blob: 05fd953b5bf3f2a4c1fcb5502c286775901a700e [file] [log] [blame]
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file shader_cache.cpp
*
* GLSL shader cache implementation
*
* This uses disk_cache.c to write out a serialization of various
* state that's required in order to successfully load and use a
* binary written out by a drivers backend, this state is referred to as
* "metadata" throughout the implementation.
*
* The hash key for glsl metadata is a hash of the hashes of each GLSL
* source string as well as some API settings that change the final program
* such as SSO, attribute bindings, frag data bindings, etc.
*
* In order to avoid caching any actual IR we use the put_key/get_key support
* in the disk_cache to put the SHA-1 hash for each successfully compiled
* shader into the cache, and optimisticly return early from glCompileShader
* (if the identical shader had been successfully compiled in the past),
* in the hope that the final linked shader will be found in the cache.
* If anything goes wrong (shader variant not found, backend cache item is
* corrupt, etc) we will use a fallback path to compile and link the IR.
*/
#include "blob.h"
#include "compiler/shader_info.h"
#include "glsl_symbol_table.h"
#include "glsl_parser_extras.h"
#include "ir.h"
#include "ir_optimization.h"
#include "ir_rvalue_visitor.h"
#include "ir_uniform.h"
#include "linker.h"
#include "link_varyings.h"
#include "main/core.h"
#include "nir.h"
#include "program.h"
#include "shader_cache.h"
#include "util/mesa-sha1.h"
#include "string_to_uint_map.h"
extern "C" {
#include "main/enums.h"
#include "main/shaderobj.h"
#include "program/program.h"
}
static void
compile_shaders(struct gl_context *ctx, struct gl_shader_program *prog) {
for (unsigned i = 0; i < prog->NumShaders; i++) {
_mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
}
}
static void
get_struct_type_field_and_pointer_sizes(size_t *s_field_size,
size_t *s_field_ptrs)
{
*s_field_size = sizeof(glsl_struct_field);
*s_field_ptrs =
sizeof(((glsl_struct_field *)0)->type) +
sizeof(((glsl_struct_field *)0)->name);
}
static void
encode_type_to_blob(struct blob *blob, const glsl_type *type)
{
uint32_t encoding;
if (!type) {
blob_write_uint32(blob, 0);
return;
}
switch (type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
encoding = (type->base_type << 24) |
(type->vector_elements << 4) |
(type->matrix_columns);
break;
case GLSL_TYPE_SAMPLER:
encoding = (type->base_type) << 24 |
(type->sampler_dimensionality << 4) |
(type->sampler_shadow << 3) |
(type->sampler_array << 2) |
(type->sampled_type);
break;
case GLSL_TYPE_SUBROUTINE:
encoding = type->base_type << 24;
blob_write_uint32(blob, encoding);
blob_write_string(blob, type->name);
return;
case GLSL_TYPE_IMAGE:
encoding = (type->base_type) << 24 |
(type->sampler_dimensionality << 3) |
(type->sampler_array << 2) |
(type->sampled_type);
break;
case GLSL_TYPE_ATOMIC_UINT:
encoding = (type->base_type << 24);
break;
case GLSL_TYPE_ARRAY:
blob_write_uint32(blob, (type->base_type) << 24);
blob_write_uint32(blob, type->length);
encode_type_to_blob(blob, type->fields.array);
return;
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE:
blob_write_uint32(blob, (type->base_type) << 24);
blob_write_string(blob, type->name);
blob_write_uint32(blob, type->length);
size_t s_field_size, s_field_ptrs;
get_struct_type_field_and_pointer_sizes(&s_field_size, &s_field_ptrs);
for (unsigned i = 0; i < type->length; i++) {
encode_type_to_blob(blob, type->fields.structure[i].type);
blob_write_string(blob, type->fields.structure[i].name);
/* Write the struct field skipping the pointers */
blob_write_bytes(blob,
((char *)&type->fields.structure[i]) + s_field_ptrs,
s_field_size - s_field_ptrs);
}
if (type->is_interface()) {
blob_write_uint32(blob, type->interface_packing);
blob_write_uint32(blob, type->interface_row_major);
}
return;
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
default:
assert(!"Cannot encode type!");
encoding = 0;
break;
}
blob_write_uint32(blob, encoding);
}
static const glsl_type *
decode_type_from_blob(struct blob_reader *blob)
{
uint32_t u = blob_read_uint32(blob);
if (u == 0) {
return NULL;
}
glsl_base_type base_type = (glsl_base_type) (u >> 24);
switch (base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
return glsl_type::get_instance(base_type, (u >> 4) & 0x0f, u & 0x0f);
case GLSL_TYPE_SAMPLER:
return glsl_type::get_sampler_instance((enum glsl_sampler_dim) ((u >> 4) & 0x07),
(u >> 3) & 0x01,
(u >> 2) & 0x01,
(glsl_base_type) ((u >> 0) & 0x03));
case GLSL_TYPE_SUBROUTINE:
return glsl_type::get_subroutine_instance(blob_read_string(blob));
case GLSL_TYPE_IMAGE:
return glsl_type::get_image_instance((enum glsl_sampler_dim) ((u >> 3) & 0x07),
(u >> 2) & 0x01,
(glsl_base_type) ((u >> 0) & 0x03));
case GLSL_TYPE_ATOMIC_UINT:
return glsl_type::atomic_uint_type;
case GLSL_TYPE_ARRAY: {
unsigned length = blob_read_uint32(blob);
return glsl_type::get_array_instance(decode_type_from_blob(blob),
length);
}
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE: {
char *name = blob_read_string(blob);
unsigned num_fields = blob_read_uint32(blob);
size_t s_field_size, s_field_ptrs;
get_struct_type_field_and_pointer_sizes(&s_field_size, &s_field_ptrs);
glsl_struct_field *fields =
(glsl_struct_field *) malloc(s_field_size * num_fields);
for (unsigned i = 0; i < num_fields; i++) {
fields[i].type = decode_type_from_blob(blob);
fields[i].name = blob_read_string(blob);
blob_copy_bytes(blob, ((uint8_t *) &fields[i]) + s_field_ptrs,
s_field_size - s_field_ptrs);
}
const glsl_type *t;
if (base_type == GLSL_TYPE_INTERFACE) {
enum glsl_interface_packing packing =
(glsl_interface_packing) blob_read_uint32(blob);
bool row_major = blob_read_uint32(blob);
t = glsl_type::get_interface_instance(fields, num_fields, packing,
row_major, name);
} else {
t = glsl_type::get_record_instance(fields, num_fields, name);
}
free(fields);
return t;
}
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
default:
assert(!"Cannot decode type!");
return NULL;
}
}
static void
write_subroutines(struct blob *metadata, struct gl_shader_program *prog)
{
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_linked_shader *sh = prog->_LinkedShaders[i];
if (!sh)
continue;
struct gl_program *glprog = sh->Program;
blob_write_uint32(metadata, glprog->sh.NumSubroutineUniforms);
blob_write_uint32(metadata, glprog->sh.MaxSubroutineFunctionIndex);
blob_write_uint32(metadata, glprog->sh.NumSubroutineFunctions);
for (unsigned j = 0; j < glprog->sh.NumSubroutineFunctions; j++) {
int num_types = glprog->sh.SubroutineFunctions[j].num_compat_types;
blob_write_string(metadata, glprog->sh.SubroutineFunctions[j].name);
blob_write_uint32(metadata, glprog->sh.SubroutineFunctions[j].index);
blob_write_uint32(metadata, num_types);
for (int k = 0; k < num_types; k++) {
encode_type_to_blob(metadata,
glprog->sh.SubroutineFunctions[j].types[k]);
}
}
}
}
static void
read_subroutines(struct blob_reader *metadata, struct gl_shader_program *prog)
{
struct gl_subroutine_function *subs;
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_linked_shader *sh = prog->_LinkedShaders[i];
if (!sh)
continue;
struct gl_program *glprog = sh->Program;
glprog->sh.NumSubroutineUniforms = blob_read_uint32(metadata);
glprog->sh.MaxSubroutineFunctionIndex = blob_read_uint32(metadata);
glprog->sh.NumSubroutineFunctions = blob_read_uint32(metadata);
subs = rzalloc_array(prog, struct gl_subroutine_function,
glprog->sh.NumSubroutineFunctions);
glprog->sh.SubroutineFunctions = subs;
for (unsigned j = 0; j < glprog->sh.NumSubroutineFunctions; j++) {
subs[j].name = ralloc_strdup(prog, blob_read_string (metadata));
subs[j].index = (int) blob_read_uint32(metadata);
subs[j].num_compat_types = (int) blob_read_uint32(metadata);
subs[j].types = rzalloc_array(prog, const struct glsl_type *,
subs[j].num_compat_types);
for (int k = 0; k < subs[j].num_compat_types; k++) {
subs[j].types[k] = decode_type_from_blob(metadata);
}
}
}
}
static void
write_buffer_block(struct blob *metadata, struct gl_uniform_block *b)
{
blob_write_string(metadata, b->Name);
blob_write_uint32(metadata, b->NumUniforms);
blob_write_uint32(metadata, b->Binding);
blob_write_uint32(metadata, b->UniformBufferSize);
blob_write_uint32(metadata, b->stageref);
for (unsigned j = 0; j < b->NumUniforms; j++) {
blob_write_string(metadata, b->Uniforms[j].Name);
blob_write_string(metadata, b->Uniforms[j].IndexName);
encode_type_to_blob(metadata, b->Uniforms[j].Type);
blob_write_uint32(metadata, b->Uniforms[j].Offset);
}
}
static void
write_buffer_blocks(struct blob *metadata, struct gl_shader_program *prog)
{
blob_write_uint32(metadata, prog->data->NumUniformBlocks);
blob_write_uint32(metadata, prog->data->NumShaderStorageBlocks);
for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
write_buffer_block(metadata, &prog->data->UniformBlocks[i]);
}
for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
write_buffer_block(metadata, &prog->data->ShaderStorageBlocks[i]);
}
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_linked_shader *sh = prog->_LinkedShaders[i];
if (!sh)
continue;
struct gl_program *glprog = sh->Program;
blob_write_uint32(metadata, glprog->info.num_ubos);
blob_write_uint32(metadata, glprog->info.num_ssbos);
for (unsigned j = 0; j < glprog->info.num_ubos; j++) {
uint32_t offset =
glprog->sh.UniformBlocks[j] - prog->data->UniformBlocks;
blob_write_uint32(metadata, offset);
}
for (unsigned j = 0; j < glprog->info.num_ssbos; j++) {
uint32_t offset = glprog->sh.ShaderStorageBlocks[j] -
prog->data->ShaderStorageBlocks;
blob_write_uint32(metadata, offset);
}
}
}
static void
read_buffer_block(struct blob_reader *metadata, struct gl_uniform_block *b,
struct gl_shader_program *prog)
{
b->Name = ralloc_strdup(prog->data, blob_read_string (metadata));
b->NumUniforms = blob_read_uint32(metadata);
b->Binding = blob_read_uint32(metadata);
b->UniformBufferSize = blob_read_uint32(metadata);
b->stageref = blob_read_uint32(metadata);
b->Uniforms =
rzalloc_array(prog->data, struct gl_uniform_buffer_variable,
b->NumUniforms);
for (unsigned j = 0; j < b->NumUniforms; j++) {
b->Uniforms[j].Name = ralloc_strdup(prog->data,
blob_read_string (metadata));
char *index_name = blob_read_string(metadata);
if (strcmp(b->Uniforms[j].Name, index_name) == 0) {
b->Uniforms[j].IndexName = b->Uniforms[j].Name;
} else {
b->Uniforms[j].IndexName = ralloc_strdup(prog->data, index_name);
}
b->Uniforms[j].Type = decode_type_from_blob(metadata);
b->Uniforms[j].Offset = blob_read_uint32(metadata);
}
}
static void
read_buffer_blocks(struct blob_reader *metadata,
struct gl_shader_program *prog)
{
prog->data->NumUniformBlocks = blob_read_uint32(metadata);
prog->data->NumShaderStorageBlocks = blob_read_uint32(metadata);
prog->data->UniformBlocks =
rzalloc_array(prog->data, struct gl_uniform_block,
prog->data->NumUniformBlocks);
prog->data->ShaderStorageBlocks =
rzalloc_array(prog->data, struct gl_uniform_block,
prog->data->NumShaderStorageBlocks);
for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
read_buffer_block(metadata, &prog->data->UniformBlocks[i], prog);
}
for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
read_buffer_block(metadata, &prog->data->ShaderStorageBlocks[i], prog);
}
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_linked_shader *sh = prog->_LinkedShaders[i];
if (!sh)
continue;
struct gl_program *glprog = sh->Program;
glprog->info.num_ubos = blob_read_uint32(metadata);
glprog->info.num_ssbos = blob_read_uint32(metadata);
glprog->sh.UniformBlocks =
rzalloc_array(glprog, gl_uniform_block *, glprog->info.num_ubos);
glprog->sh.ShaderStorageBlocks =
rzalloc_array(glprog, gl_uniform_block *, glprog->info.num_ssbos);
for (unsigned j = 0; j < glprog->info.num_ubos; j++) {
uint32_t offset = blob_read_uint32(metadata);
glprog->sh.UniformBlocks[j] = prog->data->UniformBlocks + offset;
}
for (unsigned j = 0; j < glprog->info.num_ssbos; j++) {
uint32_t offset = blob_read_uint32(metadata);
glprog->sh.ShaderStorageBlocks[j] =
prog->data->ShaderStorageBlocks + offset;
}
}
}
static void
write_atomic_buffers(struct blob *metadata, struct gl_shader_program *prog)
{
blob_write_uint32(metadata, prog->data->NumAtomicBuffers);
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i]) {
struct gl_program *glprog = prog->_LinkedShaders[i]->Program;
blob_write_uint32(metadata, glprog->info.num_abos);
}
}
for (unsigned i = 0; i < prog->data->NumAtomicBuffers; i++) {
blob_write_uint32(metadata, prog->data->AtomicBuffers[i].Binding);
blob_write_uint32(metadata, prog->data->AtomicBuffers[i].MinimumSize);
blob_write_uint32(metadata, prog->data->AtomicBuffers[i].NumUniforms);
blob_write_bytes(metadata, prog->data->AtomicBuffers[i].StageReferences,
sizeof(prog->data->AtomicBuffers[i].StageReferences));
for (unsigned j = 0; j < prog->data->AtomicBuffers[i].NumUniforms; j++) {
blob_write_uint32(metadata, prog->data->AtomicBuffers[i].Uniforms[j]);
}
}
}
static void
read_atomic_buffers(struct blob_reader *metadata,
struct gl_shader_program *prog)
{
prog->data->NumAtomicBuffers = blob_read_uint32(metadata);
prog->data->AtomicBuffers =
rzalloc_array(prog, gl_active_atomic_buffer,
prog->data->NumAtomicBuffers);
struct gl_active_atomic_buffer **stage_buff_list[MESA_SHADER_STAGES];
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (prog->_LinkedShaders[i]) {
struct gl_program *glprog = prog->_LinkedShaders[i]->Program;
glprog->info.num_abos = blob_read_uint32(metadata);
glprog->sh.AtomicBuffers =
rzalloc_array(glprog, gl_active_atomic_buffer *,
glprog->info.num_abos);
stage_buff_list[i] = glprog->sh.AtomicBuffers;
}
}
for (unsigned i = 0; i < prog->data->NumAtomicBuffers; i++) {
prog->data->AtomicBuffers[i].Binding = blob_read_uint32(metadata);
prog->data->AtomicBuffers[i].MinimumSize = blob_read_uint32(metadata);
prog->data->AtomicBuffers[i].NumUniforms = blob_read_uint32(metadata);
blob_copy_bytes(metadata,
(uint8_t *) &prog->data->AtomicBuffers[i].StageReferences,
sizeof(prog->data->AtomicBuffers[i].StageReferences));
prog->data->AtomicBuffers[i].Uniforms = rzalloc_array(prog, unsigned,
prog->data->AtomicBuffers[i].NumUniforms);
for (unsigned j = 0; j < prog->data->AtomicBuffers[i].NumUniforms; j++) {
prog->data->AtomicBuffers[i].Uniforms[j] = blob_read_uint32(metadata);
}
for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
if (prog->data->AtomicBuffers[i].StageReferences[j]) {
*stage_buff_list[j] = &prog->data->AtomicBuffers[i];
stage_buff_list[j]++;
}
}
}
}
static void
write_xfb(struct blob *metadata, struct gl_shader_program *shProg)
{
struct gl_program *prog = shProg->last_vert_prog;
if (!prog) {
blob_write_uint32(metadata, ~0u);
return;
}
struct gl_transform_feedback_info *ltf = prog->sh.LinkedTransformFeedback;
blob_write_uint32(metadata, prog->info.stage);
blob_write_uint32(metadata, ltf->NumOutputs);
blob_write_uint32(metadata, ltf->ActiveBuffers);
blob_write_uint32(metadata, ltf->NumVarying);
blob_write_bytes(metadata, ltf->Outputs,
sizeof(struct gl_transform_feedback_output) *
ltf->NumOutputs);
for (int i = 0; i < ltf->NumVarying; i++) {
blob_write_string(metadata, ltf->Varyings[i].Name);
blob_write_uint32(metadata, ltf->Varyings[i].Type);
blob_write_uint32(metadata, ltf->Varyings[i].BufferIndex);
blob_write_uint32(metadata, ltf->Varyings[i].Size);
blob_write_uint32(metadata, ltf->Varyings[i].Offset);
}
blob_write_bytes(metadata, ltf->Buffers,
sizeof(struct gl_transform_feedback_buffer) *
MAX_FEEDBACK_BUFFERS);
}
static void
read_xfb(struct blob_reader *metadata, struct gl_shader_program *shProg)
{
unsigned xfb_stage = blob_read_uint32(metadata);
if (xfb_stage == ~0u)
return;
struct gl_program *prog = shProg->_LinkedShaders[xfb_stage]->Program;
struct gl_transform_feedback_info *ltf =
rzalloc(prog, struct gl_transform_feedback_info);
prog->sh.LinkedTransformFeedback = ltf;
shProg->last_vert_prog = prog;
ltf->NumOutputs = blob_read_uint32(metadata);
ltf->ActiveBuffers = blob_read_uint32(metadata);
ltf->NumVarying = blob_read_uint32(metadata);
ltf->Outputs = rzalloc_array(prog, struct gl_transform_feedback_output,
ltf->NumOutputs);
blob_copy_bytes(metadata, (uint8_t *) ltf->Outputs,
sizeof(struct gl_transform_feedback_output) *
ltf->NumOutputs);
ltf->Varyings = rzalloc_array(prog,
struct gl_transform_feedback_varying_info,
ltf->NumVarying);
for (int i = 0; i < ltf->NumVarying; i++) {
ltf->Varyings[i].Name = ralloc_strdup(prog, blob_read_string(metadata));
ltf->Varyings[i].Type = blob_read_uint32(metadata);
ltf->Varyings[i].BufferIndex = blob_read_uint32(metadata);
ltf->Varyings[i].Size = blob_read_uint32(metadata);
ltf->Varyings[i].Offset = blob_read_uint32(metadata);
}
blob_copy_bytes(metadata, (uint8_t *) ltf->Buffers,
sizeof(struct gl_transform_feedback_buffer) *
MAX_FEEDBACK_BUFFERS);
}
static bool
has_uniform_storage(struct gl_shader_program *prog, unsigned idx)
{
if (!prog->data->UniformStorage[idx].builtin &&
!prog->data->UniformStorage[idx].is_shader_storage &&
prog->data->UniformStorage[idx].block_index == -1)
return true;
return false;
}
static void
write_uniforms(struct blob *metadata, struct gl_shader_program *prog)
{
blob_write_uint32(metadata, prog->SamplersValidated);
blob_write_uint32(metadata, prog->data->NumUniformStorage);
blob_write_uint32(metadata, prog->data->NumUniformDataSlots);
for (unsigned i = 0; i < prog->data->NumUniformStorage; i++) {
encode_type_to_blob(metadata, prog->data->UniformStorage[i].type);
blob_write_uint32(metadata, prog->data->UniformStorage[i].array_elements);
blob_write_string(metadata, prog->data->UniformStorage[i].name);
blob_write_uint32(metadata, prog->data->UniformStorage[i].builtin);
blob_write_uint32(metadata, prog->data->UniformStorage[i].remap_location);
blob_write_uint32(metadata, prog->data->UniformStorage[i].block_index);
blob_write_uint32(metadata, prog->data->UniformStorage[i].atomic_buffer_index);
blob_write_uint32(metadata, prog->data->UniformStorage[i].offset);
blob_write_uint32(metadata, prog->data->UniformStorage[i].array_stride);
blob_write_uint32(metadata, prog->data->UniformStorage[i].hidden);
blob_write_uint32(metadata, prog->data->UniformStorage[i].is_shader_storage);
blob_write_uint32(metadata, prog->data->UniformStorage[i].active_shader_mask);
blob_write_uint32(metadata, prog->data->UniformStorage[i].matrix_stride);
blob_write_uint32(metadata, prog->data->UniformStorage[i].row_major);
blob_write_uint32(metadata, prog->data->UniformStorage[i].is_bindless);
blob_write_uint32(metadata,
prog->data->UniformStorage[i].num_compatible_subroutines);
blob_write_uint32(metadata,
prog->data->UniformStorage[i].top_level_array_size);
blob_write_uint32(metadata,
prog->data->UniformStorage[i].top_level_array_stride);
if (has_uniform_storage(prog, i)) {
blob_write_uint32(metadata, prog->data->UniformStorage[i].storage -
prog->data->UniformDataSlots);
}
blob_write_bytes(metadata, prog->data->UniformStorage[i].opaque,
sizeof(prog->data->UniformStorage[i].opaque));
}
/* Here we cache all uniform values. We do this to retain values for
* uniforms with initialisers and also hidden uniforms that may be lowered
* constant arrays. We could possibly just store the values we need but for
* now we just store everything.
*/
blob_write_uint32(metadata, prog->data->NumHiddenUniforms);
for (unsigned i = 0; i < prog->data->NumUniformStorage; i++) {
if (has_uniform_storage(prog, i)) {
unsigned vec_size =
prog->data->UniformStorage[i].type->component_slots() *
MAX2(prog->data->UniformStorage[i].array_elements, 1);
blob_write_bytes(metadata, prog->data->UniformStorage[i].storage,
sizeof(union gl_constant_value) * vec_size);
}
}
}
static void
read_uniforms(struct blob_reader *metadata, struct gl_shader_program *prog)
{
struct gl_uniform_storage *uniforms;
union gl_constant_value *data;
prog->SamplersValidated = blob_read_uint32(metadata);
prog->data->NumUniformStorage = blob_read_uint32(metadata);
prog->data->NumUniformDataSlots = blob_read_uint32(metadata);
uniforms = rzalloc_array(prog, struct gl_uniform_storage,
prog->data->NumUniformStorage);
prog->data->UniformStorage = uniforms;
data = rzalloc_array(uniforms, union gl_constant_value,
prog->data->NumUniformDataSlots);
prog->data->UniformDataSlots = data;
prog->UniformHash = new string_to_uint_map;
for (unsigned i = 0; i < prog->data->NumUniformStorage; i++) {
uniforms[i].type = decode_type_from_blob(metadata);
uniforms[i].array_elements = blob_read_uint32(metadata);
uniforms[i].name = ralloc_strdup(prog, blob_read_string (metadata));
uniforms[i].builtin = blob_read_uint32(metadata);
uniforms[i].remap_location = blob_read_uint32(metadata);
uniforms[i].block_index = blob_read_uint32(metadata);
uniforms[i].atomic_buffer_index = blob_read_uint32(metadata);
uniforms[i].offset = blob_read_uint32(metadata);
uniforms[i].array_stride = blob_read_uint32(metadata);
uniforms[i].hidden = blob_read_uint32(metadata);
uniforms[i].is_shader_storage = blob_read_uint32(metadata);
uniforms[i].active_shader_mask = blob_read_uint32(metadata);
uniforms[i].matrix_stride = blob_read_uint32(metadata);
uniforms[i].row_major = blob_read_uint32(metadata);
uniforms[i].is_bindless = blob_read_uint32(metadata);
uniforms[i].num_compatible_subroutines = blob_read_uint32(metadata);
uniforms[i].top_level_array_size = blob_read_uint32(metadata);
uniforms[i].top_level_array_stride = blob_read_uint32(metadata);
prog->UniformHash->put(i, uniforms[i].name);
if (has_uniform_storage(prog, i)) {
uniforms[i].storage = data + blob_read_uint32(metadata);
}
memcpy(uniforms[i].opaque,
blob_read_bytes(metadata, sizeof(uniforms[i].opaque)),
sizeof(uniforms[i].opaque));
}
/* Restore uniform values. */
prog->data->NumHiddenUniforms = blob_read_uint32(metadata);
for (unsigned i = 0; i < prog->data->NumUniformStorage; i++) {
if (has_uniform_storage(prog, i)) {
unsigned vec_size =
prog->data->UniformStorage[i].type->component_slots() *
MAX2(prog->data->UniformStorage[i].array_elements, 1);
blob_copy_bytes(metadata,
(uint8_t *) prog->data->UniformStorage[i].storage,
sizeof(union gl_constant_value) * vec_size);
assert(vec_size + prog->data->UniformStorage[i].storage <=
data + prog->data->NumUniformDataSlots);
}
}
}
enum uniform_remap_type
{
remap_type_inactive_explicit_location,
remap_type_null_ptr,
remap_type_uniform_offset
};
static void
write_uniform_remap_table_entry(struct blob *metadata,
gl_uniform_storage *uniform_storage,
gl_uniform_storage *entry)
{
if (entry == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
blob_write_uint32(metadata, remap_type_inactive_explicit_location);
} else if (entry == NULL) {
blob_write_uint32(metadata, remap_type_null_ptr);
} else {
blob_write_uint32(metadata, remap_type_uniform_offset);
uint32_t offset = entry - uniform_storage;
blob_write_uint32(metadata, offset);
}
}
static void
write_uniform_remap_tables(struct blob *metadata,
struct gl_shader_program *prog)
{
blob_write_uint32(metadata, prog->NumUniformRemapTable);
for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
write_uniform_remap_table_entry(metadata, prog->data->UniformStorage,
prog->UniformRemapTable[i]);
}
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_linked_shader *sh = prog->_LinkedShaders[i];
if (sh) {
struct gl_program *glprog = sh->Program;
blob_write_uint32(metadata, glprog->sh.NumSubroutineUniformRemapTable);
for (unsigned j = 0; j < glprog->sh.NumSubroutineUniformRemapTable; j++) {
write_uniform_remap_table_entry(metadata,
prog->data->UniformStorage,
glprog->sh.SubroutineUniformRemapTable[j]);
}
}
}
}
static void
read_uniform_remap_table_entry(struct blob_reader *metadata,
gl_uniform_storage *uniform_storage,
gl_uniform_storage **entry,
enum uniform_remap_type type)
{
if (type == remap_type_inactive_explicit_location) {
*entry = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
} else if (type == remap_type_null_ptr) {
*entry = NULL;
} else {
uint32_t uni_offset = blob_read_uint32(metadata);
*entry = uniform_storage + uni_offset;
}
}
static void
read_uniform_remap_tables(struct blob_reader *metadata,
struct gl_shader_program *prog)
{
prog->NumUniformRemapTable = blob_read_uint32(metadata);
prog->UniformRemapTable = rzalloc_array(prog, struct gl_uniform_storage *,
prog->NumUniformRemapTable);
for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
enum uniform_remap_type type =
(enum uniform_remap_type) blob_read_uint32(metadata);
read_uniform_remap_table_entry(metadata, prog->data->UniformStorage,
&prog->UniformRemapTable[i], type);
}
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_linked_shader *sh = prog->_LinkedShaders[i];
if (sh) {
struct gl_program *glprog = sh->Program;
glprog->sh.NumSubroutineUniformRemapTable = blob_read_uint32(metadata);
glprog->sh.SubroutineUniformRemapTable =
rzalloc_array(glprog, struct gl_uniform_storage *,
glprog->sh.NumSubroutineUniformRemapTable);
for (unsigned j = 0; j < glprog->sh.NumSubroutineUniformRemapTable; j++) {
enum uniform_remap_type type =
(enum uniform_remap_type) blob_read_uint32(metadata);
read_uniform_remap_table_entry(metadata,
prog->data->UniformStorage,
&glprog->sh.SubroutineUniformRemapTable[j],
type);
}
}
}
}
struct whte_closure
{
struct blob *blob;
size_t num_entries;
};
static void
write_hash_table_entry(const char *key, unsigned value, void *closure)
{
struct whte_closure *whte = (struct whte_closure *) closure;
blob_write_string(whte->blob, key);
blob_write_uint32(whte->blob, value);
whte->num_entries++;
}
static void
write_hash_table(struct blob *metadata, struct string_to_uint_map *hash)
{
size_t offset;
struct whte_closure whte;
whte.blob = metadata;
whte.num_entries = 0;
offset = metadata->size;
/* Write a placeholder for the hashtable size. */
blob_write_uint32 (metadata, 0);
hash->iterate(write_hash_table_entry, &whte);
/* Overwrite with the computed number of entries written. */
blob_overwrite_uint32 (metadata, offset, whte.num_entries);
}
static void
read_hash_table(struct blob_reader *metadata, struct string_to_uint_map *hash)
{
size_t i, num_entries;
const char *key;
uint32_t value;
num_entries = blob_read_uint32 (metadata);
for (i = 0; i < num_entries; i++) {
key = blob_read_string(metadata);
value = blob_read_uint32(metadata);
hash->put(value, key);
}
}
static void
write_hash_tables(struct blob *metadata, struct gl_shader_program *prog)
{
write_hash_table(metadata, prog->AttributeBindings);
write_hash_table(metadata, prog->FragDataBindings);
write_hash_table(metadata, prog->FragDataIndexBindings);
}
static void
read_hash_tables(struct blob_reader *metadata, struct gl_shader_program *prog)
{
read_hash_table(metadata, prog->AttributeBindings);
read_hash_table(metadata, prog->FragDataBindings);
read_hash_table(metadata, prog->FragDataIndexBindings);
}
static void
write_shader_subroutine_index(struct blob *metadata,
struct gl_linked_shader *sh,
struct gl_program_resource *res)
{
assert(sh);
for (unsigned j = 0; j < sh->Program->sh.NumSubroutineFunctions; j++) {
if (strcmp(((gl_subroutine_function *)res->Data)->name,
sh->Program->sh.SubroutineFunctions[j].name) == 0) {
blob_write_uint32(metadata, j);
break;
}
}
}
static void
get_shader_var_and_pointer_sizes(size_t *s_var_size, size_t *s_var_ptrs,
const gl_shader_variable *var)
{
*s_var_size = sizeof(gl_shader_variable);
*s_var_ptrs =
sizeof(var->type) +
sizeof(var->interface_type) +
sizeof(var->outermost_struct_type) +
sizeof(var->name);
}
static void
write_program_resource_data(struct blob *metadata,
struct gl_shader_program *prog,
struct gl_program_resource *res)
{
struct gl_linked_shader *sh;
switch(res->Type) {
case GL_PROGRAM_INPUT:
case GL_PROGRAM_OUTPUT: {
const gl_shader_variable *var = (gl_shader_variable *)res->Data;
encode_type_to_blob(metadata, var->type);
encode_type_to_blob(metadata, var->interface_type);
encode_type_to_blob(metadata, var->outermost_struct_type);
blob_write_string(metadata, var->name);
size_t s_var_size, s_var_ptrs;
get_shader_var_and_pointer_sizes(&s_var_size, &s_var_ptrs, var);
/* Write gl_shader_variable skipping over the pointers */
blob_write_bytes(metadata, ((char *)var) + s_var_ptrs,
s_var_size - s_var_ptrs);
break;
}
case GL_UNIFORM_BLOCK:
for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
if (strcmp(((gl_uniform_block *)res->Data)->Name,
prog->data->UniformBlocks[i].Name) == 0) {
blob_write_uint32(metadata, i);
break;
}
}
break;
case GL_SHADER_STORAGE_BLOCK:
for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
if (strcmp(((gl_uniform_block *)res->Data)->Name,
prog->data->ShaderStorageBlocks[i].Name) == 0) {
blob_write_uint32(metadata, i);
break;
}
}
break;
case GL_BUFFER_VARIABLE:
case GL_VERTEX_SUBROUTINE_UNIFORM:
case GL_GEOMETRY_SUBROUTINE_UNIFORM:
case GL_FRAGMENT_SUBROUTINE_UNIFORM:
case GL_COMPUTE_SUBROUTINE_UNIFORM:
case GL_TESS_CONTROL_SUBROUTINE_UNIFORM:
case GL_TESS_EVALUATION_SUBROUTINE_UNIFORM:
case GL_UNIFORM:
for (unsigned i = 0; i < prog->data->NumUniformStorage; i++) {
if (strcmp(((gl_uniform_storage *)res->Data)->name,
prog->data->UniformStorage[i].name) == 0) {
blob_write_uint32(metadata, i);
break;
}
}
break;
case GL_ATOMIC_COUNTER_BUFFER:
for (unsigned i = 0; i < prog->data->NumAtomicBuffers; i++) {
if (((gl_active_atomic_buffer *)res->Data)->Binding ==
prog->data->AtomicBuffers[i].Binding) {
blob_write_uint32(metadata, i);
break;
}
}
break;
case GL_TRANSFORM_FEEDBACK_BUFFER:
for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
if (((gl_transform_feedback_buffer *)res->Data)->Binding ==
prog->last_vert_prog->sh.LinkedTransformFeedback->Buffers[i].Binding) {
blob_write_uint32(metadata, i);
break;
}
}
break;
case GL_TRANSFORM_FEEDBACK_VARYING:
for (int i = 0; i < prog->last_vert_prog->sh.LinkedTransformFeedback->NumVarying; i++) {
if (strcmp(((gl_transform_feedback_varying_info *)res->Data)->Name,
prog->last_vert_prog->sh.LinkedTransformFeedback->Varyings[i].Name) == 0) {
blob_write_uint32(metadata, i);
break;
}
}
break;
case GL_VERTEX_SUBROUTINE:
case GL_TESS_CONTROL_SUBROUTINE:
case GL_TESS_EVALUATION_SUBROUTINE:
case GL_GEOMETRY_SUBROUTINE:
case GL_FRAGMENT_SUBROUTINE:
case GL_COMPUTE_SUBROUTINE:
sh =
prog->_LinkedShaders[_mesa_shader_stage_from_subroutine(res->Type)];
write_shader_subroutine_index(metadata, sh, res);
break;
default:
assert(!"Support for writing resource not yet implemented.");
}
}
static void
read_program_resource_data(struct blob_reader *metadata,
struct gl_shader_program *prog,
struct gl_program_resource *res)
{
struct gl_linked_shader *sh;
switch(res->Type) {
case GL_PROGRAM_INPUT:
case GL_PROGRAM_OUTPUT: {
gl_shader_variable *var = ralloc(prog, struct gl_shader_variable);
var->type = decode_type_from_blob(metadata);
var->interface_type = decode_type_from_blob(metadata);
var->outermost_struct_type = decode_type_from_blob(metadata);
var->name = ralloc_strdup(prog, blob_read_string(metadata));
size_t s_var_size, s_var_ptrs;
get_shader_var_and_pointer_sizes(&s_var_size, &s_var_ptrs, var);
blob_copy_bytes(metadata, ((uint8_t *) var) + s_var_ptrs,
s_var_size - s_var_ptrs);
res->Data = var;
break;
}
case GL_UNIFORM_BLOCK:
res->Data = &prog->data->UniformBlocks[blob_read_uint32(metadata)];
break;
case GL_SHADER_STORAGE_BLOCK:
res->Data = &prog->data->ShaderStorageBlocks[blob_read_uint32(metadata)];
break;
case GL_BUFFER_VARIABLE:
case GL_VERTEX_SUBROUTINE_UNIFORM:
case GL_GEOMETRY_SUBROUTINE_UNIFORM:
case GL_FRAGMENT_SUBROUTINE_UNIFORM:
case GL_COMPUTE_SUBROUTINE_UNIFORM:
case GL_TESS_CONTROL_SUBROUTINE_UNIFORM:
case GL_TESS_EVALUATION_SUBROUTINE_UNIFORM:
case GL_UNIFORM:
res->Data = &prog->data->UniformStorage[blob_read_uint32(metadata)];
break;
case GL_ATOMIC_COUNTER_BUFFER:
res->Data = &prog->data->AtomicBuffers[blob_read_uint32(metadata)];
break;
case GL_TRANSFORM_FEEDBACK_BUFFER:
res->Data = &prog->last_vert_prog->
sh.LinkedTransformFeedback->Buffers[blob_read_uint32(metadata)];
break;
case GL_TRANSFORM_FEEDBACK_VARYING:
res->Data = &prog->last_vert_prog->
sh.LinkedTransformFeedback->Varyings[blob_read_uint32(metadata)];
break;
case GL_VERTEX_SUBROUTINE:
case GL_TESS_CONTROL_SUBROUTINE:
case GL_TESS_EVALUATION_SUBROUTINE:
case GL_GEOMETRY_SUBROUTINE:
case GL_FRAGMENT_SUBROUTINE:
case GL_COMPUTE_SUBROUTINE:
sh =
prog->_LinkedShaders[_mesa_shader_stage_from_subroutine(res->Type)];
res->Data =
&sh->Program->sh.SubroutineFunctions[blob_read_uint32(metadata)];
break;
default:
assert(!"Support for reading resource not yet implemented.");
}
}
static void
write_program_resource_list(struct blob *metadata,
struct gl_shader_program *prog)
{
blob_write_uint32(metadata, prog->data->NumProgramResourceList);
for (unsigned i = 0; i < prog->data->NumProgramResourceList; i++) {
blob_write_uint32(metadata, prog->data->ProgramResourceList[i].Type);
write_program_resource_data(metadata, prog,
&prog->data->ProgramResourceList[i]);
blob_write_bytes(metadata,
&prog->data->ProgramResourceList[i].StageReferences,
sizeof(prog->data->ProgramResourceList[i].StageReferences));
}
}
static void
read_program_resource_list(struct blob_reader *metadata,
struct gl_shader_program *prog)
{
prog->data->NumProgramResourceList = blob_read_uint32(metadata);
prog->data->ProgramResourceList =
ralloc_array(prog, gl_program_resource,
prog->data->NumProgramResourceList);
for (unsigned i = 0; i < prog->data->NumProgramResourceList; i++) {
prog->data->ProgramResourceList[i].Type = blob_read_uint32(metadata);
read_program_resource_data(metadata, prog,
&prog->data->ProgramResourceList[i]);
blob_copy_bytes(metadata,
(uint8_t *) &prog->data->ProgramResourceList[i].StageReferences,
sizeof(prog->data->ProgramResourceList[i].StageReferences));
}
}
static void
write_shader_parameters(struct blob *metadata,
struct gl_program_parameter_list *params)
{
blob_write_uint32(metadata, params->NumParameters);
uint32_t i = 0;
while (i < params->NumParameters) {
struct gl_program_parameter *param = &params->Parameters[i];
blob_write_uint32(metadata, param->Type);
blob_write_string(metadata, param->Name);
blob_write_uint32(metadata, param->Size);
blob_write_uint32(metadata, param->DataType);
blob_write_bytes(metadata, param->StateIndexes,
sizeof(param->StateIndexes));
i += (param->Size + 3) / 4;
}
blob_write_bytes(metadata, params->ParameterValues,
sizeof(gl_constant_value) * 4 * params->NumParameters);
blob_write_uint32(metadata, params->StateFlags);
}
static void
read_shader_parameters(struct blob_reader *metadata,
struct gl_program_parameter_list *params)
{
gl_state_index state_indexes[STATE_LENGTH];
uint32_t i = 0;
uint32_t num_parameters = blob_read_uint32(metadata);
_mesa_reserve_parameter_storage(params, num_parameters);
while (i < num_parameters) {
gl_register_file type = (gl_register_file) blob_read_uint32(metadata);
const char *name = blob_read_string(metadata);
unsigned size = blob_read_uint32(metadata);
unsigned data_type = blob_read_uint32(metadata);
blob_copy_bytes(metadata, (uint8_t *) state_indexes,
sizeof(state_indexes));
_mesa_add_parameter(params, type, name, size, data_type,
NULL, state_indexes);
i += (size + 3) / 4;
}
blob_copy_bytes(metadata, (uint8_t *) params->ParameterValues,
sizeof(gl_constant_value) * 4 * params->NumParameters);
params->StateFlags = blob_read_uint32(metadata);
}
static void
write_shader_metadata(struct blob *metadata, gl_linked_shader *shader)
{
assert(shader->Program);
struct gl_program *glprog = shader->Program;
unsigned i;
blob_write_bytes(metadata, glprog->TexturesUsed,
sizeof(glprog->TexturesUsed));
blob_write_uint64(metadata, glprog->SamplersUsed);
blob_write_bytes(metadata, glprog->SamplerUnits,
sizeof(glprog->SamplerUnits));
blob_write_bytes(metadata, glprog->sh.SamplerTargets,
sizeof(glprog->sh.SamplerTargets));
blob_write_uint32(metadata, glprog->ShadowSamplers);
blob_write_bytes(metadata, glprog->sh.ImageAccess,
sizeof(glprog->sh.ImageAccess));
blob_write_bytes(metadata, glprog->sh.ImageUnits,
sizeof(glprog->sh.ImageUnits));
size_t ptr_size = sizeof(GLvoid *);
blob_write_uint32(metadata, glprog->sh.NumBindlessSamplers);
blob_write_uint32(metadata, glprog->sh.HasBoundBindlessSampler);
for (i = 0; i < glprog->sh.NumBindlessSamplers; i++) {
blob_write_bytes(metadata, &glprog->sh.BindlessSamplers[i],
sizeof(struct gl_bindless_sampler) - ptr_size);
}
blob_write_uint32(metadata, glprog->sh.NumBindlessImages);
blob_write_uint32(metadata, glprog->sh.HasBoundBindlessImage);
for (i = 0; i < glprog->sh.NumBindlessImages; i++) {
blob_write_bytes(metadata, &glprog->sh.BindlessImages[i],
sizeof(struct gl_bindless_image) - ptr_size);
}
write_shader_parameters(metadata, glprog->Parameters);
}
static void
read_shader_metadata(struct blob_reader *metadata,
struct gl_program *glprog,
gl_linked_shader *linked)
{
unsigned i;
blob_copy_bytes(metadata, (uint8_t *) glprog->TexturesUsed,
sizeof(glprog->TexturesUsed));
glprog->SamplersUsed = blob_read_uint64(metadata);
blob_copy_bytes(metadata, (uint8_t *) glprog->SamplerUnits,
sizeof(glprog->SamplerUnits));
blob_copy_bytes(metadata, (uint8_t *) glprog->sh.SamplerTargets,
sizeof(glprog->sh.SamplerTargets));
glprog->ShadowSamplers = blob_read_uint32(metadata);
blob_copy_bytes(metadata, (uint8_t *) glprog->sh.ImageAccess,
sizeof(glprog->sh.ImageAccess));
blob_copy_bytes(metadata, (uint8_t *) glprog->sh.ImageUnits,
sizeof(glprog->sh.ImageUnits));
size_t ptr_size = sizeof(GLvoid *);
glprog->sh.NumBindlessSamplers = blob_read_uint32(metadata);
glprog->sh.HasBoundBindlessSampler = blob_read_uint32(metadata);
if (glprog->sh.NumBindlessSamplers > 0) {
glprog->sh.BindlessSamplers =
rzalloc_array(glprog, gl_bindless_sampler,
glprog->sh.NumBindlessSamplers);
for (i = 0; i < glprog->sh.NumBindlessSamplers; i++) {
blob_copy_bytes(metadata, (uint8_t *) &glprog->sh.BindlessSamplers[i],
sizeof(struct gl_bindless_sampler) - ptr_size);
}
}
glprog->sh.NumBindlessImages = blob_read_uint32(metadata);
glprog->sh.HasBoundBindlessImage = blob_read_uint32(metadata);
if (glprog->sh.NumBindlessImages > 0) {
glprog->sh.BindlessImages =
rzalloc_array(glprog, gl_bindless_image,
glprog->sh.NumBindlessImages);
for (i = 0; i < glprog->sh.NumBindlessImages; i++) {
blob_copy_bytes(metadata, (uint8_t *) &glprog->sh.BindlessImages[i],
sizeof(struct gl_bindless_image) - ptr_size);
}
}
glprog->Parameters = _mesa_new_parameter_list();
read_shader_parameters(metadata, glprog->Parameters);
}
static void
create_binding_str(const char *key, unsigned value, void *closure)
{
char **bindings_str = (char **) closure;
ralloc_asprintf_append(bindings_str, "%s:%u,", key, value);
}
static void
get_shader_info_and_pointer_sizes(size_t *s_info_size, size_t *s_info_ptrs,
shader_info *info)
{
*s_info_size = sizeof(shader_info);
*s_info_ptrs = sizeof(info->name) + sizeof(info->label);
}
static void
create_linked_shader_and_program(struct gl_context *ctx,
gl_shader_stage stage,
struct gl_shader_program *prog,
struct blob_reader *metadata)
{
struct gl_program *glprog;
struct gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
linked->Stage = stage;
glprog = ctx->Driver.NewProgram(ctx, _mesa_shader_stage_to_program(stage),
prog->Name, false);
glprog->info.stage = stage;
linked->Program = glprog;
read_shader_metadata(metadata, glprog, linked);
glprog->info.name = ralloc_strdup(glprog, blob_read_string(metadata));
glprog->info.label = ralloc_strdup(glprog, blob_read_string(metadata));
size_t s_info_size, s_info_ptrs;
get_shader_info_and_pointer_sizes(&s_info_size, &s_info_ptrs,
&glprog->info);
/* Restore shader info */
blob_copy_bytes(metadata, ((uint8_t *) &glprog->info) + s_info_ptrs,
s_info_size - s_info_ptrs);
_mesa_reference_shader_program_data(ctx, &glprog->sh.data, prog->data);
_mesa_reference_program(ctx, &linked->Program, glprog);
prog->_LinkedShaders[stage] = linked;
}
void
shader_cache_write_program_metadata(struct gl_context *ctx,
struct gl_shader_program *prog)
{
struct disk_cache *cache = ctx->Cache;
if (!cache)
return;
/* Exit early when we are dealing with a ff shader with no source file to
* generate a source from.
*
* TODO: In future we should use another method to generate a key for ff
* programs.
*/
static const char zero[sizeof(prog->data->sha1)] = {0};
if (memcmp(prog->data->sha1, zero, sizeof(prog->data->sha1)) == 0)
return;
struct blob *metadata = blob_create();
write_uniforms(metadata, prog);
write_hash_tables(metadata, prog);
blob_write_uint32(metadata, prog->data->Version);
blob_write_uint32(metadata, prog->data->linked_stages);
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
struct gl_linked_shader *sh = prog->_LinkedShaders[i];
if (sh) {
write_shader_metadata(metadata, sh);
if (sh->Program->info.name)
blob_write_string(metadata, sh->Program->info.name);
else
blob_write_string(metadata, "");
if (sh->Program->info.label)
blob_write_string(metadata, sh->Program->info.label);
else
blob_write_string(metadata, "");
size_t s_info_size, s_info_ptrs;
get_shader_info_and_pointer_sizes(&s_info_size, &s_info_ptrs,
&sh->Program->info);
/* Store shader info */
blob_write_bytes(metadata,
((char *) &sh->Program->info) + s_info_ptrs,
s_info_size - s_info_ptrs);
}
}
write_xfb(metadata, prog);
write_uniform_remap_tables(metadata, prog);
write_atomic_buffers(metadata, prog);
write_buffer_blocks(metadata, prog);
write_subroutines(metadata, prog);
write_program_resource_list(metadata, prog);
char sha1_buf[41];
for (unsigned i = 0; i < prog->NumShaders; i++) {
disk_cache_put_key(cache, prog->Shaders[i]->sha1);
if (ctx->_Shader->Flags & GLSL_CACHE_INFO) {
_mesa_sha1_format(sha1_buf, prog->Shaders[i]->sha1);
fprintf(stderr, "marking shader: %s\n", sha1_buf);
}
}
disk_cache_put(cache, prog->data->sha1, metadata->data, metadata->size);
blob_destroy(metadata);
if (ctx->_Shader->Flags & GLSL_CACHE_INFO) {
_mesa_sha1_format(sha1_buf, prog->data->sha1);
fprintf(stderr, "putting program metadata in cache: %s\n", sha1_buf);
}
}
bool
shader_cache_read_program_metadata(struct gl_context *ctx,
struct gl_shader_program *prog)
{
/* Fixed function programs generated by Mesa are not cached. So don't
* try to read metadata for them from the cache.
*/
if (prog->Name == 0)
return false;
struct disk_cache *cache = ctx->Cache;
if (!cache || prog->data->cache_fallback || prog->data->skip_cache)
return false;
/* Include bindings when creating sha1. These bindings change the resulting
* binary so they are just as important as the shader source.
*/
char *buf = ralloc_strdup(NULL, "vb: ");
prog->AttributeBindings->iterate(create_binding_str, &buf);
ralloc_strcat(&buf, "fb: ");
prog->FragDataBindings->iterate(create_binding_str, &buf);
ralloc_strcat(&buf, "fbi: ");
prog->FragDataIndexBindings->iterate(create_binding_str, &buf);
/* SSO has an effect on the linked program so include this when generating
* the sha also.
*/
ralloc_asprintf_append(&buf, "sso: %s\n",
prog->SeparateShader ? "T" : "F");
/* A shader might end up producing different output depending on the glsl
* version supported by the compiler. For example a different path might be
* taken by the preprocessor, so add the version to the hash input.
*/
ralloc_asprintf_append(&buf, "api: %d glsl: %d fglsl: %d\n",
ctx->API, ctx->Const.GLSLVersion,
ctx->Const.ForceGLSLVersion);
/* We run the preprocessor on shaders after hashing them, so we need to
* add any extension override vars to the hash. If we don't do this the
* preprocessor could result in different output and we could load the
* wrong shader.
*/
char *ext_override = getenv("MESA_EXTENSION_OVERRIDE");
if (ext_override) {
ralloc_asprintf_append(&buf, "ext:%s", ext_override);
}
/* DRI config options may also change the output from the compiler so
* include them as an input to sha1 creation.
*/
char sha1buf[41];
_mesa_sha1_format(sha1buf, ctx->Const.dri_config_options_sha1);
ralloc_strcat(&buf, sha1buf);
for (unsigned i = 0; i < prog->NumShaders; i++) {
struct gl_shader *sh = prog->Shaders[i];
_mesa_sha1_format(sha1buf, sh->sha1);
ralloc_asprintf_append(&buf, "%s: %s\n",
_mesa_shader_stage_to_abbrev(sh->Stage), sha1buf);
}
disk_cache_compute_key(cache, buf, strlen(buf), prog->data->sha1);
ralloc_free(buf);
size_t size;
uint8_t *buffer = (uint8_t *) disk_cache_get(cache, prog->data->sha1,
&size);
if (buffer == NULL) {
/* Cached program not found. We may have seen the individual shaders
* before and skipped compiling but they may not have been used together
* in this combination before. Fall back to linking shaders but first
* re-compile the shaders.
*
* We could probably only compile the shaders which were skipped here
* but we need to be careful because the source may also have been
* changed since the last compile so for now we just recompile
* everything.
*/
compile_shaders(ctx, prog);
return false;
}
if (ctx->_Shader->Flags & GLSL_CACHE_INFO) {
_mesa_sha1_format(sha1buf, prog->data->sha1);
fprintf(stderr, "loading shader program meta data from cache: %s\n",
sha1buf);
}
struct blob_reader metadata;
blob_reader_init(&metadata, buffer, size);
assert(prog->data->UniformStorage == NULL);
read_uniforms(&metadata, prog);
read_hash_tables(&metadata, prog);
prog->data->Version = blob_read_uint32(&metadata);
prog->data->linked_stages = blob_read_uint32(&metadata);
unsigned mask = prog->data->linked_stages;
while (mask) {
const int j = u_bit_scan(&mask);
create_linked_shader_and_program(ctx, (gl_shader_stage) j, prog,
&metadata);
}
read_xfb(&metadata, prog);
read_uniform_remap_tables(&metadata, prog);
read_atomic_buffers(&metadata, prog);
read_buffer_blocks(&metadata, prog);
read_subroutines(&metadata, prog);
read_program_resource_list(&metadata, prog);
if (metadata.current != metadata.end || metadata.overrun) {
/* Something has gone wrong discard the item from the cache and rebuild
* from source.
*/
assert(!"Invalid GLSL shader disk cache item!");
if (ctx->_Shader->Flags & GLSL_CACHE_INFO) {
fprintf(stderr, "Error reading program from cache (invalid GLSL "
"cache item)\n");
}
disk_cache_remove(cache, prog->data->sha1);
compile_shaders(ctx, prog);
free(buffer);
return false;
}
/* This is used to flag a shader retrieved from cache */
prog->data->LinkStatus = linking_skipped;
/* Since the program load was successful, CompileStatus of all shaders at
* this point should normally be compile_skipped. However because of how
* the eviction works, it may happen that some of the individual shader keys
* have been evicted, resulting in unnecessary recompiles on this load, so
* mark them again to skip such recompiles next time.
*/
char sha1_buf[41];
for (unsigned i = 0; i < prog->NumShaders; i++) {
if (prog->Shaders[i]->CompileStatus == compiled_no_opts) {
disk_cache_put_key(cache, prog->Shaders[i]->sha1);
if (ctx->_Shader->Flags & GLSL_CACHE_INFO) {
_mesa_sha1_format(sha1_buf, prog->Shaders[i]->sha1);
fprintf(stderr, "re-marking shader: %s\n", sha1_buf);
}
}
}
free (buffer);
return true;
}