blob: b6d96fc88a33ce48b2dd95bb53a8b49fa5a743cb [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "aub_write.h"
#include <inttypes.h>
#include <signal.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include "drm-uapi/i915_drm.h"
#include "intel_aub.h"
#include "gen_context.h"
#ifndef ALIGN
#define ALIGN(x, y) (((x) + (y)-1) & ~((y)-1))
#endif
#define MI_BATCH_NON_SECURE_I965 (1 << 8)
#define min(a, b) ({ \
__typeof(a) _a = (a); \
__typeof(b) _b = (b); \
_a < _b ? _a : _b; \
})
#define max(a, b) ({ \
__typeof(a) _a = (a); \
__typeof(b) _b = (b); \
_a > _b ? _a : _b; \
})
static void
mem_trace_memory_write_header_out(struct aub_file *aub, uint64_t addr,
uint32_t len, uint32_t addr_space,
const char *desc);
static void __attribute__ ((format(__printf__, 2, 3)))
fail_if(int cond, const char *format, ...)
{
va_list args;
if (!cond)
return;
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
raise(SIGTRAP);
}
static inline uint32_t
align_u32(uint32_t v, uint32_t a)
{
return (v + a - 1) & ~(a - 1);
}
static void
aub_ppgtt_table_finish(struct aub_ppgtt_table *table, int level)
{
if (level == 1)
return;
for (unsigned i = 0; i < ARRAY_SIZE(table->subtables); i++) {
if (table->subtables[i]) {
aub_ppgtt_table_finish(table->subtables[i], level - 1);
free(table->subtables[i]);
}
}
}
static void
data_out(struct aub_file *aub, const void *data, size_t size)
{
if (size == 0)
return;
fail_if(fwrite(data, 1, size, aub->file) == 0,
"Writing to output failed\n");
}
static void
dword_out(struct aub_file *aub, uint32_t data)
{
data_out(aub, &data, sizeof(data));
}
static void
write_execlists_header(struct aub_file *aub, const char *name)
{
char app_name[8 * 4];
int app_name_len, dwords;
app_name_len =
snprintf(app_name, sizeof(app_name), "PCI-ID=0x%X %s",
aub->pci_id, name);
app_name_len = ALIGN(app_name_len, sizeof(uint32_t));
dwords = 5 + app_name_len / sizeof(uint32_t);
dword_out(aub, CMD_MEM_TRACE_VERSION | (dwords - 1));
dword_out(aub, AUB_MEM_TRACE_VERSION_FILE_VERSION);
dword_out(aub, aub->devinfo.simulator_id << AUB_MEM_TRACE_VERSION_DEVICE_SHIFT);
dword_out(aub, 0); /* version */
dword_out(aub, 0); /* version */
data_out(aub, app_name, app_name_len);
}
static void
write_legacy_header(struct aub_file *aub, const char *name)
{
char app_name[8 * 4];
char comment[16];
int comment_len, comment_dwords, dwords;
comment_len = snprintf(comment, sizeof(comment), "PCI-ID=0x%x", aub->pci_id);
comment_dwords = ((comment_len + 3) / 4);
/* Start with a (required) version packet. */
dwords = 13 + comment_dwords;
dword_out(aub, CMD_AUB_HEADER | (dwords - 2));
dword_out(aub, (4 << AUB_HEADER_MAJOR_SHIFT) |
(0 << AUB_HEADER_MINOR_SHIFT));
/* Next comes a 32-byte application name. */
strncpy(app_name, name, sizeof(app_name));
app_name[sizeof(app_name) - 1] = 0;
data_out(aub, app_name, sizeof(app_name));
dword_out(aub, 0); /* timestamp */
dword_out(aub, 0); /* timestamp */
dword_out(aub, comment_len);
data_out(aub, comment, comment_dwords * 4);
}
static void
aub_write_header(struct aub_file *aub, const char *app_name)
{
if (aub_use_execlists(aub))
write_execlists_header(aub, app_name);
else
write_legacy_header(aub, app_name);
}
void
aub_file_init(struct aub_file *aub, FILE *file, FILE *debug, uint16_t pci_id, const char *app_name)
{
memset(aub, 0, sizeof(*aub));
aub->verbose_log_file = debug;
aub->file = file;
aub->pci_id = pci_id;
fail_if(!gen_get_device_info_from_pci_id(pci_id, &aub->devinfo),
"failed to identify chipset=0x%x\n", pci_id);
aub->addr_bits = aub->devinfo.gen >= 8 ? 48 : 32;
aub_write_header(aub, app_name);
aub->phys_addrs_allocator = 0;
aub->ggtt_addrs_allocator = 0;
aub->pml4.phys_addr = aub->phys_addrs_allocator++ << 12;
mem_trace_memory_write_header_out(aub, aub->ggtt_addrs_allocator++,
GEN8_PTE_SIZE,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT_ENTRY,
"GGTT PT");
dword_out(aub, 1);
dword_out(aub, 0);
aub->next_context_handle = 1;
}
void
aub_file_finish(struct aub_file *aub)
{
aub_ppgtt_table_finish(&aub->pml4, 4);
fclose(aub->file);
}
uint32_t
aub_gtt_size(struct aub_file *aub)
{
return NUM_PT_ENTRIES * (aub->addr_bits > 32 ? GEN8_PTE_SIZE : PTE_SIZE);
}
static void
mem_trace_memory_write_header_out(struct aub_file *aub, uint64_t addr,
uint32_t len, uint32_t addr_space,
const char *desc)
{
uint32_t dwords = ALIGN(len, sizeof(uint32_t)) / sizeof(uint32_t);
if (aub->verbose_log_file) {
fprintf(aub->verbose_log_file,
" MEM WRITE (0x%016" PRIx64 "-0x%016" PRIx64 ") %s\n",
addr, addr + len, desc);
}
dword_out(aub, CMD_MEM_TRACE_MEMORY_WRITE | (5 + dwords - 1));
dword_out(aub, addr & 0xFFFFFFFF); /* addr lo */
dword_out(aub, addr >> 32); /* addr hi */
dword_out(aub, addr_space); /* gtt */
dword_out(aub, len);
}
static void
register_write_out(struct aub_file *aub, uint32_t addr, uint32_t value)
{
uint32_t dwords = 1;
if (aub->verbose_log_file) {
fprintf(aub->verbose_log_file,
" MMIO WRITE (0x%08x = 0x%08x)\n", addr, value);
}
dword_out(aub, CMD_MEM_TRACE_REGISTER_WRITE | (5 + dwords - 1));
dword_out(aub, addr);
dword_out(aub, AUB_MEM_TRACE_REGISTER_SIZE_DWORD |
AUB_MEM_TRACE_REGISTER_SPACE_MMIO);
dword_out(aub, 0xFFFFFFFF); /* mask lo */
dword_out(aub, 0x00000000); /* mask hi */
dword_out(aub, value);
}
static void
populate_ppgtt_table(struct aub_file *aub, struct aub_ppgtt_table *table,
int start, int end, int level)
{
uint64_t entries[512] = {0};
int dirty_start = 512, dirty_end = 0;
if (aub->verbose_log_file) {
fprintf(aub->verbose_log_file,
" PPGTT (0x%016" PRIx64 "), lvl %d, start: %x, end: %x\n",
table->phys_addr, level, start, end);
}
for (int i = start; i <= end; i++) {
if (!table->subtables[i]) {
dirty_start = min(dirty_start, i);
dirty_end = max(dirty_end, i);
if (level == 1) {
table->subtables[i] =
(void *)(aub->phys_addrs_allocator++ << 12);
if (aub->verbose_log_file) {
fprintf(aub->verbose_log_file,
" Adding entry: %x, phys_addr: 0x%016" PRIx64 "\n",
i, (uint64_t)table->subtables[i]);
}
} else {
table->subtables[i] =
calloc(1, sizeof(struct aub_ppgtt_table));
table->subtables[i]->phys_addr =
aub->phys_addrs_allocator++ << 12;
if (aub->verbose_log_file) {
fprintf(aub->verbose_log_file,
" Adding entry: %x, phys_addr: 0x%016" PRIx64 "\n",
i, table->subtables[i]->phys_addr);
}
}
}
entries[i] = 3 /* read/write | present */ |
(level == 1 ? (uint64_t)table->subtables[i] :
table->subtables[i]->phys_addr);
}
if (dirty_start <= dirty_end) {
uint64_t write_addr = table->phys_addr + dirty_start *
sizeof(uint64_t);
uint64_t write_size = (dirty_end - dirty_start + 1) *
sizeof(uint64_t);
mem_trace_memory_write_header_out(aub, write_addr, write_size,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_PHYSICAL,
"PPGTT update");
data_out(aub, entries + dirty_start, write_size);
}
}
void
aub_map_ppgtt(struct aub_file *aub, uint64_t start, uint64_t size)
{
uint64_t l4_start = start & 0xff8000000000;
uint64_t l4_end = ((start + size - 1) | 0x007fffffffff) & 0xffffffffffff;
#define L4_index(addr) (((addr) >> 39) & 0x1ff)
#define L3_index(addr) (((addr) >> 30) & 0x1ff)
#define L2_index(addr) (((addr) >> 21) & 0x1ff)
#define L1_index(addr) (((addr) >> 12) & 0x1ff)
#define L3_table(addr) (aub->pml4.subtables[L4_index(addr)])
#define L2_table(addr) (L3_table(addr)->subtables[L3_index(addr)])
#define L1_table(addr) (L2_table(addr)->subtables[L2_index(addr)])
if (aub->verbose_log_file) {
fprintf(aub->verbose_log_file,
" Mapping PPGTT address: 0x%" PRIx64 ", size: %" PRIu64"\n",
start, size);
}
populate_ppgtt_table(aub, &aub->pml4, L4_index(l4_start), L4_index(l4_end), 4);
for (uint64_t l4 = l4_start; l4 < l4_end; l4 += (1ULL << 39)) {
uint64_t l3_start = max(l4, start & 0xffffc0000000);
uint64_t l3_end = min(l4 + (1ULL << 39) - 1,
((start + size - 1) | 0x00003fffffff) & 0xffffffffffff);
uint64_t l3_start_idx = L3_index(l3_start);
uint64_t l3_end_idx = L3_index(l3_end);
populate_ppgtt_table(aub, L3_table(l4), l3_start_idx, l3_end_idx, 3);
for (uint64_t l3 = l3_start; l3 < l3_end; l3 += (1ULL << 30)) {
uint64_t l2_start = max(l3, start & 0xffffffe00000);
uint64_t l2_end = min(l3 + (1ULL << 30) - 1,
((start + size - 1) | 0x0000001fffff) & 0xffffffffffff);
uint64_t l2_start_idx = L2_index(l2_start);
uint64_t l2_end_idx = L2_index(l2_end);
populate_ppgtt_table(aub, L2_table(l3), l2_start_idx, l2_end_idx, 2);
for (uint64_t l2 = l2_start; l2 < l2_end; l2 += (1ULL << 21)) {
uint64_t l1_start = max(l2, start & 0xfffffffff000);
uint64_t l1_end = min(l2 + (1ULL << 21) - 1,
((start + size - 1) | 0x000000000fff) & 0xffffffffffff);
uint64_t l1_start_idx = L1_index(l1_start);
uint64_t l1_end_idx = L1_index(l1_end);
populate_ppgtt_table(aub, L1_table(l2), l1_start_idx, l1_end_idx, 1);
}
}
}
}
static uint64_t
ppgtt_lookup(struct aub_file *aub, uint64_t ppgtt_addr)
{
return (uint64_t)L1_table(ppgtt_addr)->subtables[L1_index(ppgtt_addr)];
}
static const struct engine {
const char *name;
enum drm_i915_gem_engine_class engine_class;
uint32_t hw_class;
uint32_t elsp_reg;
uint32_t elsq_reg;
uint32_t status_reg;
uint32_t control_reg;
} engines[] = {
[I915_ENGINE_CLASS_RENDER] = {
.name = "RENDER",
.engine_class = I915_ENGINE_CLASS_RENDER,
.hw_class = 1,
.elsp_reg = EXECLIST_SUBMITPORT_RCSUNIT,
.elsq_reg = EXECLIST_SQ_CONTENTS0_RCSUNIT,
.status_reg = EXECLIST_STATUS_RCSUNIT,
.control_reg = EXECLIST_CONTROL_RCSUNIT,
},
[I915_ENGINE_CLASS_VIDEO] = {
.name = "VIDEO",
.engine_class = I915_ENGINE_CLASS_VIDEO,
.hw_class = 3,
.elsp_reg = EXECLIST_SUBMITPORT_VCSUNIT0,
.elsq_reg = EXECLIST_SQ_CONTENTS0_VCSUNIT0,
.status_reg = EXECLIST_STATUS_VCSUNIT0,
.control_reg = EXECLIST_CONTROL_VCSUNIT0,
},
[I915_ENGINE_CLASS_COPY] = {
.name = "BLITTER",
.engine_class = I915_ENGINE_CLASS_COPY,
.hw_class = 2,
.elsp_reg = EXECLIST_SUBMITPORT_BCSUNIT,
.elsq_reg = EXECLIST_SQ_CONTENTS0_BCSUNIT,
.status_reg = EXECLIST_STATUS_BCSUNIT,
.control_reg = EXECLIST_CONTROL_BCSUNIT,
},
};
static void
aub_map_ggtt(struct aub_file *aub, uint64_t virt_addr, uint64_t size)
{
/* Makes the code below a bit simpler. In practice all of the write we
* receive from error2aub are page aligned.
*/
assert(virt_addr % 4096 == 0);
assert((aub->phys_addrs_allocator + size) < (1UL << 32));
/* GGTT PT */
uint32_t ggtt_ptes = DIV_ROUND_UP(size, 4096);
uint64_t phys_addr = aub->phys_addrs_allocator << 12;
aub->phys_addrs_allocator += ggtt_ptes;
if (aub->verbose_log_file) {
fprintf(aub->verbose_log_file,
" Mapping GGTT address: 0x%" PRIx64 ", size: %" PRIu64" phys_addr=0x%" PRIx64 " entries=%u\n",
virt_addr, size, phys_addr, ggtt_ptes);
}
mem_trace_memory_write_header_out(aub,
(virt_addr >> 12) * GEN8_PTE_SIZE,
ggtt_ptes * GEN8_PTE_SIZE,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT_ENTRY,
"GGTT PT");
for (uint32_t i = 0; i < ggtt_ptes; i++) {
dword_out(aub, 1 + phys_addr + i * 4096);
dword_out(aub, 0);
}
}
void
aub_write_ggtt(struct aub_file *aub, uint64_t virt_addr, uint64_t size, const void *data)
{
/* Default setup assumes a 1 to 1 mapping between physical and virtual GGTT
* addresses. This is somewhat incompatible with the aub_write_ggtt()
* function. In practice it doesn't matter as the GGTT writes are used to
* replace the default setup and we've taken care to setup the PML4 as the
* top of the GGTT.
*/
assert(!aub->has_default_setup);
aub_map_ggtt(aub, virt_addr, size);
/* We write the GGTT buffer through the GGTT aub command rather than the
* PHYSICAL aub command. This is because the Gen9 simulator seems to have 2
* different set of memory pools for GGTT and physical (probably someone
* didn't really understand the concept?).
*/
static const char null_block[8 * 4096];
for (uint64_t offset = 0; offset < size; offset += 4096) {
uint32_t block_size = min(4096, size - offset);
mem_trace_memory_write_header_out(aub, virt_addr + offset, block_size,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
"GGTT buffer");
data_out(aub, (char *) data + offset, block_size);
/* Pad to a multiple of 4 bytes. */
data_out(aub, null_block, -block_size & 3);
}
}
static const struct engine *
engine_from_engine_class(enum drm_i915_gem_engine_class engine_class)
{
switch (engine_class) {
case I915_ENGINE_CLASS_RENDER:
case I915_ENGINE_CLASS_COPY:
case I915_ENGINE_CLASS_VIDEO:
return &engines[engine_class];
default:
unreachable("unknown ring");
}
}
static void
get_context_init(const struct gen_device_info *devinfo,
const struct gen_context_parameters *params,
enum drm_i915_gem_engine_class engine_class,
uint32_t *data,
uint32_t *size)
{
static const gen_context_init_t gen8_contexts[] = {
[I915_ENGINE_CLASS_RENDER] = gen8_render_context_init,
[I915_ENGINE_CLASS_COPY] = gen8_blitter_context_init,
[I915_ENGINE_CLASS_VIDEO] = gen8_video_context_init,
};
static const gen_context_init_t gen10_contexts[] = {
[I915_ENGINE_CLASS_RENDER] = gen10_render_context_init,
[I915_ENGINE_CLASS_COPY] = gen10_blitter_context_init,
[I915_ENGINE_CLASS_VIDEO] = gen10_video_context_init,
};
assert(devinfo->gen >= 8);
if (devinfo->gen <= 10)
gen8_contexts[engine_class](params, data, size);
else
gen10_contexts[engine_class](params, data, size);
}
static uint64_t
alloc_ggtt_address(struct aub_file *aub, uint64_t size)
{
uint32_t ggtt_ptes = DIV_ROUND_UP(size, 4096);
uint64_t addr = aub->ggtt_addrs_allocator << 12;
aub->ggtt_addrs_allocator += ggtt_ptes;
aub_map_ggtt(aub, addr, size);
return addr;
}
static void
write_hwsp(struct aub_file *aub,
enum drm_i915_gem_engine_class engine_class)
{
uint32_t reg = 0;
switch (engine_class) {
case I915_ENGINE_CLASS_RENDER: reg = HWS_PGA_RCSUNIT; break;
case I915_ENGINE_CLASS_COPY: reg = HWS_PGA_BCSUNIT; break;
case I915_ENGINE_CLASS_VIDEO: reg = HWS_PGA_VCSUNIT0; break;
default:
unreachable("unknown ring");
}
register_write_out(aub, reg, aub->engine_setup[engine_class].hwsp_addr);
}
static uint32_t
write_engine_execlist_setup(struct aub_file *aub,
uint32_t ctx_id,
struct aub_hw_context *hw_ctx,
enum drm_i915_gem_engine_class engine_class)
{
const struct engine *cs = engine_from_engine_class(engine_class);
uint32_t context_size;
get_context_init(&aub->devinfo, NULL, engine_class, NULL, &context_size);
/* GGTT PT */
uint32_t total_size = RING_SIZE + PPHWSP_SIZE + context_size;
char name[80];
uint64_t ggtt_addr = alloc_ggtt_address(aub, total_size);
snprintf(name, sizeof(name), "%s (ctx id: %d) GGTT PT", cs->name, ctx_id);
/* RING */
hw_ctx->ring_addr = ggtt_addr;
snprintf(name, sizeof(name), "%s RING", cs->name);
mem_trace_memory_write_header_out(aub, ggtt_addr, RING_SIZE,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
name);
for (uint32_t i = 0; i < RING_SIZE; i += sizeof(uint32_t))
dword_out(aub, 0);
ggtt_addr += RING_SIZE;
/* PPHWSP */
hw_ctx->pphwsp_addr = ggtt_addr;
snprintf(name, sizeof(name), "%s PPHWSP", cs->name);
mem_trace_memory_write_header_out(aub, ggtt_addr,
PPHWSP_SIZE + context_size,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
name);
for (uint32_t i = 0; i < PPHWSP_SIZE; i += sizeof(uint32_t))
dword_out(aub, 0);
/* CONTEXT */
struct gen_context_parameters params = {
.ring_addr = hw_ctx->ring_addr,
.ring_size = RING_SIZE,
.pml4_addr = aub->pml4.phys_addr,
};
uint32_t *context_data = calloc(1, context_size);
get_context_init(&aub->devinfo, &params, engine_class, context_data, &context_size);
data_out(aub, context_data, context_size);
free(context_data);
hw_ctx->initialized = true;
return total_size;
}
static void
write_execlists_default_setup(struct aub_file *aub)
{
register_write_out(aub, GFX_MODE_RCSUNIT, 0x80008000 /* execlist enable */);
register_write_out(aub, GFX_MODE_VCSUNIT0, 0x80008000 /* execlist enable */);
register_write_out(aub, GFX_MODE_BCSUNIT, 0x80008000 /* execlist enable */);
}
static void write_legacy_default_setup(struct aub_file *aub)
{
uint32_t entry = 0x200003;
/* Set up the GTT. The max we can handle is 64M */
dword_out(aub, CMD_AUB_TRACE_HEADER_BLOCK |
((aub->addr_bits > 32 ? 6 : 5) - 2));
dword_out(aub, AUB_TRACE_MEMTYPE_GTT_ENTRY |
AUB_TRACE_TYPE_NOTYPE | AUB_TRACE_OP_DATA_WRITE);
dword_out(aub, 0); /* subtype */
dword_out(aub, 0); /* offset */
dword_out(aub, aub_gtt_size(aub)); /* size */
if (aub->addr_bits > 32)
dword_out(aub, 0);
for (uint32_t i = 0; i < NUM_PT_ENTRIES; i++) {
dword_out(aub, entry + 0x1000 * i);
if (aub->addr_bits > 32)
dword_out(aub, 0);
}
}
/**
* Sets up a default GGTT/PPGTT address space and execlists context (when
* supported).
*/
void
aub_write_default_setup(struct aub_file *aub)
{
if (aub_use_execlists(aub))
write_execlists_default_setup(aub);
else
write_legacy_default_setup(aub);
aub->has_default_setup = true;
}
static struct aub_context *
aub_context_new(struct aub_file *aub, uint32_t new_id)
{
assert(aub->num_contexts < MAX_CONTEXT_COUNT);
struct aub_context *ctx = &aub->contexts[aub->num_contexts++];
memset(ctx, 0, sizeof(*ctx));
ctx->id = new_id;
return ctx;
}
uint32_t
aub_write_context_create(struct aub_file *aub, uint32_t *ctx_id)
{
uint32_t new_id = ctx_id ? *ctx_id : aub->next_context_handle;
aub_context_new(aub, new_id);
if (!ctx_id)
aub->next_context_handle++;
return new_id;
}
static struct aub_context *
aub_context_find(struct aub_file *aub, uint32_t id)
{
for (int i = 0; i < aub->num_contexts; i++) {
if (aub->contexts[i].id == id)
return &aub->contexts[i];
}
return NULL;
}
static struct aub_hw_context *
aub_write_ensure_context(struct aub_file *aub, uint32_t ctx_id,
enum drm_i915_gem_engine_class engine_class)
{
struct aub_context *ctx = aub_context_find(aub, ctx_id);
assert(ctx != NULL);
struct aub_hw_context *hw_ctx = &ctx->hw_contexts[engine_class];
if (!hw_ctx->initialized)
write_engine_execlist_setup(aub, ctx->id, hw_ctx, engine_class);
return hw_ctx;
}
static uint64_t
get_context_descriptor(struct aub_file *aub,
const struct engine *cs,
struct aub_hw_context *hw_ctx)
{
return cs->hw_class | hw_ctx->pphwsp_addr | CONTEXT_FLAGS;
}
/**
* Break up large objects into multiple writes. Otherwise a 128kb VBO
* would overflow the 16 bits of size field in the packet header and
* everything goes badly after that.
*/
void
aub_write_trace_block(struct aub_file *aub,
uint32_t type, void *virtual,
uint32_t size, uint64_t gtt_offset)
{
uint32_t block_size;
uint32_t subtype = 0;
static const char null_block[8 * 4096];
for (uint32_t offset = 0; offset < size; offset += block_size) {
block_size = min(8 * 4096, size - offset);
if (aub_use_execlists(aub)) {
block_size = min(4096, block_size);
mem_trace_memory_write_header_out(aub,
ppgtt_lookup(aub, gtt_offset + offset),
block_size,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_PHYSICAL,
"Trace Block");
} else {
dword_out(aub, CMD_AUB_TRACE_HEADER_BLOCK |
((aub->addr_bits > 32 ? 6 : 5) - 2));
dword_out(aub, AUB_TRACE_MEMTYPE_GTT |
type | AUB_TRACE_OP_DATA_WRITE);
dword_out(aub, subtype);
dword_out(aub, gtt_offset + offset);
dword_out(aub, align_u32(block_size, 4));
if (aub->addr_bits > 32)
dword_out(aub, (gtt_offset + offset) >> 32);
}
if (virtual)
data_out(aub, ((char *) virtual) + offset, block_size);
else
data_out(aub, null_block, block_size);
/* Pad to a multiple of 4 bytes. */
data_out(aub, null_block, -block_size & 3);
}
}
static void
aub_dump_ring_buffer_execlist(struct aub_file *aub,
struct aub_hw_context *hw_ctx,
const struct engine *cs,
uint64_t batch_offset)
{
mem_trace_memory_write_header_out(aub, hw_ctx->ring_addr, 16,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
"RING MI_BATCH_BUFFER_START user");
dword_out(aub, AUB_MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965 | (3 - 2));
dword_out(aub, batch_offset & 0xFFFFFFFF);
dword_out(aub, batch_offset >> 32);
dword_out(aub, 0 /* MI_NOOP */);
mem_trace_memory_write_header_out(aub, hw_ctx->ring_addr + 8192 + 20, 4,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
"RING BUFFER HEAD");
dword_out(aub, 0); /* RING_BUFFER_HEAD */
mem_trace_memory_write_header_out(aub, hw_ctx->ring_addr + 8192 + 28, 4,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
"RING BUFFER TAIL");
dword_out(aub, 16); /* RING_BUFFER_TAIL */
}
static void
aub_dump_execlist(struct aub_file *aub, const struct engine *cs, uint64_t descriptor)
{
if (aub->devinfo.gen >= 11) {
register_write_out(aub, cs->elsq_reg, descriptor & 0xFFFFFFFF);
register_write_out(aub, cs->elsq_reg + sizeof(uint32_t), descriptor >> 32);
register_write_out(aub, cs->control_reg, 1);
} else {
register_write_out(aub, cs->elsp_reg, 0);
register_write_out(aub, cs->elsp_reg, 0);
register_write_out(aub, cs->elsp_reg, descriptor >> 32);
register_write_out(aub, cs->elsp_reg, descriptor & 0xFFFFFFFF);
}
dword_out(aub, CMD_MEM_TRACE_REGISTER_POLL | (5 + 1 - 1));
dword_out(aub, cs->status_reg);
dword_out(aub, AUB_MEM_TRACE_REGISTER_SIZE_DWORD |
AUB_MEM_TRACE_REGISTER_SPACE_MMIO);
if (aub->devinfo.gen >= 11) {
dword_out(aub, 0x00000001); /* mask lo */
dword_out(aub, 0x00000000); /* mask hi */
dword_out(aub, 0x00000001);
} else {
dword_out(aub, 0x00000010); /* mask lo */
dword_out(aub, 0x00000000); /* mask hi */
dword_out(aub, 0x00000000);
}
}
static void
aub_dump_ring_buffer_legacy(struct aub_file *aub,
uint64_t batch_offset,
uint64_t offset,
enum drm_i915_gem_engine_class engine_class)
{
uint32_t ringbuffer[4096];
unsigned aub_mi_bbs_len;
int ring_count = 0;
static const int engine_class_to_ring[] = {
[I915_ENGINE_CLASS_RENDER] = AUB_TRACE_TYPE_RING_PRB0,
[I915_ENGINE_CLASS_VIDEO] = AUB_TRACE_TYPE_RING_PRB1,
[I915_ENGINE_CLASS_COPY] = AUB_TRACE_TYPE_RING_PRB2,
};
int ring = engine_class_to_ring[engine_class];
/* Make a ring buffer to execute our batchbuffer. */
memset(ringbuffer, 0, sizeof(ringbuffer));
aub_mi_bbs_len = aub->addr_bits > 32 ? 3 : 2;
ringbuffer[ring_count] = AUB_MI_BATCH_BUFFER_START | (aub_mi_bbs_len - 2);
aub_write_reloc(&aub->devinfo, &ringbuffer[ring_count + 1], batch_offset);
ring_count += aub_mi_bbs_len;
/* Write out the ring. This appears to trigger execution of
* the ring in the simulator.
*/
dword_out(aub, CMD_AUB_TRACE_HEADER_BLOCK |
((aub->addr_bits > 32 ? 6 : 5) - 2));
dword_out(aub, AUB_TRACE_MEMTYPE_GTT | ring | AUB_TRACE_OP_COMMAND_WRITE);
dword_out(aub, 0); /* general/surface subtype */
dword_out(aub, offset);
dword_out(aub, ring_count * 4);
if (aub->addr_bits > 32)
dword_out(aub, offset >> 32);
data_out(aub, ringbuffer, ring_count * 4);
}
static void
aub_write_ensure_hwsp(struct aub_file *aub,
enum drm_i915_gem_engine_class engine_class)
{
uint64_t *hwsp_addr = &aub->engine_setup[engine_class].hwsp_addr;
if (*hwsp_addr != 0)
return;
*hwsp_addr = alloc_ggtt_address(aub, 4096);
write_hwsp(aub, engine_class);
}
void
aub_write_exec(struct aub_file *aub, uint32_t ctx_id, uint64_t batch_addr,
uint64_t offset, enum drm_i915_gem_engine_class engine_class)
{
const struct engine *cs = engine_from_engine_class(engine_class);
if (aub_use_execlists(aub)) {
struct aub_hw_context *hw_ctx =
aub_write_ensure_context(aub, ctx_id, engine_class);
uint64_t descriptor = get_context_descriptor(aub, cs, hw_ctx);
aub_write_ensure_hwsp(aub, engine_class);
aub_dump_ring_buffer_execlist(aub, hw_ctx, cs, batch_addr);
aub_dump_execlist(aub, cs, descriptor);
} else {
/* Dump ring buffer */
aub_dump_ring_buffer_legacy(aub, batch_addr, offset, engine_class);
}
fflush(aub->file);
}
void
aub_write_context_execlists(struct aub_file *aub, uint64_t context_addr,
enum drm_i915_gem_engine_class engine_class)
{
const struct engine *cs = engine_from_engine_class(engine_class);
uint64_t descriptor = ((uint64_t)1 << 62 | context_addr | CONTEXT_FLAGS);
aub_dump_execlist(aub, cs, descriptor);
}