deref_atomic_fcomp_swap:
return try_lower_direct_buffer_intrinsic(b, intrin, true, state);
case nir_intrinsic_get_ssbo_size: {
/* The get_ssbo_size intrinsic always just takes a
* index/reindex intrinsic.
*/
nir_intrinsic_instr *idx_intrin =
find_descriptor_for_index_src(intrin->src[0], state);
if (idx_intrin == NULL || !descriptor_has_bti(idx_intrin, state))
return false;
b->cursor = nir_before_instr(&intrin->instr);
/* We just checked that this is a BTI descriptor */
const nir_address_format addr_format =
nir_address_format_32bit_index_offset;
nir_ssa_def *buffer_addr =
build_buffer_addr_for_idx_intrin(b, idx_intrin, addr_format, state);
b->cursor = nir_before_instr(&intrin->instr);
nir_ssa_def *bti = nir_channel(b, buffer_addr, 0);
nir_instr_rewrite_src(&intrin->instr, &intrin->src[0],
nir_src_for_ssa(bti));
_mesa_set_add(state->lowered_instrs, intrin);
return true;
}
default:
return false;
}
}
static bool
lower_res_index_intrinsic(nir_builder *b, nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
b->cursor = nir_before_instr(&intrin->instr);
nir_address_format addr_format =
addr_format_for_desc_type(nir_intrinsic_desc_type(intrin), state);
assert(intrin->src[0].is_ssa);
nir_ssa_def *index =
build_res_index(b, nir_intrinsic_desc_set(intrin),
nir_intrinsic_binding(intrin),
intrin->src[0].ssa,
addr_format, state);
assert(intrin->dest.is_ssa);
assert(intrin->dest.ssa.bit_size == index->bit_size);
assert(intrin->dest.ssa.num_components == index->num_components);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, index);
nir_instr_remove(&intrin->instr);
return true;
}
static bool
lower_res_reindex_intrinsic(nir_builder *b, nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
b->cursor = nir_before_instr(&intrin->instr);
nir_address_format addr_format =
addr_format_for_desc_type(nir_intrinsic_desc_type(intrin), state);
assert(intrin->src[0].is_ssa && intrin->src[1].is_ssa);
nir_ssa_def *index =
build_res_reindex(b, intrin->src[0].ssa,
intrin->src[1].ssa,
addr_format);
assert(intrin->dest.is_ssa);
assert(intrin->dest.ssa.bit_size == index->bit_size);
assert(intrin->dest.ssa.num_components == index->num_components);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, index);
nir_instr_remove(&intrin->instr);
return true;
}
static bool
lower_load_vulkan_descriptor(nir_builder *b, nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
b->cursor = nir_before_instr(&intrin->instr);
const VkDescriptorType desc_type = nir_intrinsic_desc_type(intrin);
nir_address_format addr_format = addr_format_for_desc_type(desc_type, state);
assert(intrin->dest.is_ssa);
nir_foreach_use(src, &intrin->dest.ssa) {
if (src->parent_instr->type != nir_instr_type_deref)
continue;
nir_deref_instr *cast = nir_instr_as_deref(src->parent_instr);
assert(cast->deref_type == nir_deref_type_cast);
switch (desc_type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
cast->cast.align_mul = ANV_UBO_ALIGNMENT;
cast->cast.align_offset = 0;
break;
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
cast->cast.align_mul = ANV_SSBO_ALIGNMENT;
cast->cast.align_offset = 0;
break;
default:
break;
}
}
assert(intrin->src[0].is_ssa);
nir_ssa_def *desc =
build_buffer_addr_for_res_index(b, desc_type, intrin->src[0].ssa,
addr_format, state);
assert(intrin->dest.is_ssa);
assert(intrin->dest.ssa.bit_size == desc->bit_size);
assert(intrin->dest.ssa.num_components == desc->num_components);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, desc);
nir_instr_remove(&intrin->instr);
return true;
}
static bool
lower_get_ssbo_size(nir_builder *b, nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
if (_mesa_set_search(state->lowered_instrs, intrin))
return false;
b->cursor = nir_before_instr(&intrin->instr);
nir_address_format addr_format =
addr_format_for_desc_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, state);
assert(intrin->src[0].is_ssa);
nir_ssa_def *desc =
build_buffer_addr_for_res_index(b, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
intrin->src[0].ssa, addr_format, state);
switch (addr_format) {
case nir_address_format_64bit_global_32bit_offset:
case nir_address_format_64bit_bounded_global: {
nir_ssa_def *size = nir_channel(b, desc, 2);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, size);
nir_instr_remove(&intrin->instr);
break;
}
case nir_address_format_32bit_index_offset:
/* The binding table index is the first component of the address. The
* back-end wants a scalar binding table index source.
*/
nir_instr_rewrite_src(&intrin->instr, &intrin->src[0],
nir_src_for_ssa(nir_channel(b, desc, 0)));
break;
default:
unreachable("Unsupported address format");
}
return true;
}
static bool
lower_image_intrinsic(nir_builder *b, nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
nir_variable *var = nir_deref_instr_get_variable(deref);
unsigned set = var->data.descriptor_set;
unsigned binding = var->data.binding;
unsigned binding_offset = state->set[set].surface_offsets[binding];
b->cursor = nir_before_instr(&intrin->instr);
ASSERTED const bool use_bindless = state->pdevice->has_bindless_images;
if (intrin->intrinsic == nir_intrinsic_image_deref_load_param_intel) {
b->cursor = nir_instr_remove(&intrin->instr);
assert(!use_bindless); /* Otherwise our offsets would be wrong */
const unsigned param = nir_intrinsic_base(intrin);
nir_ssa_def *desc =
build_load_var_deref_descriptor_mem(b, deref, param * 16,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size, state);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, desc);
} else if (binding_offset > MAX_BINDING_TABLE_SIZE) {
const bool write_only =
(var->data.access & ACCESS_NON_READABLE) != 0;
nir_ssa_def *desc =
build_load_var_deref_descriptor_mem(b, deref, 0, 2, 32, state);
nir_ssa_def *handle = nir_channel(b, desc, write_only ? 1 : 0);
nir_rewrite_image_intrinsic(intrin, handle, true);
} else {
unsigned array_size =
state->layout->set[set].layout->binding[binding].array_size;
nir_ssa_def *index = NULL;
if (deref->deref_type != nir_deref_type_var) {
assert(deref->deref_type == nir_deref_type_array);
index = nir_ssa_for_src(b, deref->arr.index, 1);
if (state->add_bounds_checks)
index = nir_umin(b, index, nir_imm_int(b, array_size - 1));
} else {
index = nir_imm_int(b, 0);
}
index = nir_iadd_imm(b, index, binding_offset);
nir_rewrite_image_intrinsic(intrin, index, false);
}
return true;
}
static bool
lower_load_constant(nir_builder *b, nir_intrinsic_instr *intrin,
struct apply_pipeline_layout_state *state)
{
b->cursor = nir_instr_remove(&intrin->instr);
/* Any constant-offset load_constant instructions should have been removed
* by constant folding.
*/
assert(!nir_src_is_const(intrin->src[0]));
nir_ssa_def *offset = nir_iadd_imm(b, nir_ssa_for_src(b, intrin->src[0], 1),
nir_intrinsic_base(intrin));
nir_ssa_def *data;
if (state->pdevice->use_softpin) {
unsigned load_size = intrin->dest.ssa.num_components *
intrin->dest.ssa.bit_size / 8;
unsigned load_align = intrin->dest.ssa.bit_size / 8;
assert(load_size < b->shader->constant_data_size);
unsigned max_offset = b->shader->constant_data_size - load_size;
offset = nir_umin(b, offset, nir_imm_int(b, max_offset));
nir_ssa_def *const_data_base_addr = nir_pack_64_2x32_split(b,
nir_load_reloc_const_intel(b, ANV_SHADER_RELOC_CONST_DATA_ADDR_LOW),
nir_load_reloc_const_intel(b, ANV_SHADER_RELOC_CONST_DATA_ADDR_HIGH));
data = nir_load_global_constant(b, nir_iadd(b, const_data_base_addr,
nir_u2u64(b, offset)),
load_align,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size);
} else {
nir_ssa_def *index = nir_imm_int(b, state->constants_offset);
data = nir_load_ubo(b, intrin->num_components, intrin->dest.ssa.bit_size,
index, offset,
.align_mul = intrin->dest.ssa.bit_size / 8,
.align_offset = 0,
.range_base = nir_intrinsic_base(intrin),
.range = nir_intrinsic_range(intrin));
}
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, data);
return true;
}
static void
lower_tex_deref(nir_builder *b, nir_tex_instr *tex,
nir_tex_src_type deref_src_type,
unsigned *base_index, unsigned plane,
struct apply_pipeline_layout_state *state)
{
int deref_src_idx = nir_tex_instr_src_index(tex, deref_src_type);
if (deref_src_idx < 0)
return;
nir_deref_instr *deref = nir_src_as_deref(tex->src[deref_src_idx].src);
nir_variable *var = nir_deref_instr_get_variable(deref);
unsigned set = var->data.descriptor_set;
unsigned binding = var->data.binding;
unsigned array_size =
state->layout->set[set].layout->binding[binding].array_size;
unsigned binding_offset;
if (deref_src_type == nir_tex_src_texture_deref) {
binding_offset = state->set[set].surface_offsets[binding];
} else {
assert(deref_src_type == nir_tex_src_sampler_deref);
binding_offset = state->set[set].sampler_offsets[binding];
}
nir_tex_src_type offset_src_type;
nir_ssa_def *index = NULL;
if (binding_offset > MAX_BINDING_TABLE_SIZE) {
const unsigned plane_offset =
plane * sizeof(struct anv_sampled_image_descriptor);
nir_ssa_def *desc =
build_load_var_deref_descriptor_mem(b, deref, plane_offset,
2, 32, state);
if (deref_src_type == nir_tex_src_texture_deref) {
offset_src_type = nir_tex_src_texture_handle;
index = nir_channel(b, desc, 0);
} else {
assert(deref_src_type == nir_tex_src_sampler_deref);
offset_src_type = nir_tex_src_sampler_handle;
index = nir_channel(b, desc, 1);
}
} else {
if (deref_src_type == nir_tex_src_texture_deref) {
offset_src_type = nir_tex_src_texture_offset;
} else {
assert(deref_src_type == nir_tex_src_sampler_deref);
offset_src_type = nir_tex_src_sampler_offset;
}
*base_index = binding_offset + plane;
if (deref->deref_type != nir_deref_type_var) {
assert(deref->deref_type == nir_deref_type_array);
if (nir_src_is_const(deref->arr.index)) {
unsigned arr_index = MIN2(nir_src_as_uint(deref->arr.index), array_size - 1);
struct anv_sampler **immutable_samplers =
state->layout->set[set].layout->binding[binding].immutable_samplers;
if (immutable_samplers) {
/* Array of YCbCr samplers are tightly packed in the binding
* tables, compute the offset of an element in the array by
* adding the number of planes of all preceding elements.
*/
unsigned desc_arr_index = 0;
for (int i = 0; i < arr_index; i++)
desc_arr_index += immutable_samplers[i]->n_planes;
*base_index += desc_arr_index;
} else {
*base_index += arr_index;
}
} else {
/* From VK_KHR_sampler_ycbcr_conversion:
*
* If sampler Y’CBCR conversion is enabled, the combined image
* sampler must be indexed only by constant integral expressions
* when aggregated into arrays in shader code, irrespective of
* the shaderSampledImageArrayDynamicIndexing feature.
*/
assert(nir_tex_instr_src_index(tex, nir_tex_src_plane) == -1);
index = nir_ssa_for_src(b, deref->arr.index, 1);
if (state->add_bounds_checks)
index = nir_umin(b, index, nir_imm_int(b, array_size - 1));
}
}
}
if (index) {
nir_instr_rewrite_src(&tex->instr, &tex->src[deref_src_idx].src,
nir_src_for_ssa(index));
tex->src[deref_src_idx].src_type = offset_src_type;
} else {
nir_tex_instr_remove_src(tex, deref_src_idx);
}
}
static uint32_t
tex_instr_get_and_remove_plane_src(nir_tex_instr *tex)
{
int plane_src_idx = nir_tex_instr_src_index(tex, nir_tex_src_plane);
if (plane_src_idx < 0)
return 0;
unsigned plane = nir_src_as_uint(tex->src[plane_src_idx].src);
nir_tex_instr_remove_src(tex, plane_src_idx);
return plane;
}
static nir_ssa_def *
build_def_array_select(nir_builder *b, nir_ssa_def **srcs, nir_ssa_def *idx,
unsigned start, unsigned end)
{
if (start == end - 1) {
return srcs[start];
} else {
unsigned mid = start + (end - start) / 2;
return nir_bcsel(b, nir_ilt(b, idx, nir_imm_int(b, mid)),
build_def_array_select(b, srcs, idx, start, mid),
build_def_array_select(b, srcs, idx, mid, end));
}
}
static void
lower_gfx7_tex_swizzle(nir_builder *b, nir_tex_instr *tex, unsigned plane,
struct apply_pipeline_layout_state *state)
{
assert(state->pdevice->info.ver == 7 && !state->pdevice->info.is_haswell);
if (tex->sampler_dim == GLSL_SAMPLER_DIM_BUF ||
nir_tex_instr_is_query(tex) ||
tex->op == nir_texop_tg4 || /* We can't swizzle TG4 */
(tex->is_shadow && tex->is_new_style_shadow))
return;
int deref_src_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_deref);
assert(deref_src_idx >= 0);
nir_deref_instr *deref = nir_src_as_deref(tex->src[deref_src_idx].src);
nir_variable *var = nir_deref_instr_get_variable(deref);
unsigned set = var->data.descriptor_set;
unsigned binding = var->data.binding;
const struct anv_descriptor_set_binding_layout *bind_layout =
&state->layout->set[set].layout->binding[binding];
if ((bind_layout->data & ANV_DESCRIPTOR_TEXTURE_SWIZZLE) == 0)
return;
b->cursor = nir_before_instr(&tex->instr);
const unsigned plane_offset =
plane * sizeof(struct anv_texture_swizzle_descriptor);
nir_ssa_def *swiz =
build_load_var_deref_descriptor_mem(b, deref, plane_offset,
1, 32, state);
b->cursor = nir_after_instr(&tex->instr);
assert(tex->dest.ssa.bit_size == 32);
assert(tex->dest.ssa.num_components == 4);
/* Initializing to undef is ok; nir_opt_undef will clean it up. */
nir_ssa_def *undef = nir_ssa_undef(b, 1, 32);
nir_ssa_def *comps[8];
for (unsigned i = 0; i < ARRAY_SIZE(comps); i++)
comps[i] = undef;
comps[ISL_CHANNEL_SELECT_ZERO] = nir_imm_int(b, 0);
if (nir_alu_type_get_base_type(tex->dest_type) == nir_type_float)
comps[ISL_CHANNEL_SELECT_ONE] = nir_imm_float(b, 1);
else
comps[ISL_CHANNEL_SELECT_ONE] = nir_imm_int(b, 1);
comps[ISL_CHANNEL_SELECT_RED] = nir_channel(b, &tex->dest.ssa, 0);
comps[ISL_CHANNEL_SELECT_GREEN] = nir_channel(b, &tex->dest.ssa, 1);
comps[ISL_CHANNEL_SELECT_BLUE] = nir_channel(b, &tex->dest.ssa, 2);
comps[ISL_CHANNEL_SELECT_ALPHA] = nir_channel(b, &tex->dest.ssa, 3);
nir_ssa_def *swiz_comps[4];
for (unsigned i = 0; i < 4; i++) {
nir_ssa_def *comp_swiz = nir_extract_u8(b, swiz, nir_imm_int(b, i));
swiz_comps[i] = build_def_array_select(b, comps, comp_swiz, 0, 8);
}
nir_ssa_def *swiz_tex_res = nir_vec(b, swiz_comps, 4);
/* Rewrite uses before we insert so we don't rewrite this use */
nir_ssa_def_rewrite_uses_after(&tex->dest.ssa,
swiz_tex_res,
swiz_tex_res->parent_instr);
}
static bool
lower_tex(nir_builder *b, nir_tex_instr *tex,
struct apply_pipeline_layout_state *state)
{
unsigned plane = tex_instr_get_and_remove_plane_src(tex);
/* On Ivy Bridge and Bay Trail, we have to swizzle in the shader. Do this
* before we lower the derefs away so we can still find the descriptor.
*/
if (state->pdevice->info.ver == 7 && !state->pdevice->info.is_haswell)
lower_gfx7_tex_swizzle(b, tex, plane, state);
b->cursor = nir_before_instr(&tex->instr);
lower_tex_deref(b, tex, nir_tex_src_texture_deref,
&tex->texture_index, plane, state);
lower_tex_deref(b, tex, nir_tex_src_sampler_deref,
&tex->sampler_index, plane, state);
return true;
}
static bool
apply_pipeline_layout(nir_builder *b, nir_instr *instr, void *_state)
{
struct apply_pipeline_layout_state *state = _state;
switch (instr->type) {
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_vulkan_resource_index:
return lower_res_index_intrinsic(b, intrin, state);
case nir_intrinsic_vulkan_resource_reindex:
return lower_res_reindex_intrinsic(b, intrin, state);
case nir_intrinsic_load_vulkan_descriptor:
return lower_load_vulkan_descriptor(b, intrin, state);
case nir_intrinsic_get_ssbo_size:
return lower_get_ssbo_size(b, intrin, state);
case nir_intrinsic_image_deref_load:
case nir_intrinsic_image_deref_store:
case nir_intrinsic_image_deref_atomic_add:
case nir_intrinsic_image_deref_atomic_imin:
case nir_intrinsic_image_deref_atomic_umin:
case nir_intrinsic_image_deref_atomic_imax:
case nir_intrinsic_image_deref_atomic_umax:
case nir_intrinsic_image_deref_atomic_and:
case nir_intrinsic_image_deref_atomic_or:
case nir_intrinsic_image_deref_atomic_xor:
case nir_intrinsic_image_deref_atomic_exchange:
case nir_intrinsic_image_deref_atomic_comp_swap:
case nir_intrinsic_image_deref_size:
case nir_intrinsic_image_deref_samples:
case nir_intrinsic_image_deref_load_param_intel:
case nir_intrinsic_image_deref_load_raw_intel:
case nir_intrinsic_image_deref_store_raw_intel:
return lower_image_intrinsic(b, intrin, state);
case nir_intrinsic_load_constant:
return lower_load_constant(b, intrin, state);
default:
return false;
}
break;
}
case nir_instr_type_tex:
return lower_tex(b, nir_instr_as_tex(instr), state);
default:
return false;
}
}
struct binding_info {
uint32_t binding;
uint8_t set;
uint16_t score;
};
static int
compare_binding_infos(const void *_a, const void *_b)
{
const struct binding_info *a = _a, *b = _b;
if (a->score != b->score)
return b->score - a->score;
if (a->set != b->set)
return a->set - b->set;
return a->binding - b->binding;
}
void
anv_nir_apply_pipeline_layout(const struct anv_physical_device *pdevice,
bool robust_buffer_access,
const struct anv_pipeline_layout *layout,
nir_shader *shader,
struct anv_pipeline_bind_map *map)
{
void *mem_ctx = ralloc_context(NULL);
struct apply_pipeline_layout_state state = {
.pdevice = pdevice,
.layout = layout,
.add_bounds_checks = robust_buffer_access,
.desc_addr_format = nir_address_format_32bit_index_offset,
.ssbo_addr_format = anv_nir_ssbo_addr_format(pdevice, robust_buffer_access),
.ubo_addr_format = anv_nir_ubo_addr_format(pdevice, robust_buffer_access),
.lowered_instrs = _mesa_pointer_set_create(mem_ctx),
};
for (unsigned s = 0; s < layout->num_sets; s++) {
const unsigned count = layout->set[s].layout->binding_count;
state.set[s].use_count = rzalloc_array(mem_ctx, uint8_t, count);
state.set[s].surface_offsets = rzalloc_array(mem_ctx, uint8_t, count);
state.set[s].sampler_offsets = rzalloc_array(mem_ctx, uint8_t, count);
}
nir_shader_instructions_pass(shader, get_used_bindings,
nir_metadata_all, &state);
for (unsigned s = 0; s < layout->num_sets; s++) {
if (state.desc_addr_format != nir_address_format_32bit_index_offset) {
state.set[s].desc_offset = BINDLESS_OFFSET;
} else if (state.set[s].desc_buffer_used) {
map->surface_to_descriptor[map->surface_count] =
(struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_DESCRIPTORS,
.index = s,
};
state.set[s].desc_offset = map->surface_count;
map->surface_count++;
}
}
if (state.uses_constants && !pdevice->use_softpin) {
state.constants_offset = map->surface_count;
map->surface_to_descriptor[map->surface_count].set =
ANV_DESCRIPTOR_SET_SHADER_CONSTANTS;
map->surface_count++;
}
unsigned used_binding_count = 0;
for (uint32_t set = 0; set < layout->num_sets; set++) {
struct anv_descriptor_set_layout *set_layout = layout->set[set].layout;
for (unsigned b = 0; b < set_layout->binding_count; b++) {
if (state.set[set].use_count[b] == 0)
continue;
used_binding_count++;
}
}
struct binding_info *infos =
rzalloc_array(mem_ctx, struct binding_info, used_binding_count);
used_binding_count = 0;
for (uint32_t set = 0; set < layout->num_sets; set++) {
const struct anv_descriptor_set_layout *set_layout = layout->set[set].layout;
for (unsigned b = 0; b < set_layout->binding_count; b++) {
if (state.set[set].use_count[b] == 0)
continue;
const struct anv_descriptor_set_binding_layout *binding =
&layout->set[set].layout->binding[b];
/* Do a fixed-point calculation to generate a score based on the
* number of uses and the binding array size. We shift by 7 instead
* of 8 because we're going to use the top bit below to make
* everything which does not support bindless super higher priority
* than things which do.
*/
uint16_t score = ((uint16_t)state.set[set].use_count[b] << 7) /
binding->array_size;
/* If the descriptor type doesn't support bindless then put it at the
* beginning so we guarantee it gets a slot.
*/
if (!anv_descriptor_supports_bindless(pdevice, binding, true) ||
!anv_descriptor_supports_bindless(pdevice, binding, false))
score |= 1 << 15;
infos[used_binding_count++] = (struct binding_info) {
.set = set,
.binding = b,
.score = score,
};
}
}
/* Order the binding infos based on score with highest scores first. If
* scores are equal we then order by set and binding.
*/
qsort(infos, used_binding_count, sizeof(struct binding_info),
compare_binding_infos);
for (unsigned i = 0; i < used_binding_count; i++) {
unsigned set = infos[i].set, b = infos[i].binding;
const struct anv_descriptor_set_binding_layout *binding =
&layout->set[set].layout->binding[b];
const uint32_t array_size = binding->array_size;
if (binding->dynamic_offset_index >= 0)
state.has_dynamic_buffers = true;
if (binding->data & ANV_DESCRIPTOR_SURFACE_STATE) {
if (map->surface_count + array_size > MAX_BINDING_TABLE_SIZE ||
anv_descriptor_requires_bindless(pdevice, binding, false)) {
/* If this descriptor doesn't fit in the binding table or if it
* requires bindless for some reason, flag it as bindless.
*/
assert(anv_descriptor_supports_bindless(pdevice, binding, false));
state.set[set].surface_offsets[b] = BINDLESS_OFFSET;
} else {
state.set[set].surface_offsets[b] = map->surface_count;
if (binding->dynamic_offset_index < 0) {
struct anv_sampler **samplers = binding->immutable_samplers;
for (unsigned i = 0; i < binding->array_size; i++) {
uint8_t planes = samplers ? samplers[i]->n_planes : 1;
for (uint8_t p = 0; p < planes; p++) {
map->surface_to_descriptor[map->surface_count++] =
(struct anv_pipeline_binding) {
.set = set,
.index = binding->descriptor_index + i,
.plane = p,
};
}
}
} else {
for (unsigned i = 0; i < binding->array_size; i++) {
map->surface_to_descriptor[map->surface_count++] =
(struct anv_pipeline_binding) {
.set = set,
.index = binding->descriptor_index + i,
.dynamic_offset_index =
layout->set[set].dynamic_offset_start +
binding->dynamic_offset_index + i,
};
}
}
}
assert(map->surface_count <= MAX_BINDING_TABLE_SIZE);
}
if (binding->data & ANV_DESCRIPTOR_SAMPLER_STATE) {
if (map->sampler_count + array_size > MAX_SAMPLER_TABLE_SIZE ||
anv_descriptor_requires_bindless(pdevice, binding, true)) {
/* If this descriptor doesn't fit in the binding table or if it
* requires bindless for some reason, flag it as bindless.
*
* We also make large sampler arrays bindless because we can avoid
* using indirect sends thanks to bindless samplers being packed
* less tightly than the sampler table.
*/
assert(anv_descriptor_supports_bindless(pdevice, binding, true));
state.set[set].sampler_offsets[b] = BINDLESS_OFFSET;
} else {
state.set[set].sampler_offsets[b] = map->sampler_count;
struct anv_sampler **samplers = binding->immutable_samplers;
for (unsigned i = 0; i < binding->array_size; i++) {
uint8_t planes = samplers ? samplers[i]->n_planes : 1;
for (uint8_t p = 0; p < planes; p++) {
map->sampler_to_descriptor[map->sampler_count++] =
(struct anv_pipeline_binding) {
.set = set,
.index = binding->descriptor_index + i,
.plane = p,
};
}
}
}
}
}
nir_foreach_uniform_variable(var, shader) {
const struct glsl_type *glsl_type = glsl_without_array(var->type);
if (!glsl_type_is_image(glsl_type))
continue;
enum glsl_sampler_dim dim = glsl_get_sampler_dim(glsl_type);
const uint32_t set = var->data.descriptor_set;
const uint32_t binding = var->data.binding;
const struct anv_descriptor_set_binding_layout *bind_layout =
&layout->set[set].layout->binding[binding];
const uint32_t array_size = bind_layout->array_size;
if (state.set[set].use_count[binding] == 0)
continue;
if (state.set[set].surface_offsets[binding] >= MAX_BINDING_TABLE_SIZE)
continue;
struct anv_pipeline_binding *pipe_binding =
&map->surface_to_descriptor[state.set[set].surface_offsets[binding]];
for (unsigned i = 0; i < array_size; i++) {
assert(pipe_binding[i].set == set);
assert(pipe_binding[i].index == bind_layout->descriptor_index + i);
if (dim == GLSL_SAMPLER_DIM_SUBPASS ||
dim == GLSL_SAMPLER_DIM_SUBPASS_MS)
pipe_binding[i].input_attachment_index = var->data.index + i;
/* NOTE: This is a uint8_t so we really do need to != 0 here */
pipe_binding[i].write_only =
(var->data.access & ACCESS_NON_READABLE) != 0;
}
}
/* Before we do the normal lowering, we look for any SSBO operations
* that we can lower to the BTI model and lower them up-front. The BTI
* model can perform better than the A64 model for a couple reasons:
*
* 1. 48-bit address calculations are potentially expensive and using
* the BTI model lets us simply compute 32-bit offsets and the
* hardware adds the 64-bit surface base address.
*
* 2. The BTI messages, because they use surface states, do bounds
* checking for us. With the A64 model, we have to do our own
* bounds checking and this means wider pointers and extra
* calculations and branching in the shader.
*
* The solution to both of these is to convert things to the BTI model
* opportunistically. The reason why we need to do this as a pre-pass
* is for two reasons:
*
* 1. The BTI model requires nir_address_format_32bit_index_offset
* pointers which are not the same type as the pointers needed for
* the A64 model. Because all our derefs are set up for the A64
* model (in case we have variable pointers), we have to crawl all
* the way back to the vulkan_resource_index intrinsic and build a
* completely fresh index+offset calculation.
*
* 2. Because the variable-pointers-capable lowering that we do as part
* of apply_pipeline_layout_block is destructive (It really has to
* be to handle variable pointers properly), we've lost the deref
* information by the time we get to the load/store/atomic
* intrinsics in that pass.
*/
nir_shader_instructions_pass(shader, lower_direct_buffer_instr,
nir_metadata_block_index |
nir_metadata_dominance,
&state);
/* We just got rid of all the direct access. Delete it so it's not in the
* way when we do our indirect lowering.
*/
nir_opt_dce(shader);
nir_shader_instructions_pass(shader, apply_pipeline_layout,
nir_metadata_block_index |
nir_metadata_dominance,
&state);
ralloc_free(mem_ctx);
/* Now that we're done computing the surface and sampler portions of the
* bind map, hash them. This lets us quickly determine if the actual
* mapping has changed and not just a no-op pipeline change.
*/
_mesa_sha1_compute(map->surface_to_descriptor,
map->surface_count * sizeof(struct anv_pipeline_binding),
map->surface_sha1);
_mesa_sha1_compute(map->sampler_to_descriptor,
map->sampler_count * sizeof(struct anv_pipeline_binding),
map->sampler_sha1);
}