blob: e464a55457ebe30b0150aaad2dce29d64027a15b [file] [log] [blame]
/*
* Copyright © 2016 Bas Nieuwenhuizen
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "ac_nir_to_llvm.h"
#include "ac_gpu_info.h"
#include "ac_binary.h"
#include "ac_llvm_build.h"
#include "ac_llvm_util.h"
#include "ac_shader_abi.h"
#include "ac_shader_util.h"
#include "ac_nir.h"
#include "nir/nir.h"
#include "nir/nir_deref.h"
#include "sid.h"
#include "util/bitscan.h"
#include "util/u_math.h"
#include <llvm/Config/llvm-config.h>
struct ac_nir_context {
struct ac_llvm_context ac;
struct ac_shader_abi *abi;
const struct ac_shader_args *args;
gl_shader_stage stage;
shader_info *info;
LLVMValueRef *ssa_defs;
struct ac_llvm_pointer scratch;
struct ac_llvm_pointer constant_data;
struct hash_table *defs;
struct hash_table *phis;
struct hash_table *verified_interp;
LLVMValueRef main_function;
LLVMBasicBlockRef continue_block;
LLVMBasicBlockRef break_block;
};
static LLVMTypeRef get_def_type(struct ac_nir_context *ctx, const nir_ssa_def *def)
{
LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, def->bit_size);
if (def->num_components > 1) {
type = LLVMVectorType(type, def->num_components);
}
return type;
}
static LLVMValueRef get_src(struct ac_nir_context *nir, nir_src src)
{
assert(src.is_ssa);
return nir->ssa_defs[src.ssa->index];
}
static LLVMValueRef get_memory_ptr(struct ac_nir_context *ctx, nir_src src, unsigned c_off)
{
LLVMValueRef ptr = get_src(ctx, src);
ptr = LLVMBuildAdd(ctx->ac.builder, ptr, LLVMConstInt(ctx->ac.i32, c_off, 0), "");
/* LDS is used here as a i8 pointer. */
return LLVMBuildGEP2(ctx->ac.builder, ctx->ac.i8, ctx->ac.lds.value, &ptr, 1, "");
}
static LLVMBasicBlockRef get_block(struct ac_nir_context *nir, const struct nir_block *b)
{
struct hash_entry *entry = _mesa_hash_table_search(nir->defs, b);
return (LLVMBasicBlockRef)entry->data;
}
static LLVMValueRef get_alu_src(struct ac_nir_context *ctx, nir_alu_src src,
unsigned num_components)
{
LLVMValueRef value = get_src(ctx, src.src);
bool need_swizzle = false;
assert(value);
unsigned src_components = ac_get_llvm_num_components(value);
for (unsigned i = 0; i < num_components; ++i) {
assert(src.swizzle[i] < src_components);
if (src.swizzle[i] != i)
need_swizzle = true;
}
if (need_swizzle || num_components != src_components) {
LLVMValueRef masks[] = {LLVMConstInt(ctx->ac.i32, src.swizzle[0], false),
LLVMConstInt(ctx->ac.i32, src.swizzle[1], false),
LLVMConstInt(ctx->ac.i32, src.swizzle[2], false),
LLVMConstInt(ctx->ac.i32, src.swizzle[3], false)};
if (src_components > 1 && num_components == 1) {
value = LLVMBuildExtractElement(ctx->ac.builder, value, masks[0], "");
} else if (src_components == 1 && num_components > 1) {
LLVMValueRef values[] = {value, value, value, value};
value = ac_build_gather_values(&ctx->ac, values, num_components);
} else {
LLVMValueRef swizzle = LLVMConstVector(masks, num_components);
value = LLVMBuildShuffleVector(ctx->ac.builder, value, value, swizzle, "");
}
}
assert(!src.negate);
assert(!src.abs);
return value;
}
static LLVMValueRef emit_int_cmp(struct ac_llvm_context *ctx, LLVMIntPredicate pred,
LLVMValueRef src0, LLVMValueRef src1)
{
src0 = ac_to_integer(ctx, src0);
src1 = ac_to_integer(ctx, src1);
return LLVMBuildICmp(ctx->builder, pred, src0, src1, "");
}
static LLVMValueRef emit_float_cmp(struct ac_llvm_context *ctx, LLVMRealPredicate pred,
LLVMValueRef src0, LLVMValueRef src1)
{
src0 = ac_to_float(ctx, src0);
src1 = ac_to_float(ctx, src1);
return LLVMBuildFCmp(ctx->builder, pred, src0, src1, "");
}
static LLVMValueRef emit_intrin_1f_param(struct ac_llvm_context *ctx, const char *intrin,
LLVMTypeRef result_type, LLVMValueRef src0)
{
char name[64], type[64];
LLVMValueRef params[] = {
ac_to_float(ctx, src0),
};
ac_build_type_name_for_intr(LLVMTypeOf(params[0]), type, sizeof(type));
ASSERTED const int length = snprintf(name, sizeof(name), "%s.%s", intrin, type);
assert(length < sizeof(name));
return ac_build_intrinsic(ctx, name, result_type, params, 1, 0);
}
static LLVMValueRef emit_intrin_1f_param_scalar(struct ac_llvm_context *ctx, const char *intrin,
LLVMTypeRef result_type, LLVMValueRef src0)
{
if (LLVMGetTypeKind(result_type) != LLVMVectorTypeKind)
return emit_intrin_1f_param(ctx, intrin, result_type, src0);
LLVMTypeRef elem_type = LLVMGetElementType(result_type);
LLVMValueRef ret = LLVMGetUndef(result_type);
/* Scalarize the intrinsic, because vectors are not supported. */
for (unsigned i = 0; i < LLVMGetVectorSize(result_type); i++) {
char name[64], type[64];
LLVMValueRef params[] = {
ac_to_float(ctx, ac_llvm_extract_elem(ctx, src0, i)),
};
ac_build_type_name_for_intr(LLVMTypeOf(params[0]), type, sizeof(type));
ASSERTED const int length = snprintf(name, sizeof(name), "%s.%s", intrin, type);
assert(length < sizeof(name));
ret = LLVMBuildInsertElement(
ctx->builder, ret,
ac_build_intrinsic(ctx, name, elem_type, params, 1, 0),
LLVMConstInt(ctx->i32, i, 0), "");
}
return ret;
}
static LLVMValueRef emit_intrin_2f_param(struct ac_llvm_context *ctx, const char *intrin,
LLVMTypeRef result_type, LLVMValueRef src0,
LLVMValueRef src1)
{
char name[64], type[64];
LLVMValueRef params[] = {
ac_to_float(ctx, src0),
ac_to_float(ctx, src1),
};
ac_build_type_name_for_intr(LLVMTypeOf(params[0]), type, sizeof(type));
ASSERTED const int length = snprintf(name, sizeof(name), "%s.%s", intrin, type);
assert(length < sizeof(name));
return ac_build_intrinsic(ctx, name, result_type, params, 2, 0);
}
static LLVMValueRef emit_intrin_3f_param(struct ac_llvm_context *ctx, const char *intrin,
LLVMTypeRef result_type, LLVMValueRef src0,
LLVMValueRef src1, LLVMValueRef src2)
{
char name[64], type[64];
LLVMValueRef params[] = {
ac_to_float(ctx, src0),
ac_to_float(ctx, src1),
ac_to_float(ctx, src2),
};
ac_build_type_name_for_intr(LLVMTypeOf(params[0]), type, sizeof(type));
ASSERTED const int length = snprintf(name, sizeof(name), "%s.%s", intrin, type);
assert(length < sizeof(name));
return ac_build_intrinsic(ctx, name, result_type, params, 3, 0);
}
static LLVMValueRef emit_bcsel(struct ac_llvm_context *ctx, LLVMValueRef src0, LLVMValueRef src1,
LLVMValueRef src2)
{
LLVMTypeRef src1_type = LLVMTypeOf(src1);
LLVMTypeRef src2_type = LLVMTypeOf(src2);
if (LLVMGetTypeKind(src1_type) == LLVMPointerTypeKind &&
LLVMGetTypeKind(src2_type) != LLVMPointerTypeKind) {
src2 = LLVMBuildIntToPtr(ctx->builder, src2, src1_type, "");
} else if (LLVMGetTypeKind(src2_type) == LLVMPointerTypeKind &&
LLVMGetTypeKind(src1_type) != LLVMPointerTypeKind) {
src1 = LLVMBuildIntToPtr(ctx->builder, src1, src2_type, "");
}
return LLVMBuildSelect(ctx->builder, src0, ac_to_integer_or_pointer(ctx, src1),
ac_to_integer_or_pointer(ctx, src2), "");
}
static LLVMValueRef emit_iabs(struct ac_llvm_context *ctx, LLVMValueRef src0)
{
return ac_build_imax(ctx, src0, LLVMBuildNeg(ctx->builder, src0, ""));
}
static LLVMValueRef emit_uint_carry(struct ac_llvm_context *ctx, const char *intrin,
LLVMValueRef src0, LLVMValueRef src1)
{
LLVMTypeRef ret_type;
LLVMTypeRef types[] = {ctx->i32, ctx->i1};
LLVMValueRef res;
LLVMValueRef params[] = {src0, src1};
ret_type = LLVMStructTypeInContext(ctx->context, types, 2, true);
res = ac_build_intrinsic(ctx, intrin, ret_type, params, 2, 0);
res = LLVMBuildExtractValue(ctx->builder, res, 1, "");
res = LLVMBuildZExt(ctx->builder, res, ctx->i32, "");
return res;
}
static LLVMValueRef emit_b2f(struct ac_llvm_context *ctx, LLVMValueRef src0, unsigned bitsize)
{
assert(ac_get_elem_bits(ctx, LLVMTypeOf(src0)) == 1);
switch (bitsize) {
case 16:
if (LLVMGetTypeKind(LLVMTypeOf(src0)) == LLVMVectorTypeKind) {
assert(LLVMGetVectorSize(LLVMTypeOf(src0)) == 2);
LLVMValueRef f[] = {
LLVMBuildSelect(ctx->builder, ac_llvm_extract_elem(ctx, src0, 0),
ctx->f16_1, ctx->f16_0, ""),
LLVMBuildSelect(ctx->builder, ac_llvm_extract_elem(ctx, src0, 1),
ctx->f16_1, ctx->f16_0, ""),
};
return ac_build_gather_values(ctx, f, 2);
}
return LLVMBuildSelect(ctx->builder, src0, ctx->f16_1, ctx->f16_0, "");
case 32:
return LLVMBuildSelect(ctx->builder, src0, ctx->f32_1, ctx->f32_0, "");
case 64:
return LLVMBuildSelect(ctx->builder, src0, ctx->f64_1, ctx->f64_0, "");
default:
unreachable("Unsupported bit size.");
}
}
static LLVMValueRef emit_b2i(struct ac_llvm_context *ctx, LLVMValueRef src0, unsigned bitsize)
{
switch (bitsize) {
case 8:
return LLVMBuildSelect(ctx->builder, src0, ctx->i8_1, ctx->i8_0, "");
case 16:
return LLVMBuildSelect(ctx->builder, src0, ctx->i16_1, ctx->i16_0, "");
case 32:
return LLVMBuildSelect(ctx->builder, src0, ctx->i32_1, ctx->i32_0, "");
case 64:
return LLVMBuildSelect(ctx->builder, src0, ctx->i64_1, ctx->i64_0, "");
default:
unreachable("Unsupported bit size.");
}
}
static LLVMValueRef emit_i2b(struct ac_llvm_context *ctx, LLVMValueRef src0)
{
LLVMValueRef zero = LLVMConstNull(LLVMTypeOf(src0));
return LLVMBuildICmp(ctx->builder, LLVMIntNE, src0, zero, "");
}
static LLVMValueRef emit_f2f16(struct ac_llvm_context *ctx, LLVMValueRef src0)
{
LLVMValueRef result;
LLVMValueRef cond = NULL;
src0 = ac_to_float(ctx, src0);
result = LLVMBuildFPTrunc(ctx->builder, src0, ctx->f16, "");
if (ctx->gfx_level >= GFX8) {
LLVMValueRef args[2];
/* Check if the result is a denormal - and flush to 0 if so. */
args[0] = result;
args[1] = LLVMConstInt(ctx->i32, N_SUBNORMAL | P_SUBNORMAL, false);
cond =
ac_build_intrinsic(ctx, "llvm.amdgcn.class.f16", ctx->i1, args, 2, 0);
}
/* need to convert back up to f32 */
result = LLVMBuildFPExt(ctx->builder, result, ctx->f32, "");
if (ctx->gfx_level >= GFX8)
result = LLVMBuildSelect(ctx->builder, cond, ctx->f32_0, result, "");
else {
/* for GFX6-GFX7 */
/* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
* so compare the result and flush to 0 if it's smaller.
*/
LLVMValueRef temp, cond2;
temp = emit_intrin_1f_param(ctx, "llvm.fabs", ctx->f32, result);
cond = LLVMBuildFCmp(
ctx->builder, LLVMRealOGT,
LLVMBuildBitCast(ctx->builder, LLVMConstInt(ctx->i32, 0x38800000, false), ctx->f32, ""),
temp, "");
cond2 = LLVMBuildFCmp(ctx->builder, LLVMRealONE, temp, ctx->f32_0, "");
cond = LLVMBuildAnd(ctx->builder, cond, cond2, "");
result = LLVMBuildSelect(ctx->builder, cond, ctx->f32_0, result, "");
}
return result;
}
static LLVMValueRef emit_umul_high(struct ac_llvm_context *ctx, LLVMValueRef src0,
LLVMValueRef src1)
{
LLVMValueRef dst64, result;
src0 = LLVMBuildZExt(ctx->builder, src0, ctx->i64, "");
src1 = LLVMBuildZExt(ctx->builder, src1, ctx->i64, "");
dst64 = LLVMBuildMul(ctx->builder, src0, src1, "");
dst64 = LLVMBuildLShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), "");
result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, "");
return result;
}
static LLVMValueRef emit_imul_high(struct ac_llvm_context *ctx, LLVMValueRef src0,
LLVMValueRef src1)
{
LLVMValueRef dst64, result;
src0 = LLVMBuildSExt(ctx->builder, src0, ctx->i64, "");
src1 = LLVMBuildSExt(ctx->builder, src1, ctx->i64, "");
dst64 = LLVMBuildMul(ctx->builder, src0, src1, "");
dst64 = LLVMBuildAShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), "");
result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, "");
return result;
}
static LLVMValueRef emit_bfm(struct ac_llvm_context *ctx, LLVMValueRef bits, LLVMValueRef offset)
{
/* mask = ((1 << bits) - 1) << offset */
return LLVMBuildShl(
ctx->builder,
LLVMBuildSub(ctx->builder, LLVMBuildShl(ctx->builder, ctx->i32_1, bits, ""), ctx->i32_1, ""),
offset, "");
}
static LLVMValueRef emit_bitfield_select(struct ac_llvm_context *ctx, LLVMValueRef mask,
LLVMValueRef insert, LLVMValueRef base)
{
/* Calculate:
* (mask & insert) | (~mask & base) = base ^ (mask & (insert ^ base))
* Use the right-hand side, which the LLVM backend can convert to V_BFI.
*/
return LLVMBuildXor(
ctx->builder, base,
LLVMBuildAnd(ctx->builder, mask, LLVMBuildXor(ctx->builder, insert, base, ""), ""), "");
}
static LLVMValueRef emit_pack_2x16(struct ac_llvm_context *ctx, LLVMValueRef src0,
LLVMValueRef (*pack)(struct ac_llvm_context *ctx,
LLVMValueRef args[2]))
{
LLVMValueRef comp[2];
src0 = ac_to_float(ctx, src0);
comp[0] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32_0, "");
comp[1] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32_1, "");
return LLVMBuildBitCast(ctx->builder, pack(ctx, comp), ctx->i32, "");
}
static LLVMValueRef emit_unpack_half_2x16(struct ac_llvm_context *ctx, LLVMValueRef src0)
{
LLVMValueRef const16 = LLVMConstInt(ctx->i32, 16, false);
LLVMValueRef temps[2], val;
int i;
for (i = 0; i < 2; i++) {
val = i == 1 ? LLVMBuildLShr(ctx->builder, src0, const16, "") : src0;
val = LLVMBuildTrunc(ctx->builder, val, ctx->i16, "");
val = LLVMBuildBitCast(ctx->builder, val, ctx->f16, "");
temps[i] = LLVMBuildFPExt(ctx->builder, val, ctx->f32, "");
}
return ac_build_gather_values(ctx, temps, 2);
}
static LLVMValueRef emit_ddxy(struct ac_nir_context *ctx, nir_op op, LLVMValueRef src0)
{
unsigned mask;
int idx;
LLVMValueRef result;
if (op == nir_op_fddx_fine)
mask = AC_TID_MASK_LEFT;
else if (op == nir_op_fddy_fine)
mask = AC_TID_MASK_TOP;
else
mask = AC_TID_MASK_TOP_LEFT;
/* for DDX we want to next X pixel, DDY next Y pixel. */
if (op == nir_op_fddx_fine || op == nir_op_fddx_coarse || op == nir_op_fddx)
idx = 1;
else
idx = 2;
result = ac_build_ddxy(&ctx->ac, mask, idx, src0);
return result;
}
struct waterfall_context {
LLVMBasicBlockRef phi_bb[2];
bool use_waterfall;
};
/* To deal with divergent descriptors we can create a loop that handles all
* lanes with the same descriptor on a given iteration (henceforth a
* waterfall loop).
*
* These helper create the begin and end of the loop leaving the caller
* to implement the body.
*
* params:
* - ctx is the usal nir context
* - wctx is a temporary struct containing some loop info. Can be left uninitialized.
* - value is the possibly divergent value for which we built the loop
* - divergent is whether value is actually divergent. If false we just pass
* things through.
*/
static LLVMValueRef enter_waterfall(struct ac_nir_context *ctx, struct waterfall_context *wctx,
LLVMValueRef value, bool divergent)
{
/* If the app claims the value is divergent but it is constant we can
* end up with a dynamic index of NULL. */
if (!value)
divergent = false;
wctx->use_waterfall = divergent;
if (!divergent)
return value;
ac_build_bgnloop(&ctx->ac, 6000);
LLVMValueRef active = LLVMConstInt(ctx->ac.i1, 1, false);
LLVMValueRef scalar_value[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < ac_get_llvm_num_components(value); i++) {
LLVMValueRef comp = ac_llvm_extract_elem(&ctx->ac, value, i);
scalar_value[i] = ac_build_readlane(&ctx->ac, comp, NULL);
active = LLVMBuildAnd(ctx->ac.builder, active,
LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, comp, scalar_value[i], ""), "");
}
wctx->phi_bb[0] = LLVMGetInsertBlock(ctx->ac.builder);
ac_build_ifcc(&ctx->ac, active, 6001);
return ac_build_gather_values(&ctx->ac, scalar_value, ac_get_llvm_num_components(value));
}
static LLVMValueRef exit_waterfall(struct ac_nir_context *ctx, struct waterfall_context *wctx,
LLVMValueRef value)
{
LLVMValueRef ret = NULL;
LLVMValueRef phi_src[2];
LLVMValueRef cc_phi_src[2] = {
LLVMConstInt(ctx->ac.i32, 0, false),
LLVMConstInt(ctx->ac.i32, 0xffffffff, false),
};
if (!wctx->use_waterfall)
return value;
wctx->phi_bb[1] = LLVMGetInsertBlock(ctx->ac.builder);
ac_build_endif(&ctx->ac, 6001);
if (value) {
phi_src[0] = LLVMGetUndef(LLVMTypeOf(value));
phi_src[1] = value;
ret = ac_build_phi(&ctx->ac, LLVMTypeOf(value), 2, phi_src, wctx->phi_bb);
}
/*
* By using the optimization barrier on the exit decision, we decouple
* the operations from the break, and hence avoid LLVM hoisting the
* opteration into the break block.
*/
LLVMValueRef cc = ac_build_phi(&ctx->ac, ctx->ac.i32, 2, cc_phi_src, wctx->phi_bb);
ac_build_optimization_barrier(&ctx->ac, &cc, false);
LLVMValueRef active =
LLVMBuildICmp(ctx->ac.builder, LLVMIntNE, cc, ctx->ac.i32_0, "uniform_active2");
ac_build_ifcc(&ctx->ac, active, 6002);
ac_build_break(&ctx->ac);
ac_build_endif(&ctx->ac, 6002);
ac_build_endloop(&ctx->ac, 6000);
return ret;
}
static bool visit_alu(struct ac_nir_context *ctx, const nir_alu_instr *instr)
{
LLVMValueRef src[16], result = NULL;
unsigned num_components = instr->dest.dest.ssa.num_components;
unsigned src_components;
LLVMTypeRef def_type = get_def_type(ctx, &instr->dest.dest.ssa);
assert(nir_op_infos[instr->op].num_inputs <= ARRAY_SIZE(src));
switch (instr->op) {
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
case nir_op_vec5:
case nir_op_vec8:
case nir_op_vec16:
case nir_op_unpack_32_4x8:
case nir_op_unpack_32_2x16:
case nir_op_unpack_64_2x32:
case nir_op_unpack_64_4x16:
src_components = 1;
break;
case nir_op_pack_half_2x16:
case nir_op_pack_snorm_2x16:
case nir_op_pack_unorm_2x16:
case nir_op_pack_uint_2x16:
case nir_op_pack_sint_2x16:
case nir_op_pack_32_2x16:
case nir_op_pack_64_2x32:
src_components = 2;
break;
case nir_op_unpack_half_2x16:
src_components = 1;
break;
case nir_op_cube_face_coord_amd:
case nir_op_cube_face_index_amd:
src_components = 3;
break;
case nir_op_pack_32_4x8:
case nir_op_pack_64_4x16:
src_components = 4;
break;
default:
src_components = num_components;
break;
}
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
src[i] = get_alu_src(ctx, instr->src[i], src_components);
switch (instr->op) {
case nir_op_mov:
result = src[0];
break;
case nir_op_fneg:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = LLVMBuildFNeg(ctx->ac.builder, src[0], "");
if (ctx->ac.float_mode == AC_FLOAT_MODE_DENORM_FLUSH_TO_ZERO) {
/* fneg will be optimized by backend compiler with sign
* bit removed via XOR. This is probably a LLVM bug.
*/
result = ac_build_canonicalize(&ctx->ac, result, instr->dest.dest.ssa.bit_size);
}
break;
case nir_op_ineg:
if (instr->no_unsigned_wrap)
result = LLVMBuildNUWNeg(ctx->ac.builder, src[0], "");
else if (instr->no_signed_wrap)
result = LLVMBuildNSWNeg(ctx->ac.builder, src[0], "");
else
result = LLVMBuildNeg(ctx->ac.builder, src[0], "");
break;
case nir_op_inot:
result = LLVMBuildNot(ctx->ac.builder, src[0], "");
break;
case nir_op_iadd:
if (instr->no_unsigned_wrap)
result = LLVMBuildNUWAdd(ctx->ac.builder, src[0], src[1], "");
else if (instr->no_signed_wrap)
result = LLVMBuildNSWAdd(ctx->ac.builder, src[0], src[1], "");
else
result = LLVMBuildAdd(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_uadd_sat:
case nir_op_iadd_sat: {
char name[64], type[64];
ac_build_type_name_for_intr(def_type, type, sizeof(type));
snprintf(name, sizeof(name), "llvm.%cadd.sat.%s",
instr->op == nir_op_uadd_sat ? 'u' : 's', type);
result = ac_build_intrinsic(&ctx->ac, name, def_type, src, 2, 0);
break;
}
case nir_op_usub_sat:
case nir_op_isub_sat: {
char name[64], type[64];
ac_build_type_name_for_intr(def_type, type, sizeof(type));
snprintf(name, sizeof(name), "llvm.%csub.sat.%s",
instr->op == nir_op_usub_sat ? 'u' : 's', type);
result = ac_build_intrinsic(&ctx->ac, name, def_type, src, 2, 0);
break;
}
case nir_op_fadd:
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
result = LLVMBuildFAdd(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_fsub:
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
result = LLVMBuildFSub(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_isub:
if (instr->no_unsigned_wrap)
result = LLVMBuildNUWSub(ctx->ac.builder, src[0], src[1], "");
else if (instr->no_signed_wrap)
result = LLVMBuildNSWSub(ctx->ac.builder, src[0], src[1], "");
else
result = LLVMBuildSub(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_imul:
if (instr->no_unsigned_wrap)
result = LLVMBuildNUWMul(ctx->ac.builder, src[0], src[1], "");
else if (instr->no_signed_wrap)
result = LLVMBuildNSWMul(ctx->ac.builder, src[0], src[1], "");
else
result = LLVMBuildMul(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_imod:
result = LLVMBuildSRem(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_umod:
result = LLVMBuildURem(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_irem:
result = LLVMBuildSRem(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_idiv:
result = LLVMBuildSDiv(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_udiv:
result = LLVMBuildUDiv(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_fmul:
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
result = LLVMBuildFMul(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_fmulz:
assert(LLVM_VERSION_MAJOR >= 12);
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.fmul.legacy", ctx->ac.f32,
src, 2, 0);
break;
case nir_op_frcp:
/* For doubles, we need precise division to pass GLCTS. */
if (ctx->ac.float_mode == AC_FLOAT_MODE_DEFAULT_OPENGL && ac_get_type_size(def_type) == 8) {
result = LLVMBuildFDiv(ctx->ac.builder, ctx->ac.f64_1, ac_to_float(&ctx->ac, src[0]), "");
} else {
result = emit_intrin_1f_param_scalar(&ctx->ac, "llvm.amdgcn.rcp",
ac_to_float_type(&ctx->ac, def_type), src[0]);
}
if (ctx->abi->clamp_div_by_zero)
result = ac_build_fmin(&ctx->ac, result,
LLVMConstReal(ac_to_float_type(&ctx->ac, def_type), FLT_MAX));
break;
case nir_op_iand:
result = LLVMBuildAnd(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_ior:
result = LLVMBuildOr(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_ixor:
result = LLVMBuildXor(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_ishl:
case nir_op_ishr:
case nir_op_ushr: {
if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) <
ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])))
src[1] = LLVMBuildZExt(ctx->ac.builder, src[1], LLVMTypeOf(src[0]), "");
else if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) >
ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])))
src[1] = LLVMBuildTrunc(ctx->ac.builder, src[1], LLVMTypeOf(src[0]), "");
LLVMTypeRef type = LLVMTypeOf(src[0]);
src[1] = LLVMBuildAnd(ctx->ac.builder, src[1],
LLVMConstInt(type, LLVMGetIntTypeWidth(type) - 1, false), "");
switch (instr->op) {
case nir_op_ishl:
result = LLVMBuildShl(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_ishr:
result = LLVMBuildAShr(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_ushr:
result = LLVMBuildLShr(ctx->ac.builder, src[0], src[1], "");
break;
default:
break;
}
break;
}
case nir_op_ilt:
result = emit_int_cmp(&ctx->ac, LLVMIntSLT, src[0], src[1]);
break;
case nir_op_ine:
result = emit_int_cmp(&ctx->ac, LLVMIntNE, src[0], src[1]);
break;
case nir_op_ieq:
result = emit_int_cmp(&ctx->ac, LLVMIntEQ, src[0], src[1]);
break;
case nir_op_ige:
result = emit_int_cmp(&ctx->ac, LLVMIntSGE, src[0], src[1]);
break;
case nir_op_ult:
result = emit_int_cmp(&ctx->ac, LLVMIntULT, src[0], src[1]);
break;
case nir_op_uge:
result = emit_int_cmp(&ctx->ac, LLVMIntUGE, src[0], src[1]);
break;
case nir_op_feq:
result = emit_float_cmp(&ctx->ac, LLVMRealOEQ, src[0], src[1]);
break;
case nir_op_fneu:
result = emit_float_cmp(&ctx->ac, LLVMRealUNE, src[0], src[1]);
break;
case nir_op_flt:
result = emit_float_cmp(&ctx->ac, LLVMRealOLT, src[0], src[1]);
break;
case nir_op_fge:
result = emit_float_cmp(&ctx->ac, LLVMRealOGE, src[0], src[1]);
break;
case nir_op_fabs:
result =
emit_intrin_1f_param(&ctx->ac, "llvm.fabs", ac_to_float_type(&ctx->ac, def_type), src[0]);
if (ctx->ac.float_mode == AC_FLOAT_MODE_DENORM_FLUSH_TO_ZERO) {
/* fabs will be optimized by backend compiler with sign
* bit removed via AND.
*/
result = ac_build_canonicalize(&ctx->ac, result, instr->dest.dest.ssa.bit_size);
}
break;
case nir_op_fsat:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = ac_build_fsat(&ctx->ac, src[0],
ac_to_float_type(&ctx->ac, def_type));
break;
case nir_op_iabs:
result = emit_iabs(&ctx->ac, src[0]);
break;
case nir_op_imax:
result = ac_build_imax(&ctx->ac, src[0], src[1]);
break;
case nir_op_imin:
result = ac_build_imin(&ctx->ac, src[0], src[1]);
break;
case nir_op_umax:
result = ac_build_umax(&ctx->ac, src[0], src[1]);
break;
case nir_op_umin:
result = ac_build_umin(&ctx->ac, src[0], src[1]);
break;
case nir_op_isign:
result = ac_build_isign(&ctx->ac, src[0]);
break;
case nir_op_fsign:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = ac_build_fsign(&ctx->ac, src[0]);
break;
case nir_op_ffloor:
result =
emit_intrin_1f_param(&ctx->ac, "llvm.floor", ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_ftrunc:
result =
emit_intrin_1f_param(&ctx->ac, "llvm.trunc", ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fceil:
result =
emit_intrin_1f_param(&ctx->ac, "llvm.ceil", ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fround_even:
result =
emit_intrin_1f_param(&ctx->ac, "llvm.rint", ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_ffract:
result = emit_intrin_1f_param_scalar(&ctx->ac, "llvm.amdgcn.fract",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fsin:
result =
emit_intrin_1f_param(&ctx->ac, "llvm.sin", ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fcos:
result =
emit_intrin_1f_param(&ctx->ac, "llvm.cos", ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fsin_amd:
case nir_op_fcos_amd:
/* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
if (ctx->ac.gfx_level < GFX9)
src[0] = emit_intrin_1f_param_scalar(&ctx->ac, "llvm.amdgcn.fract",
ac_to_float_type(&ctx->ac, def_type), src[0]);
result =
emit_intrin_1f_param(&ctx->ac, instr->op == nir_op_fsin_amd ? "llvm.amdgcn.sin" : "llvm.amdgcn.cos",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fsqrt:
result =
emit_intrin_1f_param(&ctx->ac, "llvm.sqrt", ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fexp2:
result =
emit_intrin_1f_param(&ctx->ac, "llvm.exp2", ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_flog2:
result =
emit_intrin_1f_param(&ctx->ac, "llvm.log2", ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_frsq:
result = emit_intrin_1f_param_scalar(&ctx->ac, "llvm.amdgcn.rsq",
ac_to_float_type(&ctx->ac, def_type), src[0]);
if (ctx->abi->clamp_div_by_zero)
result = ac_build_fmin(&ctx->ac, result,
LLVMConstReal(ac_to_float_type(&ctx->ac, def_type), FLT_MAX));
break;
case nir_op_frexp_exp:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = ac_build_frexp_exp(&ctx->ac, src[0], ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])));
if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) == 16)
result = LLVMBuildSExt(ctx->ac.builder, result, ctx->ac.i32, "");
break;
case nir_op_frexp_sig:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = ac_build_frexp_mant(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
break;
case nir_op_fpow:
if (instr->dest.dest.ssa.bit_size != 32) {
/* 16 and 64 bits */
result = emit_intrin_1f_param(&ctx->ac, "llvm.log2",
ac_to_float_type(&ctx->ac, def_type), src[0]);
result = LLVMBuildFMul(ctx->ac.builder, result, ac_to_float(&ctx->ac, src[1]), "");
result = emit_intrin_1f_param(&ctx->ac, "llvm.exp2",
ac_to_float_type(&ctx->ac, def_type), result);
break;
}
if (LLVM_VERSION_MAJOR >= 12) {
result = emit_intrin_1f_param(&ctx->ac, "llvm.log2",
ac_to_float_type(&ctx->ac, def_type), src[0]);
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.fmul.legacy", ctx->ac.f32,
(LLVMValueRef[]){result, ac_to_float(&ctx->ac, src[1])},
2, 0);
result = emit_intrin_1f_param(&ctx->ac, "llvm.exp2",
ac_to_float_type(&ctx->ac, def_type), result);
break;
}
/* Older LLVM doesn't have fmul.legacy. */
result = emit_intrin_2f_param(&ctx->ac, "llvm.pow", ac_to_float_type(&ctx->ac, def_type),
src[0], src[1]);
break;
case nir_op_fmax:
result = emit_intrin_2f_param(&ctx->ac, "llvm.maxnum", ac_to_float_type(&ctx->ac, def_type),
src[0], src[1]);
if (ctx->ac.gfx_level < GFX9 && instr->dest.dest.ssa.bit_size == 32) {
/* Only pre-GFX9 chips do not flush denorms. */
result = ac_build_canonicalize(&ctx->ac, result, instr->dest.dest.ssa.bit_size);
}
break;
case nir_op_fmin:
result = emit_intrin_2f_param(&ctx->ac, "llvm.minnum", ac_to_float_type(&ctx->ac, def_type),
src[0], src[1]);
if (ctx->ac.gfx_level < GFX9 && instr->dest.dest.ssa.bit_size == 32) {
/* Only pre-GFX9 chips do not flush denorms. */
result = ac_build_canonicalize(&ctx->ac, result, instr->dest.dest.ssa.bit_size);
}
break;
case nir_op_ffma:
/* FMA is slow on gfx6-8, so it shouldn't be used. */
assert(instr->dest.dest.ssa.bit_size != 32 || ctx->ac.gfx_level >= GFX9);
result = emit_intrin_3f_param(&ctx->ac, "llvm.fma", ac_to_float_type(&ctx->ac, def_type),
src[0], src[1], src[2]);
break;
case nir_op_ffmaz:
assert(LLVM_VERSION_MAJOR >= 12 && ctx->ac.gfx_level >= GFX10_3);
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
src[2] = ac_to_float(&ctx->ac, src[2]);
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.fma.legacy", ctx->ac.f32,
src, 3, 0);
break;
case nir_op_ldexp:
src[0] = ac_to_float(&ctx->ac, src[0]);
if (ac_get_elem_bits(&ctx->ac, def_type) == 32)
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ldexp.f32", ctx->ac.f32, src, 2,
0);
else if (ac_get_elem_bits(&ctx->ac, def_type) == 16)
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ldexp.f16", ctx->ac.f16, src, 2,
0);
else
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ldexp.f64", ctx->ac.f64, src, 2,
0);
break;
case nir_op_bfm:
result = emit_bfm(&ctx->ac, src[0], src[1]);
break;
case nir_op_bitfield_select:
result = emit_bitfield_select(&ctx->ac, src[0], src[1], src[2]);
break;
case nir_op_ubfe:
result = ac_build_bfe(&ctx->ac, src[0], src[1], src[2], false);
break;
case nir_op_ibfe:
result = ac_build_bfe(&ctx->ac, src[0], src[1], src[2], true);
break;
case nir_op_bitfield_reverse:
result = ac_build_bitfield_reverse(&ctx->ac, src[0]);
break;
case nir_op_bit_count:
result = ac_build_bit_count(&ctx->ac, src[0]);
break;
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
case nir_op_vec5:
case nir_op_vec8:
case nir_op_vec16:
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
src[i] = ac_to_integer(&ctx->ac, src[i]);
result = ac_build_gather_values(&ctx->ac, src, num_components);
break;
case nir_op_f2i8:
case nir_op_f2i16:
case nir_op_f2imp:
case nir_op_f2i32:
case nir_op_f2i64:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = LLVMBuildFPToSI(ctx->ac.builder, src[0], def_type, "");
break;
case nir_op_f2u8:
case nir_op_f2u16:
case nir_op_f2ump:
case nir_op_f2u32:
case nir_op_f2u64:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = LLVMBuildFPToUI(ctx->ac.builder, src[0], def_type, "");
break;
case nir_op_i2f16:
case nir_op_i2fmp:
case nir_op_i2f32:
case nir_op_i2f64:
result = LLVMBuildSIToFP(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
break;
case nir_op_u2f16:
case nir_op_u2fmp:
case nir_op_u2f32:
case nir_op_u2f64:
result = LLVMBuildUIToFP(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
break;
case nir_op_f2f16_rtz:
case nir_op_f2f16:
case nir_op_f2fmp:
src[0] = ac_to_float(&ctx->ac, src[0]);
/* For OpenGL, we want fast packing with v_cvt_pkrtz_f16, but if we use it,
* all f32->f16 conversions have to round towards zero, because both scalar
* and vec2 down-conversions have to round equally.
*/
if (ctx->ac.float_mode == AC_FLOAT_MODE_DEFAULT_OPENGL || instr->op == nir_op_f2f16_rtz) {
src[0] = ac_to_float(&ctx->ac, src[0]);
if (LLVMTypeOf(src[0]) == ctx->ac.f64)
src[0] = LLVMBuildFPTrunc(ctx->ac.builder, src[0], ctx->ac.f32, "");
/* Fast path conversion. This only works if NIR is vectorized
* to vec2 16.
*/
if (LLVMTypeOf(src[0]) == ctx->ac.v2f32) {
LLVMValueRef args[] = {
ac_llvm_extract_elem(&ctx->ac, src[0], 0),
ac_llvm_extract_elem(&ctx->ac, src[0], 1),
};
result = ac_build_cvt_pkrtz_f16(&ctx->ac, args);
break;
}
assert(ac_get_llvm_num_components(src[0]) == 1);
LLVMValueRef param[2] = {src[0], LLVMGetUndef(ctx->ac.f32)};
result = ac_build_cvt_pkrtz_f16(&ctx->ac, param);
result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, "");
} else {
if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < ac_get_elem_bits(&ctx->ac, def_type))
result =
LLVMBuildFPExt(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
else
result =
LLVMBuildFPTrunc(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
}
break;
case nir_op_f2f16_rtne:
case nir_op_f2f32:
case nir_op_f2f64:
src[0] = ac_to_float(&ctx->ac, src[0]);
if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < ac_get_elem_bits(&ctx->ac, def_type))
result = LLVMBuildFPExt(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
else
result =
LLVMBuildFPTrunc(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
break;
case nir_op_u2u8:
case nir_op_u2u16:
case nir_op_u2u32:
case nir_op_u2u64:
if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < ac_get_elem_bits(&ctx->ac, def_type))
result = LLVMBuildZExt(ctx->ac.builder, src[0], def_type, "");
else
result = LLVMBuildTrunc(ctx->ac.builder, src[0], def_type, "");
break;
case nir_op_i2i8:
case nir_op_i2i16:
case nir_op_i2imp:
case nir_op_i2i32:
case nir_op_i2i64:
if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < ac_get_elem_bits(&ctx->ac, def_type))
result = LLVMBuildSExt(ctx->ac.builder, src[0], def_type, "");
else
result = LLVMBuildTrunc(ctx->ac.builder, src[0], def_type, "");
break;
case nir_op_bcsel:
result = emit_bcsel(&ctx->ac, src[0], src[1], src[2]);
break;
case nir_op_find_lsb:
result = ac_find_lsb(&ctx->ac, ctx->ac.i32, src[0]);
break;
case nir_op_ufind_msb:
result = ac_build_umsb(&ctx->ac, src[0], ctx->ac.i32, false);
break;
case nir_op_ifind_msb:
result = ac_build_imsb(&ctx->ac, src[0], ctx->ac.i32);
break;
case nir_op_ufind_msb_rev:
result = ac_build_umsb(&ctx->ac, src[0], ctx->ac.i32, true);
break;
case nir_op_ifind_msb_rev:
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.sffbh.i32", ctx->ac.i32, &src[0], 1,
0);
break;
case nir_op_uclz: {
LLVMValueRef params[2] = {
src[0],
ctx->ac.i1false,
};
result = ac_build_intrinsic(&ctx->ac, "llvm.ctlz.i32", ctx->ac.i32, params, 2, 0);
break;
}
case nir_op_uadd_carry:
result = emit_uint_carry(&ctx->ac, "llvm.uadd.with.overflow.i32", src[0], src[1]);
break;
case nir_op_usub_borrow:
result = emit_uint_carry(&ctx->ac, "llvm.usub.with.overflow.i32", src[0], src[1]);
break;
case nir_op_b2f16:
case nir_op_b2f32:
case nir_op_b2f64:
result = emit_b2f(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
break;
case nir_op_b2i8:
case nir_op_b2i16:
case nir_op_b2i32:
case nir_op_b2i64:
result = emit_b2i(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
break;
case nir_op_b2b1: /* after loads */
result = emit_i2b(&ctx->ac, src[0]);
break;
case nir_op_b2b16: /* before stores */
result = LLVMBuildZExt(ctx->ac.builder, src[0], ctx->ac.i16, "");
break;
case nir_op_b2b32: /* before stores */
result = LLVMBuildZExt(ctx->ac.builder, src[0], ctx->ac.i32, "");
break;
case nir_op_fquantize2f16:
result = emit_f2f16(&ctx->ac, src[0]);
break;
case nir_op_umul_high:
result = emit_umul_high(&ctx->ac, src[0], src[1]);
break;
case nir_op_imul_high:
result = emit_imul_high(&ctx->ac, src[0], src[1]);
break;
case nir_op_pack_half_2x16:
result = emit_pack_2x16(&ctx->ac, src[0], ac_build_cvt_pkrtz_f16);
break;
case nir_op_pack_half_2x16_rtz_split:
case nir_op_pack_half_2x16_split:
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
result = LLVMBuildBitCast(ctx->ac.builder,
ac_build_cvt_pkrtz_f16(&ctx->ac, src),
ctx->ac.i32, "");
break;
case nir_op_pack_snorm_2x16:
case nir_op_pack_unorm_2x16: {
unsigned bit_size = instr->src[0].src.ssa->bit_size;
/* Only support 16 and 32bit. */
assert(bit_size == 16 || bit_size == 32);
LLVMValueRef data = src[0];
/* Work around for pre-GFX9 GPU which don't have fp16 pknorm instruction. */
if (bit_size == 16 && ctx->ac.gfx_level < GFX9) {
data = LLVMBuildFPExt(ctx->ac.builder, data, ctx->ac.v2f32, "");
bit_size = 32;
}
LLVMValueRef (*pack)(struct ac_llvm_context *ctx, LLVMValueRef args[2]);
if (bit_size == 32) {
pack = instr->op == nir_op_pack_snorm_2x16 ?
ac_build_cvt_pknorm_i16 : ac_build_cvt_pknorm_u16;
} else {
pack = instr->op == nir_op_pack_snorm_2x16 ?
ac_build_cvt_pknorm_i16_f16 : ac_build_cvt_pknorm_u16_f16;
}
result = emit_pack_2x16(&ctx->ac, data, pack);
break;
}
case nir_op_pack_uint_2x16: {
LLVMValueRef comp[2];
comp[0] = LLVMBuildExtractElement(ctx->ac.builder, src[0], ctx->ac.i32_0, "");
comp[1] = LLVMBuildExtractElement(ctx->ac.builder, src[0], ctx->ac.i32_1, "");
result = ac_build_cvt_pk_u16(&ctx->ac, comp, 16, false);
break;
}
case nir_op_pack_sint_2x16: {
LLVMValueRef comp[2];
comp[0] = LLVMBuildExtractElement(ctx->ac.builder, src[0], ctx->ac.i32_0, "");
comp[1] = LLVMBuildExtractElement(ctx->ac.builder, src[0], ctx->ac.i32_1, "");
result = ac_build_cvt_pk_i16(&ctx->ac, comp, 16, false);
break;
}
case nir_op_unpack_half_2x16:
result = emit_unpack_half_2x16(&ctx->ac, src[0]);
break;
case nir_op_unpack_half_2x16_split_x: {
assert(ac_get_llvm_num_components(src[0]) == 1);
LLVMValueRef tmp = emit_unpack_half_2x16(&ctx->ac, src[0]);
result = LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->ac.i32_0, "");
break;
}
case nir_op_unpack_half_2x16_split_y: {
assert(ac_get_llvm_num_components(src[0]) == 1);
LLVMValueRef tmp = emit_unpack_half_2x16(&ctx->ac, src[0]);
result = LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->ac.i32_1, "");
break;
}
case nir_op_fddx:
case nir_op_fddy:
case nir_op_fddx_fine:
case nir_op_fddy_fine:
case nir_op_fddx_coarse:
case nir_op_fddy_coarse:
result = emit_ddxy(ctx, instr->op, src[0]);
break;
case nir_op_unpack_64_4x16: {
result = LLVMBuildBitCast(ctx->ac.builder, src[0], ctx->ac.v4i16, "");
break;
}
case nir_op_pack_64_4x16: {
result = LLVMBuildBitCast(ctx->ac.builder, src[0], ctx->ac.i64, "");
break;
}
case nir_op_unpack_64_2x32: {
result = LLVMBuildBitCast(ctx->ac.builder, src[0],
ctx->ac.v2i32, "");
break;
}
case nir_op_unpack_64_2x32_split_x: {
assert(ac_get_llvm_num_components(src[0]) == 1);
LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0], ctx->ac.v2i32, "");
result = LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->ac.i32_0, "");
break;
}
case nir_op_unpack_64_2x32_split_y: {
assert(ac_get_llvm_num_components(src[0]) == 1);
LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0], ctx->ac.v2i32, "");
result = LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->ac.i32_1, "");
break;
}
case nir_op_pack_64_2x32: {
result = LLVMBuildBitCast(ctx->ac.builder, src[0],
ctx->ac.i64, "");
break;
}
case nir_op_pack_64_2x32_split: {
LLVMValueRef tmp = ac_build_gather_values(&ctx->ac, src, 2);
result = LLVMBuildBitCast(ctx->ac.builder, tmp, ctx->ac.i64, "");
break;
}
case nir_op_pack_32_4x8:
case nir_op_pack_32_2x16: {
result = LLVMBuildBitCast(ctx->ac.builder, src[0],
ctx->ac.i32, "");
break;
}
case nir_op_pack_32_2x16_split: {
LLVMValueRef tmp = ac_build_gather_values(&ctx->ac, src, 2);
result = LLVMBuildBitCast(ctx->ac.builder, tmp, ctx->ac.i32, "");
break;
}
case nir_op_unpack_32_4x8:
result = LLVMBuildBitCast(ctx->ac.builder, src[0], ctx->ac.v4i8, "");
break;
case nir_op_unpack_32_2x16: {
result = LLVMBuildBitCast(ctx->ac.builder, src[0],
ctx->ac.v2i16, "");
break;
}
case nir_op_unpack_32_2x16_split_x: {
LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0], ctx->ac.v2i16, "");
result = LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->ac.i32_0, "");
break;
}
case nir_op_unpack_32_2x16_split_y: {
LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0], ctx->ac.v2i16, "");
result = LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->ac.i32_1, "");
break;
}
case nir_op_cube_face_coord_amd: {
src[0] = ac_to_float(&ctx->ac, src[0]);
LLVMValueRef results[2];
LLVMValueRef in[3];
for (unsigned chan = 0; chan < 3; chan++)
in[chan] = ac_llvm_extract_elem(&ctx->ac, src[0], chan);
results[0] = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.cubesc", ctx->ac.f32, in, 3,
0);
results[1] = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.cubetc", ctx->ac.f32, in, 3,
0);
LLVMValueRef ma = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.cubema", ctx->ac.f32, in, 3, 0);
results[0] = ac_build_fdiv(&ctx->ac, results[0], ma);
results[1] = ac_build_fdiv(&ctx->ac, results[1], ma);
LLVMValueRef offset = LLVMConstReal(ctx->ac.f32, 0.5);
results[0] = LLVMBuildFAdd(ctx->ac.builder, results[0], offset, "");
results[1] = LLVMBuildFAdd(ctx->ac.builder, results[1], offset, "");
result = ac_build_gather_values(&ctx->ac, results, 2);
break;
}
case nir_op_cube_face_index_amd: {
src[0] = ac_to_float(&ctx->ac, src[0]);
LLVMValueRef in[3];
for (unsigned chan = 0; chan < 3; chan++)
in[chan] = ac_llvm_extract_elem(&ctx->ac, src[0], chan);
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.cubeid", ctx->ac.f32, in, 3, 0);
break;
}
case nir_op_extract_u8:
case nir_op_extract_i8:
case nir_op_extract_u16:
case nir_op_extract_i16: {
bool is_signed = instr->op == nir_op_extract_i16 || instr->op == nir_op_extract_i8;
unsigned size = instr->op == nir_op_extract_u8 || instr->op == nir_op_extract_i8 ? 8 : 16;
LLVMValueRef offset = LLVMConstInt(LLVMTypeOf(src[0]), nir_src_as_uint(instr->src[1].src) * size, false);
result = LLVMBuildLShr(ctx->ac.builder, src[0], offset, "");
result = LLVMBuildTrunc(ctx->ac.builder, result, LLVMIntTypeInContext(ctx->ac.context, size), "");
if (is_signed)
result = LLVMBuildSExt(ctx->ac.builder, result, LLVMTypeOf(src[0]), "");
else
result = LLVMBuildZExt(ctx->ac.builder, result, LLVMTypeOf(src[0]), "");
break;
}
case nir_op_insert_u8:
case nir_op_insert_u16: {
unsigned size = instr->op == nir_op_insert_u8 ? 8 : 16;
LLVMValueRef offset = LLVMConstInt(LLVMTypeOf(src[0]), nir_src_as_uint(instr->src[1].src) * size, false);
LLVMValueRef mask = LLVMConstInt(LLVMTypeOf(src[0]), u_bit_consecutive(0, size), false);
result = LLVMBuildShl(ctx->ac.builder, LLVMBuildAnd(ctx->ac.builder, src[0], mask, ""), offset, "");
break;
}
case nir_op_sdot_4x8_iadd:
case nir_op_sdot_4x8_iadd_sat: {
if (ctx->ac.gfx_level >= GFX11) {
result = ac_build_sudot_4x8(&ctx->ac, src[0], src[1], src[2],
instr->op == nir_op_sdot_4x8_iadd_sat, 0x3);
} else {
const char *name = "llvm.amdgcn.sdot4";
src[3] = LLVMConstInt(ctx->ac.i1, instr->op == nir_op_sdot_4x8_iadd_sat, false);
result = ac_build_intrinsic(&ctx->ac, name, def_type, src, 4, 0);
}
break;
}
case nir_op_sudot_4x8_iadd:
case nir_op_sudot_4x8_iadd_sat: {
result = ac_build_sudot_4x8(&ctx->ac, src[0], src[1], src[2],
instr->op == nir_op_sudot_4x8_iadd_sat, 0x1);
break;
}
case nir_op_udot_4x8_uadd:
case nir_op_udot_4x8_uadd_sat: {
const char *name = "llvm.amdgcn.udot4";
src[3] = LLVMConstInt(ctx->ac.i1, instr->op == nir_op_udot_4x8_uadd_sat, false);
result = ac_build_intrinsic(&ctx->ac, name, def_type, src, 4, 0);
break;
}
case nir_op_sdot_2x16_iadd:
case nir_op_udot_2x16_uadd:
case nir_op_sdot_2x16_iadd_sat:
case nir_op_udot_2x16_uadd_sat: {
const char *name = instr->op == nir_op_sdot_2x16_iadd ||
instr->op == nir_op_sdot_2x16_iadd_sat
? "llvm.amdgcn.sdot2" : "llvm.amdgcn.udot2";
src[0] = LLVMBuildBitCast(ctx->ac.builder, src[0], ctx->ac.v2i16, "");
src[1] = LLVMBuildBitCast(ctx->ac.builder, src[1], ctx->ac.v2i16, "");
src[3] = LLVMConstInt(ctx->ac.i1, instr->op == nir_op_sdot_2x16_iadd_sat ||
instr->op == nir_op_udot_2x16_uadd_sat, false);
result = ac_build_intrinsic(&ctx->ac, name, def_type, src, 4, 0);
break;
}
case nir_op_sad_u8x4:
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.sad.u8", ctx->ac.i32,
(LLVMValueRef[]){src[0], src[1], src[2]}, 3, 0);
break;
default:
fprintf(stderr, "Unknown NIR alu instr: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
return false;
}
if (result) {
assert(instr->dest.dest.is_ssa);
result = ac_to_integer_or_pointer(&ctx->ac, result);
ctx->ssa_defs[instr->dest.dest.ssa.index] = result;
}
return true;
}
static bool visit_load_const(struct ac_nir_context *ctx, const nir_load_const_instr *instr)
{
LLVMValueRef values[16], value = NULL;
LLVMTypeRef element_type = LLVMIntTypeInContext(ctx->ac.context, instr->def.bit_size);
for (unsigned i = 0; i < instr->def.num_components; ++i) {
switch (instr->def.bit_size) {
case 1:
values[i] = LLVMConstInt(element_type, instr->value[i].b, false);
break;
case 8:
values[i] = LLVMConstInt(element_type, instr->value[i].u8, false);
break;
case 16:
values[i] = LLVMConstInt(element_type, instr->value[i].u16, false);
break;
case 32:
values[i] = LLVMConstInt(element_type, instr->value[i].u32, false);
break;
case 64:
values[i] = LLVMConstInt(element_type, instr->value[i].u64, false);
break;
default:
fprintf(stderr, "unsupported nir load_const bit_size: %d\n", instr->def.bit_size);
return false;
}
}
if (instr->def.num_components > 1) {
value = LLVMConstVector(values, instr->def.num_components);
} else
value = values[0];
ctx->ssa_defs[instr->def.index] = value;
return true;
}
/* Gather4 should follow the same rules as bilinear filtering, but the hardware
* incorrectly forces nearest filtering if the texture format is integer.
* The only effect it has on Gather4, which always returns 4 texels for
* bilinear filtering, is that the final coordinates are off by 0.5 of
* the texel size.
*
* The workaround is to subtract 0.5 from the unnormalized coordinates,
* or (0.5 / size) from the normalized coordinates.
*
* However, cube textures with 8_8_8_8 data formats require a different
* workaround of overriding the num format to USCALED/SSCALED. This would lose
* precision in 32-bit data formats, so it needs to be applied dynamically at
* runtime. In this case, return an i1 value that indicates whether the
* descriptor was overridden (and hence a fixup of the sampler result is needed).
*/
static LLVMValueRef lower_gather4_integer(struct ac_llvm_context *ctx, struct ac_image_args *args,
const nir_tex_instr *instr)
{
nir_alu_type stype = nir_alu_type_get_base_type(instr->dest_type);
LLVMValueRef wa_8888 = NULL;
LLVMValueRef half_texel[2];
LLVMValueRef result;
assert(stype == nir_type_int || stype == nir_type_uint);
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
LLVMValueRef formats;
LLVMValueRef data_format;
LLVMValueRef wa_formats;
formats = LLVMBuildExtractElement(ctx->builder, args->resource, ctx->i32_1, "");
data_format = LLVMBuildLShr(ctx->builder, formats, LLVMConstInt(ctx->i32, 20, false), "");
data_format =
LLVMBuildAnd(ctx->builder, data_format, LLVMConstInt(ctx->i32, (1u << 6) - 1, false), "");
wa_8888 = LLVMBuildICmp(ctx->builder, LLVMIntEQ, data_format,
LLVMConstInt(ctx->i32, V_008F14_IMG_DATA_FORMAT_8_8_8_8, false), "");
uint32_t wa_num_format = stype == nir_type_uint
? S_008F14_NUM_FORMAT(V_008F14_IMG_NUM_FORMAT_USCALED)
: S_008F14_NUM_FORMAT(V_008F14_IMG_NUM_FORMAT_SSCALED);
wa_formats = LLVMBuildAnd(ctx->builder, formats,
LLVMConstInt(ctx->i32, C_008F14_NUM_FORMAT, false), "");
wa_formats =
LLVMBuildOr(ctx->builder, wa_formats, LLVMConstInt(ctx->i32, wa_num_format, false), "");
formats = LLVMBuildSelect(ctx->builder, wa_8888, wa_formats, formats, "");
args->resource =
LLVMBuildInsertElement(ctx->builder, args->resource, formats, ctx->i32_1, "");
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
assert(!wa_8888);
half_texel[0] = half_texel[1] = LLVMConstReal(ctx->f32, -0.5);
} else {
struct ac_image_args resinfo = {0};
LLVMBasicBlockRef bbs[2];
LLVMValueRef unnorm = NULL;
LLVMValueRef default_offset = ctx->f32_0;
if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D && !instr->is_array) {
/* In vulkan, whether the sampler uses unnormalized
* coordinates or not is a dynamic property of the
* sampler. Hence, to figure out whether or not we
* need to divide by the texture size, we need to test
* the sampler at runtime. This tests the bit set by
* radv_init_sampler().
*/
LLVMValueRef sampler0 =
LLVMBuildExtractElement(ctx->builder, args->sampler, ctx->i32_0, "");
sampler0 = LLVMBuildLShr(ctx->builder, sampler0, LLVMConstInt(ctx->i32, 15, false), "");
sampler0 = LLVMBuildAnd(ctx->builder, sampler0, ctx->i32_1, "");
unnorm = LLVMBuildICmp(ctx->builder, LLVMIntEQ, sampler0, ctx->i32_1, "");
default_offset = LLVMConstReal(ctx->f32, -0.5);
}
bbs[0] = LLVMGetInsertBlock(ctx->builder);
if (wa_8888 || unnorm) {
assert(!(wa_8888 && unnorm));
LLVMValueRef not_needed = wa_8888 ? wa_8888 : unnorm;
/* Skip the texture size query entirely if we don't need it. */
ac_build_ifcc(ctx, LLVMBuildNot(ctx->builder, not_needed, ""), 2000);
bbs[1] = LLVMGetInsertBlock(ctx->builder);
}
/* Query the texture size. */
resinfo.dim = ac_get_sampler_dim(ctx->gfx_level, instr->sampler_dim, instr->is_array);
resinfo.opcode = ac_image_get_resinfo;
resinfo.dmask = 0xf;
resinfo.lod = ctx->i32_0;
resinfo.resource = args->resource;
resinfo.attributes = AC_ATTR_INVARIANT_LOAD;
LLVMValueRef size = ac_build_image_opcode(ctx, &resinfo);
/* Compute -0.5 / size. */
for (unsigned c = 0; c < 2; c++) {
half_texel[c] =
LLVMBuildExtractElement(ctx->builder, size, LLVMConstInt(ctx->i32, c, 0), "");
half_texel[c] = LLVMBuildUIToFP(ctx->builder, half_texel[c], ctx->f32, "");
half_texel[c] = ac_build_fdiv(ctx, ctx->f32_1, half_texel[c]);
half_texel[c] =
LLVMBuildFMul(ctx->builder, half_texel[c], LLVMConstReal(ctx->f32, -0.5), "");
}
if (wa_8888 || unnorm) {
ac_build_endif(ctx, 2000);
for (unsigned c = 0; c < 2; c++) {
LLVMValueRef values[2] = {default_offset, half_texel[c]};
half_texel[c] = ac_build_phi(ctx, ctx->f32, 2, values, bbs);
}
}
}
for (unsigned c = 0; c < 2; c++) {
LLVMValueRef tmp;
tmp = LLVMBuildBitCast(ctx->builder, args->coords[c], ctx->f32, "");
args->coords[c] = LLVMBuildFAdd(ctx->builder, tmp, half_texel[c], "");
}
args->attributes = AC_ATTR_INVARIANT_LOAD;
result = ac_build_image_opcode(ctx, args);
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
LLVMValueRef tmp, tmp2;
/* if the cube workaround is in place, f2i the result. */
for (unsigned c = 0; c < 4; c++) {
tmp = LLVMBuildExtractElement(ctx->builder, result, LLVMConstInt(ctx->i32, c, false), "");
if (stype == nir_type_uint)
tmp2 = LLVMBuildFPToUI(ctx->builder, tmp, ctx->i32, "");
else
tmp2 = LLVMBuildFPToSI(ctx->builder, tmp, ctx->i32, "");
tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->i32, "");
tmp2 = LLVMBuildBitCast(ctx->builder, tmp2, ctx->i32, "");
tmp = LLVMBuildSelect(ctx->builder, wa_8888, tmp2, tmp, "");
tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->f32, "");
result =
LLVMBuildInsertElement(ctx->builder, result, tmp, LLVMConstInt(ctx->i32, c, false), "");
}
}
return result;
}
static LLVMValueRef build_tex_intrinsic(struct ac_nir_context *ctx, const nir_tex_instr *instr,
struct ac_image_args *args)
{
assert((!args->tfe || !args->d16) && "unsupported");
if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
assert(instr->dest.is_ssa);
/* Buffers don't support A16. */
if (args->a16)
args->coords[0] = LLVMBuildZExt(ctx->ac.builder, args->coords[0], ctx->ac.i32, "");
return ac_build_buffer_load_format(&ctx->ac, args->resource, args->coords[0], ctx->ac.i32_0,
util_last_bit(mask), 0, true,
instr->dest.ssa.bit_size == 16,
args->tfe);
}
args->opcode = ac_image_sample;
switch (instr->op) {
case nir_texop_txf:
case nir_texop_txf_ms:
args->opcode = args->level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS
? ac_image_load
: ac_image_load_mip;
args->level_zero = false;
break;
case nir_texop_txs:
case nir_texop_query_levels:
case nir_texop_texture_samples:
assert(!"should have been lowered");
break;
case nir_texop_tex:
if (ctx->stage != MESA_SHADER_FRAGMENT &&
(ctx->stage != MESA_SHADER_COMPUTE ||
ctx->info->cs.derivative_group == DERIVATIVE_GROUP_NONE)) {
assert(!args->lod);
args->level_zero = true;
}
break;
case nir_texop_tg4:
args->opcode = ac_image_gather4;
if (!args->lod && !args->bias)
args->level_zero = true;
break;
case nir_texop_lod:
args->opcode = ac_image_get_lod;
break;
case nir_texop_fragment_fetch_amd:
case nir_texop_fragment_mask_fetch_amd:
args->opcode = ac_image_load;
args->level_zero = false;
break;
default:
break;
}
/* MI200 doesn't have image_sample_lz, but image_sample behaves like lz. */
if (!ctx->ac.has_3d_cube_border_color_mipmap)
args->level_zero = false;
if (instr->op == nir_texop_tg4 && ctx->ac.gfx_level <= GFX8 &&
(instr->dest_type & (nir_type_int | nir_type_uint))) {
return lower_gather4_integer(&ctx->ac, args, instr);
}
/* Fixup for GFX9 which allocates 1D textures as 2D. */
if (instr->op == nir_texop_lod && ctx->ac.gfx_level == GFX9) {
if ((args->dim == ac_image_2darray || args->dim == ac_image_2d) && !args->coords[1]) {
args->coords[1] = ctx->ac.i32_0;
}
}
args->attributes = AC_ATTR_INVARIANT_LOAD;
bool cs_derivs =
ctx->stage == MESA_SHADER_COMPUTE && ctx->info->cs.derivative_group != DERIVATIVE_GROUP_NONE;
if (ctx->stage == MESA_SHADER_FRAGMENT || cs_derivs) {
/* Prevent texture instructions with implicit derivatives from being
* sinked into branches. */
switch (instr->op) {
case nir_texop_tex:
case nir_texop_txb:
case nir_texop_lod:
args->attributes |= AC_ATTR_CONVERGENT;
break;
default:
break;
}
}
return ac_build_image_opcode(&ctx->ac, args);
}
static LLVMValueRef visit_load_push_constant(struct ac_nir_context *ctx, nir_intrinsic_instr *instr)
{
LLVMValueRef ptr, addr;
LLVMValueRef src0 = get_src(ctx, instr->src[0]);
unsigned index = nir_intrinsic_base(instr);
addr = LLVMConstInt(ctx->ac.i32, index, 0);
addr = LLVMBuildAdd(ctx->ac.builder, addr, src0, "");
/* Load constant values from user SGPRS when possible, otherwise
* fallback to the default path that loads directly from memory.
*/
if (LLVMIsConstant(src0) && instr->dest.ssa.bit_size >= 32) {
unsigned count = instr->dest.ssa.num_components;
unsigned offset = index;
if (instr->dest.ssa.bit_size == 64)
count *= 2;
offset += LLVMConstIntGetZExtValue(src0);
offset /= 4;
uint64_t mask = BITFIELD64_MASK(count) << offset;
if ((ctx->args->inline_push_const_mask | mask) == ctx->args->inline_push_const_mask &&
offset + count <= (sizeof(ctx->args->inline_push_const_mask) * 8u)) {
LLVMValueRef *const push_constants = alloca(count * sizeof(LLVMValueRef));
unsigned arg_index =
util_bitcount64(ctx->args->inline_push_const_mask & BITFIELD64_MASK(offset));
for (unsigned i = 0; i < count; i++)
push_constants[i] = ac_get_arg(&ctx->ac, ctx->args->inline_push_consts[arg_index++]);
LLVMValueRef res = ac_build_gather_values(&ctx->ac, push_constants, count);
return instr->dest.ssa.bit_size == 64
? LLVMBuildBitCast(ctx->ac.builder, res, get_def_type(ctx, &instr->dest.ssa), "")
: res;
}
}
struct ac_llvm_pointer pc = ac_get_ptr_arg(&ctx->ac, ctx->args, ctx->args->push_constants);
ptr = LLVMBuildGEP2(ctx->ac.builder, pc.t, pc.v, &addr, 1, "");
if (instr->dest.ssa.bit_size == 8) {
unsigned load_dwords = instr->dest.ssa.num_components > 1 ? 2 : 1;
LLVMTypeRef vec_type = LLVMVectorType(ctx->ac.i8, 4 * load_dwords);
ptr = ac_cast_ptr(&ctx->ac, ptr, vec_type);
LLVMValueRef res = LLVMBuildLoad2(ctx->ac.builder, vec_type, ptr, "");
LLVMValueRef params[3];
if (load_dwords > 1) {
LLVMValueRef res_vec = LLVMBuildBitCast(ctx->ac.builder, res, ctx->ac.v2i32, "");
params[0] = LLVMBuildExtractElement(ctx->ac.builder, res_vec,
LLVMConstInt(ctx->ac.i32, 1, false), "");
params[1] = LLVMBuildExtractElement(ctx->ac.builder, res_vec,
LLVMConstInt(ctx->ac.i32, 0, false), "");
} else {
res = LLVMBuildBitCast(ctx->ac.builder, res, ctx->ac.i32, "");
params[0] = ctx->ac.i32_0;
params[1] = res;
}
params[2] = addr;
res = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.alignbyte", ctx->ac.i32, params, 3, 0);
res = LLVMBuildTrunc(
ctx->ac.builder, res,
LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.num_components * 8), "");
if (instr->dest.ssa.num_components > 1)
res = LLVMBuildBitCast(ctx->ac.builder, res,
LLVMVectorType(ctx->ac.i8, instr->dest.ssa.num_components), "");
return res;
} else if (instr->dest.ssa.bit_size == 16) {
unsigned load_dwords = instr->dest.ssa.num_components / 2 + 1;
LLVMTypeRef vec_type = LLVMVectorType(ctx->ac.i16, 2 * load_dwords);
ptr = ac_cast_ptr(&ctx->ac, ptr, vec_type);
LLVMValueRef res = LLVMBuildLoad2(ctx->ac.builder, vec_type, ptr, "");
res = LLVMBuildBitCast(ctx->ac.builder, res, vec_type, "");
LLVMValueRef cond = LLVMBuildLShr(ctx->ac.builder, addr, ctx->ac.i32_1, "");
cond = LLVMBuildTrunc(ctx->ac.builder, cond, ctx->ac.i1, "");
LLVMValueRef mask[] = {
LLVMConstInt(ctx->ac.i32, 0, false), LLVMConstInt(ctx->ac.i32, 1, false),
LLVMConstInt(ctx->ac.i32, 2, false), LLVMConstInt(ctx->ac.i32, 3, false),
LLVMConstInt(ctx->ac.i32, 4, false)};
LLVMValueRef swizzle_aligned = LLVMConstVector(&mask[0], instr->dest.ssa.num_components);
LLVMValueRef swizzle_unaligned = LLVMConstVector(&mask[1], instr->dest.ssa.num_components);
LLVMValueRef shuffle_aligned =
LLVMBuildShuffleVector(ctx->ac.builder, res, res, swizzle_aligned, "");
LLVMValueRef shuffle_unaligned =
LLVMBuildShuffleVector(ctx->ac.builder, res, res, swizzle_unaligned, "");
res = LLVMBuildSelect(ctx->ac.builder, cond, shuffle_unaligned, shuffle_aligned, "");
return LLVMBuildBitCast(ctx->ac.builder, res, get_def_type(ctx, &instr->dest.ssa), "");
}
LLVMTypeRef ptr_type = get_def_type(ctx, &instr->dest.ssa);
ptr = ac_cast_ptr(&ctx->ac, ptr, ptr_type);
return LLVMBuildLoad2(ctx->ac.builder, ptr_type, ptr, "");
}
static LLVMValueRef visit_get_ssbo_size(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr)
{
bool non_uniform = nir_intrinsic_access(instr) & ACCESS_NON_UNIFORM;
LLVMValueRef rsrc = get_src(ctx, instr->src[0]);
if (ctx->abi->load_ssbo)
rsrc = ctx->abi->load_ssbo(ctx->abi, rsrc, false, non_uniform);
return LLVMBuildExtractElement(ctx->ac.builder, rsrc, LLVMConstInt(ctx->ac.i32, 2, false), "");
}
static LLVMValueRef extract_vector_range(struct ac_llvm_context *ctx, LLVMValueRef src,
unsigned start, unsigned count)
{
LLVMValueRef mask[] = {ctx->i32_0, ctx->i32_1, LLVMConstInt(ctx->i32, 2, false),
LLVMConstInt(ctx->i32, 3, false)};
unsigned src_elements = ac_get_llvm_num_components(src);
if (count == src_elements) {
assert(start == 0);
return src;
} else if (count == 1) {
assert(start < src_elements);
return LLVMBuildExtractElement(ctx->builder, src, mask[start], "");
} else {
assert(start + count <= src_elements);
assert(count <= 4);
LLVMValueRef swizzle = LLVMConstVector(&mask[start], count);
return LLVMBuildShuffleVector(ctx->builder, src, src, swizzle, "");
}
}
static unsigned get_cache_policy(struct ac_nir_context *ctx, enum gl_access_qualifier access,
bool may_store_unaligned, bool writeonly_memory)
{
unsigned cache_policy = 0;
/* GFX6 has a TC L1 bug causing corruption of 8bit/16bit stores. All
* store opcodes not aligned to a dword are affected. The only way to
* get unaligned stores is through shader images.
*/
if (((may_store_unaligned && ctx->ac.gfx_level == GFX6) ||
/* If this is write-only, don't keep data in L1 to prevent
* evicting L1 cache lines that may be needed by other
* instructions.
*/
writeonly_memory || access & (ACCESS_COHERENT | ACCESS_VOLATILE))) {
cache_policy |= ac_glc;
}
if (access & ACCESS_STREAM_CACHE_POLICY)
cache_policy |= ac_slc | ac_glc;
return cache_policy;
}
static LLVMValueRef enter_waterfall_ssbo(struct ac_nir_context *ctx, struct waterfall_context *wctx,
const nir_intrinsic_instr *instr, nir_src src)
{
return enter_waterfall(ctx, wctx, get_src(ctx, src),
nir_intrinsic_access(instr) & ACCESS_NON_UNIFORM);
}
static void visit_store_ssbo(struct ac_nir_context *ctx, nir_intrinsic_instr *instr)
{
if (ctx->ac.postponed_kill) {
LLVMValueRef cond = LLVMBuildLoad2(ctx->ac.builder, ctx->ac.i1, ctx->ac.postponed_kill, "");
ac_build_ifcc(&ctx->ac, cond, 7000);
}
LLVMValueRef src_data = get_src(ctx, instr->src[0]);
int elem_size_bytes = ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src_data)) / 8;
unsigned writemask = nir_intrinsic_write_mask(instr);
enum gl_access_qualifier access = nir_intrinsic_access(instr);
bool writeonly_memory = access & ACCESS_NON_READABLE;
unsigned cache_policy = get_cache_policy(ctx, access, false, writeonly_memory);
struct waterfall_context wctx;
LLVMValueRef rsrc_base = enter_waterfall_ssbo(ctx, &wctx, instr, instr->src[1]);
LLVMValueRef rsrc = ctx->abi->load_ssbo ?
ctx->abi->load_ssbo(ctx->abi, rsrc_base, true, false) : rsrc_base;
LLVMValueRef base_data = src_data;
base_data = ac_trim_vector(&ctx->ac, base_data, instr->num_components);
LLVMValueRef base_offset = get_src(ctx, instr->src[2]);
while (writemask) {
int start, count;
LLVMValueRef data, offset;
LLVMTypeRef data_type;
u_bit_scan_consecutive_range(&writemask, &start, &count);
if (count == 3 && elem_size_bytes != 4) {
writemask |= 1 << (start + 2);
count = 2;
}
int num_bytes = count * elem_size_bytes; /* count in bytes */
/* we can only store 4 DWords at the same time.
* can only happen for 64 Bit vectors. */
if (num_bytes > 16) {
writemask |= ((1u << (count - 2)) - 1u) << (start + 2);
count = 2;
num_bytes = 16;
}
/* check alignment of 16 Bit stores */
if (elem_size_bytes == 2 && num_bytes > 2 && (start % 2) == 1) {
writemask |= ((1u << (count - 1)) - 1u) << (start + 1);
count = 1;
num_bytes = 2;
}
/* Due to alignment issues, split stores of 8-bit/16-bit
* vectors.
*/
if (ctx->ac.gfx_level == GFX6 && count > 1 && elem_size_bytes < 4) {
writemask |= ((1u << (count - 1)) - 1u) << (start + 1);
count = 1;
num_bytes = elem_size_bytes;
}
data = extract_vector_range(&ctx->ac, base_data, start, count);
offset = LLVMBuildAdd(ctx->ac.builder, base_offset,
LLVMConstInt(ctx->ac.i32, start * elem_size_bytes, false), "");
if (num_bytes == 1) {
ac_build_buffer_store_byte(&ctx->ac, rsrc, data, offset, ctx->ac.i32_0, cache_policy);
} else if (num_bytes == 2) {
ac_build_buffer_store_short(&ctx->ac, rsrc, data, offset, ctx->ac.i32_0, cache_policy);
} else {
switch (num_bytes) {
case 16: /* v4f32 */
data_type = ctx->ac.v4f32;
break;
case 12: /* v3f32 */
data_type = ctx->ac.v3f32;
break;
case 8: /* v2f32 */
data_type = ctx->ac.v2f32;
break;
case 4: /* f32 */
data_type = ctx->ac.f32;
break;
default:
unreachable("Malformed vector store.");
}
data = LLVMBuildBitCast(ctx->ac.builder, data, data_type, "");
ac_build_buffer_store_dword(&ctx->ac, rsrc, data, NULL, offset,
ctx->ac.i32_0, cache_policy);
}
}
exit_waterfall(ctx, &wctx, NULL);
if (ctx->ac.postponed_kill)
ac_build_endif(&ctx->ac, 7000);
}
static LLVMValueRef emit_ssbo_comp_swap_64(struct ac_nir_context *ctx, LLVMValueRef descriptor,
LLVMValueRef offset, LLVMValueRef compare,
LLVMValueRef exchange, bool image)
{
LLVMBasicBlockRef start_block = NULL, then_block = NULL;
if (ctx->abi->robust_buffer_access || image) {
LLVMValueRef size = ac_llvm_extract_elem(&ctx->ac, descriptor, 2);
LLVMValueRef cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, offset, size, "");
start_block = LLVMGetInsertBlock(ctx->ac.builder);
ac_build_ifcc(&ctx->ac, cond, -1);
then_block = LLVMGetInsertBlock(ctx->ac.builder);
}
if (image)
offset = LLVMBuildMul(ctx->ac.builder, offset, LLVMConstInt(ctx->ac.i32, 8, false), "");
LLVMValueRef ptr_parts[2] = {
ac_llvm_extract_elem(&ctx->ac, descriptor, 0),
LLVMBuildAnd(ctx->ac.builder, ac_llvm_extract_elem(&ctx->ac, descriptor, 1),
LLVMConstInt(ctx->ac.i32, 65535, 0), "")};
ptr_parts[1] = LLVMBuildTrunc(ctx->ac.builder, ptr_parts[1], ctx->ac.i16, "");
ptr_parts[1] = LLVMBuildSExt(ctx->ac.builder, ptr_parts[1], ctx->ac.i32, "");
offset = LLVMBuildZExt(ctx->ac.builder, offset, ctx->ac.i64, "");
LLVMValueRef ptr = ac_build_gather_values(&ctx->ac, ptr_parts, 2);
ptr = LLVMBuildBitCast(ctx->ac.builder, ptr, ctx->ac.i64, "");
ptr = LLVMBuildAdd(ctx->ac.builder, ptr, offset, "");
ptr = LLVMBuildIntToPtr(ctx->ac.builder, ptr, LLVMPointerType(ctx->ac.i64, AC_ADDR_SPACE_GLOBAL),
"");
LLVMValueRef result =
ac_build_atomic_cmp_xchg(&ctx->ac, ptr, compare, exchange, "singlethread-one-as");
result = LLVMBuildExtractValue(ctx->ac.builder, result, 0, "");
if (ctx->abi->robust_buffer_access || image) {
ac_build_endif(&ctx->ac, -1);
LLVMBasicBlockRef incoming_blocks[2] = {
start_block,
then_block,
};
LLVMValueRef incoming_values[2] = {
LLVMConstInt(ctx->ac.i64, 0, 0),
result,
};
LLVMValueRef ret = LLVMBuildPhi(ctx->ac.builder, ctx->ac.i64, "");
LLVMAddIncoming(ret, incoming_values, incoming_blocks, 2);
return ret;
} else {
return result;
}
}
static LLVMValueRef visit_atomic_ssbo(struct ac_nir_context *ctx, nir_intrinsic_instr *instr)
{
if (ctx->ac.postponed_kill) {
LLVMValueRef cond = LLVMBuildLoad2(ctx->ac.builder, ctx->ac.i1, ctx->ac.postponed_kill, "");
ac_build_ifcc(&ctx->ac, cond, 7001);
}
LLVMTypeRef return_type = LLVMTypeOf(get_src(ctx, instr->src[2]));
const char *op;
char name[64], type[8];
LLVMValueRef params[6], descriptor;
LLVMValueRef result;
int arg_count = 0;
struct waterfall_context wctx;
LLVMValueRef rsrc_base = enter_waterfall_ssbo(ctx, &wctx, instr, instr->src[0]);
switch (instr->intrinsic) {
case nir_intrinsic_ssbo_atomic_add:
op = "add";
break;
case nir_intrinsic_ssbo_atomic_imin:
op = "smin";
break;
case nir_intrinsic_ssbo_atomic_umin:
op = "umin";
break;
case nir_intrinsic_ssbo_atomic_imax:
op = "smax";
break;
case nir_intrinsic_ssbo_atomic_umax:
op = "umax";
break;
case nir_intrinsic_ssbo_atomic_and:
op = "and";
break;
case nir_intrinsic_ssbo_atomic_or:
op = "or";
break;
case nir_intrinsic_ssbo_atomic_xor:
op = "xor";
break;
case nir_intrinsic_ssbo_atomic_exchange:
op = "swap";
break;
case nir_intrinsic_ssbo_atomic_comp_swap:
op = "cmpswap";
break;
case nir_intrinsic_ssbo_atomic_fadd:
op = "fadd";
break;
case nir_intrinsic_ssbo_atomic_fmin:
op = "fmin";
break;
case nir_intrinsic_ssbo_atomic_fmax:
op = "fmax";
break;
default:
abort();
}
descriptor = ctx->abi->load_ssbo ?
ctx->abi->load_ssbo(ctx->abi, rsrc_base, true, false) : rsrc_base;
if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap && return_type == ctx->ac.i64) {
result = emit_ssbo_comp_swap_64(ctx, descriptor, get_src(ctx, instr->src[1]),
get_src(ctx, instr->src[2]), get_src(ctx, instr->src[3]), false);
} else {
LLVMValueRef data = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[2]), 0);
if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap) {
params[arg_count++] = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[3]), 0);
}
if (instr->intrinsic == nir_intrinsic_ssbo_atomic_fadd ||
instr->intrinsic == nir_intrinsic_ssbo_atomic_fmin ||
instr->intrinsic == nir_intrinsic_ssbo_atomic_fmax) {
data = ac_to_float(&ctx->ac, data);
return_type = LLVMTypeOf(data);
}
params[arg_count++] = data;
params[arg_count++] = descriptor;
params[arg_count++] = get_src(ctx, instr->src[1]); /* voffset */
params[arg_count++] = ctx->ac.i32_0; /* soffset */
params[arg_count++] = ctx->ac.i32_0; /* slc */
ac_build_type_name_for_intr(return_type, type, sizeof(type));
snprintf(name, sizeof(name), "llvm.amdgcn.raw.buffer.atomic.%s.%s", op, type);
result = ac_build_intrinsic(&ctx->ac, name, return_type, params, arg_count, 0);
if (instr->intrinsic == nir_intrinsic_ssbo_atomic_fadd ||
instr->intrinsic == nir_intrinsic_ssbo_atomic_fmin ||
instr->intrinsic == nir_intrinsic_ssbo_atomic_fmax) {
result = ac_to_integer(&ctx->ac, result);
}
}
result = exit_waterfall(ctx, &wctx, result);
if (ctx->ac.postponed_kill)
ac_build_endif(&ctx->ac, 7001);
return result;
}
static LLVMValueRef visit_load_buffer(struct ac_nir_context *ctx, nir_intrinsic_instr *instr)
{
struct waterfall_context wctx;
LLVMValueRef rsrc_base = enter_waterfall_ssbo(ctx, &wctx, instr, instr->src[0]);
int elem_size_bytes = instr->dest.ssa.bit_size / 8;
int num_components = instr->num_components;
enum gl_access_qualifier access = nir_intrinsic_access(instr);
unsigned cache_policy = get_cache_policy(ctx, access, false, false);
LLVMValueRef offset = get_src(ctx, instr->src[1]);
LLVMValueRef rsrc = ctx->abi->load_ssbo ?
ctx->abi->load_ssbo(ctx->abi, rsrc_base, false, false) : rsrc_base;
LLVMValueRef vindex = ctx->ac.i32_0;
LLVMTypeRef def_type = get_def_type(ctx, &instr->dest.ssa);
LLVMTypeRef def_elem_type = num_components > 1 ? LLVMGetElementType(def_type) : def_type;
LLVMValueRef results[4];
for (int i = 0; i < num_components;) {
int num_elems = num_components - i;
if (elem_size_bytes < 4 && nir_intrinsic_align(instr) % 4 != 0)
num_elems = 1;
if (num_elems * elem_size_bytes > 16)
num_elems = 16 / elem_size_bytes;
int load_bytes = num_elems * elem_size_bytes;
LLVMValueRef immoffset = LLVMConstInt(ctx->ac.i32, i * elem_size_bytes, false);
LLVMValueRef voffset = LLVMBuildAdd(ctx->ac.builder, offset, immoffset, "");
LLVMValueRef ret;
if (load_bytes == 1) {
ret = ac_build_buffer_load_byte(&ctx->ac, rsrc, voffset, ctx->ac.i32_0,
cache_policy);
} else if (load_bytes == 2) {
ret = ac_build_buffer_load_short(&ctx->ac, rsrc, voffset, ctx->ac.i32_0,
cache_policy);
} else {
int num_channels = util_next_power_of_two(load_bytes) / 4;
bool can_speculate = access & ACCESS_CAN_REORDER;
ret = ac_build_buffer_load(&ctx->ac, rsrc, num_channels, vindex, voffset, ctx->ac.i32_0,
ctx->ac.f32, cache_policy, can_speculate, false);
}
LLVMTypeRef byte_vec = LLVMVectorType(ctx->ac.i8, ac_get_type_size(LLVMTypeOf(ret)));
ret = LLVMBuildBitCast(ctx->ac.builder, ret, byte_vec, "");
ret = ac_trim_vector(&ctx->ac, ret, load_bytes);
LLVMTypeRef ret_type = LLVMVectorType(def_elem_type, num_elems);
ret = LLVMBuildBitCast(ctx->ac.builder, ret, ret_type, "");
for (unsigned j = 0; j < num_elems; j++) {
results[i + j] =
LLVMBuildExtractElement(ctx->ac.builder, ret, LLVMConstInt(ctx->ac.i32, j, false), "");
}
i += num_elems;
}
LLVMValueRef ret = ac_build_gather_values(&ctx->ac, results, num_components);
return exit_waterfall(ctx, &wctx, ret);
}
static LLVMValueRef enter_waterfall_ubo(struct ac_nir_context *ctx, struct waterfall_context *wctx,
const nir_intrinsic_instr *instr)
{
return enter_waterfall(ctx, wctx, get_src(ctx, instr->src[0]),
nir_intrinsic_access(instr) & ACCESS_NON_UNIFORM);
}
static LLVMValueRef get_global_address(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr,
LLVMTypeRef type)
{
bool is_store = instr->intrinsic == nir_intrinsic_store_global ||
instr->intrinsic == nir_intrinsic_store_global_amd;
LLVMValueRef addr = get_src(ctx, instr->src[is_store ? 1 : 0]);
LLVMTypeRef ptr_type = LLVMPointerType(type, AC_ADDR_SPACE_GLOBAL);
if (nir_intrinsic_has_base(instr)) {
/* _amd variants */
uint32_t base = nir_intrinsic_base(instr);
unsigned num_src = nir_intrinsic_infos[instr->intrinsic].num_srcs;
LLVMValueRef offset = get_src(ctx, instr->src[num_src - 1]);
offset = LLVMBuildAdd(ctx->ac.builder, offset, LLVMConstInt(ctx->ac.i32, base, false), "");
LLVMTypeRef i8_ptr_type = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_GLOBAL);
addr = LLVMBuildIntToPtr(ctx->ac.builder, addr, i8_ptr_type, "");
addr = LLVMBuildGEP2(ctx->ac.builder, ctx->ac.i8, addr, &offset, 1, "");
return LLVMBuildPointerCast(ctx->ac.builder, addr, ptr_type, "");
} else {
return LLVMBuildIntToPtr(ctx->ac.builder, addr, ptr_type, "");
}
}
static LLVMValueRef visit_load_global(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMTypeRef result_type = get_def_type(ctx, &instr->dest.ssa);
LLVMValueRef val;
LLVMValueRef addr = get_global_address(ctx, instr, result_type);
val = LLVMBuildLoad2(ctx->ac.builder, result_type, addr, "");
if (nir_intrinsic_access(instr) & (ACCESS_COHERENT | ACCESS_VOLATILE)) {
LLVMSetOrdering(val, LLVMAtomicOrderingMonotonic);
LLVMSetAlignment(val, ac_get_type_size(result_type));
}
return val;
}
static void visit_store_global(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
if (ctx->ac.postponed_kill) {
LLVMValueRef cond = LLVMBuildLoad2(ctx->ac.builder, ctx->ac.i1, ctx->ac.postponed_kill, "");
ac_build_ifcc(&ctx->ac, cond, 7002);
}
LLVMValueRef data = get_src(ctx, instr->src[0]);
LLVMTypeRef type = LLVMTypeOf(data);
LLVMValueRef addr = get_global_address(ctx, instr, type);
LLVMValueRef val;
val = LLVMBuildStore(ctx->ac.builder, data, addr);
if (nir_intrinsic_access(instr) & (ACCESS_COHERENT | ACCESS_VOLATILE)) {
LLVMSetOrdering(val, LLVMAtomicOrderingMonotonic);
LLVMSetAlignment(val, ac_get_type_size(type));
}
if (ctx->ac.postponed_kill)
ac_build_endif(&ctx->ac, 7002);
}
static LLVMValueRef visit_global_atomic(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
if (ctx->ac.postponed_kill) {
LLVMValueRef cond = LLVMBuildLoad2(ctx->ac.builder, ctx->ac.i1, ctx->ac.postponed_kill, "");
ac_build_ifcc(&ctx->ac, cond, 7002);
}
LLVMValueRef data = get_src(ctx, instr->src[1]);
LLVMAtomicRMWBinOp op;
LLVMValueRef result;
/* use "singlethread" sync scope to implement relaxed ordering */
const char *sync_scope = "singlethread-one-as";
if (instr->intrinsic == nir_intrinsic_global_atomic_fadd ||
instr->intrinsic == nir_intrinsic_global_atomic_fmin ||
instr->intrinsic == nir_intrinsic_global_atomic_fmax ||
instr->intrinsic == nir_intrinsic_global_atomic_fadd_amd ||
instr->intrinsic == nir_intrinsic_global_atomic_fmin_amd ||
instr->intrinsic == nir_intrinsic_global_atomic_fmax_amd) {
data = ac_to_float(&ctx->ac, data);
}
LLVMTypeRef data_type = LLVMTypeOf(data);
LLVMValueRef addr = get_global_address(ctx, instr, data_type);
if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap ||
instr->intrinsic == nir_intrinsic_global_atomic_comp_swap_amd) {
LLVMValueRef data1 = get_src(ctx, instr->src[2]);
result = ac_build_atomic_cmp_xchg(&ctx->ac, addr, data, data1, sync_scope);
result = LLVMBuildExtractValue(ctx->ac.builder, result, 0, "");
} else if (instr->intrinsic == nir_intrinsic_global_atomic_fadd ||
instr->intrinsic == nir_intrinsic_global_atomic_fmin ||
instr->intrinsic == nir_intrinsic_global_atomic_fmax ||
instr->intrinsic == nir_intrinsic_global_atomic_fadd_amd ||
instr->intrinsic == nir_intrinsic_global_atomic_fmin_amd ||
instr->intrinsic == nir_intrinsic_global_atomic_fmax_amd) {
const char *op = NULL;
switch (instr->intrinsic) {
case nir_intrinsic_global_atomic_fadd:
case nir_intrinsic_global_atomic_fadd_amd:
op = "fadd";
break;
case nir_intrinsic_global_atomic_fmin:
case nir_intrinsic_global_atomic_fmin_amd:
op = "fmin";
break;
case nir_intrinsic_global_atomic_fmax:
case nir_intrinsic_global_atomic_fmax_amd:
op = "fmax";
break;
default:
break;
}
char name[64], type[8];
LLVMValueRef params[2];
int arg_count = 0;
params[arg_count++] = addr;
params[arg_count++] = data;
ac_build_type_name_for_intr(data_type, type, sizeof(type));
snprintf(name, sizeof(name), "llvm.amdgcn.global.atomic.%s.%s.p1%s.%s", op, type, type, type);
result = ac_build_intrinsic(&ctx->ac, name, data_type, params, arg_count, 0);
result = ac_to_integer(&ctx->ac, result);
} else {
switch (instr->intrinsic) {
case nir_intrinsic_global_atomic_add:
case nir_intrinsic_global_atomic_add_amd:
op = LLVMAtomicRMWBinOpAdd;
break;
case nir_intrinsic_global_atomic_umin:
case nir_intrinsic_global_atomic_umin_amd:
op = LLVMAtomicRMWBinOpUMin;
break;
case nir_intrinsic_global_atomic_umax:
case nir_intrinsic_global_atomic_umax_amd:
op = LLVMAtomicRMWBinOpUMax;
break;
case nir_intrinsic_global_atomic_imin:
case nir_intrinsic_global_atomic_imin_amd:
op = LLVMAtomicRMWBinOpMin;
break;
case nir_intrinsic_global_atomic_imax:
case nir_intrinsic_global_atomic_imax_amd:
op = LLVMAtomicRMWBinOpMax;
break;
case nir_intrinsic_global_atomic_and:
case nir_intrinsic_global_atomic_and_amd:
op = LLVMAtomicRMWBinOpAnd;
break;
case nir_intrinsic_global_atomic_or:
case nir_intrinsic_global_atomic_or_amd:
op = LLVMAtomicRMWBinOpOr;
break;
case nir_intrinsic_global_atomic_xor:
case nir_intrinsic_global_atomic_xor_amd:
op = LLVMAtomicRMWBinOpXor;
break;
case nir_intrinsic_global_atomic_exchange:
case nir_intrinsic_global_atomic_exchange_amd:
op = LLVMAtomicRMWBinOpXchg;
break;
default:
unreachable("Invalid global atomic operation");
}
result = ac_build_atomic_rmw(&ctx->ac, op, addr, ac_to_integer(&ctx->ac, data), sync_scope);
}
if (ctx->ac.postponed_kill)
ac_build_endif(&ctx->ac, 7002);
return result;
}
static LLVMValueRef visit_load_ubo_buffer(struct ac_nir_context *ctx, nir_intrinsic_instr *instr)
{
struct waterfall_context wctx;
LLVMValueRef rsrc_base = enter_waterfall_ubo(ctx, &wctx, instr);
LLVMValueRef ret;
LLVMValueRef rsrc = rsrc_base;
LLVMValueRef offset = get_src(ctx, instr->src[1]);
int num_components = instr->num_components;
assert(instr->dest.ssa.bit_size >= 32 && instr->dest.ssa.bit_size % 32 == 0);
if (ctx->abi->load_ubo)
rsrc = ctx->abi->load_ubo(ctx->abi, rsrc);
/* Convert to a 32-bit load. */
if (instr->dest.ssa.bit_size == 64)
num_components *= 2;
ret = ac_build_buffer_load(&ctx->ac, rsrc, num_components, NULL, offset, NULL,
ctx->ac.f32, 0, true, true);
ret = LLVMBuildBitCast(ctx->ac.builder, ret, get_def_type(ctx, &instr->dest.ssa), "");
return exit_waterfall(ctx, &wctx, ret);
}
static void visit_store_output(struct ac_nir_context *ctx, nir_intrinsic_instr *instr)
{
if (ctx->ac.postponed_kill) {
LLVMValueRef cond = LLVMBuildLoad2(ctx->ac.builder, ctx->ac.i1, ctx->ac.postponed_kill, "");
ac_build_ifcc(&ctx->ac, cond, 7002);
}
unsigned base = nir_intrinsic_base(instr);
unsigned writemask = nir_intrinsic_write_mask(instr);
unsigned component = nir_intrinsic_component(instr);
LLVMValueRef src = ac_to_float(&ctx->ac, get_src(ctx, instr->src[0]));
ASSERTED nir_src offset = *nir_get_io_offset_src(instr);
/* No indirect indexing is allowed here. */
assert(nir_src_is_const(offset) && nir_src_as_uint(offset) == 0);
switch (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src))) {
case 16:
case 32:
break;
case 64:
unreachable("64-bit IO should have been lowered to 32 bits");
return;
default:
unreachable("unhandled store_output bit size");
return;
}
writemask <<= component;
for (unsigned chan = 0; chan < 8; chan++) {
if (!(writemask & (1 << chan)))
continue;
LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
LLVMValueRef output_addr = ctx->abi->outputs[base * 4 + chan];
if (!ctx->abi->is_16bit[base * 4 + chan] &&
LLVMTypeOf(value) == ctx->ac.f16) {
LLVMValueRef output, index;
/* Insert the 16-bit value into the low or high bits of the 32-bit output
* using read-modify-write.
*/
index = LLVMConstInt(ctx->ac.i32, nir_intrinsic_io_semantics(instr).high_16bits, 0);
#if LLVM_VERSION_MAJOR <= 14
/* To work around old LLVM bug which won't change the output type to
* LLVMBuildLoad2 type argument.
*/
output = LLVMBuildLoad2(ctx->ac.builder, ctx->ac.f32, output_addr, "");
output = LLVMBuildBitCast(ctx->ac.builder, output, ctx->ac.v2f16, "");
#else
output = LLVMBuildLoad2(ctx->ac.builder, ctx->ac.v2f16, output_addr, "");
#endif
output = LLVMBuildInsertElement(ctx->ac.builder, output, value, index, "");
value = LLVMBuildBitCast(ctx->ac.builder, output, ctx->ac.f32, "");
}
LLVMBuildStore(ctx->ac.builder, value, output_addr);
}
if (ctx->ac.postponed_kill)
ac_build_endif(&ctx->ac, 7002);
}
static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
{
switch (dim) {
case GLSL_SAMPLER_DIM_BUF:
return 1;
case GLSL_SAMPLER_DIM_1D:
return array ? 2 : 1;
case GLSL_SAMPLER_DIM_2D:
return array ? 3 : 2;
case GLSL_SAMPLER_DIM_MS:
return array ? 4 : 3;
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
return 3;
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_SUBPASS:
return 2;
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return 3;
default:
break;
}
return 0;
}
static void get_image_coords(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr,
LLVMValueRef dynamic_desc_index, struct ac_image_args *args,
enum glsl_sampler_dim dim, bool is_array)
{
LLVMValueRef src0 = get_src(ctx, instr->src[1]);
LLVMValueRef masks[] = {
LLVMConstInt(ctx->ac.i32, 0, false),
LLVMConstInt(ctx->ac.i32, 1, false),
LLVMConstInt(ctx->ac.i32, 2, false),
LLVMConstInt(ctx->ac.i32, 3, false),
};
int count;
ASSERTED bool add_frag_pos =
(dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
bool gfx9_1d = ctx->ac.gfx_level == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
assert(!add_frag_pos && "Input attachments should be lowered by this point.");
count = image_type_to_components_count(dim, is_array);
if (count == 1 && !gfx9_1d) {
if (instr->src[1].ssa->num_components)
args->coords[0] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[0], "");
else
args->coords[0] = src0;
} else {
int chan;
if (is_ms)
count--;
for (chan = 0; chan < count; ++chan) {
args->coords[chan] = ac_llvm_extract_elem(&ctx->ac, src0, chan);
}
if (gfx9_1d) {
if (is_array) {
args->coords[2] = args->coords[1];
args->coords[1] = ctx->ac.i32_0;
} else
args->coords[1] = ctx->ac.i32_0;
count++;
}
if (ctx->ac.gfx_level == GFX9 && dim == GLSL_SAMPLER_DIM_2D && !is_array) {
/* The hw can't bind a slice of a 3D image as a 2D
* image, because it ignores BASE_ARRAY if the target
* is 3D. The workaround is to read BASE_ARRAY and set
* it as the 3rd address operand for all 2D images.
*/
LLVMValueRef first_layer, const5, mask;
const5 = LLVMConstInt(ctx->ac.i32, 5, 0);
mask = LLVMConstInt(ctx->ac.i32, S_008F24_BASE_ARRAY(~0), 0);
first_layer = LLVMBuildExtractElement(ctx->ac.builder, args->resource, const5, "");
first_layer = LLVMBuildAnd(ctx->ac.builder, first_layer, mask, "");
if (instr->intrinsic == nir_intrinsic_bindless_image_load ||
instr->intrinsic == nir_intrinsic_bindless_image_sparse_load ||
instr->intrinsic == nir_intrinsic_bindless_image_store) {
int lod_index = instr->intrinsic == nir_intrinsic_bindless_image_store ? 4 : 3;
bool has_lod = !nir_src_is_const(instr->src[lod_index]) ||
nir_src_as_uint(instr->src[lod_index]) != 0;
if (has_lod) {
/* If there's a lod parameter it matter if the image is 3d or 2d because
* the hw reads either the fourth or third component as lod. So detect
* 3d images and place the lod at the third component otherwise.
*/
LLVMValueRef const3, const28, const4, rword3, type3d, type, is_3d, lod;
const3 = LLVMConstInt(ctx->ac.i32, 3, 0);
const28 = LLVMConstInt(ctx->ac.i32, 28, 0);
const4 = LLVMConstInt(ctx->ac.i32, 4, 0);
type3d = LLVMConstInt(ctx->ac.i32, V_008F1C_SQ_RSRC_IMG_3D, 0);
rword3 = LLVMBuildExtractElement(ctx->ac.builder, args->resource, const3, "");
type = ac_build_bfe(&ctx->ac, rword3, const28, const4, false);
is_3d = emit_int_cmp(&ctx->ac, LLVMIntEQ, type, type3d);
lod = get_src(ctx, instr->src[lod_index]);
first_layer = emit_bcsel(&ctx->ac, is_3d, first_layer, lod);
}
}
args->coords[count] = first_layer;
count++;
}
if (is_ms) {
/* sample index */
args->coords[count] = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[2]), 0);
count++;
}
}
}
static LLVMValueRef enter_waterfall_image(struct ac_nir_context *ctx,
struct waterfall_context *wctx,
const nir_intrinsic_instr *instr)
{
/* src0 is desc when uniform, desc index when non uniform */
LLVMValueRef value = get_src(ctx, instr->src[0]);
return enter_waterfall(ctx, wctx, value, nir_intrinsic_access(instr) & ACCESS_NON_UNIFORM);
}
static LLVMValueRef visit_image_load(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr)
{
LLVMValueRef res;
enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr);
enum gl_access_qualifier access = nir_intrinsic_access(instr);
bool is_array = nir_intrinsic_image_array(instr);
struct waterfall_context wctx;
LLVMValueRef dynamic_index = enter_waterfall_image(ctx, &wctx, instr);
struct ac_image_args args = {0};
args.cache_policy = get_cache_policy(ctx, access, false, false);
args.tfe = instr->intrinsic == nir_intrinsic_bindless_image_sparse_load;
if (dim == GLSL_SAMPLER_DIM_BUF) {
unsigned num_channels = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
if (instr->dest.ssa.bit_size == 64)
num_channels = num_channels < 4 ? 2 : 4;
LLVMValueRef rsrc, vindex;
rsrc = ctx->abi->load_sampler_desc(ctx->abi, dynamic_index, AC_DESC_BUFFER);
vindex =
LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[1]), ctx->ac.i32_0, "");
assert(instr->dest.is_ssa);
bool can_speculate = access & ACCESS_CAN_REORDER;
res = ac_build_buffer_load_format(&ctx->ac, rsrc, vindex, ctx->ac.i32_0, num_channels,
args.cache_policy, can_speculate,
instr->dest.ssa.bit_size == 16,
args.tfe);
res = ac_build_expand(&ctx->ac, res, num_channels, args.tfe ? 5 : 4);
res = ac_trim_vector(&ctx->ac, res, instr->dest.ssa.num_components);
res = ac_to_integer(&ctx->ac, res);
} else if (instr->intrinsic == nir_intrinsic_bindless_image_fragment_mask_load_amd) {
assert(ctx->ac.gfx_level < GFX11);
args.opcode = ac_image_load;
args.resource = ctx->abi->load_sampler_desc(ctx->abi, dynamic_index, AC_DESC_FMASK);
get_image_coords(ctx, instr, dynamic_index, &args, GLSL_SAMPLER_DIM_2D, is_array);
args.dmask = 0xf;
args.dim = is_array ? ac_image_2darray : ac_image_2d;
args.attributes = AC_ATTR_INVARIANT_LOAD;
args.a16 = ac_get_elem_bits(&ctx->ac, LLVMTypeOf(args.coords[0])) == 16;
res = ac_build_image_opcode(&ctx->ac, &args);
} else {
bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
args.opcode = level_zero ? ac_image_load : ac_image_load_mip;
args.resource = ctx->abi->load_sampler_desc(ctx->abi, dynamic_index, AC_DESC_IMAGE);
get_image_coords(ctx, instr, dynamic_index, &args, dim, is_array);
args.dim = ac_get_image_dim(ctx->ac.gfx_level, dim, is_array);
if (!level_zero)
args.lod = get_src(ctx, instr->src[3]);
args.dmask = 15;
args.attributes = access & ACCESS_CAN_REORDER ? AC_ATTR_INVARIANT_LOAD : 0;
assert(instr->dest.is_ssa);
args.d16 = instr->dest.ssa.bit_size == 16;
res = ac_build_image_opcode(&ctx->ac, &args);
}
if (instr->dest.ssa.bit_size == 64) {
LLVMValueRef code = NULL;
if (args.tfe) {
code = ac_llvm_extract_elem(&ctx->ac, res, 4);
res = ac_trim_vector(&ctx->ac, res, 4);
}
res = LLVMBuildBitCast(ctx->ac.builder, res, LLVMVectorType(ctx->ac.i64, 2), "");
LLVMValueRef x = LLVMBuildExtractElement(ctx->ac.builder, res, ctx->ac.i32_0, "");
LLVMValueRef w = LLVMBuildExtractElement(ctx->ac.builder, res, ctx->ac.i32_1, "");
if (code)
code = LLVMBuildZExt(ctx->ac.builder, code, ctx->ac.i64, "");
LLVMValueRef values[5] = {x, ctx->ac.i64_0, ctx->ac.i64_0, w, code};
res = ac_build_gather_values(&ctx->ac, values, 4 + args.tfe);
}
return exit_waterfall(ctx, &wctx, res);
}
static void visit_image_store(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr)
{
if (ctx->ac.postponed_kill) {
LLVMValueRef cond = LLVMBuildLoad2(ctx->ac.builder, ctx->ac.i1, ctx->ac.postponed_kill, "");
ac_build_ifcc(&ctx->ac, cond, 7003);
}
enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr);
enum gl_access_qualifier access = nir_intrinsic_access(instr);
bool is_array = nir_intrinsic_image_array(instr);
struct waterfall_context wctx;
LLVMValueRef dynamic_index = enter_waterfall_image(ctx, &wctx, instr);
bool writeonly_memory = access & ACCESS_NON_READABLE;
struct ac_image_args args = {0};
args.cache_policy = get_cache_policy(ctx, access, true, writeonly_memory);
LLVMValueRef src = get_src(ctx, instr->src[3]);
if (instr->src[3].ssa->bit_size == 64) {
/* only R64_UINT and R64_SINT supported */
src = ac_llvm_extract_elem(&ctx->ac, src, 0);
src = LLVMBuildBitCast(ctx->ac.builder, src, ctx->ac.v2f32, "");
} else {
src = ac_to_float(&ctx->ac, src);
}
if (dim == GLSL_SAMPLER_DIM_BUF) {
LLVMValueRef rsrc = ctx->abi->load_sampler_desc(ctx->abi, dynamic_index, AC_DESC_BUFFER);
unsigned src_channels = ac_get_llvm_num_components(src);
LLVMValueRef vindex;
if (src_channels == 3)
src = ac_build_expand_to_vec4(&ctx->ac, src, 3);
vindex =
LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[1]), ctx->ac.i32_0, "");
ac_build_buffer_store_format(&ctx->ac, rsrc, src, vindex, ctx->ac.i32_0, args.cache_policy);
} else {
bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
args.opcode = level_zero ? ac_image_store : ac_image_store_mip;
args.data[0] = src;
args.resource = ctx->abi->load_sampler_desc(ctx->abi, dynamic_index, AC_DESC_IMAGE);
get_image_coords(ctx, instr, dynamic_index, &args, dim, is_array);
args.dim = ac_get_image_dim(ctx->ac.gfx_level, dim, is_array);
if (!level_zero)
args.lod = get_src(ctx, instr->src[4]);
args.dmask = 15;
args.d16 = ac_get_elem_bits(&ctx->ac, LLVMTypeOf(args.data[0])) == 16;
ac_build_image_opcode(&ctx->ac, &args);
}
exit_waterfall(ctx, &wctx, NULL);
if (ctx->ac.postponed_kill)
ac_build_endif(&ctx->ac, 7003);
}
static LLVMValueRef visit_image_atomic(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr)
{
if (ctx->ac.postponed_kill) {
LLVMValueRef cond = LLVMBuildLoad2(ctx->ac.builder, ctx->ac.i1, ctx->ac.postponed_kill, "");
ac_build_ifcc(&ctx->ac, cond, 7004);
}
LLVMValueRef params[7];
int param_count = 0;
bool cmpswap = instr->intrinsic == nir_intrinsic_bindless_image_atomic_comp_swap;
const char *atomic_name;
char intrinsic_name[64];
enum ac_atomic_op atomic_subop;
ASSERTED int length;
enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr);
bool is_array = nir_intrinsic_image_array(instr);
struct waterfall_context wctx;
LLVMValueRef dynamic_index = enter_waterfall_image(ctx, &wctx, instr);
switch (instr->intrinsic) {
case nir_intrinsic_bindless_image_atomic_add:
atomic_name = "add";
atomic_subop = ac_atomic_add;
break;
case nir_intrinsic_bindless_image_atomic_imin:
atomic_name = "smin";
atomic_subop = ac_atomic_smin;
break;
case nir_intrinsic_bindless_image_atomic_umin:
atomic_name = "umin";
atomic_subop = ac_atomic_umin;
break;
case nir_intrinsic_bindless_image_atomic_imax:
atomic_name = "smax";
atomic_subop = ac_atomic_smax;
break;
case nir_intrinsic_bindless_image_atomic_umax:
atomic_name = "umax";
atomic_subop = ac_atomic_umax;
break;
case nir_intrinsic_bindless_image_atomic_and:
atomic_name = "and";
atomic_subop = ac_atomic_and;
break;
case nir_intrinsic_bindless_image_atomic_or:
atomic_name = "or";
atomic_subop = ac_atomic_or;
break;
case nir_intrinsic_bindless_image_atomic_xor:
atomic_name = "xor";
atomic_subop = ac_atomic_xor;
break;
case nir_intrinsic_bindless_image_atomic_exchange:
atomic_name = "swap";
atomic_subop = ac_atomic_swap;
break;
case nir_intrinsic_bindless_image_atomic_comp_swap:
atomic_name = "cmpswap";
atomic_subop = 0; /* not used */
break;
case nir_intrinsic_bindless_image_atomic_inc_wrap: {
atomic_name = "inc";
atomic_subop = ac_atomic_inc_wrap;
break;
}
case nir_intrinsic_bindless_image_atomic_dec_wrap:
atomic_name = "dec";
atomic_subop = ac_atomic_dec_wrap;
break;
case nir_intrinsic_bindless_image_atomic_fadd:
case nir_intrinsic_image_deref_atomic_fadd:
atomic_name = "fadd";
atomic_subop = ac_atomic_fmin; /* Non-buffer fadd atomics are not supported. */
break;
case nir_intrinsic_bindless_image_atomic_fmin:
atomic_name = "fmin";
atomic_subop = ac_atomic_fmin;
break;
case nir_intrinsic_bindless_image_atomic_fmax:
atomic_name = "fmax";
atomic_subop = ac_atomic_fmax;
break;
default:
abort();
}
if (cmpswap)
params[param_count++] = get_src(ctx, instr->src[4]);
params[param_count++] = get_src(ctx, instr->src[3]);
if (atomic_subop == ac_atomic_fmin || atomic_subop == ac_atomic_fmax)
params[0] = ac_to_float(&ctx->ac, params[0]);
LLVMValueRef result;
if (dim == GLSL_SAMPLER_DIM_BUF) {
params[param_count++] = ctx->abi->load_sampler_desc(ctx->abi, dynamic_index, AC_DESC_BUFFER);
params[param_count++] = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[1]),
ctx->ac.i32_0, ""); /* vindex */
params[param_count++] = ctx->ac.i32_0; /* voffset */
if (cmpswap && instr->dest.ssa.bit_size == 64) {
result = emit_ssbo_comp_swap_64(ctx, params[2], params[3], params[1], params[0], true);
} else {
LLVMTypeRef data_type = LLVMTypeOf(params[0]);
char type[8];
params[param_count++] = ctx->ac.i32_0; /* soffset */
params[param_count++] = ctx->ac.i32_0; /* slc */
ac_build_type_name_for_intr(data_type, type, sizeof(type));
length = snprintf(intrinsic_name, sizeof(intrinsic_name),
"llvm.amdgcn.struct.buffer.atomic.%s.%s",
atomic_name, type);
assert(length < sizeof(intrinsic_name));
result = ac_build_intrinsic(&ctx->ac, intrinsic_name, LLVMTypeOf(params[0]), params, param_count, 0);
}
} else {
struct ac_image_args args = {0};
args.opcode = cmpswap ? ac_image_atomic_cmpswap : ac_image_atomic;
args.atomic = atomic_subop;
args.data[0] = params[0];
if (cmpswap)
args.data[1] = params[1];
args.resource = ctx->abi->load_sampler_desc(ctx->abi, dynamic_index, AC_DESC_IMAGE);
get_image_coords(ctx, instr, dynamic_index, &args, dim, is_array);
args.dim = ac_get_image_dim(ctx->ac.gfx_level, dim, is_array);
result = ac_build_image_opcode(&ctx->ac, &args);
}
result = exit_waterfall(ctx, &wctx, result);
if (ctx->ac.postponed_kill)
ac_build_endif(&ctx->ac, 7004);
return result;
}
static void emit_discard(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr)
{
LLVMValueRef cond;
if (instr->intrinsic == nir_intrinsic_discard_if ||
instr->intrinsic == nir_intrinsic_terminate_if) {
cond = LLVMBuildNot(ctx->ac.builder, get_src(ctx, instr->src[0]), "");
} else {
assert(instr->intrinsic == nir_intrinsic_discard ||
instr->intrinsic == nir_intrinsic_terminate);
cond = ctx->ac.i1false;
}
ac_build_kill_if_false(&ctx->ac, cond);
}
static void emit_demote(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr)
{
LLVMValueRef cond;
if (instr->intrinsic == nir_intrinsic_demote_if) {
cond = LLVMBuildNot(ctx->ac.builder, get_src(ctx, instr->src[0]), "");
} else {
assert(instr->intrinsic == nir_intrinsic_demote);
cond = ctx->ac.i1false;
}
if (LLVM_VERSION_MAJOR >= 13) {
/* This demotes the pixel if the condition is false. */
ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.wqm.demote", ctx->ac.voidt, &cond, 1, 0);
return;
}
LLVMValueRef mask = LLVMBuildLoad2(ctx->ac.builder, ctx->ac.i1, ctx->ac.postponed_kill, "");
mask = LLVMBuildAnd(ctx->ac.builder, mask, cond, "");
LLVMBuildStore(ctx->ac.builder, mask, ctx->ac.postponed_kill);
if (!ctx->info->fs.needs_all_helper_invocations) {
/* This is an optional optimization that only kills whole inactive quads.
* It's not used when subgroup operations can possibly use all helper
* invocations.
*/
if (ctx->ac.flow->depth == 0) {
ac_build_kill_if_false(&ctx->ac, ac_build_wqm_vote(&ctx->ac, cond));
} else {
/* amdgcn.wqm.vote doesn't work inside conditional blocks. Here's why.
*
* The problem is that kill(wqm.vote(0)) kills all active threads within
* the block, which breaks the whole quad mode outside the block if
* the conditional block has partially active quads (2x2 pixel blocks).
* E.g. threads 0-3 are active outside the block, but only thread 0 is
* active inside the block. Thread 0 shouldn't be killed by demote,
* because threads 1-3 are still active outside the block.
*
* The fix for amdgcn.wqm.vote would be to return S_WQM((live & ~exec) | cond)
* instead of S_WQM(cond).
*
* The less efficient workaround we do here is to save the kill condition
* to a temporary (postponed_kill) and do kill(wqm.vote(cond)) after we
* exit the conditional block.
*/
ctx->ac.conditional_demote_seen = true;
}
}
}
static LLVMValueRef visit_load_local_invocation_index(struct ac_nir_context *ctx)
{
if (ctx->args->tcs_wave_id.used) {
return ac_build_imad(&ctx->ac,
ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->tcs_wave_id), 0, 3),
LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0),
ac_get_thread_id(&ctx->ac));
} else if (ctx->abi->vs_rel_patch_id) {
return ctx->abi->vs_rel_patch_id;
} else if (ctx->args->merged_wave_info.used) {
/* Thread ID in threadgroup in merged ESGS. */
LLVMValueRef wave_id = ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->merged_wave_info), 24, 4);
LLVMValueRef wave_size = LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false);
LLVMValueRef threads_before = LLVMBuildMul(ctx->ac.builder, wave_id, wave_size, "");
return LLVMBuildAdd(ctx->ac.builder, threads_before, ac_get_thread_id(&ctx->ac), "");
}
LLVMValueRef result;
LLVMValueRef thread_id = ac_get_thread_id(&ctx->ac);
result = LLVMBuildAnd(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->tg_size),
LLVMConstInt(ctx->ac.i32, 0xfc0, false), "");
if (ctx->ac.wave_size == 32)
result = LLVMBuildLShr(ctx->ac.builder, result, LLVMConstInt(ctx->ac.i32, 1, false), "");
return LLVMBuildAdd(ctx->ac.builder, result, thread_id, "");
}
static LLVMValueRef visit_load_subgroup_id(struct ac_nir_context *ctx)
{
if (ctx->stage == MESA_SHADER_COMPUTE) {
LLVMValueRef result;
result = LLVMBuildAnd(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->tg_size),
LLVMConstInt(ctx->ac.i32, 0xfc0, false), "");
return LLVMBuildLShr(ctx->ac.builder, result, LLVMConstInt(ctx->ac.i32, 6, false), "");
} else if (ctx->args->merged_wave_info.used) {
return ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->merged_wave_info), 24, 4);
} else {
return LLVMConstInt(ctx->ac.i32, 0, false);
}
}
static LLVMValueRef visit_load_num_subgroups(struct ac_nir_context *ctx)
{
if (ctx->stage == MESA_SHADER_COMPUTE) {
return LLVMBuildAnd(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->tg_size),
LLVMConstInt(ctx->ac.i32, 0x3f, false), "");
} else if (ctx->args->merged_wave_info.used) {
return ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->merged_wave_info), 28, 4);
} else {
return LLVMConstInt(ctx->ac.i32, 1, false);
}
}
static LLVMValueRef visit_first_invocation(struct ac_nir_context *ctx)
{
LLVMValueRef active_set = ac_build_ballot(&ctx->ac, ctx->ac.i32_1);
const char *intr = ctx->ac.wave_size == 32 ? "llvm.cttz.i32" : "llvm.cttz.i64";
/* The second argument is whether cttz(0) should be defined, but we do not care. */
LLVMValueRef args[] = {active_set, ctx->ac.i1false};
LLVMValueRef result = ac_build_intrinsic(&ctx->ac, intr, ctx->ac.iN_wavemask, args, 2, 0);
return LLVMBuildTrunc(ctx->ac.builder, result, ctx->ac.i32, "");
}
static LLVMValueRef visit_load_shared(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr)
{
LLVMValueRef values[16], derived_ptr, index, ret;
unsigned const_off = nir_intrinsic_base(instr);
LLVMTypeRef elem_type = LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.bit_size);
LLVMValueRef ptr = get_memory_ptr(ctx, instr->src[0], const_off);
for (int chan = 0; chan < instr->num_components; chan++) {
index = LLVMConstInt(ctx->ac.i32, chan, 0);
#if LLVM_VERSION_MAJOR < 14
ptr = LLVMBuildBitCast(
ctx->ac.builder, ptr,
LLVMPointerType(elem_type, LLVMGetPointerAddressSpace(LLVMTypeOf(ptr))), "");
#endif
derived_ptr = LLVMBuildGEP2(ctx->ac.builder, elem_type, ptr, &index, 1, "");
values[chan] = LLVMBuildLoad2(ctx->ac.builder, elem_type, derived_ptr, "");
}
ret = ac_build_gather_values(&ctx->ac, values, instr->num_components);
return LLVMBuildBitCast(ctx->ac.builder, ret, get_def_type(ctx, &instr->dest.ssa), "");
}
static void visit_store_shared(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr)
{
LLVMValueRef derived_ptr, data, index;
LLVMBuilderRef builder = ctx->ac.builder;
unsigned const_off = nir_intrinsic_base(instr);
LLVMTypeRef elem_type = LLVMIntTypeInContext(ctx->ac.context, instr->src[0].ssa->bit_size);
LLVMValueRef ptr = get_memory_ptr(ctx, instr->src[1], const_off);
LLVMValueRef src = get_src(ctx, instr->src[0]);
int writemask = nir_intrinsic_write_mask(instr);
for (int chan = 0; chan < 16; chan++) {
if (!(writemask & (1 << chan))) {
continue;
}
data = ac_llvm_extract_elem(&ctx->ac, src, chan);
index = LLVMConstInt(ctx->ac.i32, chan, 0);
#if LLVM_VERSION_MAJOR < 14
ptr = LLVMBuildBitCast(
ctx->ac.builder, ptr,
LLVMPointerType(elem_type, LLVMGetPointerAddressSpace(LLVMTypeOf(ptr))), "");
#endif
derived_ptr = LLVMBuildGEP2(builder, elem_type, ptr, &index, 1, "");
LLVMBuildStore(builder, data, derived_ptr);
}
}
static LLVMValueRef visit_load_shared2_amd(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr)
{
LLVMTypeRef pointee_type = LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.bit_size);
LLVMValueRef ptr = get_memory_ptr(ctx, instr->src[0], 0);
LLVMValueRef values[2];
uint8_t offsets[] = {nir_intrinsic_offset0(instr), nir_intrinsic_offset1(instr)};
unsigned stride = nir_intrinsic_st64(instr) ? 64 : 1;
for (unsigned i = 0; i < 2; i++) {
LLVMValueRef index = LLVMConstInt(ctx->ac.i32, offsets[i] * stride, 0);
LLVMValueRef derived_ptr = LLVMBuildGEP2(ctx->ac.builder, pointee_type, ptr, &index, 1, "");
values[i] = LLVMBuildLoad2(ctx->ac.builder, pointee_type, derived_ptr, "");
}
LLVMValueRef ret = ac_build_gather_values(&ctx->ac, values, 2);
return LLVMBuildBitCast(ctx->ac.builder, ret, get_def_type(ctx, &instr->dest.ssa), "");
}
static void visit_store_shared2_amd(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr)
{
LLVMTypeRef pointee_type = LLVMIntTypeInContext(ctx->ac.context, instr->src[0].ssa->bit_size);
LLVMValueRef ptr = get_memory_ptr(ctx, instr->src[1], 0);
LLVMValueRef src = get_src(ctx, instr->src[0]);
uint8_t offsets[] = {nir_intrinsic_offset0(instr), nir_intrinsic_offset1(instr)};
unsigned stride = nir_intrinsic_st64(instr) ? 64 : 1;
for (unsigned i = 0; i < 2; i++) {
LLVMValueRef index = LLVMConstInt(ctx->ac.i32, offsets[i] * stride, 0);
LLVMValueRef derived_ptr = LLVMBuildGEP2(ctx->ac.builder, pointee_type, ptr, &index, 1, "");
LLVMBuildStore(ctx->ac.builder, ac_llvm_extract_elem(&ctx->ac, src, i), derived_ptr);
}
}
static LLVMValueRef visit_var_atomic(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr,
LLVMValueRef ptr, int src_idx)
{
if (ctx->ac.postponed_kill) {
LLVMValueRef cond = LLVMBuildLoad2(ctx->ac.builder, ctx->ac.i1, ctx->ac.postponed_kill, "");
ac_build_ifcc(&ctx->ac, cond, 7005);
}
LLVMValueRef result;
LLVMValueRef src = get_src(ctx, instr->src[src_idx]);
const char *sync_scope = "workgroup-one-as";
if (instr->intrinsic == nir_intrinsic_shared_atomic_comp_swap) {
LLVMValueRef src1 = get_src(ctx, instr->src[src_idx + 1]);
result = ac_build_atomic_cmp_xchg(&ctx->ac, ptr, src, src1, sync_scope);
result = LLVMBuildExtractValue(ctx->ac.builder, result, 0, "");
} else if (instr->intrinsic == nir_intrinsic_shared_atomic_fmin ||
instr->intrinsic == nir_intrinsic_shared_atomic_fmax) {
const char *op = instr->intrinsic == nir_intrinsic_shared_atomic_fmin ? "fmin" : "fmax";
char name[64], type[8];
LLVMValueRef params[5];
LLVMTypeRef src_type;
int arg_count = 0;
src = ac_to_float(&ctx->ac, src);
src_type = LLVMTypeOf(src);
params[arg_count++] = ptr;
params[arg_count++] = src;
params[arg_count++] = ctx->ac.i32_0;
params[arg_count++] = ctx->ac.i32_0;
params[arg_count++] = ctx->ac.i1false;
ac_build_type_name_for_intr(src_type, type, sizeof(type));
snprintf(name, sizeof(name), "llvm.amdgcn.ds.%s.%s", op, type);
result = ac_build_intrinsic(&ctx->ac, name, src_type, params, arg_count, 0);
result = ac_to_integer(&ctx->ac, result);
} else {
LLVMAtomicRMWBinOp op;
switch (instr->intrinsic) {
case nir_intrinsic_shared_atomic_add:
op = LLVMAtomicRMWBinOpAdd;
break;
case nir_intrinsic_shared_atomic_umin:
op = LLVMAtomicRMWBinOpUMin;
break;
case nir_intrinsic_shared_atomic_umax:
op = LLVMAtomicRMWBinOpUMax;
break;
case nir_intrinsic_shared_atomic_imin:
op = LLVMAtomicRMWBinOpMin;
break;
case nir_intrinsic_shared_atomic_imax:
op = LLVMAtomicRMWBinOpMax;
break;
case nir_intrinsic_shared_atomic_and:
op = LLVMAtomicRMWBinOpAnd;
break;
case nir_intrinsic_shared_atomic_or:
op = LLVMAtomicRMWBinOpOr;
break;
case nir_intrinsic_shared_atomic_xor:
op = LLVMAtomicRMWBinOpXor;
break;
case nir_intrinsic_shared_atomic_exchange:
op = LLVMAtomicRMWBinOpXchg;
break;
case nir_intrinsic_shared_atomic_fadd:
op = LLVMAtomicRMWBinOpFAdd;
break;
default:
return NULL;
}
LLVMValueRef val;
if (instr->intrinsic == nir_intrinsic_shared_atomic_fadd) {
val = ac_to_float(&ctx->ac, src);
} else {
val = ac_to_integer(&ctx->ac, src);
}
result = ac_build_atomic_rmw(&ctx->ac, op, ptr, val, sync_scope);
if (instr->intrinsic == nir_intrinsic_shared_atomic_fadd ||
instr->intrinsic == nir_intrinsic_deref_atomic_fadd) {
result = ac_to_integer(&ctx->ac, result);
}
}
if (ctx->ac.postponed_kill)
ac_build_endif(&ctx->ac, 7005);
return result;
}
static LLVMValueRef load_sample_pos(struct ac_nir_context *ctx)
{
LLVMValueRef values[2];
LLVMValueRef pos[2];
pos[0] = ac_to_float(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->frag_pos[0]));
pos[1] = ac_to_float(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->frag_pos[1]));
values[0] = ac_build_fract(&ctx->ac, pos[0], 32);
values[1] = ac_build_fract(&ctx->ac, pos[1], 32);
return ac_build_gather_values(&ctx->ac, values, 2);
}
static LLVMValueRef lookup_interp_param(struct ac_nir_context *ctx, enum glsl_interp_mode interp,
unsigned location)
{
switch (interp) {
case INTERP_MODE_FLAT:
default:
return NULL;
case INTERP_MODE_SMOOTH:
case INTERP_MODE_NONE:
if (location == INTERP_CENTER)
return ac_get_arg(&ctx->ac, ctx->args->persp_center);
else if (location == INTERP_CENTROID)
return ctx->abi->persp_centroid;
else if (location == INTERP_SAMPLE)
return ac_get_arg(&ctx->ac, ctx->args->persp_sample);
break;
case INTERP_MODE_NOPERSPECTIVE:
if (location == INTERP_CENTER)
return ac_get_arg(&ctx->ac, ctx->args->linear_center);
else if (location == INTERP_CENTROID)
return ctx->abi->linear_centroid;
else if (location == INTERP_SAMPLE)
return ac_get_arg(&ctx->ac, ctx->args->linear_sample);
break;
}
return NULL;
}
static LLVMValueRef barycentric_center(struct ac_nir_context *ctx, unsigned mode)
{
LLVMValueRef interp_param = lookup_interp_param(ctx, mode, INTERP_CENTER);
return LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2i32, "");
}
static LLVMValueRef barycentric_offset(struct ac_nir_context *ctx, unsigned mode,
LLVMValueRef offset)
{
LLVMValueRef interp_param = lookup_interp_param(ctx, mode, INTERP_CENTER);
LLVMValueRef src_c0 =
ac_to_float(&ctx->ac, LLVMBuildExtractElement(ctx->ac.builder, offset, ctx->ac.i32_0, ""));
LLVMValueRef src_c1 =
ac_to_float(&ctx->ac, LLVMBuildExtractElement(ctx->ac.builder, offset, ctx->ac.i32_1, ""));
LLVMValueRef ij_out[2];
LLVMValueRef ddxy_out = ac_build_ddxy_interp(&ctx->ac, interp_param);
/*
* take the I then J parameters, and the DDX/Y for it, and
* calculate the IJ inputs for the interpolator.
* temp1 = ddx * offset/sample.x + I;
* interp_param.I = ddy * offset/sample.y + temp1;
* temp1 = ddx * offset/sample.x + J;
* interp_param.J = ddy * offset/sample.y + temp1;
*/
for (unsigned i = 0; i < 2; i++) {
LLVMValueRef ix_ll = LLVMConstInt(ctx->ac.i32, i, false);
LLVMValueRef iy_ll = LLVMConstInt(ctx->ac.i32, i + 2, false);
LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder, ddxy_out, ix_ll, "");
LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder, ddxy_out, iy_ll, "");
LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder, interp_param, ix_ll, "");
LLVMValueRef temp1, temp2;
interp_el = LLVMBuildBitCast(ctx->ac.builder, interp_el, ctx->ac.f32, "");
temp1 = ac_build_fmad(&ctx->ac, ddx_el, src_c0, interp_el);
temp2 = ac_build_fmad(&ctx->ac, ddy_el, src_c1, temp1);
ij_out[i] = LLVMBuildBitCast(ctx->ac.builder, temp2, ctx->ac.i32, "");
}
interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
return LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2i32, "");
}
static LLVMValueRef barycentric_centroid(struct ac_nir_context *ctx, unsigned mode)
{
LLVMValueRef interp_param = lookup_interp_param(ctx, mode, INTERP_CENTROID);
return LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2i32, "");
}
static LLVMValueRef barycentric_sample(struct ac_nir_context *ctx, unsigned mode)
{
LLVMValueRef interp_param = lookup_interp_param(ctx, mode, INTERP_SAMPLE);
return LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2i32, "");
}
static LLVMValueRef barycentric_model(struct ac_nir_context *ctx)
{
return LLVMBuildBitCast(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->pull_model),
ctx->ac.v3i32, "");
}
static LLVMValueRef load_interpolated_input(struct ac_nir_context *ctx, LLVMValueRef interp_param,
unsigned index, unsigned comp_start,
unsigned num_components, unsigned bitsize,
bool high_16bits)
{
LLVMValueRef attr_number = LLVMConstInt(ctx->ac.i32, index, false);
LLVMValueRef interp_param_f;
interp_param_f = LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2f32, "");
LLVMValueRef i = LLVMBuildExtractElement(ctx->ac.builder, interp_param_f, ctx->ac.i32_0, "");
LLVMValueRef j = LLVMBuildExtractElement(ctx->ac.builder, interp_param_f, ctx->ac.i32_1, "");
/* Workaround for issue 2647: kill threads with infinite interpolation coeffs */
if (ctx->verified_interp && !_mesa_hash_table_search(ctx->verified_interp, interp_param)) {
LLVMValueRef cond = ac_build_is_inf_or_nan(&ctx->ac, i);
ac_build_kill_if_false(&ctx->ac, LLVMBuildNot(ctx->ac.builder, cond, ""));
_mesa_hash_table_insert(ctx->verified_interp, interp_param, interp_param);
}
LLVMValueRef values[4];
assert(bitsize == 16 || bitsize == 32);
for (unsigned comp = 0; comp < num_components; comp++) {
LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, comp_start + comp, false);
if (bitsize == 16) {
values[comp] = ac_build_fs_interp_f16(&ctx->ac, llvm_chan, attr_number,
ac_get_arg(&ctx->ac, ctx->args->prim_mask), i, j,
high_16bits);
} else {
values[comp] = ac_build_fs_interp(&ctx->ac, llvm_chan, attr_number,
ac_get_arg(&ctx->ac, ctx->args->prim_mask), i, j);
}
}
return ac_to_integer(&ctx->ac, ac_build_gather_values(&ctx->ac, values, num_components));
}
static LLVMValueRef visit_load(struct ac_nir_context *ctx, nir_intrinsic_instr *instr,
bool is_output)
{
LLVMValueRef values[8];
LLVMTypeRef dest_type = get_def_type(ctx, &instr->dest.ssa);
LLVMTypeRef component_type;
unsigned base = nir_intrinsic_base(instr);
unsigned component = nir_intrinsic_component(instr);
unsigned count = instr->dest.ssa.num_components;
nir_src *vertex_index_src = nir_get_io_arrayed_index_src(instr);
LLVMValueRef vertex_index = vertex_index_src ? get_src(ctx, *vertex_index_src) : NULL;
nir_src offset = *nir_get_io_offset_src(instr);
LLVMValueRef indir_index = NULL;
switch (instr->dest.ssa.bit_size) {
case 16:
case 32:
break;
case 64:
if (ctx->stage != MESA_SHADER_VERTEX || is_output) {
unreachable("64-bit IO should have been lowered");
return NULL;
}
break;
default:
unreachable("unhandled load type");
return NULL;
}
if (LLVMGetTypeKind(dest_type) == LLVMVectorTypeKind)
component_type = LLVMGetElementType(dest_type);
else
component_type = dest_type;
if (nir_src_is_const(offset))
assert(nir_src_as_uint(offset) == 0);
else
indir_index = get_src(ctx, offset);
if (ctx->stage == MESA_SHADER_TESS_CTRL) {
LLVMValueRef result = ctx->abi->load_tess_varyings(ctx->abi, component_type,
vertex_index, indir_index,
base, component,
count, !is_output);
if (instr->dest.ssa.bit_size == 16) {
result = ac_to_integer(&ctx->ac, result);
result = LLVMBuildTrunc(ctx->ac.builder, result, dest_type, "");
}
return LLVMBuildBitCast(ctx->ac.builder, result, dest_type, "");
}
/* No indirect indexing is allowed after this point. */
assert(!indir_index);
/* Other non-fragment cases have outputs in temporaries. */
if (is_output && (ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL)) {
assert(is_output);
for (unsigned chan = component; chan < count + component; chan++)
values[chan] = LLVMBuildLoad2(ctx->ac.builder, ctx->ac.f32,
ctx->abi->outputs[base * 4 + chan], "");
LLVMValueRef result = ac_build_varying_gather_values(&ctx->ac, values, count, component);
return LLVMBuildBitCast(ctx->ac.builder, result, dest_type, "");
}
/* Fragment shader inputs. */
assert(ctx->stage == MESA_SHADER_FRAGMENT);
unsigned vertex_id = 0; /* P0 */
if (instr->intrinsic == nir_intrinsic_load_input_vertex)
vertex_id = nir_src_as_uint(instr->src[0]);
LLVMValueRef attr_number = LLVMConstInt(ctx->ac.i32, base, false);
for (unsigned chan = 0; chan < count; chan++) {
LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, (component + chan) % 4, false);
values[chan] = ac_build_fs_interp_mov(&ctx->ac, vertex_id, llvm_chan, attr_number,
ac_get_arg(&ctx->ac, ctx->args->prim_mask));
values[chan] = LLVMBuildBitCast(ctx->ac.builder, values[chan], ctx->ac.i32, "");
if (instr->dest.ssa.bit_size == 16 &&
nir_intrinsic_io_semantics(instr).high_16bits)
values[chan] = LLVMBuildLShr(ctx->ac.builder, values[chan], LLVMConstInt(ctx->ac.i32, 16, 0), "");
values[chan] =
LLVMBuildTruncOrBitCast(ctx->ac.builder, values[chan],
instr->dest.ssa.bit_size == 16 ? ctx->ac.i16 : ctx->ac.i32, "");
}
LLVMValueRef result = ac_build_gather_values(&ctx->ac, values, count);
return LLVMBuildBitCast(ctx->ac.builder, result, dest_type, "");
}
static LLVMValueRef
emit_load_frag_shading_rate(struct ac_nir_context *ctx)
{
LLVMValueRef x_rate, y_rate, cond;
/* VRS Rate X = Ancillary[2:3]
* VRS Rate Y = Ancillary[4:5]
*/
x_rate = ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->ancillary), 2, 2);
y_rate = ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->ancillary), 4, 2);
/* xRate = xRate == 0x1 ? Horizontal2Pixels : None. */
cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, x_rate, ctx->ac.i32_1, "");
x_rate = LLVMBuildSelect(ctx->ac.builder, cond,
LLVMConstInt(ctx->ac.i32, 4, false), ctx->ac.i32_0, "");
/* yRate = yRate == 0x1 ? Vertical2Pixels : None. */
cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, y_rate, ctx->ac.i32_1, "");
y_rate = LLVMBuildSelect(ctx->ac.builder, cond,
LLVMConstInt(ctx->ac.i32, 1, false), ctx->ac.i32_0, "");
return LLVMBuildOr(ctx->ac.builder, x_rate, y_rate, "");
}
static LLVMValueRef
emit_load_frag_coord(struct ac_nir_context *ctx)
{
LLVMValueRef values[4] = {
ac_get_arg(&ctx->ac, ctx->args->frag_pos[0]), ac_get_arg(&ctx->ac, ctx->args->frag_pos[1]),
ac_get_arg(&ctx->ac, ctx->args->frag_pos[2]),
ac_build_fdiv(&ctx->ac, ctx->ac.f32_1, ac_get_arg(&ctx->ac, ctx->args->frag_pos[3]))};
return ac_to_integer(&ctx->ac, ac_build_gather_values(&ctx->ac, values, 4));
}
static bool visit_intrinsic(struct ac_nir_context *ctx, nir_intrinsic_instr *instr)
{
LLVMValueRef result = NULL;
switch (instr->intrinsic) {
case nir_intrinsic_ballot:
result = ac_build_ballot(&ctx->ac, get_src(ctx, instr->src[0]));
if (ctx->ac.ballot_mask_bits > ctx->ac.wave_size)
result = LLVMBuildZExt(ctx->ac.builder, result, ctx->ac.iN_ballotmask, "");
break;
case nir_intrinsic_read_invocation:
result =
ac_build_readlane(&ctx->ac, get_src(ctx, instr->src[0]), get_src(ctx, instr->src[1]));
break;
case nir_intrinsic_read_first_invocation:
result = ac_build_readlane(&ctx->ac, get_src(ctx, instr->src[0]), NULL);
break;
case nir_intrinsic_load_subgroup_invocation:
result = ac_get_thread_id(&ctx->ac);
break;
case nir_intrinsic_load_workgroup_id: {
LLVMValueRef values[3];
for (int i = 0; i < 3; i++) {
values[i] = ctx->args->workgroup_ids[i].used
? ac_get_arg(&ctx->ac, ctx->args->workgroup_ids[i])
: ctx->ac.i32_0;
if (nir_dest_bit_size(instr->dest) == 64)
values[i] = LLVMBuildZExt(ctx->ac.builder, values[i], ctx->ac.i64, "");
}
result = ac_build_gather_values(&ctx->ac, values, 3);
break;
}
case nir_intrinsic_load_base_vertex:
case nir_intrinsic_load_first_vertex:
case nir_intrinsic_load_tess_rel_patch_id_amd:
case nir_intrinsic_load_ring_tess_offchip_amd:
case nir_intrinsic_load_ring_esgs_amd:
case nir_intrinsic_load_ring_attr_amd:
case nir_intrinsic_load_ring_gsvs_amd:
case nir_intrinsic_load_lds_ngg_scratch_base_amd:
case nir_intrinsic_load_lds_ngg_gs_out_vertex_base_amd:
result = ctx->abi->intrinsic_load(ctx->abi, instr);
break;
case nir_intrinsic_load_merged_wave_info_amd:
result = ac_get_arg(&ctx->ac, ctx->args->merged_wave_info);
break;
case nir_intrinsic_load_ordered_id_amd:
result = ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->gs_tg_info), 0, 12);
break;
case nir_intrinsic_load_vertex_id_zero_base:
result = ctx->abi->vertex_id_replaced ? ctx->abi->vertex_id_replaced : ctx->abi->vertex_id;
break;
case nir_intrinsic_load_local_invocation_id: {
LLVMValueRef ids = ac_get_arg(&ctx->ac, ctx->args->local_invocation_ids);
if (LLVMGetTypeKind(LLVMTypeOf(ids)) == LLVMIntegerTypeKind) {
/* Thread IDs are packed in VGPR0, 10 bits per component. */
LLVMValueRef id[3];
for (unsigned i = 0; i < 3; i++)
id[i] = ac_unpack_param(&ctx->ac, ids, i * 10, 10);
result = ac_build_gather_values(&ctx->ac, id, 3);
} else {
result = ids;
}
break;
}
case nir_intrinsic_load_base_instance:
result = ac_get_arg(&ctx->ac, ctx->args->start_instance);
break;
case nir_intrinsic_load_draw_id:
result = ac_get_arg(&ctx->ac, ctx->args->draw_id);
break;
case nir_intrinsic_load_view_index:
result = ac_get_arg(&ctx->ac, ctx->args->view_index);
break;
case nir_intrinsic_load_invocation_id:
if (ctx->stage == MESA_SHADER_TESS_CTRL) {
result = ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->tcs_rel_ids), 8, 5);
} else {
if (ctx->ac.gfx_level >= GFX10) {
result =
LLVMBuildAnd(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->gs_invocation_id),
LLVMConstInt(ctx->ac.i32, 127, 0), "");
} else {
result = ac_get_arg(&ctx->ac, ctx->args->gs_invocation_id);
}
}
break;
case nir_intrinsic_load_primitive_id:
if (ctx->stage == MESA_SHADER_GEOMETRY) {
result = ac_get_arg(&ctx->ac, ctx->args->gs_prim_id);
} else if (ctx->stage == MESA_SHADER_TESS_CTRL) {
result = ac_get_arg(&ctx->ac, ctx->args->tcs_patch_id);
} else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
result = ctx->abi->tes_patch_id_replaced ?
ctx->abi->tes_patch_id_replaced : ac_get_arg(&ctx->ac, ctx->args->tes_patch_id);
} else if (ctx->stage == MESA_SHADER_VERTEX) {
if (ctx->args->vs_prim_id.used)
result = ac_get_arg(&ctx->ac, ctx->args->vs_prim_id); /* legacy */
else
result = ac_get_arg(&ctx->ac, ctx->args->gs_prim_id); /* NGG */
} else
fprintf(stderr, "Unknown primitive id intrinsic: %d", ctx->stage);
break;
case nir_intrinsic_load_sample_id:
result = ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->ancillary), 8, 4);
break;
case nir_intrinsic_load_sample_pos:
result = load_sample_pos(ctx);
break;
case nir_intrinsic_load_frag_coord:
result = emit_load_frag_coord(ctx);
break;
case nir_intrinsic_load_frag_shading_rate:
result = emit_load_frag_shading_rate(ctx);
break;
case nir_intrinsic_load_front_face:
result = emit_i2b(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->front_face));
break;
case nir_intrinsic_load_helper_invocation:
result = ac_build_load_helper_invocation(&ctx->ac);
break;
case nir_intrinsic_is_helper_invocation:
result = ac_build_is_helper_invocation(&ctx->ac);
break;
case nir_intrinsic_load_color0:
result = ctx->abi->color0;
break;
case nir_intrinsic_load_color1:
result = ctx->abi->color1;
break;
case nir_intrinsic_load_user_data_amd:
assert(LLVMTypeOf(ctx->abi->user_data) == ctx->ac.v4i32);
result = ctx->abi->user_data;
break;
case nir_intrinsic_load_instance_id:
result = ctx->abi->instance_id_replaced ?
ctx->abi->instance_id_replaced : ctx->abi->instance_id;
break;
case nir_intrinsic_load_num_workgroups:
if (ctx->abi->load_grid_size_from_user_sgpr) {
result = ac_get_arg(&ctx->ac, ctx->args->num_work_groups);
} else {
result = ac_build_load_invariant(&ctx->ac,
ac_get_ptr_arg(&ctx->ac, ctx->args, ctx->args->num_work_groups), ctx->ac.i32_0);
}
if (nir_dest_bit_size(instr->dest) == 64)
result = LLVMBuildZExt(ctx->ac.builder, result, LLVMVectorType(ctx->ac.i64, 3), "");
break;
case nir_intrinsic_load_local_invocation_index:
result = visit_load_local_invocation_index(ctx);
break;
case nir_intrinsic_load_subgroup_id:
result = visit_load_subgroup_id(ctx);
break;
case nir_intrinsic_load_num_subgroups:
result = visit_load_num_subgroups(ctx);
break;
case nir_intrinsic_first_invocation:
result = visit_first_invocation(ctx);
break;
case nir_intrinsic_load_push_constant:
result = visit_load_push_constant(ctx, instr);
break;
case nir_intrinsic_store_ssbo:
visit_store_ssbo(ctx, instr);
break;
case nir_intrinsic_load_ssbo:
result = visit_load_buffer(ctx, instr);
break;
case nir_intrinsic_load_global_constant:
case nir_intrinsic_load_global:
case nir_intrinsic_load_global_amd:
result = visit_load_global(ctx, instr);
break;
case nir_intrinsic_store_global:
case nir_intrinsic_store_global_amd:
visit_store_global(ctx, instr);
break;
case nir_intrinsic_global_atomic_add:
case nir_intrinsic_global_atomic_imin:
case nir_intrinsic_global_atomic_umin:
case nir_intrinsic_global_atomic_imax:
case nir_intrinsic_global_atomic_umax:
case nir_intrinsic_global_atomic_and:
case nir_intrinsic_global_atomic_or:
case nir_intrinsic_global_atomic_xor:
case nir_intrinsic_global_atomic_exchange:
case nir_intrinsic_global_atomic_comp_swap:
case nir_intrinsic_global_atomic_fadd:
case nir_intrinsic_global_atomic_fmin:
case nir_intrinsic_global_atomic_fmax:
case nir_intrinsic_global_atomic_add_amd:
case nir_intrinsic_global_atomic_imin_amd:
case nir_intrinsic_global_atomic_umin_amd:
case nir_intrinsic_global_atomic_imax_amd:
case nir_intrinsic_global_atomic_umax_amd:
case nir_intrinsic_global_atomic_and_amd:
case nir_intrinsic_global_atomic_or_amd:
case nir_intrinsic_global_atomic_xor_amd:
case nir_intrinsic_global_atomic_exchange_amd:
case nir_intrinsic_global_atomic_comp_swap_amd:
case nir_intrinsic_global_atomic_fadd_amd:
case nir_intrinsic_global_atomic_fmin_amd:
case nir_intrinsic_global_atomic_fmax_amd:
result = visit_global_atomic(ctx, instr);
break;
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
case nir_intrinsic_ssbo_atomic_fadd:
case nir_intrinsic_ssbo_atomic_fmin:
case nir_intrinsic_ssbo_atomic_fmax:
result = visit_atomic_ssbo(ctx, instr);
break;
case nir_intrinsic_load_ubo:
result = visit_load_ubo_buffer(ctx, instr);
break;
case nir_intrinsic_get_ssbo_size:
result = visit_get_ssbo_size(ctx, instr);
break;
case nir_intrinsic_load_input:
case nir_intrinsic_load_input_vertex:
case nir_intrinsic_load_per_vertex_input:
result = visit_load(ctx, instr, false);
break;
case nir_intrinsic_load_output:
case nir_intrinsic_load_per_vertex_output:
result = visit_load(ctx, instr, true);
break;
case nir_intrinsic_store_output:
case nir_intrinsic_store_per_vertex_output:
visit_store_output(ctx, instr);
break;
case nir_intrinsic_load_shared:
result = visit_load_shared(ctx, instr);
break;
case nir_intrinsic_store_shared:
visit_store_shared(ctx, instr);
break;
case nir_intrinsic_load_shared2_amd:
result = visit_load_shared2_amd(ctx, instr);
break;
case nir_intrinsic_store_shared2_amd:
visit_store_shared2_amd(ctx, instr);
break;
case nir_intrinsic_bindless_image_load:
case nir_intrinsic_bindless_image_sparse_load:
case nir_intrinsic_bindless_image_fragment_mask_load_amd:
result = visit_image_load(ctx, instr);
break;
case nir_intrinsic_bindless_image_store:
visit_image_store(ctx, instr);
break;
case nir_intrinsic_bindless_image_atomic_add:
case nir_intrinsic_bindless_image_atomic_imin:
case nir_intrinsic_bindless_image_atomic_umin:
case nir_intrinsic_bindless_image_atomic_imax:
case nir_intrinsic_bindless_image_atomic_umax:
case nir_intrinsic_bindless_image_atomic_and:
case nir_intrinsic_bindless_image_atomic_or:
case nir_intrinsic_bindless_image_atomic_xor:
case nir_intrinsic_bindless_image_atomic_exchange:
case nir_intrinsic_bindless_image_atomic_comp_swap:
case nir_intrinsic_bindless_image_atomic_inc_wrap:
case nir_intrinsic_bindless_image_atomic_dec_wrap:
case nir_intrinsic_bindless_image_atomic_fadd:
case nir_intrinsic_bindless_image_atomic_fmin:
case nir_intrinsic_bindless_image_atomic_fmax:
result = visit_image_atomic(ctx, instr);
break;
case nir_intrinsic_shader_clock:
result = ac_build_shader_clock(&ctx->ac, nir_intrinsic_memory_scope(instr));
break;
case nir_intrinsic_discard:
case nir_intrinsic_discard_if:
case nir_intrinsic_terminate:
case nir_intrinsic_terminate_if:
emit_discard(ctx, instr);
break;
case nir_intrinsic_demote:
case nir_intrinsic_demote_if:
emit_demote(ctx, instr);
break;
case nir_intrinsic_memory_barrier:
case nir_intrinsic_group_memory_barrier:
ac_build_waitcnt(&ctx->ac, AC_WAIT_LGKM | AC_WAIT_VLOAD | AC_WAIT_VSTORE);
break;
case nir_intrinsic_memory_barrier_buffer:
case nir_intrinsic_memory_barrier_image:
ac_build_waitcnt(&ctx->ac, AC_WAIT_VLOAD | AC_WAIT_VSTORE);
break;
case nir_intrinsic_memory_barrier_shared:
case nir_intrinsic_memory_barrier_tcs_patch:
ac_build_waitcnt(&ctx->ac, AC_WAIT_LGKM);
break;
case nir_intrinsic_scoped_barrier: {
assert(!(nir_intrinsic_memory_semantics(instr) &
(NIR_MEMORY_MAKE_AVAILABLE | NIR_MEMORY_MAKE_VISIBLE)));
nir_variable_mode modes = nir_intrinsic_memory_modes(instr);
unsigned wait_flags = 0;
if (modes & (nir_var_mem_global | nir_var_mem_ssbo | nir_var_image))
wait_flags |= AC_WAIT_VLOAD | AC_WAIT_VSTORE;
if (modes & nir_var_mem_shared)
wait_flags |= AC_WAIT_LGKM;
if (wait_flags)
ac_build_waitcnt(&ctx->ac, wait_flags);
if (nir_intrinsic_execution_scope(instr) == NIR_SCOPE_WORKGROUP)
ac_build_s_barrier(&ctx->ac, ctx->stage);
break;
}
case nir_intrinsic_control_barrier:
/* If output patches are wholly in one wave, we don't need a barrier. */
if (ctx->stage == MESA_SHADER_TESS_CTRL &&
ctx->ac.wave_size % ctx->info->tess.tcs_vertices_out == 0)
break;
ac_build_s_barrier(&ctx->ac, ctx->stage);
break;
case nir_intrinsic_optimization_barrier_vgpr_amd:
result = get_src(ctx, instr->src[0]);
ac_build_optimization_barrier(&ctx->ac, &result, false);
break;
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_shared_atomic_imin:
case nir_intrinsic_shared_atomic_umin:
case nir_intrinsic_shared_atomic_imax:
case nir_intrinsic_shared_atomic_umax:
case nir_intrinsic_shared_atomic_and:
case nir_intrinsic_shared_atomic_or:
case nir_intrinsic_shared_atomic_xor:
case nir_intrinsic_shared_atomic_exchange:
case nir_intrinsic_shared_atomic_comp_swap:
case nir_intrinsic_shared_atomic_fadd:
case nir_intrinsic_shared_atomic_fmin:
case nir_intrinsic_shared_atomic_fmax: {
LLVMValueRef ptr = get_memory_ptr(ctx, instr->src[0], 0);
result = visit_var_atomic(ctx, instr, ptr, 1);
break;
}
case nir_intrinsic_deref_atomic_add:
case nir_intrinsic_deref_atomic_imin:
case nir_intrinsic_deref_atomic_umin:
case nir_intrinsic_deref_atomic_imax:
case nir_intrinsic_deref_atomic_umax:
case nir_intrinsic_deref_atomic_and:
case nir_intrinsic_deref_atomic_or:
case nir_intrinsic_deref_atomic_xor:
case nir_intrinsic_deref_atomic_exchange:
case nir_intrinsic_deref_atomic_comp_swap:
case nir_intrinsic_deref_atomic_fadd: {
LLVMValueRef ptr = get_src(ctx, instr->src[0]);
result = visit_var_atomic(ctx, instr, ptr, 1);
break;
}
case nir_intrinsic_load_barycentric_pixel:
result = barycentric_center(ctx, nir_intrinsic_interp_mode(instr));
break;
case nir_intrinsic_load_barycentric_centroid:
result = barycentric_centroid(ctx, nir_intrinsic_interp_mode(instr));
break;
case nir_intrinsic_load_barycentric_sample:
result = barycentric_sample(ctx, nir_intrinsic_interp_mode(instr));
break;
case nir_intrinsic_load_barycentric_model:
result = barycentric_model(ctx);
break;
case nir_intrinsic_load_barycentric_at_offset: {
LLVMValueRef offset = ac_to_float(&ctx->ac, get_src(ctx, instr->src[0]));
result = barycentric_offset(ctx, nir_intrinsic_interp_mode(instr), offset);
break;
}
case nir_intrinsic_load_interpolated_input: {
/* We assume any indirect loads have been lowered away */
ASSERTED nir_const_value *offset = nir_src_as_const_value(instr->src[1]);
assert(offset);
assert(offset[0].i32 == 0);
LLVMValueRef interp_param = get_src(ctx, instr->src[0]);
unsigned index = nir_intrinsic_base(instr);
unsigned component = nir_intrinsic_component(instr);
result = load_interpolated_input(ctx, interp_param, index, component,
instr->dest.ssa.num_components, instr->dest.ssa.bit_size,
nir_intrinsic_io_semantics(instr).high_16bits);
break;
}
case nir_intrinsic_load_point_coord_maybe_flipped: {
LLVMValueRef interp_param = lookup_interp_param(ctx, INTERP_MODE_NONE, INTERP_CENTER);
/* Load point coordinates (x, y) which are written by the hw after the interpolated inputs */
result = load_interpolated_input(ctx, interp_param, ctx->abi->num_interp, 2,
instr->dest.ssa.num_components, instr->dest.ssa.bit_size,
false);
break;
}
case nir_intrinsic_emit_vertex_with_counter: {
unsigned stream = nir_intrinsic_stream_id(instr);
LLVMValueRef next_vertex = get_src(ctx, instr->src[0]);
ctx->abi->emit_vertex_with_counter(ctx->abi, stream, next_vertex, ctx->abi->outputs);
break;
}
case nir_intrinsic_end_primitive:
case nir_intrinsic_end_primitive_with_counter:
ctx->abi->emit_primitive(ctx->abi, nir_intrinsic_stream_id(instr));
break;
case nir_intrinsic_load_tess_coord: {
LLVMValueRef coord[] = {
ctx->abi->tes_u_replaced ? ctx->abi->tes_u_replaced : ac_get_arg(&ctx->ac, ctx->args->tes_u),
ctx->abi->tes_v_replaced ? ctx->abi->tes_v_replaced : ac_get_arg(&ctx->ac, ctx->args->tes_v),
ctx->ac.f32_0,
};
/* For triangles, the vector should be (u, v, 1-u-v). */
if (ctx->info->tess._primitive_mode == TESS_PRIMITIVE_TRIANGLES) {
coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
LLVMBuildFAdd(ctx->ac.builder, coord[0], coord[1], ""), "");
}
result = ac_build_gather_values(&ctx->ac, coord, 3);
break;
}
case nir_intrinsic_load_gs_vertex_offset_amd:
result = ac_get_arg(&ctx->ac, ctx->args->gs_vtx_offset[nir_intrinsic_base(instr)]);
break;
case nir_intrinsic_vote_all: {
result = ac_build_vote_all(&ctx->ac, get_src(ctx, instr->src[0]));
break;
}
case nir_intrinsic_vote_any: {
result = ac_build_vote_any(&ctx->ac, get_src(ctx, instr->src[0]));
break;
}
case nir_intrinsic_shuffle:
if (ctx->ac.gfx_level == GFX8 || ctx->ac.gfx_level == GFX9 ||
(ctx->ac.gfx_level >= GFX10 && ctx->ac.wave_size == 32)) {
result =
ac_build_shuffle(&ctx->ac, get_src(ctx, instr->src[0]), get_src(ctx, instr->src[1]));
} else {
LLVMValueRef src = get_src(ctx, instr->src[0]);
LLVMValueRef index = get_src(ctx, instr->src[1]);
LLVMTypeRef type = LLVMTypeOf(src);
struct waterfall_context wctx;
LLVMValueRef index_val;
index_val = enter_waterfall(ctx, &wctx, index, true);
src = LLVMBuildZExt(ctx->ac.builder, src, ctx->ac.i32, "");
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.readlane", ctx->ac.i32,
(LLVMValueRef[]){src, index_val}, 2, 0);
result = LLVMBuildTrunc(ctx->ac.builder, result, type, "");
result = exit_waterfall(ctx, &wctx, result);
}
break;
case nir_intrinsic_reduce:
result = ac_build_reduce(&ctx->ac, get_src(ctx, instr->src[0]), instr->const_index[0],
instr->const_index[1]);
break;
case nir_intrinsic_inclusive_scan:
result =
ac_build_inclusive_scan(&ctx->ac, get_src(ctx, instr->src[0]), instr->const_index[0]);
break;
case nir_intrinsic_exclusive_scan:
result =
ac_build_exclusive_scan(&ctx->ac, get_src(ctx, instr->src[0]), instr->const_index[0]);
break;
case nir_intrinsic_quad_broadcast: {
unsigned lane = nir_src_as_uint(instr->src[1]);
result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), lane, lane, lane, lane);
break;
}
case nir_intrinsic_quad_swap_horizontal:
result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), 1, 0, 3, 2);
break;
case nir_intrinsic_quad_swap_vertical:
result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), 2, 3, 0, 1);
break;
case nir_intrinsic_quad_swap_diagonal:
result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), 3, 2, 1, 0);
break;
case nir_intrinsic_quad_swizzle_amd: {
uint32_t mask = nir_intrinsic_swizzle_mask(instr);
result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), mask & 0x3,
(mask >> 2) & 0x3, (mask >> 4) & 0x3, (mask >> 6) & 0x3);
break;
}
case nir_intrinsic_masked_swizzle_amd: {
uint32_t mask = nir_intrinsic_swizzle_mask(instr);
result = ac_build_ds_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), mask);
break;
}
case nir_intrinsic_write_invocation_amd:
result = ac_build_writelane(&ctx->ac, get_src(ctx, instr->src[0]),
get_src(ctx, instr->src[1]), get_src(ctx, instr->src[2]));
break;
case nir_intrinsic_mbcnt_amd:
result = ac_build_mbcnt_add(&ctx->ac, get_src(ctx, instr->src[0]), get_src(ctx, instr->src[1]));
break;
case nir_intrinsic_load_scratch: {
LLVMValueRef offset = get_src(ctx, instr->src[0]);
LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->scratch, offset);
LLVMTypeRef comp_type = LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.bit_size);
LLVMTypeRef vec_type = instr->dest.ssa.num_components == 1
? comp_type
: LLVMVectorType(comp_type, instr->dest.ssa.num_components);
result = LLVMBuildLoad2(ctx->ac.builder, vec_type, ptr, "");
break;
}
case nir_intrinsic_store_scratch: {
LLVMValueRef offset = get_src(ctx, instr->src[1]);
LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->scratch, offset);
LLVMTypeRef comp_type = LLVMIntTypeInContext(ctx->ac.context, instr->src[0].ssa->bit_size);
LLVMValueRef src = get_src(ctx, instr->src[0]);
unsigned wrmask = nir_intrinsic_write_mask(instr);
while (wrmask) {
int start, count;
u_bit_scan_consecutive_range(&wrmask, &start, &count);
LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, start, false);
LLVMValueRef offset_ptr = LLVMBuildGEP2(ctx->ac.builder, comp_type, ptr, &offset, 1, "");
LLVMValueRef offset_src = ac_extract_components(&ctx->ac, src, start, count);
LLVMBuildStore(ctx->ac.builder, offset_src, offset_ptr);
}
break;
}
case nir_intrinsic_load_constant: {
unsigned base = nir_intrinsic_base(instr);
unsigned range = nir_intrinsic_range(instr);
LLVMValueRef offset = get_src(ctx, instr->src[0]);
offset = LLVMBuildAdd(ctx->ac.builder, offset, LLVMConstInt(ctx->ac.i32, base, false), "");
/* Clamp the offset to avoid out-of-bound access because global
* instructions can't handle them.
*/
LLVMValueRef size = LLVMConstInt(ctx->ac.i32, base + range, false);
LLVMValueRef cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, offset, size, "");
offset = LLVMBuildSelect(ctx->ac.builder, cond, offset, size, "");
LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->constant_data, offset);
LLVMTypeRef comp_type = LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.bit_size);
LLVMTypeRef vec_type = instr->dest.ssa.num_components == 1
? comp_type
: LLVMVectorType(comp_type, instr->dest.ssa.num_components);
result = LLVMBuildLoad2(ctx->ac.builder, vec_type, ptr, "");
break;
}
case nir_intrinsic_set_vertex_and_primitive_count:
/* Currently ignored. */
break;
case nir_intrinsic_load_typed_buffer_amd:
case nir_intrinsic_load_buffer_amd:
case nir_intrinsic_store_buffer_amd: {
unsigned src_base = instr->intrinsic == nir_intrinsic_store_buffer_amd ? 1 : 0;
bool idxen = !nir_src_is_const(instr->src[src_base + 3]) ||
nir_src_as_uint(instr->src[src_base + 3]);
LLVMValueRef store_data = get_src(ctx, instr->src[0]);
LLVMValueRef descriptor = get_src(ctx, instr->src[src_base + 0]);
LLVMValueRef addr_voffset = get_src(ctx, instr->src[src_base + 1]);
LLVMValueRef addr_soffset = get_src(ctx, instr->src[src_base + 2]);
LLVMValueRef vidx = idxen ? get_src(ctx, instr->src[src_base + 3]) : NULL;
unsigned num_components = instr->dest.ssa.num_components;
unsigned const_offset = nir_intrinsic_base(instr);
bool swizzled = nir_intrinsic_access(instr) & ACCESS_IS_SWIZZLED_AMD;
bool reorder = nir_intrinsic_can_reorder(instr);
bool coherent = nir_intrinsic_access(instr) & ACCESS_COHERENT;
bool slc = nir_intrinsic_access(instr) & ACCESS_STREAM_CACHE_POLICY;
bool uses_format = nir_intrinsic_access(instr) & ACCESS_USES_FORMAT_AMD;
enum ac_image_cache_policy cache_policy = 0;
if (swizzled)
cache_policy |= ac_swizzled;
if (slc)
cache_policy |= ac_slc;
if (coherent)
cache_policy |= ac_glc;
LLVMValueRef voffset = LLVMBuildAdd(ctx->ac.builder, addr_voffset,
LLVMConstInt(ctx->ac.i32, const_offset, 0), "");
if (instr->intrinsic == nir_intrinsic_load_buffer_amd && uses_format) {
assert(instr->dest.ssa.bit_size == 16 || instr->dest.ssa.bit_size == 32);
result = ac_build_buffer_load_format(&ctx->ac, descriptor, vidx, voffset, num_components,
cache_policy, reorder,
instr->dest.ssa.bit_size == 16, false);
result = ac_to_integer(&ctx->ac, result);
} else if (instr->intrinsic == nir_intrinsic_store_buffer_amd && uses_format) {
assert(instr->src[0].ssa->bit_size == 16 || instr->src[0].ssa->bit_size == 32);
ac_build_buffer_store_format(&ctx->ac, descriptor, store_data, vidx, voffset, cache_policy);
} else if (instr->intrinsic == nir_intrinsic_load_buffer_amd ||
instr->intrinsic == nir_intrinsic_load_typed_buffer_amd) {
/* LLVM is unable to select instructions for larger than 32-bit channel types.
* Workaround by using i32 and casting to the correct type later.
*/
const unsigned fetch_num_components =
num_components * MAX2(32, instr->dest.ssa.bit_size) / 32;
LLVMTypeRef channel_type =
LLVMIntTypeInContext(ctx->ac.context, MIN2(32, instr->dest.ssa.bit_size));
if (instr->intrinsic == nir_intrinsic_load_buffer_amd) {
result = ac_build_buffer_load(&ctx->ac, descriptor, fetch_num_components, vidx, voffset,
addr_soffset, channel_type, cache_policy, reorder, false);
} else {
const unsigned align_offset = nir_intrinsic_align_offset(instr);
const unsigned align_mul = nir_intrinsic_align_mul(instr);
const enum pipe_format format = nir_intrinsic_format(instr);
const struct ac_vtx_format_info *vtx_info =
ac_get_vtx_format_info(ctx->ac.gfx_level, ctx->ac.family, format);
result =
ac_build_safe_tbuffer_load(&ctx->ac, descriptor, vidx, addr_voffset, addr_soffset,
channel_type, vtx_info, const_offset, align_offset,
align_mul, fetch_num_components, cache_policy, reorder);
}
/* Trim to needed vector components. */
result = ac_trim_vector(&ctx->ac, result, fetch_num_components);
/* Cast to larger than 32-bit sized components if needed. */
if (instr->dest.ssa.bit_size > 32) {
LLVMTypeRef cast_channel_type =
LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.bit_size);
LLVMTypeRef cast_type =
num_components == 1 ? cast_channel_type :
LLVMVectorType(cast_channel_type, num_components);
result = LLVMBuildBitCast(ctx->ac.builder, result, cast_type, "");
}
/* Cast the result to an integer (or vector of integers). */
result = ac_to_integer(&ctx->ac, result);
} else {
unsigned writemask = nir_intrinsic_write_mask(instr);
while (writemask) {
int start, count;
u_bit_scan_consecutive_range(&writemask, &start, &count);
LLVMValueRef voffset = LLVMBuildAdd(
ctx->ac.builder, addr_voffset,
LLVMConstInt(ctx->ac.i32, const_offset + start * 4, 0), "");
LLVMValueRef data = extract_vector_range(&ctx->ac, store_data, start, count);
ac_build_buffer_store_dword(&ctx->ac, descriptor, data, vidx, voffset, addr_soffset,
cache_policy);
}
}
break;
}
case nir_intrinsic_load_packed_passthrough_primitive_amd:
result = ac_get_arg(&ctx->ac, ctx->args->gs_vtx_offset[0]);
break;
case nir_intrinsic_load_initial_edgeflags_amd:
if (ctx->stage == MESA_SHADER_VERTEX && !ctx->info->vs.blit_sgprs_amd)
result = ac_pack_edgeflags_for_export(&ctx->ac, ctx->args);
else
result = ctx->ac.i32_0;
break;
case nir_intrinsic_is_subgroup_invocation_lt_amd: {
LLVMValueRef count = LLVMBuildAnd(ctx->ac.builder, get_src(ctx, instr->src[0]),
LLVMConstInt(ctx->ac.i32, 0xff, 0), "");
result = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), count, "");
break;
}
case nir_intrinsic_load_workgroup_num_input_vertices_amd:
result = ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->gs_tg_info), 12, 9);
break;
case nir_intrinsic_load_workgroup_num_input_primitives_amd:
result = ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->gs_tg_info), 22, 9);
break;
case nir_intrinsic_alloc_vertices_and_primitives_amd: {
/* The caller should only call this conditionally for wave 0.
*
* Send GS Alloc Req message from the first wave of the group to SPI.
* Message payload is:
* - bits 0..10: vertices in group
* - bits 12..22: primitives in group
*/
LLVMValueRef vtx_cnt = get_src(ctx, instr->src[0]);
LLVMValueRef prim_cnt = get_src(ctx, instr->src[1]);
LLVMValueRef msg = LLVMBuildShl(ctx->ac.builder, prim_cnt,
LLVMConstInt(ctx->ac.i32, 12, false), "");
msg = LLVMBuildOr(ctx->ac.builder, msg, vtx_cnt, "");
ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_ALLOC_REQ, msg);
break;
}
case nir_intrinsic_overwrite_vs_arguments_amd:
ctx->abi->vertex_id_replaced = get_src(ctx, instr->src[0]);
ctx->abi->instance_id_replaced = get_src(ctx, instr->src[1]);
break;
case nir_intrinsic_overwrite_tes_arguments_amd:
ctx->abi->tes_u_replaced = ac_to_float(&ctx->ac, get_src(ctx, instr->src[0]));
ctx->abi->tes_v_replaced = ac_to_float(&ctx->ac, get_src(ctx, instr->src[1]));
ctx->abi->tes_rel_patch_id_replaced = get_src(ctx, instr->src[3]);
ctx->abi->tes_patch_id_replaced = get_src(ctx, instr->src[2]);
break;
case nir_intrinsic_gds_atomic_add_amd: {
LLVMValueRef store_val = get_src(ctx, instr->src[0]);
LLVMValueRef addr = get_src(ctx, instr->src[1]);
LLVMTypeRef gds_ptr_type = LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS);
LLVMValueRef gds_base = LLVMBuildIntToPtr(ctx->ac.builder, addr, gds_ptr_type, "");
ac_build_atomic_rmw(&ctx->ac, LLVMAtomicRMWBinOpAdd, gds_base, store_val, "workgroup-one-as");
break;
}
case nir_intrinsic_buffer_atomic_add_amd: {
LLVMValueRef desc = get_src(ctx, instr->src[0]);
LLVMValueRef data = get_src(ctx, instr->src[1]);
unsigned base = nir_intrinsic_base(instr);
LLVMTypeRef return_type = LLVMTypeOf(data);
LLVMValueRef args[] = {
data, desc,
LLVMConstInt(ctx->ac.i32, base, false),
ctx->ac.i32_0, /* soffset */
ctx->ac.i32_0, /* cachepolicy */
};
char name[64], type[8];
ac_build_type_name_for_intr(return_type, type, sizeof(type));
snprintf(name, sizeof(name), "llvm.amdgcn.raw.buffer.atomic.add.%s", type);
result = ac_build_intrinsic(&ctx->ac, name, return_type, args, 5, 0);
break;
}
case nir_intrinsic_elect:
result = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, visit_first_invocation(ctx),
ac_get_thread_id(&ctx->ac), "");
break;
case nir_intrinsic_lane_permute_16_amd:
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.permlane16", ctx->ac.i32,
(LLVMValueRef[]){get_src(ctx, instr->src[0]),
get_src(ctx, instr->src[0]),
get_src(ctx, instr->src[1]),
get_src(ctx, instr->src[2]),
ctx->ac.i1false,
ctx->ac.i1false}, 6, 0);
break;
case nir_intrinsic_load_scalar_arg_amd:
case nir_intrinsic_load_vector_arg_amd: {
assert(nir_intrinsic_base(instr) < AC_MAX_ARGS);
struct ac_arg arg;
arg.arg_index = nir_intrinsic_base(instr);
arg.used = true;
result = ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, arg));
if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(result)) != 32)
result = LLVMBuildBitCast(ctx->ac.builder, result, get_def_type(ctx, &instr->dest.ssa), "");
break;
}
case nir_intrinsic_load_smem_amd: {
LLVMValueRef base = get_src(ctx, instr->src[0]);
LLVMValueRef offset = get_src(ctx, instr->src[1]);
bool is_addr_32bit = nir_src_bit_size(instr->src[0]) == 32;
int addr_space = is_addr_32bit ? AC_ADDR_SPACE_CONST_32BIT : AC_ADDR_SPACE_CONST;
LLVMTypeRef result_type = get_def_type(ctx, &instr->dest.ssa);
LLVMTypeRef byte_ptr_type = LLVMPointerType(ctx->ac.i8, addr_space);
LLVMValueRef addr = LLVMBuildIntToPtr(ctx->ac.builder, base, byte_ptr_type, "");
/* see ac_build_load_custom() for 32bit/64bit addr GEP difference */
addr = is_addr_32bit ?
LLVMBuildInBoundsGEP2(ctx->ac.builder, ctx->ac.i8, addr, &offset, 1, "") :
LLVMBuildGEP2(ctx->ac.builder, ctx->ac.i8, addr, &offset, 1, "");
LLVMSetMetadata(addr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
result = LLVMBuildLoad2(ctx->ac.builder, result_type, addr, "");
LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
break;
}
case nir_intrinsic_load_smem_buffer_amd: {
LLVMValueRef descriptor = get_src(ctx, instr->src[0]);
LLVMValueRef offset = get_src(ctx, instr->src[1]);
unsigned num_components = instr->dest.ssa.num_components;
result = ac_build_buffer_load(&ctx->ac, descriptor, num_components, NULL, offset, NULL,
ctx->ac.i32, 0, true, true);
break;
}
case nir_intrinsic_ordered_xfb_counter_add_amd: {
/* must be called in a single lane of a workgroup. */
/* TODO: Add RADV support. */
bool use_gds_registers = ctx->ac.gfx_level >= GFX11 &&
ctx->ac.float_mode == AC_FLOAT_MODE_DEFAULT_OPENGL;
LLVMTypeRef gdsptr = LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS);
LLVMValueRef gdsbase = LLVMBuildIntToPtr(ctx->ac.builder, ctx->ac.i32_0, gdsptr, "");
/* Gfx11 GDS instructions only operate on the first active lane. All other lanes are
* ignored. So are their EXEC bits. This uses the mutex feature of ds_ordered_count
* to emulate a multi-dword atomic.
*
* This is the expected code:
* ds_ordered_count release=0 done=0 // lock mutex
* if (gfx_level >= GFX11) {
* ds_add_gs_reg_rtn GDS_STRMOUT_DWORDS_WRITTEN_0
* ds_add_gs_reg_rtn GDS_STRMOUT_DWORDS_WRITTEN_1
* ds_add_gs_reg_rtn GDS_STRMOUT_DWORDS_WRITTEN_2
* ds_add_gs_reg_rtn GDS_STRMOUT_DWORDS_WRITTEN_3
* } else {
* ds_add_rtn_u32 dwords_written0
* ds_add_rtn_u32 dwords_written1
* ds_add_rtn_u32 dwords_written2
* ds_add_rtn_u32 dwords_written3
* }
* ds_ordered_count release=1 done=1 // unlock mutex
*
* GDS_STRMOUT_DWORDS_WRITTEN_n are just general-purpose global registers. We use them
* because MCBP (mid-command-buffer preemption) saves and restores them, and it doesn't
* save and restore GDS memory.
*/
LLVMValueRef args[8] = {
LLVMBuildIntToPtr(ctx->ac.builder, get_src(ctx, instr->src[0]), gdsptr, ""),
ctx->ac.i32_0, /* value to add */
ctx->ac.i32_0, /* ordering */
ctx->ac.i32_0, /* scope */
ctx->ac.i1false, /* isVolatile */
LLVMConstInt(ctx->ac.i32, 1 << 24, false), /* OA index, bits 24+: lane count */
ctx->ac.i1false, /* wave release */
ctx->ac.i1false, /* wave done */
};
/* Set release=0 to start a GDS mutex. Set done=0 because it's not the last one. */
ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add", ctx->ac.i32,
args, ARRAY_SIZE(args), 0);
ac_build_waitcnt(&ctx->ac, AC_WAIT_LGKM);
LLVMValueRef global_count[4];
LLVMValueRef count_vec = get_src(ctx, instr->src[1]);
unsigned write_mask = nir_intrinsic_write_mask(instr);
for (unsigned i = 0; i < instr->num_components; i++) {
LLVMValueRef value =
LLVMBuildExtractElement(ctx->ac.builder, count_vec,
LLVMConstInt(ctx->ac.i32, i, false), "");
if (write_mask & (1 << i)) {
if (use_gds_registers) {
/* The offset is a relative offset from GDS_STRMOUT_DWORDS_WRITTEN_0. */
global_count[i] =
ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.add.gs.reg.rtn.i32", ctx->ac.i32,
(LLVMValueRef[]){value, LLVMConstInt(ctx->ac.i32, i * 4, 0)},
2, 0);
} else {
LLVMValueRef gds_ptr =
ac_build_gep_ptr(&ctx->ac, ctx->ac.i32, gdsbase, LLVMConstInt(ctx->ac.i32, i, 0));
global_count[i] =
LLVMBuildAtomicRMW(ctx->ac.builder, LLVMAtomicRMWBinOpAdd, gds_ptr, value,
LLVMAtomicOrderingMonotonic, false);
}
} else {
global_count[i] = LLVMGetUndef(ctx->ac.i32);
}
}
ac_build_waitcnt(&ctx->ac, AC_WAIT_LGKM);
/* Set release=1 to end a GDS mutex. Set done=1 because it's the last one. */
args[6] = args[7] = ctx->ac.i1true;
ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add", ctx->ac.i32,
args, ARRAY_SIZE(args), 0);
result = ac_build_gather_values(&ctx->ac, global_count, instr->num_components);
break;
}
case nir_intrinsic_xfb_counter_sub_amd: {
/* must be called in a single lane of a workgroup. */
/* TODO: Add RADV support. */
bool use_gds_registers = ctx->ac.gfx_level >= GFX11 &&
ctx->ac.float_mode == AC_FLOAT_MODE_DEFAULT_OPENGL;
LLVMTypeRef gdsptr = LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS);
LLVMValueRef gdsbase = LLVMBuildIntToPtr(ctx->ac.builder, ctx->ac.i32_0, gdsptr, "");
LLVMValueRef sub_vec = get_src(ctx, instr->src[0]);
unsigned write_mask = nir_intrinsic_write_mask(instr);
for (unsigned i = 0; i < instr->num_components; i++) {
if (write_mask & (1 << i)) {
LLVMValueRef value =
LLVMBuildExtractElement(ctx->ac.builder, sub_vec,
LLVMConstInt(ctx->ac.i32, i, false), "");
if (use_gds_registers) {
/* The offset is a relative offset from GDS_STRMOUT_DWORDS_WRITTEN_0. */
ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.sub.gs.reg.rtn.i32", ctx->ac.i32,
(LLVMValueRef[]){value, LLVMConstInt(ctx->ac.i32, i * 4, 0)},
2, 0);
} else {
LLVMValueRef gds_ptr =
ac_build_gep_ptr(&ctx->ac, ctx->ac.i32, gdsbase, LLVMConstInt(ctx->ac.i32, i, 0));
LLVMBuildAtomicRMW(ctx->ac.builder, LLVMAtomicRMWBinOpSub, gds_ptr, value,
LLVMAtomicOrderingMonotonic, false);
}
}
}
break;
}
case nir_intrinsic_export_amd: {
unsigned flags = nir_intrinsic_flags(instr);
unsigned target = nir_intrinsic_base(instr);
unsigned write_mask = nir_intrinsic_write_mask(instr);
struct ac_export_args args = {
.target = target,
.enabled_channels = write_mask,
.compr = flags & AC_EXP_FLAG_COMPRESSED,
.done = flags & AC_EXP_FLAG_DONE,
.valid_mask = flags & AC_EXP_FLAG_VALID_MASK,
};
LLVMValueRef value = get_src(ctx, instr->src[0]);
int num_components = ac_get_llvm_num_components(value);
for (int i = 0; i < num_components; i++)
args.out[i] = ac_llvm_extract_elem(&ctx->ac, value, i);
ac_build_export(&ctx->ac, &args);
break;
}
case nir_intrinsic_bvh64_intersect_ray_amd: {
LLVMValueRef desc = get_src(ctx, instr->src[0]);
LLVMValueRef node_id =
LLVMBuildBitCast(ctx->ac.builder, get_src(ctx, instr->src[1]), ctx->ac.i64, "");
LLVMValueRef t_max =
LLVMBuildBitCast(ctx->ac.builder, get_src(ctx, instr->src[2]), ctx->ac.f32, "");
LLVMValueRef origin =
LLVMBuildBitCast(ctx->ac.builder, get_src(ctx, instr->src[3]), ctx->ac.v3f32, "");
LLVMValueRef dir =
LLVMBuildBitCast(ctx->ac.builder, get_src(ctx, instr->src[4]), ctx->ac.v3f32, "");
LLVMValueRef inv_dir =
LLVMBuildBitCast(ctx->ac.builder, get_src(ctx, instr->src[5]), ctx->ac.v3f32, "");
LLVMValueRef args[6] = {
node_id, t_max, origin, dir, inv_dir, desc,
};
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.image.bvh.intersect.ray.i64.v3f32",
ctx->ac.v4i32, args, ARRAY_SIZE(args), 0);
break;
}
default:
fprintf(stderr, "Unknown intrinsic: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
return false;
}
if (result) {
ctx->ssa_defs[instr->dest.ssa.index] = result;
}
return true;
}
/* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL.
*
* GFX6-GFX7:
* If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic
* filtering manually. The driver sets img7 to a mask clearing
* MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do:
* s_and_b32 samp0, samp0, img7
*
* GFX8:
* The ANISO_OVERRIDE sampler field enables this fix in TA.
*/
static LLVMValueRef sici_fix_sampler_aniso(struct ac_nir_context *ctx, LLVMValueRef res,
LLVMValueRef samp)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef img7, samp0;
if (ctx->ac.gfx_level >= GFX8)
return samp;
img7 = LLVMBuildExtractElement(builder, res, LLVMConstInt(ctx->ac.i32, 7, 0), "");
samp0 = LLVMBuildExtractElement(builder, samp, LLVMConstInt(ctx->ac.i32, 0, 0), "");
samp0 = LLVMBuildAnd(builder, samp0, img7, "");
return LLVMBuildInsertElement(builder, samp, samp0, LLVMConstInt(ctx->ac.i32, 0, 0), "");
}
static void tex_fetch_ptrs(struct ac_nir_context *ctx, nir_tex_instr *instr,
struct waterfall_context *wctx, LLVMValueRef *res_ptr,
LLVMValueRef *samp_ptr)
{
bool texture_handle_divergent = false;
bool sampler_handle_divergent = false;
LLVMValueRef texture_dynamic_handle = NULL;
LLVMValueRef sampler_dynamic_handle = NULL;
int plane = -1;
*res_ptr = NULL;
*samp_ptr = NULL;
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_texture_handle:
case nir_tex_src_sampler_handle: {
LLVMValueRef val = get_src(ctx, instr->src[i].src);
if (LLVMGetTypeKind(LLVMTypeOf(val)) == LLVMVectorTypeKind) {
if (instr->src[i].src_type == nir_tex_src_texture_handle)
*res_ptr = val;
else
*samp_ptr = val;
} else {
bool divergent = instr->src[i].src.ssa->divergent;
if (instr->src[i].src_type == nir_tex_src_texture_handle) {
texture_dynamic_handle = val;
texture_handle_divergent = divergent;
} else {
sampler_dynamic_handle = val;
sampler_handle_divergent = divergent;
}
}
break;
}
case nir_tex_src_plane:
plane = nir_src_as_int(instr->src[i].src);
break;
default:
break;
}
}
enum ac_descriptor_type main_descriptor =
instr->sampler_dim == GLSL_SAMPLER_DIM_BUF ? AC_DESC_BUFFER : AC_DESC_IMAGE;
if (plane >= 0) {
assert(instr->op != nir_texop_txf_ms);
assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
main_descriptor = AC_DESC_PLANE_0 + plane;
}
if (instr->op == nir_texop_fragment_mask_fetch_amd) {
/* The fragment mask is fetched from the compressed
* multisampled surface.
*/
assert(ctx->ac.gfx_level < GFX11);
main_descriptor = AC_DESC_FMASK;
}
/* instr->sampler_non_uniform and texture_non_uniform are always false in GLSL,
* but this can lead to unexpected behavior if texture/sampler index come from
* a vertex attribute.
* For instance, 2 consecutive draws using 2 different index values,
* could be squashed together by the hw - producing a single draw with
* non-dynamically uniform index.
* To avoid this, detect divergent indexing, and use enter_waterfall.
* See https://gitlab.freedesktop.org/mesa/mesa/-/issues/2253.
*/
/* descriptor handles given through nir_tex_src_{texture,sampler}_handle */
if (instr->texture_non_uniform ||
(ctx->abi->use_waterfall_for_divergent_tex_samplers && texture_handle_divergent))
texture_dynamic_handle = enter_waterfall(ctx, &wctx[0], texture_dynamic_handle, true);
if (instr->sampler_non_uniform ||
(ctx->abi->use_waterfall_for_divergent_tex_samplers && sampler_handle_divergent))
sampler_dynamic_handle = enter_waterfall(ctx, &wctx[1], sampler_dynamic_handle, true);
if (texture_dynamic_handle)
*res_ptr = ctx->abi->load_sampler_desc(ctx->abi, texture_dynamic_handle, main_descriptor);
if (sampler_dynamic_handle) {
*samp_ptr = ctx->abi->load_sampler_desc(ctx->abi, sampler_dynamic_handle, AC_DESC_SAMPLER);
if (ctx->abi->disable_aniso_single_level && instr->sampler_dim < GLSL_SAMPLER_DIM_RECT)
*samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr);
}
}
static LLVMValueRef apply_round_slice(struct ac_llvm_context *ctx, LLVMValueRef coord)
{
coord = ac_to_float(ctx, coord);
coord = ac_build_round(ctx, coord);
coord = ac_to_integer(ctx, coord);
return coord;
}
static void visit_tex(struct ac_nir_context *ctx, nir_tex_instr *instr)
{
LLVMValueRef result = NULL;
struct ac_image_args args = {0};
LLVMValueRef sample_index = NULL;
LLVMValueRef ddx = NULL, ddy = NULL;
unsigned offset_src = 0;
struct waterfall_context wctx[2] = {{{0}}};
tex_fetch_ptrs(ctx, instr, wctx, &args.resource, &args.sampler);
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_coord: {
LLVMValueRef coord = get_src(ctx, instr->src[i].src);
args.a16 = instr->src[i].src.ssa->bit_size == 16;
for (unsigned chan = 0; chan < instr->coord_components; ++chan)
args.coords[chan] = ac_llvm_extract_elem(&ctx->ac, coord, chan);
break;
}
case nir_tex_src_projector:
break;
case nir_tex_src_comparator:
if (instr->is_shadow) {
args.compare = get_src(ctx, instr->src[i].src);
args.compare = ac_to_float(&ctx->ac, args.compare);
assert(instr->src[i].src.ssa->bit_size == 32);
}
break;
case nir_tex_src_offset:
args.offset = get_src(ctx, instr->src[i].src);
offset_src = i;
/* We pack it with bit shifts, so we need it to be 32-bit. */
assert(ac_get_elem_bits(&ctx->ac, LLVMTypeOf(args.offset)) == 32);
break;
case nir_tex_src_bias:
args.bias = get_src(ctx, instr->src[i].src);
assert(ac_get_elem_bits(&ctx->ac, LLVMTypeOf(args.bias)) == 32);
break;
case nir_tex_src_lod:
if (nir_src_is_const(instr->src[i].src) && nir_src_as_uint(instr->src[i].src) == 0)
args.level_zero = true;
else
args.lod = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_ms_index:
sample_index = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_ddx:
ddx = get_src(ctx, instr->src[i].src);
args.g16 = instr->src[i].src.ssa->bit_size == 16;
break;
case nir_tex_src_ddy:
ddy = get_src(ctx, instr->src[i].src);
assert(LLVMTypeOf(ddy) == LLVMTypeOf(ddx));
break;
case nir_tex_src_min_lod:
args.min_lod = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_texture_offset:
case nir_tex_src_sampler_offset:
case nir_tex_src_plane:
default:
break;
}
}
if (args.offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
LLVMValueRef offset[3], pack;
for (unsigned chan = 0; chan < 3; ++chan)
offset[chan] = ctx->ac.i32_0;
unsigned num_components = ac_get_llvm_num_components(args.offset);
for (unsigned chan = 0; chan < num_components; chan++) {
offset[chan] = ac_llvm_extract_elem(&ctx->ac, args.offset, chan);
offset[chan] =
LLVMBuildAnd(ctx->ac.builder, offset[chan], LLVMConstInt(ctx->ac.i32, 0x3f, false), "");
if (chan)
offset[chan] = LLVMBuildShl(ctx->ac.builder, offset[chan],
LLVMConstInt(ctx->ac.i32, chan * 8, false), "");
}
pack = LLVMBuildOr(ctx->ac.builder, offset[0], offset[1], "");
pack = LLVMBuildOr(ctx->ac.builder, pack, offset[2], "");
args.offset = pack;
}
/* Section 8.23.1 (Depth Texture Comparison Mode) of the
* OpenGL 4.5 spec says:
*
* "If the texture’s internal format indicates a fixed-point
* depth texture, then D_t and D_ref are clamped to the
* range [0, 1]; otherwise no clamping is performed."
*
* TC-compatible HTILE promotes Z16 and Z24 to Z32_FLOAT,
* so the depth comparison value isn't clamped for Z16 and
* Z24 anymore. Do it manually here for GFX8-9; GFX10 has
* an explicitly clamped 32-bit float format.
*/
if (args.compare && ctx->ac.gfx_level >= GFX8 && ctx->ac.gfx_level <= GFX9 &&
ctx->abi->clamp_shadow_reference) {
LLVMValueRef upgraded, clamped;
upgraded = LLVMBuildExtractElement(ctx->ac.builder, args.sampler,
LLVMConstInt(ctx->ac.i32, 3, false), "");
upgraded = LLVMBuildLShr(ctx->ac.builder, upgraded, LLVMConstInt(ctx->ac.i32, 29, false), "");
upgraded = LLVMBuildTrunc(ctx->ac.builder, upgraded, ctx->ac.i1, "");
clamped = ac_build_clamp(&ctx->ac, args.compare);
args.compare = LLVMBuildSelect(ctx->ac.builder, upgraded, clamped, args.compare, "");
}
/* pack derivatives */
if (ddx || ddy) {
int num_src_deriv_channels, num_dest_deriv_channels;
switch (instr->sampler_dim) {
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
num_src_deriv_channels = 3;
num_dest_deriv_channels = 3;
break;
case GLSL_SAMPLER_DIM_2D:
default:
num_src_deriv_channels = 2;
num_dest_deriv_channels = 2;
break;
case GLSL_SAMPLER_DIM_1D:
num_src_deriv_channels = 1;
if (ctx->ac.gfx_level == GFX9) {
num_dest_deriv_channels = 2;
} else {
num_dest_deriv_channels = 1;
}
break;
}
for (unsigned i = 0; i < num_src_deriv_channels; i++) {
args.derivs[i] = ac_to_float(&ctx->ac, ac_llvm_extract_elem(&ctx->ac, ddx, i));
args.derivs[num_dest_deriv_channels + i] =
ac_to_float(&ctx->ac, ac_llvm_extract_elem(&ctx->ac, ddy, i));
}
for (unsigned i = num_src_deriv_channels; i < num_dest_deriv_channels; i++) {
LLVMValueRef zero = args.g16 ? ctx->ac.f16_0 : ctx->ac.f32_0;
args.derivs[i] = zero;
args.derivs[num_dest_deriv_channels + i] = zero;
}
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && args.coords[0]) {
for (unsigned chan = 0; chan < instr->coord_components; chan++)
args.coords[chan] = ac_to_float(&ctx->ac, args.coords[chan]);
if (instr->coord_components == 3)
args.coords[3] = LLVMGetUndef(args.a16 ? ctx->ac.f16 : ctx->ac.f32);
ac_prepare_cube_coords(&ctx->ac, instr->op == nir_texop_txd, instr->is_array,
instr->op == nir_texop_lod, args.coords, args.derivs);
}
/* Texture coordinates fixups */
if (instr->coord_components > 1 && instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
instr->is_array && instr->op != nir_texop_txf) {
if (!ctx->abi->conformant_trunc_coord)
args.coords[1] = apply_round_slice(&ctx->ac, args.coords[1]);
}
if (instr->coord_components > 2 &&
(instr->sampler_dim == GLSL_SAMPLER_DIM_2D || instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
instr->is_array && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms &&
instr->op != nir_texop_fragment_fetch_amd && instr->op != nir_texop_fragment_mask_fetch_amd) {
if (!ctx->abi->conformant_trunc_coord)
args.coords[2] = apply_round_slice(&ctx->ac, args.coords[2]);
}
if (ctx->ac.gfx_level == GFX9 && instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
instr->op != nir_texop_lod) {
LLVMValueRef filler;
if (instr->op == nir_texop_txf)
filler = args.a16 ? ctx->ac.i16_0 : ctx->ac.i32_0;
else
filler = LLVMConstReal(args.a16 ? ctx->ac.f16 : ctx->ac.f32, 0.5);
if (instr->is_array)
args.coords[2] = args.coords[1];
args.coords[1] = filler;
}
/* Pack sample index */
if (sample_index && (instr->op == nir_texop_txf_ms || instr->op == nir_texop_fragment_fetch_amd))
args.coords[instr->coord_components] = sample_index;
if (args.offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
int num_offsets = instr->src[offset_src].src.ssa->num_components;
num_offsets = MIN2(num_offsets, instr->coord_components);
for (unsigned i = 0; i < num_offsets; ++i) {
LLVMValueRef off = ac_llvm_extract_elem(&ctx->ac, args.offset, i);
if (args.a16)
off = LLVMBuildTrunc(ctx->ac.builder, off, ctx->ac.i16, "");
args.coords[i] = LLVMBuildAdd(ctx->ac.builder, args.coords[i], off, "");
}
args.offset = NULL;
}
/* DMASK was repurposed for GATHER4. 4 components are always
* returned and DMASK works like a swizzle - it selects
* the component to fetch. The only valid DMASK values are
* 1=red, 2=green, 4=blue, 8=alpha. (e.g. 1 returns
* (red,red,red,red) etc.) The ISA document doesn't mention
* this.
*/
args.dmask = 0xf;
if (instr->op == nir_texop_tg4) {
if (instr->is_shadow)
args.dmask = 1;
else
args.dmask = 1 << instr->component;
}
if (instr->sampler_dim != GLSL_SAMPLER_DIM_BUF) {
args.dim = ac_get_sampler_dim(ctx->ac.gfx_level, instr->sampler_dim, instr->is_array);
args.unorm = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
}
/* Adjust the number of coordinates because we only need (x,y) for 2D
* multisampled images and (x,y,layer) for 2D multisampled layered
* images or for multisampled input attachments.
*/
if (instr->op == nir_texop_fragment_mask_fetch_amd) {
if (args.dim == ac_image_2dmsaa) {
args.dim = ac_image_2d;
} else {
assert(args.dim == ac_image_2darraymsaa);
args.dim = ac_image_2darray;
}
}
/* Set TRUNC_COORD=0 for textureGather(). */
if (instr->op == nir_texop_tg4 && !ctx->abi->conformant_trunc_coord) {
LLVMValueRef dword0 = LLVMBuildExtractElement(ctx->ac.builder, args.sampler, ctx->ac.i32_0, "");
dword0 = LLVMBuildAnd(ctx->ac.builder, dword0, LLVMConstInt(ctx->ac.i32, C_008F30_TRUNC_COORD, 0), "");
args.sampler = LLVMBuildInsertElement(ctx->ac.builder, args.sampler, dword0, ctx->ac.i32_0, "");
}
assert(instr->dest.is_ssa);
args.d16 = instr->dest.ssa.bit_size == 16;
args.tfe = instr->is_sparse;
result = build_tex_intrinsic(ctx, instr, &args);
LLVMValueRef code = NULL;
if (instr->is_sparse) {
code = ac_llvm_extract_elem(&ctx->ac, result, 4);
result = ac_trim_vector(&ctx->ac, result, 4);
}
if (instr->is_shadow && instr->is_new_style_shadow &&
instr->op != nir_texop_lod && instr->op != nir_texop_tg4)
result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, "");
else if (instr->op == nir_texop_fragment_mask_fetch_amd) {
/* Use 0x76543210 if the image doesn't have FMASK. */
LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, args.resource, ctx->ac.v8i32, "");
tmp = LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->ac.i32_1, "");
tmp = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE, tmp, ctx->ac.i32_0, "");
result = LLVMBuildSelect(ctx->ac.builder, tmp,
LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, ""),
LLVMConstInt(ctx->ac.i32, 0x76543210, false), "");
} else if (nir_tex_instr_result_size(instr) != 4)
result = ac_trim_vector(&ctx->ac, result, instr->dest.ssa.num_components);
if (instr->is_sparse)
result = ac_build_concat(&ctx->ac, result, code);
if (result) {
assert(instr->dest.is_ssa);
result = ac_to_integer(&ctx->ac, result);
for (int i = ARRAY_SIZE(wctx); --i >= 0;) {
result = exit_waterfall(ctx, wctx + i, result);
}
ctx->ssa_defs[instr->dest.ssa.index] = result;
}
}
static void visit_phi(struct ac_nir_context *ctx, nir_phi_instr *instr)
{
LLVMTypeRef type = get_def_type(ctx, &instr->dest.ssa);
LLVMValueRef result = LLVMBuildPhi(ctx->ac.builder, type, "");
ctx->ssa_defs[instr->dest.ssa.index] = result;
_mesa_hash_table_insert(ctx->phis, instr, result);
}
static void visit_post_phi(struct ac_nir_context *ctx, nir_phi_instr *instr, LLVMValueRef llvm_phi)
{
nir_foreach_phi_src (src, instr) {
LLVMBasicBlockRef block = get_block(ctx, src->pred);
LLVMValueRef llvm_src = get_src(ctx, src->src);
LLVMAddIncoming(llvm_phi, &llvm_src, &block, 1);
}
}
static void phi_post_pass(struct ac_nir_context *ctx)
{
hash_table_foreach(ctx->phis, entry)
{
visit_post_phi(ctx, (nir_phi_instr *)entry->key, (LLVMValueRef)entry->data);
}
}
static bool is_def_used_in_an_export(const nir_ssa_def *def)
{
nir_foreach_use (use_src, def) {
if (use_src->parent_instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *instr = nir_instr_as_intrinsic(use_src->parent_instr);
if (instr->intrinsic == nir_intrinsic_store_deref)
return true;
} else if (use_src->parent_instr->type == nir_instr_type_alu) {
nir_alu_instr *instr = nir_instr_as_alu(use_src->parent_instr);
if (instr->op == nir_op_vec4 && is_def_used_in_an_export(&instr->dest.dest.ssa)) {
return true;
}
}
}
return false;
}
static void visit_ssa_undef(struct ac_nir_context *ctx, const nir_ssa_undef_instr *instr)
{
unsigned num_components = instr->def.num_components;
LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, instr->def.bit_size);
if (!ctx->abi->convert_undef_to_zero || is_def_used_in_an_export(&instr->def)) {
LLVMValueRef undef;
if (num_components == 1)
undef = LLVMGetUndef(type);
else {
undef = LLVMGetUndef(LLVMVectorType(type, num_components));
}
ctx->ssa_defs[instr->def.index] = undef;
} else {
LLVMValueRef zero = LLVMConstInt(type, 0, false);
if (num_components > 1) {
zero = ac_build_gather_values_extended(&ctx->ac, &zero, num_components, 0, false);
}
ctx->ssa_defs[instr->def.index] = zero;
}
}
static bool visit_jump(struct ac_llvm_context *ctx, const nir_jump_instr *instr)
{
switch (instr->type) {
case nir_jump_break:
ac_build_break(ctx);
break;
case nir_jump_continue:
ac_build_continue(ctx);
break;
default:
fprintf(stderr, "Unknown NIR jump instr: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
return false;
}
return true;
}
static bool visit_cf_list(struct ac_nir_context *ctx, struct exec_list *list);
static bool visit_block(struct ac_nir_context *ctx, nir_block *block)
{
LLVMBasicBlockRef blockref = LLVMGetInsertBlock(ctx->ac.builder);
LLVMValueRef first = LLVMGetFirstInstruction(blockref);
if (first) {
/* ac_branch_exited() might have already inserted non-phis */
LLVMPositionBuilderBefore(ctx->ac.builder, LLVMGetFirstInstruction(blockref));
}
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_phi)
break;
visit_phi(ctx, nir_instr_as_phi(instr));
}
LLVMPositionBuilderAtEnd(ctx->ac.builder, blockref);
nir_foreach_instr (instr, block) {
switch (instr->type) {
case nir_instr_type_alu:
if (!visit_alu(ctx, nir_instr_as_alu(instr)))
return false;
break;
case nir_instr_type_load_const:
if (!visit_load_const(ctx, nir_instr_as_load_const(instr)))
return false;
break;
case nir_instr_type_intrinsic:
if (!visit_intrinsic(ctx, nir_instr_as_intrinsic(instr)))
return false;
break;
case nir_instr_type_tex:
visit_tex(ctx, nir_instr_as_tex(instr));
break;
case nir_instr_type_phi:
break;
case nir_instr_type_ssa_undef:
visit_ssa_undef(ctx, nir_instr_as_ssa_undef(instr));
break;
case nir_instr_type_jump:
if (!visit_jump(&ctx->ac, nir_instr_as_jump(instr)))
return false;
break;
case nir_instr_type_deref:
assert (!nir_deref_mode_is_one_of(nir_instr_as_deref(instr),
nir_var_mem_shared | nir_var_mem_global));
break;
default:
fprintf(stderr, "Unknown NIR instr type: ");
nir_print_instr(instr, stderr);
fprintf(stderr, "\n");
return false;
}
}
_mesa_hash_table_insert(ctx->defs, block, LLVMGetInsertBlock(ctx->ac.builder));
return true;
}
static bool visit_if(struct ac_nir_context *ctx, nir_if *if_stmt)
{
LLVMValueRef value = get_src(ctx, if_stmt->condition);
nir_block *then_block = (nir_block *)exec_list_get_head(&if_stmt->then_list);
ac_build_ifcc(&ctx->ac, value, then_block->index);
if (!visit_cf_list(ctx, &if_stmt->then_list))
return false;
if (!exec_list_is_empty(&if_stmt->else_list)) {
nir_block *else_block = (nir_block *)exec_list_get_head(&if_stmt->else_list);
ac_build_else(&ctx->ac, else_block->index);
if (!visit_cf_list(ctx, &if_stmt->else_list))
return false;
}
ac_build_endif(&ctx->ac, then_block->index);
return true;
}
static bool visit_loop(struct ac_nir_context *ctx, nir_loop *loop)
{
assert(!nir_loop_has_continue_construct(loop));
nir_block *first_loop_block = (nir_block *)exec_list_get_head(&loop->body);
ac_build_bgnloop(&ctx->ac, first_loop_block->index);
if (!visit_cf_list(ctx, &loop->body))
return false;
ac_build_endloop(&ctx->ac, first_loop_block->index);
return true;
}
static bool visit_cf_list(struct ac_nir_context *ctx, struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list)
{
switch (node->type) {
case nir_cf_node_block:
if (!visit_block(ctx, nir_cf_node_as_block(node)))
return false;
break;
case nir_cf_node_if:
if (!visit_if(ctx, nir_cf_node_as_if(node)))
return false;
break;
case nir_cf_node_loop:
if (!visit_loop(ctx, nir_cf_node_as_loop(node)))
return false;
break;
default:
return false;
}
}
return true;
}
static void ac_handle_shader_output_decl(struct ac_llvm_context *ctx, struct ac_shader_abi *abi,
struct nir_shader *nir, struct nir_variable *variable,
gl_shader_stage stage)
{
unsigned output_loc = variable->data.driver_location;
unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
bool is_16bit = glsl_type_is_16bit(glsl_without_array(variable->type));
LLVMTypeRef type = is_16bit ? ctx->f16 : ctx->f32;
for (unsigned i = 0; i < attrib_count; ++i) {
for (unsigned chan = 0; chan < 4; chan++) {
int idx = ac_llvm_reg_index_soa(output_loc + i, chan);
abi->outputs[idx] = ac_build_alloca_undef(ctx, type, "");
abi->is_16bit[idx] = is_16bit;
}
}
}
static void setup_scratch(struct ac_nir_context *ctx, struct nir_shader *shader)
{
if (shader->scratch_size == 0)
return;
LLVMTypeRef type = LLVMArrayType(ctx->ac.i8, shader->scratch_size);
ctx->scratch = (struct ac_llvm_pointer) {
.value = ac_build_alloca_undef(&ctx->ac, type, "scratch"),
.pointee_type = type
};
}
static void setup_constant_data(struct ac_nir_context *ctx, struct nir_shader *shader)
{
if (!shader->constant_data)
return;
LLVMValueRef data = LLVMConstStringInContext(ctx->ac.context, shader->constant_data,
shader->constant_data_size, true);
LLVMTypeRef type = LLVMArrayType(ctx->ac.i8, shader->constant_data_size);
LLVMValueRef global =
LLVMAddGlobalInAddressSpace(ctx->ac.module, type, "const_data", AC_ADDR_SPACE_CONST);
LLVMSetInitializer(global, data);
LLVMSetGlobalConstant(global, true);
LLVMSetVisibility(global, LLVMHiddenVisibility);
ctx->constant_data = (struct ac_llvm_pointer) {
.value = global,
.pointee_type = type
};
}
static void setup_shared(struct ac_nir_context *ctx, struct nir_shader *nir)
{
if (ctx->ac.lds.value)
return;
LLVMTypeRef type = LLVMArrayType(ctx->ac.i8, nir->info.shared_size);
LLVMValueRef lds =
LLVMAddGlobalInAddressSpace(ctx->ac.module, type, "compute_lds", AC_ADDR_SPACE_LDS);
LLVMSetAlignment(lds, 64 * 1024);
ctx->ac.lds = (struct ac_llvm_pointer) {
.value = lds,
.pointee_type = type
};
}
static void setup_gds(struct ac_nir_context *ctx, nir_function_impl *impl)
{
bool has_gds_atomic = false;
if (ctx->ac.gfx_level >= GFX10 &&
(ctx->stage == MESA_SHADER_VERTEX ||
ctx->stage == MESA_SHADER_TESS_EVAL ||
ctx->stage == MESA_SHADER_GEOMETRY)) {
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
has_gds_atomic |= intrin->intrinsic == nir_intrinsic_gds_atomic_add_amd;
}
}
}
unsigned gds_size = has_gds_atomic ? 0x100 : 0;
if (gds_size)
ac_llvm_add_target_dep_function_attr(ctx->main_function, "amdgpu-gds-size", gds_size);
}
bool ac_nir_translate(struct ac_llvm_context *ac, struct ac_shader_abi *abi,
const struct ac_shader_args *args, struct nir_shader *nir)
{
struct ac_nir_context ctx = {0};
struct nir_function *func;
ctx.ac = *ac;
ctx.abi = abi;
ctx.args = args;
ctx.stage = nir->info.stage;
ctx.info = &nir->info;
ctx.main_function = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
/* TODO: remove this after RADV switches to lowered IO.
*
* Only fragment shader still uses store output for RADV.
*/
if (!nir->info.io_lowered && ctx.stage == MESA_SHADER_FRAGMENT) {
nir_foreach_shader_out_variable(variable, nir)
{
ac_handle_shader_output_decl(&ctx.ac, ctx.abi, nir, variable, ctx.stage);
}
}
ctx.defs = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
ctx.phis = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
if (ctx.abi->kill_ps_if_inf_interp)
ctx.verified_interp =
_mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
func = (struct nir_function *)exec_list_get_head(&nir->functions);
nir_index_ssa_defs(func->impl);
ctx.ssa_defs = calloc(func->impl->ssa_alloc, sizeof(LLVMValueRef));
setup_scratch(&ctx, nir);
setup_constant_data(&ctx, nir);
setup_gds(&ctx, func->impl);
if (gl_shader_stage_is_compute(nir->info.stage))
setup_shared(&ctx, nir);
if (nir->info.stage == MESA_SHADER_FRAGMENT && nir->info.fs.uses_demote &&
LLVM_VERSION_MAJOR < 13) {
/* true = don't kill. */
ctx.ac.postponed_kill = ac_build_alloca_init(&ctx.ac, ctx.ac.i1true, "");
}
if (!visit_cf_list(&ctx, &func->impl->body))
return false;
phi_post_pass(&ctx);
if (ctx.ac.postponed_kill)
ac_build_kill_if_false(&ctx.ac, LLVMBuildLoad2(ctx.ac.builder, ctx.ac.i1, ctx.ac.postponed_kill, ""));
free(ctx.ssa_defs);
ralloc_free(ctx.defs);
ralloc_free(ctx.phis);
if (ctx.abi->kill_ps_if_inf_interp)
ralloc_free(ctx.verified_interp);
return true;
}
/* Fixup the HW not emitting the TCS regs if there are no HS threads. */
void ac_fixup_ls_hs_input_vgprs(struct ac_llvm_context *ac, struct ac_shader_abi *abi,
const struct ac_shader_args *args)
{
LLVMValueRef count = ac_unpack_param(ac, ac_get_arg(ac, args->merged_wave_info), 8, 8);
LLVMValueRef hs_empty = LLVMBuildICmp(ac->builder, LLVMIntEQ, count, ac->i32_0, "");
abi->instance_id =
LLVMBuildSelect(ac->builder, hs_empty, ac_get_arg(ac, args->vertex_id),
abi->instance_id, "");
abi->vs_rel_patch_id =
LLVMBuildSelect(ac->builder, hs_empty, ac_get_arg(ac, args->tcs_rel_ids),
abi->vs_rel_patch_id, "");
abi->vertex_id =
LLVMBuildSelect(ac->builder, hs_empty, ac_get_arg(ac, args->tcs_patch_id),
abi->vertex_id, "");
}