blob: e42f260edb0ed60c752c11d3ab13169add456cf6 [file] [log] [blame]
/*
* Copyright 2013 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Marek Olšák <maraeo@gmail.com>
*/
#include "si_pipe.h"
#include "sid.h"
#include "radeon/r600_cs.h"
/* Set this if you want the ME to wait until CP DMA is done.
* It should be set on the last CP DMA packet. */
#define CP_DMA_SYNC (1 << 0)
/* Set this if the source data was used as a destination in a previous CP DMA
* packet. It's for preventing a read-after-write (RAW) hazard between two
* CP DMA packets. */
#define CP_DMA_RAW_WAIT (1 << 1)
#define CP_DMA_USE_L2 (1 << 2) /* CIK+ */
#define CP_DMA_CLEAR (1 << 3)
/* The max number of bytes that can be copied per packet. */
static inline unsigned cp_dma_max_byte_count(struct si_context *sctx)
{
unsigned max = sctx->b.chip_class >= GFX9 ?
S_414_BYTE_COUNT_GFX9(~0u) :
S_414_BYTE_COUNT_GFX6(~0u);
/* make it aligned for optimal performance */
return max & ~(SI_CPDMA_ALIGNMENT - 1);
}
/* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
* a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
* clear value.
*/
static void si_emit_cp_dma(struct si_context *sctx, uint64_t dst_va,
uint64_t src_va, unsigned size, unsigned flags,
enum r600_coherency coher)
{
struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
uint32_t header = 0, command = 0;
assert(size);
assert(size <= cp_dma_max_byte_count(sctx));
if (sctx->b.chip_class >= GFX9)
command |= S_414_BYTE_COUNT_GFX9(size);
else
command |= S_414_BYTE_COUNT_GFX6(size);
/* Sync flags. */
if (flags & CP_DMA_SYNC)
header |= S_411_CP_SYNC(1);
else {
if (sctx->b.chip_class >= GFX9)
command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
else
command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
}
if (flags & CP_DMA_RAW_WAIT)
command |= S_414_RAW_WAIT(1);
/* Src and dst flags. */
if (sctx->b.chip_class >= GFX9 && !(flags & CP_DMA_CLEAR) &&
src_va == dst_va)
header |= S_411_DSL_SEL(V_411_NOWHERE); /* prefetch only */
else if (flags & CP_DMA_USE_L2)
header |= S_411_DSL_SEL(V_411_DST_ADDR_TC_L2);
if (flags & CP_DMA_CLEAR)
header |= S_411_SRC_SEL(V_411_DATA);
else if (flags & CP_DMA_USE_L2)
header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
if (sctx->b.chip_class >= CIK) {
radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
radeon_emit(cs, header);
radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
radeon_emit(cs, command);
} else {
header |= S_411_SRC_ADDR_HI(src_va >> 32);
radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
radeon_emit(cs, command);
}
/* CP DMA is executed in ME, but index buffers are read by PFP.
* This ensures that ME (CP DMA) is idle before PFP starts fetching
* indices. If we wanted to execute CP DMA in PFP, this packet
* should precede it.
*/
if (coher == R600_COHERENCY_SHADER && flags & CP_DMA_SYNC) {
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cs, 0);
}
}
static unsigned get_flush_flags(struct si_context *sctx, enum r600_coherency coher)
{
switch (coher) {
default:
case R600_COHERENCY_NONE:
return 0;
case R600_COHERENCY_SHADER:
return SI_CONTEXT_INV_SMEM_L1 |
SI_CONTEXT_INV_VMEM_L1 |
(sctx->b.chip_class == SI ? SI_CONTEXT_INV_GLOBAL_L2 : 0);
case R600_COHERENCY_CB_META:
return SI_CONTEXT_FLUSH_AND_INV_CB;
}
}
static unsigned get_tc_l2_flag(struct si_context *sctx, enum r600_coherency coher)
{
if ((sctx->b.chip_class >= GFX9 && coher == R600_COHERENCY_CB_META) ||
(sctx->b.chip_class >= CIK && coher == R600_COHERENCY_SHADER))
return CP_DMA_USE_L2;
return 0;
}
static void si_cp_dma_prepare(struct si_context *sctx, struct pipe_resource *dst,
struct pipe_resource *src, unsigned byte_count,
uint64_t remaining_size, unsigned user_flags,
bool *is_first, unsigned *packet_flags)
{
/* Fast exit for a CPDMA prefetch. */
if ((user_flags & SI_CPDMA_SKIP_ALL) == SI_CPDMA_SKIP_ALL) {
*is_first = false;
return;
}
if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
/* Count memory usage in so that need_cs_space can take it into account. */
r600_context_add_resource_size(&sctx->b.b, dst);
if (src)
r600_context_add_resource_size(&sctx->b.b, src);
}
if (!(user_flags & SI_CPDMA_SKIP_CHECK_CS_SPACE))
si_need_cs_space(sctx);
/* This must be done after need_cs_space. */
if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
(struct r600_resource*)dst,
RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
if (src)
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
(struct r600_resource*)src,
RADEON_USAGE_READ, RADEON_PRIO_CP_DMA);
}
/* Flush the caches for the first copy only.
* Also wait for the previous CP DMA operations.
*/
if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC) && sctx->b.flags)
si_emit_cache_flush(sctx);
if (!(user_flags & SI_CPDMA_SKIP_SYNC_BEFORE) && *is_first)
*packet_flags |= CP_DMA_RAW_WAIT;
*is_first = false;
/* Do the synchronization after the last dma, so that all data
* is written to memory.
*/
if (!(user_flags & SI_CPDMA_SKIP_SYNC_AFTER) &&
byte_count == remaining_size)
*packet_flags |= CP_DMA_SYNC;
}
static void si_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst,
uint64_t offset, uint64_t size, unsigned value,
enum r600_coherency coher)
{
struct si_context *sctx = (struct si_context*)ctx;
struct radeon_winsys *ws = sctx->b.ws;
struct r600_resource *rdst = r600_resource(dst);
unsigned tc_l2_flag = get_tc_l2_flag(sctx, coher);
unsigned flush_flags = get_flush_flags(sctx, coher);
uint64_t dma_clear_size;
bool is_first = true;
if (!size)
return;
dma_clear_size = size & ~3ull;
/* Mark the buffer range of destination as valid (initialized),
* so that transfer_map knows it should wait for the GPU when mapping
* that range. */
util_range_add(&rdst->valid_buffer_range, offset,
offset + dma_clear_size);
/* dma_clear_buffer can use clear_buffer on failure. Make sure that
* doesn't happen. We don't want an infinite recursion: */
if (sctx->b.dma.cs &&
!(dst->flags & PIPE_RESOURCE_FLAG_SPARSE) &&
(offset % 4 == 0) &&
/* CP DMA is very slow. Always use SDMA for big clears. This
* alone improves DeusEx:MD performance by 70%. */
(size > 128 * 1024 ||
/* Buffers not used by the GFX IB yet will be cleared by SDMA.
* This happens to move most buffer clears to SDMA, including
* DCC and CMASK clears, because pipe->clear clears them before
* si_emit_framebuffer_state (in a draw call) adds them.
* For example, DeusEx:MD has 21 buffer clears per frame and all
* of them are moved to SDMA thanks to this. */
!ws->cs_is_buffer_referenced(sctx->b.gfx.cs, rdst->buf,
RADEON_USAGE_READWRITE))) {
sctx->b.dma_clear_buffer(ctx, dst, offset, dma_clear_size, value);
offset += dma_clear_size;
size -= dma_clear_size;
} else if (dma_clear_size >= 4) {
uint64_t va = rdst->gpu_address + offset;
offset += dma_clear_size;
size -= dma_clear_size;
/* Flush the caches. */
sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags;
while (dma_clear_size) {
unsigned byte_count = MIN2(dma_clear_size, cp_dma_max_byte_count(sctx));
unsigned dma_flags = tc_l2_flag | CP_DMA_CLEAR;
si_cp_dma_prepare(sctx, dst, NULL, byte_count, dma_clear_size, 0,
&is_first, &dma_flags);
/* Emit the clear packet. */
si_emit_cp_dma(sctx, va, value, byte_count, dma_flags, coher);
dma_clear_size -= byte_count;
va += byte_count;
}
if (tc_l2_flag)
rdst->TC_L2_dirty = true;
/* If it's not a framebuffer fast clear... */
if (coher == R600_COHERENCY_SHADER)
sctx->b.num_cp_dma_calls++;
}
if (size) {
/* Handle non-dword alignment.
*
* This function is called for embedded texture metadata clears,
* but those should always be properly aligned. */
assert(dst->target == PIPE_BUFFER);
assert(size < 4);
pipe_buffer_write(ctx, dst, offset, size, &value);
}
}
/**
* Realign the CP DMA engine. This must be done after a copy with an unaligned
* size.
*
* \param size Remaining size to the CP DMA alignment.
*/
static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size,
unsigned user_flags, bool *is_first)
{
uint64_t va;
unsigned dma_flags = 0;
unsigned scratch_size = SI_CPDMA_ALIGNMENT * 2;
assert(size < SI_CPDMA_ALIGNMENT);
/* Use the scratch buffer as the dummy buffer. The 3D engine should be
* idle at this point.
*/
if (!sctx->scratch_buffer ||
sctx->scratch_buffer->b.b.width0 < scratch_size) {
r600_resource_reference(&sctx->scratch_buffer, NULL);
sctx->scratch_buffer = (struct r600_resource*)
r600_aligned_buffer_create(&sctx->screen->b.b,
R600_RESOURCE_FLAG_UNMAPPABLE,
PIPE_USAGE_DEFAULT,
scratch_size, 256);
if (!sctx->scratch_buffer)
return;
si_mark_atom_dirty(sctx, &sctx->scratch_state);
}
si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b,
&sctx->scratch_buffer->b.b, size, size, user_flags,
is_first, &dma_flags);
va = sctx->scratch_buffer->gpu_address;
si_emit_cp_dma(sctx, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags,
R600_COHERENCY_SHADER);
}
/**
* Do memcpy between buffers using CP DMA.
*
* \param user_flags bitmask of SI_CPDMA_*
*/
void si_copy_buffer(struct si_context *sctx,
struct pipe_resource *dst, struct pipe_resource *src,
uint64_t dst_offset, uint64_t src_offset, unsigned size,
unsigned user_flags)
{
uint64_t main_dst_offset, main_src_offset;
unsigned skipped_size = 0;
unsigned realign_size = 0;
unsigned tc_l2_flag = get_tc_l2_flag(sctx, R600_COHERENCY_SHADER);
unsigned flush_flags = get_flush_flags(sctx, R600_COHERENCY_SHADER);
bool is_first = true;
if (!size)
return;
if (dst != src || dst_offset != src_offset) {
/* Mark the buffer range of destination as valid (initialized),
* so that transfer_map knows it should wait for the GPU when mapping
* that range. */
util_range_add(&r600_resource(dst)->valid_buffer_range, dst_offset,
dst_offset + size);
}
dst_offset += r600_resource(dst)->gpu_address;
src_offset += r600_resource(src)->gpu_address;
/* The workarounds aren't needed on Fiji and beyond. */
if (sctx->b.family <= CHIP_CARRIZO ||
sctx->b.family == CHIP_STONEY) {
/* If the size is not aligned, we must add a dummy copy at the end
* just to align the internal counter. Otherwise, the DMA engine
* would slow down by an order of magnitude for following copies.
*/
if (size % SI_CPDMA_ALIGNMENT)
realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
/* If the copy begins unaligned, we must start copying from the next
* aligned block and the skipped part should be copied after everything
* else has been copied. Only the src alignment matters, not dst.
*/
if (src_offset % SI_CPDMA_ALIGNMENT) {
skipped_size = SI_CPDMA_ALIGNMENT - (src_offset % SI_CPDMA_ALIGNMENT);
/* The main part will be skipped if the size is too small. */
skipped_size = MIN2(skipped_size, size);
size -= skipped_size;
}
}
/* Flush the caches. */
if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC))
sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags;
/* This is the main part doing the copying. Src is always aligned. */
main_dst_offset = dst_offset + skipped_size;
main_src_offset = src_offset + skipped_size;
while (size) {
unsigned dma_flags = tc_l2_flag;
unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));
si_cp_dma_prepare(sctx, dst, src, byte_count,
size + skipped_size + realign_size,
user_flags, &is_first, &dma_flags);
si_emit_cp_dma(sctx, main_dst_offset, main_src_offset,
byte_count, dma_flags, R600_COHERENCY_SHADER);
size -= byte_count;
main_src_offset += byte_count;
main_dst_offset += byte_count;
}
/* Copy the part we skipped because src wasn't aligned. */
if (skipped_size) {
unsigned dma_flags = tc_l2_flag;
si_cp_dma_prepare(sctx, dst, src, skipped_size,
skipped_size + realign_size, user_flags,
&is_first, &dma_flags);
si_emit_cp_dma(sctx, dst_offset, src_offset, skipped_size,
dma_flags, R600_COHERENCY_SHADER);
}
/* Finally, realign the engine if the size wasn't aligned. */
if (realign_size)
si_cp_dma_realign_engine(sctx, realign_size, user_flags,
&is_first);
if (tc_l2_flag)
r600_resource(dst)->TC_L2_dirty = true;
/* If it's not a prefetch... */
if (dst_offset != src_offset)
sctx->b.num_cp_dma_calls++;
}
void cik_prefetch_TC_L2_async(struct si_context *sctx, struct pipe_resource *buf,
uint64_t offset, unsigned size)
{
assert(sctx->b.chip_class >= CIK);
si_copy_buffer(sctx, buf, buf, offset, offset, size, SI_CPDMA_SKIP_ALL);
}
static void cik_prefetch_shader_async(struct si_context *sctx,
struct si_pm4_state *state)
{
if (state) {
struct pipe_resource *bo = &state->bo[0]->b.b;
assert(state->nbo == 1);
cik_prefetch_TC_L2_async(sctx, bo, 0, bo->width0);
}
}
static void cik_emit_prefetch_L2(struct si_context *sctx, struct r600_atom *atom)
{
/* Prefetch shaders and VBO descriptors to TC L2. */
if (si_pm4_state_changed(sctx, ls))
cik_prefetch_shader_async(sctx, sctx->queued.named.ls);
if (si_pm4_state_changed(sctx, hs))
cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
if (si_pm4_state_changed(sctx, es))
cik_prefetch_shader_async(sctx, sctx->queued.named.es);
if (si_pm4_state_changed(sctx, gs))
cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
if (si_pm4_state_changed(sctx, vs))
cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
/* Vertex buffer descriptors are uploaded uncached, so prefetch
* them right after the VS binary. */
if (sctx->vertex_buffer_pointer_dirty) {
cik_prefetch_TC_L2_async(sctx, &sctx->vertex_buffers.buffer->b.b,
sctx->vertex_buffers.buffer_offset,
sctx->vertex_elements->desc_list_byte_size);
}
if (si_pm4_state_changed(sctx, ps))
cik_prefetch_shader_async(sctx, sctx->queued.named.ps);
}
void si_init_cp_dma_functions(struct si_context *sctx)
{
sctx->b.clear_buffer = si_clear_buffer;
si_init_atom(sctx, &sctx->prefetch_L2, &sctx->atoms.s.prefetch_L2,
cik_emit_prefetch_L2);
}