blob: 1ae1dfd8e63bca694dc1766ddab453f4bbd71556 [file] [log] [blame]
/*
* Copyright (C) 2015 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#include <stdarg.h>
#include "util/u_string.h"
#include "util/u_memory.h"
#include "util/u_math.h"
#include "ir3_compiler.h"
#include "ir3_image.h"
#include "ir3_shader.h"
#include "ir3_nir.h"
#include "instr-a3xx.h"
#include "ir3.h"
#include "ir3_context.h"
static struct ir3_instruction *
create_indirect_load(struct ir3_context *ctx, unsigned arrsz, int n,
struct ir3_instruction *address, struct ir3_instruction *collect)
{
struct ir3_block *block = ctx->block;
struct ir3_instruction *mov;
struct ir3_register *src;
mov = ir3_instr_create(block, OPC_MOV);
mov->cat1.src_type = TYPE_U32;
mov->cat1.dst_type = TYPE_U32;
__ssa_dst(mov);
src = __ssa_src(mov, collect, IR3_REG_RELATIV);
src->size = arrsz;
src->array.offset = n;
ir3_instr_set_address(mov, address);
return mov;
}
static struct ir3_instruction *
create_input(struct ir3_context *ctx, unsigned compmask)
{
struct ir3_instruction *in;
in = ir3_instr_create(ctx->in_block, OPC_META_INPUT);
in->input.sysval = ~0;
__ssa_dst(in)->wrmask = compmask;
array_insert(ctx->ir, ctx->ir->inputs, in);
return in;
}
static struct ir3_instruction *
create_frag_input(struct ir3_context *ctx, bool use_ldlv, unsigned n)
{
struct ir3_block *block = ctx->block;
struct ir3_instruction *instr;
/* packed inloc is fixed up later: */
struct ir3_instruction *inloc = create_immed(block, n);
if (use_ldlv) {
instr = ir3_LDLV(block, inloc, 0, create_immed(block, 1), 0);
instr->cat6.type = TYPE_U32;
instr->cat6.iim_val = 1;
} else {
instr = ir3_BARY_F(block, inloc, 0, ctx->ij_pixel, 0);
instr->regs[2]->wrmask = 0x3;
}
return instr;
}
static struct ir3_instruction *
create_driver_param(struct ir3_context *ctx, enum ir3_driver_param dp)
{
/* first four vec4 sysval's reserved for UBOs: */
/* NOTE: dp is in scalar, but there can be >4 dp components: */
struct ir3_const_state *const_state = &ctx->so->shader->const_state;
unsigned n = const_state->offsets.driver_param;
unsigned r = regid(n + dp / 4, dp % 4);
return create_uniform(ctx->block, r);
}
/*
* Adreno uses uint rather than having dedicated bool type,
* which (potentially) requires some conversion, in particular
* when using output of an bool instr to int input, or visa
* versa.
*
* | Adreno | NIR |
* -------+---------+-------+-
* true | 1 | ~0 |
* false | 0 | 0 |
*
* To convert from an adreno bool (uint) to nir, use:
*
* absneg.s dst, (neg)src
*
* To convert back in the other direction:
*
* absneg.s dst, (abs)arc
*
* The CP step can clean up the absneg.s that cancel each other
* out, and with a slight bit of extra cleverness (to recognize
* the instructions which produce either a 0 or 1) can eliminate
* the absneg.s's completely when an instruction that wants
* 0/1 consumes the result. For example, when a nir 'bcsel'
* consumes the result of 'feq'. So we should be able to get by
* without a boolean resolve step, and without incuring any
* extra penalty in instruction count.
*/
/* NIR bool -> native (adreno): */
static struct ir3_instruction *
ir3_b2n(struct ir3_block *block, struct ir3_instruction *instr)
{
return ir3_ABSNEG_S(block, instr, IR3_REG_SABS);
}
/* native (adreno) -> NIR bool: */
static struct ir3_instruction *
ir3_n2b(struct ir3_block *block, struct ir3_instruction *instr)
{
return ir3_ABSNEG_S(block, instr, IR3_REG_SNEG);
}
/*
* alu/sfu instructions:
*/
static struct ir3_instruction *
create_cov(struct ir3_context *ctx, struct ir3_instruction *src,
unsigned src_bitsize, nir_op op)
{
type_t src_type, dst_type;
switch (op) {
case nir_op_f2f32:
case nir_op_f2f16_rtne:
case nir_op_f2f16_rtz:
case nir_op_f2f16:
case nir_op_f2i32:
case nir_op_f2i16:
case nir_op_f2i8:
case nir_op_f2u32:
case nir_op_f2u16:
case nir_op_f2u8:
switch (src_bitsize) {
case 32:
src_type = TYPE_F32;
break;
case 16:
src_type = TYPE_F16;
break;
default:
ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
}
break;
case nir_op_i2f32:
case nir_op_i2f16:
case nir_op_i2i32:
case nir_op_i2i16:
case nir_op_i2i8:
switch (src_bitsize) {
case 32:
src_type = TYPE_S32;
break;
case 16:
src_type = TYPE_S16;
break;
case 8:
src_type = TYPE_S8;
break;
default:
ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
}
break;
case nir_op_u2f32:
case nir_op_u2f16:
case nir_op_u2u32:
case nir_op_u2u16:
case nir_op_u2u8:
switch (src_bitsize) {
case 32:
src_type = TYPE_U32;
break;
case 16:
src_type = TYPE_U16;
break;
case 8:
src_type = TYPE_U8;
break;
default:
ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
}
break;
default:
ir3_context_error(ctx, "invalid conversion op: %u", op);
}
switch (op) {
case nir_op_f2f32:
case nir_op_i2f32:
case nir_op_u2f32:
dst_type = TYPE_F32;
break;
case nir_op_f2f16_rtne:
case nir_op_f2f16_rtz:
case nir_op_f2f16:
/* TODO how to handle rounding mode? */
case nir_op_i2f16:
case nir_op_u2f16:
dst_type = TYPE_F16;
break;
case nir_op_f2i32:
case nir_op_i2i32:
dst_type = TYPE_S32;
break;
case nir_op_f2i16:
case nir_op_i2i16:
dst_type = TYPE_S16;
break;
case nir_op_f2i8:
case nir_op_i2i8:
dst_type = TYPE_S8;
break;
case nir_op_f2u32:
case nir_op_u2u32:
dst_type = TYPE_U32;
break;
case nir_op_f2u16:
case nir_op_u2u16:
dst_type = TYPE_U16;
break;
case nir_op_f2u8:
case nir_op_u2u8:
dst_type = TYPE_U8;
break;
default:
ir3_context_error(ctx, "invalid conversion op: %u", op);
}
return ir3_COV(ctx->block, src, src_type, dst_type);
}
static void
emit_alu(struct ir3_context *ctx, nir_alu_instr *alu)
{
const nir_op_info *info = &nir_op_infos[alu->op];
struct ir3_instruction **dst, *src[info->num_inputs];
unsigned bs[info->num_inputs]; /* bit size */
struct ir3_block *b = ctx->block;
unsigned dst_sz, wrmask;
type_t dst_type = nir_dest_bit_size(alu->dest.dest) < 32 ?
TYPE_U16 : TYPE_U32;
if (alu->dest.dest.is_ssa) {
dst_sz = alu->dest.dest.ssa.num_components;
wrmask = (1 << dst_sz) - 1;
} else {
dst_sz = alu->dest.dest.reg.reg->num_components;
wrmask = alu->dest.write_mask;
}
dst = ir3_get_dst(ctx, &alu->dest.dest, dst_sz);
/* Vectors are special in that they have non-scalarized writemasks,
* and just take the first swizzle channel for each argument in
* order into each writemask channel.
*/
if ((alu->op == nir_op_vec2) ||
(alu->op == nir_op_vec3) ||
(alu->op == nir_op_vec4)) {
for (int i = 0; i < info->num_inputs; i++) {
nir_alu_src *asrc = &alu->src[i];
compile_assert(ctx, !asrc->abs);
compile_assert(ctx, !asrc->negate);
src[i] = ir3_get_src(ctx, &asrc->src)[asrc->swizzle[0]];
if (!src[i])
src[i] = create_immed_typed(ctx->block, 0, dst_type);
dst[i] = ir3_MOV(b, src[i], dst_type);
}
ir3_put_dst(ctx, &alu->dest.dest);
return;
}
/* We also get mov's with more than one component for mov's so
* handle those specially:
*/
if (alu->op == nir_op_mov) {
nir_alu_src *asrc = &alu->src[0];
struct ir3_instruction *const *src0 = ir3_get_src(ctx, &asrc->src);
for (unsigned i = 0; i < dst_sz; i++) {
if (wrmask & (1 << i)) {
dst[i] = ir3_MOV(b, src0[asrc->swizzle[i]], dst_type);
} else {
dst[i] = NULL;
}
}
ir3_put_dst(ctx, &alu->dest.dest);
return;
}
/* General case: We can just grab the one used channel per src. */
for (int i = 0; i < info->num_inputs; i++) {
unsigned chan = ffs(alu->dest.write_mask) - 1;
nir_alu_src *asrc = &alu->src[i];
compile_assert(ctx, !asrc->abs);
compile_assert(ctx, !asrc->negate);
src[i] = ir3_get_src(ctx, &asrc->src)[asrc->swizzle[chan]];
bs[i] = nir_src_bit_size(asrc->src);
compile_assert(ctx, src[i]);
}
switch (alu->op) {
case nir_op_f2f32:
case nir_op_f2f16_rtne:
case nir_op_f2f16_rtz:
case nir_op_f2f16:
case nir_op_f2i32:
case nir_op_f2i16:
case nir_op_f2i8:
case nir_op_f2u32:
case nir_op_f2u16:
case nir_op_f2u8:
case nir_op_i2f32:
case nir_op_i2f16:
case nir_op_i2i32:
case nir_op_i2i16:
case nir_op_i2i8:
case nir_op_u2f32:
case nir_op_u2f16:
case nir_op_u2u32:
case nir_op_u2u16:
case nir_op_u2u8:
dst[0] = create_cov(ctx, src[0], bs[0], alu->op);
break;
case nir_op_fquantize2f16:
dst[0] = create_cov(ctx,
create_cov(ctx, src[0], 32, nir_op_f2f16),
16, nir_op_f2f32);
break;
case nir_op_f2b16: {
struct ir3_instruction *zero = create_immed_typed(b, 0, TYPE_F16);
dst[0] = ir3_CMPS_F(b, src[0], 0, zero, 0);
dst[0]->cat2.condition = IR3_COND_NE;
break;
}
case nir_op_f2b32:
dst[0] = ir3_CMPS_F(b, src[0], 0, create_immed(b, fui(0.0)), 0);
dst[0]->cat2.condition = IR3_COND_NE;
break;
case nir_op_b2f16:
dst[0] = ir3_COV(b, ir3_b2n(b, src[0]), TYPE_U32, TYPE_F16);
break;
case nir_op_b2f32:
dst[0] = ir3_COV(b, ir3_b2n(b, src[0]), TYPE_U32, TYPE_F32);
break;
case nir_op_b2i8:
case nir_op_b2i16:
case nir_op_b2i32:
dst[0] = ir3_b2n(b, src[0]);
break;
case nir_op_i2b16: {
struct ir3_instruction *zero = create_immed_typed(b, 0, TYPE_S16);
dst[0] = ir3_CMPS_S(b, src[0], 0, zero, 0);
dst[0]->cat2.condition = IR3_COND_NE;
break;
}
case nir_op_i2b32:
dst[0] = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
dst[0]->cat2.condition = IR3_COND_NE;
break;
case nir_op_fneg:
dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FNEG);
break;
case nir_op_fabs:
dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FABS);
break;
case nir_op_fmax:
dst[0] = ir3_MAX_F(b, src[0], 0, src[1], 0);
break;
case nir_op_fmin:
dst[0] = ir3_MIN_F(b, src[0], 0, src[1], 0);
break;
case nir_op_fsat:
/* if there is just a single use of the src, and it supports
* (sat) bit, we can just fold the (sat) flag back to the
* src instruction and create a mov. This is easier for cp
* to eliminate.
*
* TODO probably opc_cat==4 is ok too
*/
if (alu->src[0].src.is_ssa &&
(list_length(&alu->src[0].src.ssa->uses) == 1) &&
((opc_cat(src[0]->opc) == 2) || (opc_cat(src[0]->opc) == 3))) {
src[0]->flags |= IR3_INSTR_SAT;
dst[0] = ir3_MOV(b, src[0], dst_type);
} else {
/* otherwise generate a max.f that saturates.. blob does
* similar (generating a cat2 mov using max.f)
*/
dst[0] = ir3_MAX_F(b, src[0], 0, src[0], 0);
dst[0]->flags |= IR3_INSTR_SAT;
}
break;
case nir_op_fmul:
dst[0] = ir3_MUL_F(b, src[0], 0, src[1], 0);
break;
case nir_op_fadd:
dst[0] = ir3_ADD_F(b, src[0], 0, src[1], 0);
break;
case nir_op_fsub:
dst[0] = ir3_ADD_F(b, src[0], 0, src[1], IR3_REG_FNEG);
break;
case nir_op_ffma:
dst[0] = ir3_MAD_F32(b, src[0], 0, src[1], 0, src[2], 0);
break;
case nir_op_fddx:
case nir_op_fddx_coarse:
dst[0] = ir3_DSX(b, src[0], 0);
dst[0]->cat5.type = TYPE_F32;
break;
case nir_op_fddx_fine:
dst[0] = ir3_DSXPP_1(b, src[0], 0);
dst[0]->cat5.type = TYPE_F32;
break;
case nir_op_fddy:
case nir_op_fddy_coarse:
dst[0] = ir3_DSY(b, src[0], 0);
dst[0]->cat5.type = TYPE_F32;
break;
break;
case nir_op_fddy_fine:
dst[0] = ir3_DSYPP_1(b, src[0], 0);
dst[0]->cat5.type = TYPE_F32;
break;
case nir_op_flt16:
case nir_op_flt32:
dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_LT;
break;
case nir_op_fge16:
case nir_op_fge32:
dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_GE;
break;
case nir_op_feq16:
case nir_op_feq32:
dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_EQ;
break;
case nir_op_fne16:
case nir_op_fne32:
dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_NE;
break;
case nir_op_fceil:
dst[0] = ir3_CEIL_F(b, src[0], 0);
break;
case nir_op_ffloor:
dst[0] = ir3_FLOOR_F(b, src[0], 0);
break;
case nir_op_ftrunc:
dst[0] = ir3_TRUNC_F(b, src[0], 0);
break;
case nir_op_fround_even:
dst[0] = ir3_RNDNE_F(b, src[0], 0);
break;
case nir_op_fsign:
dst[0] = ir3_SIGN_F(b, src[0], 0);
break;
case nir_op_fsin:
dst[0] = ir3_SIN(b, src[0], 0);
break;
case nir_op_fcos:
dst[0] = ir3_COS(b, src[0], 0);
break;
case nir_op_frsq:
dst[0] = ir3_RSQ(b, src[0], 0);
break;
case nir_op_frcp:
dst[0] = ir3_RCP(b, src[0], 0);
break;
case nir_op_flog2:
dst[0] = ir3_LOG2(b, src[0], 0);
break;
case nir_op_fexp2:
dst[0] = ir3_EXP2(b, src[0], 0);
break;
case nir_op_fsqrt:
dst[0] = ir3_SQRT(b, src[0], 0);
break;
case nir_op_iabs:
dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SABS);
break;
case nir_op_iadd:
dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0);
break;
case nir_op_iand:
dst[0] = ir3_AND_B(b, src[0], 0, src[1], 0);
break;
case nir_op_imax:
dst[0] = ir3_MAX_S(b, src[0], 0, src[1], 0);
break;
case nir_op_umax:
dst[0] = ir3_MAX_U(b, src[0], 0, src[1], 0);
break;
case nir_op_imin:
dst[0] = ir3_MIN_S(b, src[0], 0, src[1], 0);
break;
case nir_op_umin:
dst[0] = ir3_MIN_U(b, src[0], 0, src[1], 0);
break;
case nir_op_umul_low:
dst[0] = ir3_MULL_U(b, src[0], 0, src[1], 0);
break;
case nir_op_imadsh_mix16:
dst[0] = ir3_MADSH_M16(b, src[0], 0, src[1], 0, src[2], 0);
break;
case nir_op_imad24_ir3:
dst[0] = ir3_MAD_S24(b, src[0], 0, src[1], 0, src[2], 0);
break;
case nir_op_imul24:
dst[0] = ir3_MUL_S24(b, src[0], 0, src[1], 0);
break;
case nir_op_ineg:
dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
break;
case nir_op_inot:
dst[0] = ir3_NOT_B(b, src[0], 0);
break;
case nir_op_ior:
dst[0] = ir3_OR_B(b, src[0], 0, src[1], 0);
break;
case nir_op_ishl:
dst[0] = ir3_SHL_B(b, src[0], 0, src[1], 0);
break;
case nir_op_ishr:
dst[0] = ir3_ASHR_B(b, src[0], 0, src[1], 0);
break;
case nir_op_isub:
dst[0] = ir3_SUB_U(b, src[0], 0, src[1], 0);
break;
case nir_op_ixor:
dst[0] = ir3_XOR_B(b, src[0], 0, src[1], 0);
break;
case nir_op_ushr:
dst[0] = ir3_SHR_B(b, src[0], 0, src[1], 0);
break;
case nir_op_ilt16:
case nir_op_ilt32:
dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_LT;
break;
case nir_op_ige16:
case nir_op_ige32:
dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_GE;
break;
case nir_op_ieq16:
case nir_op_ieq32:
dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_EQ;
break;
case nir_op_ine16:
case nir_op_ine32:
dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_NE;
break;
case nir_op_ult16:
case nir_op_ult32:
dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_LT;
break;
case nir_op_uge16:
case nir_op_uge32:
dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_GE;
break;
case nir_op_b16csel:
case nir_op_b32csel: {
struct ir3_instruction *cond = ir3_b2n(b, src[0]);
if ((src[0]->regs[0]->flags & IR3_REG_HALF))
cond->regs[0]->flags |= IR3_REG_HALF;
compile_assert(ctx, bs[1] == bs[2]);
/* Make sure the boolean condition has the same bit size as the other
* two arguments, adding a conversion if necessary.
*/
if (bs[1] < bs[0])
cond = ir3_COV(b, cond, TYPE_U32, TYPE_U16);
else if (bs[1] > bs[0])
cond = ir3_COV(b, cond, TYPE_U16, TYPE_U32);
if (bs[1] > 16)
dst[0] = ir3_SEL_B32(b, src[1], 0, cond, 0, src[2], 0);
else
dst[0] = ir3_SEL_B16(b, src[1], 0, cond, 0, src[2], 0);
break;
}
case nir_op_bit_count: {
// TODO, we need to do this 16b at a time on a5xx+a6xx.. need to
// double check on earlier gen's. Once half-precision support is
// in place, this should probably move to a NIR lowering pass:
struct ir3_instruction *hi, *lo;
hi = ir3_COV(b, ir3_SHR_B(b, src[0], 0, create_immed(b, 16), 0),
TYPE_U32, TYPE_U16);
lo = ir3_COV(b, src[0], TYPE_U32, TYPE_U16);
hi = ir3_CBITS_B(b, hi, 0);
lo = ir3_CBITS_B(b, lo, 0);
// TODO maybe the builders should default to making dst half-precision
// if the src's were half precision, to make this less awkward.. otoh
// we should probably just do this lowering in NIR.
hi->regs[0]->flags |= IR3_REG_HALF;
lo->regs[0]->flags |= IR3_REG_HALF;
dst[0] = ir3_ADD_S(b, hi, 0, lo, 0);
dst[0]->regs[0]->flags |= IR3_REG_HALF;
dst[0] = ir3_COV(b, dst[0], TYPE_U16, TYPE_U32);
break;
}
case nir_op_ifind_msb: {
struct ir3_instruction *cmp;
dst[0] = ir3_CLZ_S(b, src[0], 0);
cmp = ir3_CMPS_S(b, dst[0], 0, create_immed(b, 0), 0);
cmp->cat2.condition = IR3_COND_GE;
dst[0] = ir3_SEL_B32(b,
ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
cmp, 0, dst[0], 0);
break;
}
case nir_op_ufind_msb:
dst[0] = ir3_CLZ_B(b, src[0], 0);
dst[0] = ir3_SEL_B32(b,
ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
src[0], 0, dst[0], 0);
break;
case nir_op_find_lsb:
dst[0] = ir3_BFREV_B(b, src[0], 0);
dst[0] = ir3_CLZ_B(b, dst[0], 0);
break;
case nir_op_bitfield_reverse:
dst[0] = ir3_BFREV_B(b, src[0], 0);
break;
default:
ir3_context_error(ctx, "Unhandled ALU op: %s\n",
nir_op_infos[alu->op].name);
break;
}
if (nir_alu_type_get_base_type(info->output_type) == nir_type_bool) {
assert(dst_sz == 1);
if (nir_dest_bit_size(alu->dest.dest) < 32)
dst[0]->regs[0]->flags |= IR3_REG_HALF;
dst[0] = ir3_n2b(b, dst[0]);
}
if (nir_dest_bit_size(alu->dest.dest) < 32) {
for (unsigned i = 0; i < dst_sz; i++) {
dst[i]->regs[0]->flags |= IR3_REG_HALF;
}
}
ir3_put_dst(ctx, &alu->dest.dest);
}
/* handles direct/indirect UBO reads: */
static void
emit_intrinsic_load_ubo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
struct ir3_instruction **dst)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *base_lo, *base_hi, *addr, *src0, *src1;
/* UBO addresses are the first driver params, but subtract 2 here to
* account for nir_lower_uniforms_to_ubo rebasing the UBOs such that UBO 0
* is the uniforms: */
struct ir3_const_state *const_state = &ctx->so->shader->const_state;
unsigned ubo = regid(const_state->offsets.ubo, 0) - 2;
const unsigned ptrsz = ir3_pointer_size(ctx->compiler);
int off = 0;
/* First src is ubo index, which could either be an immed or not: */
src0 = ir3_get_src(ctx, &intr->src[0])[0];
if (is_same_type_mov(src0) &&
(src0->regs[1]->flags & IR3_REG_IMMED)) {
base_lo = create_uniform(b, ubo + (src0->regs[1]->iim_val * ptrsz));
base_hi = create_uniform(b, ubo + (src0->regs[1]->iim_val * ptrsz) + 1);
} else {
base_lo = create_uniform_indirect(b, ubo, ir3_get_addr(ctx, src0, ptrsz));
base_hi = create_uniform_indirect(b, ubo + 1, ir3_get_addr(ctx, src0, ptrsz));
/* NOTE: since relative addressing is used, make sure constlen is
* at least big enough to cover all the UBO addresses, since the
* assembler won't know what the max address reg is.
*/
ctx->so->constlen = MAX2(ctx->so->constlen,
const_state->offsets.ubo + (ctx->s->info.num_ubos * ptrsz));
}
/* note: on 32bit gpu's base_hi is ignored and DCE'd */
addr = base_lo;
if (nir_src_is_const(intr->src[1])) {
off += nir_src_as_uint(intr->src[1]);
} else {
/* For load_ubo_indirect, second src is indirect offset: */
src1 = ir3_get_src(ctx, &intr->src[1])[0];
/* and add offset to addr: */
addr = ir3_ADD_S(b, addr, 0, src1, 0);
}
/* if offset is to large to encode in the ldg, split it out: */
if ((off + (intr->num_components * 4)) > 1024) {
/* split out the minimal amount to improve the odds that
* cp can fit the immediate in the add.s instruction:
*/
unsigned off2 = off + (intr->num_components * 4) - 1024;
addr = ir3_ADD_S(b, addr, 0, create_immed(b, off2), 0);
off -= off2;
}
if (ptrsz == 2) {
struct ir3_instruction *carry;
/* handle 32b rollover, ie:
* if (addr < base_lo)
* base_hi++
*/
carry = ir3_CMPS_U(b, addr, 0, base_lo, 0);
carry->cat2.condition = IR3_COND_LT;
base_hi = ir3_ADD_S(b, base_hi, 0, carry, 0);
addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){ addr, base_hi }, 2);
}
for (int i = 0; i < intr->num_components; i++) {
struct ir3_instruction *load =
ir3_LDG(b, addr, 0, create_immed(b, 1), 0, /* num components */
create_immed(b, off + i * 4), 0);
load->cat6.type = TYPE_U32;
dst[i] = load;
}
}
/* src[] = { block_index } */
static void
emit_intrinsic_ssbo_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
struct ir3_instruction **dst)
{
/* SSBO size stored as a const starting at ssbo_sizes: */
struct ir3_const_state *const_state = &ctx->so->shader->const_state;
unsigned blk_idx = nir_src_as_uint(intr->src[0]);
unsigned idx = regid(const_state->offsets.ssbo_sizes, 0) +
const_state->ssbo_size.off[blk_idx];
debug_assert(const_state->ssbo_size.mask & (1 << blk_idx));
dst[0] = create_uniform(ctx->block, idx);
}
/* src[] = { offset }. const_index[] = { base } */
static void
emit_intrinsic_load_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr,
struct ir3_instruction **dst)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *ldl, *offset;
unsigned base;
offset = ir3_get_src(ctx, &intr->src[0])[0];
base = nir_intrinsic_base(intr);
ldl = ir3_LDL(b, offset, 0,
create_immed(b, intr->num_components), 0,
create_immed(b, base), 0);
ldl->cat6.type = utype_dst(intr->dest);
ldl->regs[0]->wrmask = MASK(intr->num_components);
ldl->barrier_class = IR3_BARRIER_SHARED_R;
ldl->barrier_conflict = IR3_BARRIER_SHARED_W;
ir3_split_dest(b, dst, ldl, 0, intr->num_components);
}
/* src[] = { value, offset }. const_index[] = { base, write_mask } */
static void
emit_intrinsic_store_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *stl, *offset;
struct ir3_instruction * const *value;
unsigned base, wrmask;
value = ir3_get_src(ctx, &intr->src[0]);
offset = ir3_get_src(ctx, &intr->src[1])[0];
base = nir_intrinsic_base(intr);
wrmask = nir_intrinsic_write_mask(intr);
/* Combine groups of consecutive enabled channels in one write
* message. We use ffs to find the first enabled channel and then ffs on
* the bit-inverse, down-shifted writemask to determine the length of
* the block of enabled bits.
*
* (trick stolen from i965's fs_visitor::nir_emit_cs_intrinsic())
*/
while (wrmask) {
unsigned first_component = ffs(wrmask) - 1;
unsigned length = ffs(~(wrmask >> first_component)) - 1;
stl = ir3_STL(b, offset, 0,
ir3_create_collect(ctx, &value[first_component], length), 0,
create_immed(b, length), 0);
stl->cat6.dst_offset = first_component + base;
stl->cat6.type = utype_src(intr->src[0]);
stl->barrier_class = IR3_BARRIER_SHARED_W;
stl->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
array_insert(b, b->keeps, stl);
/* Clear the bits in the writemask that we just wrote, then try
* again to see if more channels are left.
*/
wrmask &= (15 << (first_component + length));
}
}
/* src[] = { offset }. const_index[] = { base } */
static void
emit_intrinsic_load_shared_ir3(struct ir3_context *ctx, nir_intrinsic_instr *intr,
struct ir3_instruction **dst)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *load, *offset;
unsigned base;
offset = ir3_get_src(ctx, &intr->src[0])[0];
base = nir_intrinsic_base(intr);
load = ir3_LDLW(b, offset, 0,
create_immed(b, intr->num_components), 0,
create_immed(b, base), 0);
load->cat6.type = utype_dst(intr->dest);
load->regs[0]->wrmask = MASK(intr->num_components);
load->barrier_class = IR3_BARRIER_SHARED_R;
load->barrier_conflict = IR3_BARRIER_SHARED_W;
ir3_split_dest(b, dst, load, 0, intr->num_components);
}
/* src[] = { value, offset }. const_index[] = { base, write_mask } */
static void
emit_intrinsic_store_shared_ir3(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *store, *offset;
struct ir3_instruction * const *value;
unsigned base, wrmask;
value = ir3_get_src(ctx, &intr->src[0]);
offset = ir3_get_src(ctx, &intr->src[1])[0];
base = nir_intrinsic_base(intr);
wrmask = nir_intrinsic_write_mask(intr);
/* Combine groups of consecutive enabled channels in one write
* message. We use ffs to find the first enabled channel and then ffs on
* the bit-inverse, down-shifted writemask to determine the length of
* the block of enabled bits.
*
* (trick stolen from i965's fs_visitor::nir_emit_cs_intrinsic())
*/
while (wrmask) {
unsigned first_component = ffs(wrmask) - 1;
unsigned length = ffs(~(wrmask >> first_component)) - 1;
store = ir3_STLW(b, offset, 0,
ir3_create_collect(ctx, &value[first_component], length), 0,
create_immed(b, length), 0);
store->cat6.dst_offset = first_component + base;
store->cat6.type = utype_src(intr->src[0]);
store->barrier_class = IR3_BARRIER_SHARED_W;
store->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
array_insert(b, b->keeps, store);
/* Clear the bits in the writemask that we just wrote, then try
* again to see if more channels are left.
*/
wrmask &= (15 << (first_component + length));
}
}
/*
* CS shared variable atomic intrinsics
*
* All of the shared variable atomic memory operations read a value from
* memory, compute a new value using one of the operations below, write the
* new value to memory, and return the original value read.
*
* All operations take 2 sources except CompSwap that takes 3. These
* sources represent:
*
* 0: The offset into the shared variable storage region that the atomic
* operation will operate on.
* 1: The data parameter to the atomic function (i.e. the value to add
* in shared_atomic_add, etc).
* 2: For CompSwap only: the second data parameter.
*/
static struct ir3_instruction *
emit_intrinsic_atomic_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *atomic, *src0, *src1;
type_t type = TYPE_U32;
src0 = ir3_get_src(ctx, &intr->src[0])[0]; /* offset */
src1 = ir3_get_src(ctx, &intr->src[1])[0]; /* value */
switch (intr->intrinsic) {
case nir_intrinsic_shared_atomic_add:
atomic = ir3_ATOMIC_ADD(b, src0, 0, src1, 0);
break;
case nir_intrinsic_shared_atomic_imin:
atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
type = TYPE_S32;
break;
case nir_intrinsic_shared_atomic_umin:
atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
break;
case nir_intrinsic_shared_atomic_imax:
atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
type = TYPE_S32;
break;
case nir_intrinsic_shared_atomic_umax:
atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
break;
case nir_intrinsic_shared_atomic_and:
atomic = ir3_ATOMIC_AND(b, src0, 0, src1, 0);
break;
case nir_intrinsic_shared_atomic_or:
atomic = ir3_ATOMIC_OR(b, src0, 0, src1, 0);
break;
case nir_intrinsic_shared_atomic_xor:
atomic = ir3_ATOMIC_XOR(b, src0, 0, src1, 0);
break;
case nir_intrinsic_shared_atomic_exchange:
atomic = ir3_ATOMIC_XCHG(b, src0, 0, src1, 0);
break;
case nir_intrinsic_shared_atomic_comp_swap:
/* for cmpxchg, src1 is [ui]vec2(data, compare): */
src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
ir3_get_src(ctx, &intr->src[2])[0],
src1,
}, 2);
atomic = ir3_ATOMIC_CMPXCHG(b, src0, 0, src1, 0);
break;
default:
unreachable("boo");
}
atomic->cat6.iim_val = 1;
atomic->cat6.d = 1;
atomic->cat6.type = type;
atomic->barrier_class = IR3_BARRIER_SHARED_W;
atomic->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
/* even if nothing consume the result, we can't DCE the instruction: */
array_insert(b, b->keeps, atomic);
return atomic;
}
/* TODO handle actual indirect/dynamic case.. which is going to be weird
* to handle with the image_mapping table..
*/
static struct ir3_instruction *
get_image_samp_tex_src(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
unsigned slot = ir3_get_image_slot(nir_src_as_deref(intr->src[0]));
unsigned tex_idx = ir3_image_to_tex(&ctx->so->image_mapping, slot);
struct ir3_instruction *texture, *sampler;
texture = create_immed_typed(ctx->block, tex_idx, TYPE_U16);
sampler = create_immed_typed(ctx->block, tex_idx, TYPE_U16);
return ir3_create_collect(ctx, (struct ir3_instruction*[]){
sampler,
texture,
}, 2);
}
/* src[] = { deref, coord, sample_index }. const_index[] = {} */
static void
emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
struct ir3_instruction **dst)
{
struct ir3_block *b = ctx->block;
const nir_variable *var = nir_intrinsic_get_var(intr, 0);
struct ir3_instruction *samp_tex = get_image_samp_tex_src(ctx, intr);
struct ir3_instruction *sam;
struct ir3_instruction * const *src0 = ir3_get_src(ctx, &intr->src[1]);
struct ir3_instruction *coords[4];
unsigned flags, ncoords = ir3_get_image_coords(var, &flags);
type_t type = ir3_get_image_type(var);
/* hmm, this seems a bit odd, but it is what blob does and (at least
* a5xx) just faults on bogus addresses otherwise:
*/
if (flags & IR3_INSTR_3D) {
flags &= ~IR3_INSTR_3D;
flags |= IR3_INSTR_A;
}
for (unsigned i = 0; i < ncoords; i++)
coords[i] = src0[i];
if (ncoords == 1)
coords[ncoords++] = create_immed(b, 0);
sam = ir3_SAM(b, OPC_ISAM, type, 0b1111, flags,
samp_tex, ir3_create_collect(ctx, coords, ncoords), NULL);
sam->barrier_class = IR3_BARRIER_IMAGE_R;
sam->barrier_conflict = IR3_BARRIER_IMAGE_W;
ir3_split_dest(b, dst, sam, 0, 4);
}
static void
emit_intrinsic_image_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
struct ir3_instruction **dst)
{
struct ir3_block *b = ctx->block;
const nir_variable *var = nir_intrinsic_get_var(intr, 0);
struct ir3_instruction *samp_tex = get_image_samp_tex_src(ctx, intr);
struct ir3_instruction *sam, *lod;
unsigned flags, ncoords = ir3_get_image_coords(var, &flags);
type_t dst_type = nir_dest_bit_size(intr->dest) < 32 ?
TYPE_U16 : TYPE_U32;
lod = create_immed(b, 0);
sam = ir3_SAM(b, OPC_GETSIZE, dst_type, 0b1111, flags,
samp_tex, lod, NULL);
/* Array size actually ends up in .w rather than .z. This doesn't
* matter for miplevel 0, but for higher mips the value in z is
* minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
* returned, which means that we have to add 1 to it for arrays for
* a3xx.
*
* Note use a temporary dst and then copy, since the size of the dst
* array that is passed in is based on nir's understanding of the
* result size, not the hardware's
*/
struct ir3_instruction *tmp[4];
ir3_split_dest(b, tmp, sam, 0, 4);
/* get_size instruction returns size in bytes instead of texels
* for imageBuffer, so we need to divide it by the pixel size
* of the image format.
*
* TODO: This is at least true on a5xx. Check other gens.
*/
enum glsl_sampler_dim dim =
glsl_get_sampler_dim(glsl_without_array(var->type));
if (dim == GLSL_SAMPLER_DIM_BUF) {
/* Since all the possible values the divisor can take are
* power-of-two (4, 8, or 16), the division is implemented
* as a shift-right.
* During shader setup, the log2 of the image format's
* bytes-per-pixel should have been emitted in 2nd slot of
* image_dims. See ir3_shader::emit_image_dims().
*/
struct ir3_const_state *const_state = &ctx->so->shader->const_state;
unsigned cb = regid(const_state->offsets.image_dims, 0) +
const_state->image_dims.off[var->data.driver_location];
struct ir3_instruction *aux = create_uniform(b, cb + 1);
tmp[0] = ir3_SHR_B(b, tmp[0], 0, aux, 0);
}
for (unsigned i = 0; i < ncoords; i++)
dst[i] = tmp[i];
if (flags & IR3_INSTR_A) {
if (ctx->compiler->levels_add_one) {
dst[ncoords-1] = ir3_ADD_U(b, tmp[3], 0, create_immed(b, 1), 0);
} else {
dst[ncoords-1] = ir3_MOV(b, tmp[3], TYPE_U32);
}
}
}
static void
emit_intrinsic_barrier(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *barrier;
switch (intr->intrinsic) {
case nir_intrinsic_control_barrier:
barrier = ir3_BAR(b);
barrier->cat7.g = true;
barrier->cat7.l = true;
barrier->flags = IR3_INSTR_SS | IR3_INSTR_SY;
barrier->barrier_class = IR3_BARRIER_EVERYTHING;
break;
case nir_intrinsic_memory_barrier:
barrier = ir3_FENCE(b);
barrier->cat7.g = true;
barrier->cat7.r = true;
barrier->cat7.w = true;
barrier->cat7.l = true;
barrier->barrier_class = IR3_BARRIER_IMAGE_W |
IR3_BARRIER_BUFFER_W;
barrier->barrier_conflict =
IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
break;
case nir_intrinsic_memory_barrier_buffer:
barrier = ir3_FENCE(b);
barrier->cat7.g = true;
barrier->cat7.r = true;
barrier->cat7.w = true;
barrier->barrier_class = IR3_BARRIER_BUFFER_W;
barrier->barrier_conflict = IR3_BARRIER_BUFFER_R |
IR3_BARRIER_BUFFER_W;
break;
case nir_intrinsic_memory_barrier_image:
// TODO double check if this should have .g set
barrier = ir3_FENCE(b);
barrier->cat7.g = true;
barrier->cat7.r = true;
barrier->cat7.w = true;
barrier->barrier_class = IR3_BARRIER_IMAGE_W;
barrier->barrier_conflict = IR3_BARRIER_IMAGE_R |
IR3_BARRIER_IMAGE_W;
break;
case nir_intrinsic_memory_barrier_shared:
barrier = ir3_FENCE(b);
barrier->cat7.g = true;
barrier->cat7.l = true;
barrier->cat7.r = true;
barrier->cat7.w = true;
barrier->barrier_class = IR3_BARRIER_SHARED_W;
barrier->barrier_conflict = IR3_BARRIER_SHARED_R |
IR3_BARRIER_SHARED_W;
break;
case nir_intrinsic_group_memory_barrier:
barrier = ir3_FENCE(b);
barrier->cat7.g = true;
barrier->cat7.l = true;
barrier->cat7.r = true;
barrier->cat7.w = true;
barrier->barrier_class = IR3_BARRIER_SHARED_W |
IR3_BARRIER_IMAGE_W |
IR3_BARRIER_BUFFER_W;
barrier->barrier_conflict =
IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W |
IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
break;
default:
unreachable("boo");
}
/* make sure barrier doesn't get DCE'd */
array_insert(b, b->keeps, barrier);
}
static void add_sysval_input_compmask(struct ir3_context *ctx,
gl_system_value slot, unsigned compmask,
struct ir3_instruction *instr)
{
struct ir3_shader_variant *so = ctx->so;
unsigned n = so->inputs_count++;
assert(instr->opc == OPC_META_INPUT);
instr->input.inidx = n;
instr->input.sysval = slot;
so->inputs[n].sysval = true;
so->inputs[n].slot = slot;
so->inputs[n].compmask = compmask;
so->inputs[n].interpolate = INTERP_MODE_FLAT;
so->total_in++;
}
static struct ir3_instruction *
create_sysval_input(struct ir3_context *ctx, gl_system_value slot,
unsigned compmask)
{
assert(compmask);
struct ir3_instruction *sysval = create_input(ctx, compmask);
add_sysval_input_compmask(ctx, slot, compmask, sysval);
return sysval;
}
static struct ir3_instruction *
get_barycentric_centroid(struct ir3_context *ctx)
{
if (!ctx->ij_centroid) {
struct ir3_instruction *xy[2];
struct ir3_instruction *ij;
ij = create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID, 0x3);
ir3_split_dest(ctx->block, xy, ij, 0, 2);
ctx->ij_centroid = ir3_create_collect(ctx, xy, 2);
}
return ctx->ij_centroid;
}
static struct ir3_instruction *
get_barycentric_sample(struct ir3_context *ctx)
{
if (!ctx->ij_sample) {
struct ir3_instruction *xy[2];
struct ir3_instruction *ij;
ij = create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE, 0x3);
ir3_split_dest(ctx->block, xy, ij, 0, 2);
ctx->ij_sample = ir3_create_collect(ctx, xy, 2);
}
return ctx->ij_sample;
}
static struct ir3_instruction *
get_barycentric_pixel(struct ir3_context *ctx)
{
/* TODO when tgsi_to_nir supports "new-style" FS inputs switch
* this to create ij_pixel only on demand:
*/
return ctx->ij_pixel;
}
static struct ir3_instruction *
get_frag_coord(struct ir3_context *ctx)
{
if (!ctx->frag_coord) {
struct ir3_block *b = ctx->block;
struct ir3_instruction *xyzw[4];
struct ir3_instruction *hw_frag_coord;
hw_frag_coord = create_sysval_input(ctx, SYSTEM_VALUE_FRAG_COORD, 0xf);
ir3_split_dest(ctx->block, xyzw, hw_frag_coord, 0, 4);
/* for frag_coord.xy, we get unsigned values.. we need
* to subtract (integer) 8 and divide by 16 (right-
* shift by 4) then convert to float:
*
* sub.s tmp, src, 8
* shr.b tmp, tmp, 4
* mov.u32f32 dst, tmp
*
*/
for (int i = 0; i < 2; i++) {
xyzw[i] = ir3_SUB_S(b, xyzw[i], 0,
create_immed(b, 8), 0);
xyzw[i] = ir3_SHR_B(b, xyzw[i], 0,
create_immed(b, 4), 0);
xyzw[i] = ir3_COV(b, xyzw[i], TYPE_U32, TYPE_F32);
}
ctx->frag_coord = ir3_create_collect(ctx, xyzw, 4);
ctx->so->frag_coord = true;
}
return ctx->frag_coord;
}
static void
emit_intrinsic(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
struct ir3_instruction **dst;
struct ir3_instruction * const *src;
struct ir3_block *b = ctx->block;
int idx, comp;
if (info->has_dest) {
unsigned n = nir_intrinsic_dest_components(intr);
dst = ir3_get_dst(ctx, &intr->dest, n);
} else {
dst = NULL;
}
const unsigned primitive_param = ctx->so->shader->const_state.offsets.primitive_param * 4;
const unsigned primitive_map = ctx->so->shader->const_state.offsets.primitive_map * 4;
switch (intr->intrinsic) {
case nir_intrinsic_load_uniform:
idx = nir_intrinsic_base(intr);
if (nir_src_is_const(intr->src[0])) {
idx += nir_src_as_uint(intr->src[0]);
for (int i = 0; i < intr->num_components; i++) {
dst[i] = create_uniform_typed(b, idx + i,
nir_dest_bit_size(intr->dest) < 32 ? TYPE_F16 : TYPE_F32);
}
} else {
src = ir3_get_src(ctx, &intr->src[0]);
for (int i = 0; i < intr->num_components; i++) {
dst[i] = create_uniform_indirect(b, idx + i,
ir3_get_addr(ctx, src[0], 1));
}
/* NOTE: if relative addressing is used, we set
* constlen in the compiler (to worst-case value)
* since we don't know in the assembler what the max
* addr reg value can be:
*/
ctx->so->constlen = MAX2(ctx->so->constlen,
ctx->so->shader->ubo_state.size / 16);
}
break;
case nir_intrinsic_load_vs_primitive_stride_ir3:
dst[0] = create_uniform(b, primitive_param + 0);
break;
case nir_intrinsic_load_vs_vertex_stride_ir3:
dst[0] = create_uniform(b, primitive_param + 1);
break;
case nir_intrinsic_load_hs_patch_stride_ir3:
dst[0] = create_uniform(b, primitive_param + 2);
break;
case nir_intrinsic_load_patch_vertices_in:
dst[0] = create_uniform(b, primitive_param + 3);
break;
case nir_intrinsic_load_tess_param_base_ir3:
dst[0] = create_uniform(b, primitive_param + 4);
dst[1] = create_uniform(b, primitive_param + 5);
break;
case nir_intrinsic_load_tess_factor_base_ir3:
dst[0] = create_uniform(b, primitive_param + 6);
dst[1] = create_uniform(b, primitive_param + 7);
break;
case nir_intrinsic_load_primitive_location_ir3:
idx = nir_intrinsic_driver_location(intr);
dst[0] = create_uniform(b, primitive_map + idx);
break;
case nir_intrinsic_load_gs_header_ir3:
dst[0] = ctx->gs_header;
break;
case nir_intrinsic_load_tcs_header_ir3:
dst[0] = ctx->tcs_header;
break;
case nir_intrinsic_load_primitive_id:
dst[0] = ctx->primitive_id;
break;
case nir_intrinsic_load_tess_coord:
if (!ctx->tess_coord) {
ctx->tess_coord =
create_sysval_input(ctx, SYSTEM_VALUE_TESS_COORD, 0x3);
}
ir3_split_dest(b, dst, ctx->tess_coord, 0, 2);
/* Unused, but ir3_put_dst() below wants to free something */
dst[2] = create_immed(b, 0);
break;
case nir_intrinsic_end_patch_ir3:
assert(ctx->so->type == MESA_SHADER_TESS_CTRL);
struct ir3_instruction *end = ir3_ENDIF(b);
array_insert(b, b->keeps, end);
end->barrier_class = IR3_BARRIER_EVERYTHING;
end->barrier_conflict = IR3_BARRIER_EVERYTHING;
break;
case nir_intrinsic_store_global_ir3: {
struct ir3_instruction *value, *addr, *offset;
addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){
ir3_get_src(ctx, &intr->src[1])[0],
ir3_get_src(ctx, &intr->src[1])[1]
}, 2);
offset = ir3_get_src(ctx, &intr->src[2])[0];
value = ir3_create_collect(ctx, ir3_get_src(ctx, &intr->src[0]),
intr->num_components);
struct ir3_instruction *stg =
ir3_STG_G(ctx->block, addr, 0, value, 0,
create_immed(ctx->block, intr->num_components), 0, offset, 0);
stg->cat6.type = TYPE_U32;
stg->cat6.iim_val = 1;
array_insert(b, b->keeps, stg);
stg->barrier_class = IR3_BARRIER_BUFFER_W;
stg->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
break;
}
case nir_intrinsic_load_global_ir3: {
struct ir3_instruction *addr, *offset;
addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){
ir3_get_src(ctx, &intr->src[0])[0],
ir3_get_src(ctx, &intr->src[0])[1]
}, 2);
offset = ir3_get_src(ctx, &intr->src[1])[0];
struct ir3_instruction *load =
ir3_LDG(b, addr, 0, create_immed(ctx->block, intr->num_components),
0, offset, 0);
load->cat6.type = TYPE_U32;
load->regs[0]->wrmask = MASK(intr->num_components);
load->barrier_class = IR3_BARRIER_BUFFER_R;
load->barrier_conflict = IR3_BARRIER_BUFFER_W;
ir3_split_dest(b, dst, load, 0, intr->num_components);
break;
}
case nir_intrinsic_load_ubo:
emit_intrinsic_load_ubo(ctx, intr, dst);
break;
case nir_intrinsic_load_frag_coord:
ir3_split_dest(b, dst, get_frag_coord(ctx), 0, 4);
break;
case nir_intrinsic_load_sample_pos_from_id: {
/* NOTE: blob seems to always use TYPE_F16 and then cov.f16f32,
* but that doesn't seem necessary.
*/
struct ir3_instruction *offset =
ir3_RGETPOS(b, ir3_get_src(ctx, &intr->src[0])[0], 0);
offset->regs[0]->wrmask = 0x3;
offset->cat5.type = TYPE_F32;
ir3_split_dest(b, dst, offset, 0, 2);
break;
}
case nir_intrinsic_load_size_ir3:
if (!ctx->ij_size) {
ctx->ij_size =
create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE, 0x1);
}
dst[0] = ctx->ij_size;
break;
case nir_intrinsic_load_barycentric_centroid:
ir3_split_dest(b, dst, get_barycentric_centroid(ctx), 0, 2);
break;
case nir_intrinsic_load_barycentric_sample:
if (ctx->so->key.msaa) {
ir3_split_dest(b, dst, get_barycentric_sample(ctx), 0, 2);
} else {
ir3_split_dest(b, dst, get_barycentric_pixel(ctx), 0, 2);
}
break;
case nir_intrinsic_load_barycentric_pixel:
ir3_split_dest(b, dst, get_barycentric_pixel(ctx), 0, 2);
break;
case nir_intrinsic_load_interpolated_input:
idx = nir_intrinsic_base(intr);
comp = nir_intrinsic_component(intr);
src = ir3_get_src(ctx, &intr->src[0]);
if (nir_src_is_const(intr->src[1])) {
struct ir3_instruction *coord = ir3_create_collect(ctx, src, 2);
idx += nir_src_as_uint(intr->src[1]);
for (int i = 0; i < intr->num_components; i++) {
unsigned inloc = idx * 4 + i + comp;
if (ctx->so->inputs[idx].bary &&
!ctx->so->inputs[idx].use_ldlv) {
dst[i] = ir3_BARY_F(b, create_immed(b, inloc), 0, coord, 0);
} else {
/* for non-varyings use the pre-setup input, since
* that is easier than mapping things back to a
* nir_variable to figure out what it is.
*/
dst[i] = ctx->inputs[inloc];
}
}
} else {
ir3_context_error(ctx, "unhandled");
}
break;
case nir_intrinsic_load_input:
idx = nir_intrinsic_base(intr);
comp = nir_intrinsic_component(intr);
if (nir_src_is_const(intr->src[0])) {
idx += nir_src_as_uint(intr->src[0]);
for (int i = 0; i < intr->num_components; i++) {
unsigned n = idx * 4 + i + comp;
dst[i] = ctx->inputs[n];
compile_assert(ctx, ctx->inputs[n]);
}
} else {
src = ir3_get_src(ctx, &intr->src[0]);
struct ir3_instruction *collect =
ir3_create_collect(ctx, ctx->ir->inputs, ctx->ninputs);
struct ir3_instruction *addr = ir3_get_addr(ctx, src[0], 4);
for (int i = 0; i < intr->num_components; i++) {
unsigned n = idx * 4 + i + comp;
dst[i] = create_indirect_load(ctx, ctx->ninputs,
n, addr, collect);
}
}
break;
/* All SSBO intrinsics should have been lowered by 'lower_io_offsets'
* pass and replaced by an ir3-specifc version that adds the
* dword-offset in the last source.
*/
case nir_intrinsic_load_ssbo_ir3:
ctx->funcs->emit_intrinsic_load_ssbo(ctx, intr, dst);
break;
case nir_intrinsic_store_ssbo_ir3:
if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
!ctx->s->info.fs.early_fragment_tests)
ctx->so->no_earlyz = true;
ctx->funcs->emit_intrinsic_store_ssbo(ctx, intr);
break;
case nir_intrinsic_get_buffer_size:
emit_intrinsic_ssbo_size(ctx, intr, dst);
break;
case nir_intrinsic_ssbo_atomic_add_ir3:
case nir_intrinsic_ssbo_atomic_imin_ir3:
case nir_intrinsic_ssbo_atomic_umin_ir3:
case nir_intrinsic_ssbo_atomic_imax_ir3:
case nir_intrinsic_ssbo_atomic_umax_ir3:
case nir_intrinsic_ssbo_atomic_and_ir3:
case nir_intrinsic_ssbo_atomic_or_ir3:
case nir_intrinsic_ssbo_atomic_xor_ir3:
case nir_intrinsic_ssbo_atomic_exchange_ir3:
case nir_intrinsic_ssbo_atomic_comp_swap_ir3:
if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
!ctx->s->info.fs.early_fragment_tests)
ctx->so->no_earlyz = true;
dst[0] = ctx->funcs->emit_intrinsic_atomic_ssbo(ctx, intr);
break;
case nir_intrinsic_load_shared:
emit_intrinsic_load_shared(ctx, intr, dst);
break;
case nir_intrinsic_store_shared:
emit_intrinsic_store_shared(ctx, intr);
break;
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_shared_atomic_imin:
case nir_intrinsic_shared_atomic_umin:
case nir_intrinsic_shared_atomic_imax:
case nir_intrinsic_shared_atomic_umax:
case nir_intrinsic_shared_atomic_and:
case nir_intrinsic_shared_atomic_or:
case nir_intrinsic_shared_atomic_xor:
case nir_intrinsic_shared_atomic_exchange:
case nir_intrinsic_shared_atomic_comp_swap:
dst[0] = emit_intrinsic_atomic_shared(ctx, intr);
break;
case nir_intrinsic_image_deref_load:
emit_intrinsic_load_image(ctx, intr, dst);
break;
case nir_intrinsic_image_deref_store:
if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
!ctx->s->info.fs.early_fragment_tests)
ctx->so->no_earlyz = true;
ctx->funcs->emit_intrinsic_store_image(ctx, intr);
break;
case nir_intrinsic_image_deref_size:
emit_intrinsic_image_size(ctx, intr, dst);
break;
case nir_intrinsic_image_deref_atomic_add:
case nir_intrinsic_image_deref_atomic_imin:
case nir_intrinsic_image_deref_atomic_umin:
case nir_intrinsic_image_deref_atomic_imax:
case nir_intrinsic_image_deref_atomic_umax:
case nir_intrinsic_image_deref_atomic_and:
case nir_intrinsic_image_deref_atomic_or:
case nir_intrinsic_image_deref_atomic_xor:
case nir_intrinsic_image_deref_atomic_exchange:
case nir_intrinsic_image_deref_atomic_comp_swap:
if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
!ctx->s->info.fs.early_fragment_tests)
ctx->so->no_earlyz = true;
dst[0] = ctx->funcs->emit_intrinsic_atomic_image(ctx, intr);
break;
case nir_intrinsic_control_barrier:
case nir_intrinsic_memory_barrier:
case nir_intrinsic_group_memory_barrier:
case nir_intrinsic_memory_barrier_buffer:
case nir_intrinsic_memory_barrier_image:
case nir_intrinsic_memory_barrier_shared:
emit_intrinsic_barrier(ctx, intr);
/* note that blk ptr no longer valid, make that obvious: */
b = NULL;
break;
case nir_intrinsic_store_output:
idx = nir_intrinsic_base(intr);
comp = nir_intrinsic_component(intr);
compile_assert(ctx, nir_src_is_const(intr->src[1]));
idx += nir_src_as_uint(intr->src[1]);
src = ir3_get_src(ctx, &intr->src[0]);
for (int i = 0; i < intr->num_components; i++) {
unsigned n = idx * 4 + i + comp;
ctx->outputs[n] = src[i];
}
break;
case nir_intrinsic_load_base_vertex:
case nir_intrinsic_load_first_vertex:
if (!ctx->basevertex) {
ctx->basevertex = create_driver_param(ctx, IR3_DP_VTXID_BASE);
}
dst[0] = ctx->basevertex;
break;
case nir_intrinsic_load_base_instance:
if (!ctx->base_instance) {
ctx->base_instance = create_driver_param(ctx, IR3_DP_INSTID_BASE);
}
dst[0] = ctx->base_instance;
break;
case nir_intrinsic_load_vertex_id_zero_base:
case nir_intrinsic_load_vertex_id:
if (!ctx->vertex_id) {
gl_system_value sv = (intr->intrinsic == nir_intrinsic_load_vertex_id) ?
SYSTEM_VALUE_VERTEX_ID : SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
ctx->vertex_id = create_sysval_input(ctx, sv, 0x1);
}
dst[0] = ctx->vertex_id;
break;
case nir_intrinsic_load_instance_id:
if (!ctx->instance_id) {
ctx->instance_id = create_sysval_input(ctx, SYSTEM_VALUE_INSTANCE_ID, 0x1);
}
dst[0] = ctx->instance_id;
break;
case nir_intrinsic_load_sample_id:
ctx->so->per_samp = true;
/* fall-thru */
case nir_intrinsic_load_sample_id_no_per_sample:
if (!ctx->samp_id) {
ctx->samp_id = create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_ID, 0x1);
ctx->samp_id->regs[0]->flags |= IR3_REG_HALF;
}
dst[0] = ir3_COV(b, ctx->samp_id, TYPE_U16, TYPE_U32);
break;
case nir_intrinsic_load_sample_mask_in:
if (!ctx->samp_mask_in) {
ctx->samp_mask_in = create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_MASK_IN, 0x1);
}
dst[0] = ctx->samp_mask_in;
break;
case nir_intrinsic_load_user_clip_plane:
idx = nir_intrinsic_ucp_id(intr);
for (int i = 0; i < intr->num_components; i++) {
unsigned n = idx * 4 + i;
dst[i] = create_driver_param(ctx, IR3_DP_UCP0_X + n);
}
break;
case nir_intrinsic_load_front_face:
if (!ctx->frag_face) {
ctx->so->frag_face = true;
ctx->frag_face = create_sysval_input(ctx, SYSTEM_VALUE_FRONT_FACE, 0x1);
ctx->frag_face->regs[0]->flags |= IR3_REG_HALF;
}
/* for fragface, we get -1 for back and 0 for front. However this is
* the inverse of what nir expects (where ~0 is true).
*/
dst[0] = ir3_COV(b, ctx->frag_face, TYPE_S16, TYPE_S32);
dst[0] = ir3_NOT_B(b, dst[0], 0);
break;
case nir_intrinsic_load_local_invocation_id:
if (!ctx->local_invocation_id) {
ctx->local_invocation_id =
create_sysval_input(ctx, SYSTEM_VALUE_LOCAL_INVOCATION_ID, 0x7);
}
ir3_split_dest(b, dst, ctx->local_invocation_id, 0, 3);
break;
case nir_intrinsic_load_work_group_id:
if (!ctx->work_group_id) {
ctx->work_group_id =
create_sysval_input(ctx, SYSTEM_VALUE_WORK_GROUP_ID, 0x7);
ctx->work_group_id->regs[0]->flags |= IR3_REG_HIGH;
}
ir3_split_dest(b, dst, ctx->work_group_id, 0, 3);
break;
case nir_intrinsic_load_num_work_groups:
for (int i = 0; i < intr->num_components; i++) {
dst[i] = create_driver_param(ctx, IR3_DP_NUM_WORK_GROUPS_X + i);
}
break;
case nir_intrinsic_load_local_group_size:
for (int i = 0; i < intr->num_components; i++) {
dst[i] = create_driver_param(ctx, IR3_DP_LOCAL_GROUP_SIZE_X + i);
}
break;
case nir_intrinsic_discard_if:
case nir_intrinsic_discard: {
struct ir3_instruction *cond, *kill;
if (intr->intrinsic == nir_intrinsic_discard_if) {
/* conditional discard: */
src = ir3_get_src(ctx, &intr->src[0]);
cond = ir3_b2n(b, src[0]);
} else {
/* unconditional discard: */
cond = create_immed(b, 1);
}
/* NOTE: only cmps.*.* can write p0.x: */
cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
cond->cat2.condition = IR3_COND_NE;
/* condition always goes in predicate register: */
cond->regs[0]->num = regid(REG_P0, 0);
cond->regs[0]->flags &= ~IR3_REG_SSA;
kill = ir3_KILL(b, cond, 0);
array_insert(ctx->ir, ctx->ir->predicates, kill);
array_insert(b, b->keeps, kill);
ctx->so->no_earlyz = true;
break;
}
case nir_intrinsic_cond_end_ir3: {
struct ir3_instruction *cond, *kill;
src = ir3_get_src(ctx, &intr->src[0]);
cond = ir3_b2n(b, src[0]);
/* NOTE: only cmps.*.* can write p0.x: */
cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
cond->cat2.condition = IR3_COND_NE;
/* condition always goes in predicate register: */
cond->regs[0]->num = regid(REG_P0, 0);
kill = ir3_IF(b, cond, 0);
kill->barrier_class = IR3_BARRIER_EVERYTHING;
kill->barrier_conflict = IR3_BARRIER_EVERYTHING;
array_insert(ctx->ir, ctx->ir->predicates, kill);
array_insert(b, b->keeps, kill);
break;
}
case nir_intrinsic_load_shared_ir3:
emit_intrinsic_load_shared_ir3(ctx, intr, dst);
break;
case nir_intrinsic_store_shared_ir3:
emit_intrinsic_store_shared_ir3(ctx, intr);
break;
default:
ir3_context_error(ctx, "Unhandled intrinsic type: %s\n",
nir_intrinsic_infos[intr->intrinsic].name);
break;
}
if (info->has_dest)
ir3_put_dst(ctx, &intr->dest);
}
static void
emit_load_const(struct ir3_context *ctx, nir_load_const_instr *instr)
{
struct ir3_instruction **dst = ir3_get_dst_ssa(ctx, &instr->def,
instr->def.num_components);
if (instr->def.bit_size < 32) {
for (int i = 0; i < instr->def.num_components; i++)
dst[i] = create_immed_typed(ctx->block,
instr->value[i].u16,
TYPE_U16);
} else {
for (int i = 0; i < instr->def.num_components; i++)
dst[i] = create_immed_typed(ctx->block,
instr->value[i].u32,
TYPE_U32);
}
}
static void
emit_undef(struct ir3_context *ctx, nir_ssa_undef_instr *undef)
{
struct ir3_instruction **dst = ir3_get_dst_ssa(ctx, &undef->def,
undef->def.num_components);
type_t type = (undef->def.bit_size < 32) ? TYPE_U16 : TYPE_U32;
/* backend doesn't want undefined instructions, so just plug
* in 0.0..
*/
for (int i = 0; i < undef->def.num_components; i++)
dst[i] = create_immed_typed(ctx->block, fui(0.0), type);
}
/*
* texture fetch/sample instructions:
*/
static type_t
get_tex_dest_type(nir_tex_instr *tex)
{
type_t type;
switch (nir_alu_type_get_base_type(tex->dest_type)) {
case nir_type_invalid:
case nir_type_float:
type = nir_dest_bit_size(tex->dest) < 32 ? TYPE_F16 : TYPE_F32;
break;
case nir_type_int:
type = nir_dest_bit_size(tex->dest) < 32 ? TYPE_S16 : TYPE_S32;
break;
case nir_type_uint:
case nir_type_bool:
type = nir_dest_bit_size(tex->dest) < 32 ? TYPE_U16 : TYPE_U32;
break;
default:
unreachable("bad dest_type");
}
return type;
}
static void
tex_info(nir_tex_instr *tex, unsigned *flagsp, unsigned *coordsp)
{
unsigned coords, flags = 0;
/* note: would use tex->coord_components.. except txs.. also,
* since array index goes after shadow ref, we don't want to
* count it:
*/
switch (tex->sampler_dim) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_BUF:
coords = 1;
break;
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_EXTERNAL:
case GLSL_SAMPLER_DIM_MS:
case GLSL_SAMPLER_DIM_SUBPASS:
case GLSL_SAMPLER_DIM_SUBPASS_MS:
coords = 2;
break;
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
coords = 3;
flags |= IR3_INSTR_3D;
break;
default:
unreachable("bad sampler_dim");
}
if (tex->is_shadow && tex->op != nir_texop_lod)
flags |= IR3_INSTR_S;
if (tex->is_array && tex->op != nir_texop_lod)
flags |= IR3_INSTR_A;
*flagsp = flags;
*coordsp = coords;
}
/* Gets the sampler/texture idx as a hvec2. Which could either be dynamic
* or immediate (in which case it will get lowered later to a non .s2en
* version of the tex instruction which encode tex/samp as immediates:
*/
static struct ir3_instruction *
get_tex_samp_tex_src(struct ir3_context *ctx, nir_tex_instr *tex)
{
int texture_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_offset);
int sampler_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset);
struct ir3_instruction *texture, *sampler;
if (texture_idx >= 0) {
texture = ir3_get_src(ctx, &tex->src[texture_idx].src)[0];
texture = ir3_COV(ctx->block, texture, TYPE_U32, TYPE_U16);
} else {
/* TODO what to do for dynamic case? I guess we only need the
* max index for astc srgb workaround so maybe not a problem
* to worry about if we don't enable indirect samplers for
* a4xx?
*/
ctx->max_texture_index = MAX2(ctx->max_texture_index, tex->texture_index);
texture = create_immed_typed(ctx->block, tex->texture_index, TYPE_U16);
}
if (sampler_idx >= 0) {
sampler = ir3_get_src(ctx, &tex->src[sampler_idx].src)[0];
sampler = ir3_COV(ctx->block, sampler, TYPE_U32, TYPE_U16);
} else {
sampler = create_immed_typed(ctx->block, tex->sampler_index, TYPE_U16);
}
return ir3_create_collect(ctx, (struct ir3_instruction*[]){
sampler,
texture,
}, 2);
}
static void
emit_tex(struct ir3_context *ctx, nir_tex_instr *tex)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction **dst, *sam, *src0[12], *src1[4];
struct ir3_instruction * const *coord, * const *off, * const *ddx, * const *ddy;
struct ir3_instruction *lod, *compare, *proj, *sample_index;
bool has_bias = false, has_lod = false, has_proj = false, has_off = false;
unsigned i, coords, flags, ncomp;
unsigned nsrc0 = 0, nsrc1 = 0;
type_t type;
opc_t opc = 0;
ncomp = nir_dest_num_components(tex->dest);
coord = off = ddx = ddy = NULL;
lod = proj = compare = sample_index = NULL;
dst = ir3_get_dst(ctx, &tex->dest, ncomp);
for (unsigned i = 0; i < tex->num_srcs; i++) {
switch (tex->src[i].src_type) {
case nir_tex_src_coord:
coord = ir3_get_src(ctx, &tex->src[i].src);
break;
case nir_tex_src_bias:
lod = ir3_get_src(ctx, &tex->src[i].src)[0];
has_bias = true;
break;
case nir_tex_src_lod:
lod = ir3_get_src(ctx, &tex->src[i].src)[0];
has_lod = true;
break;
case nir_tex_src_comparator: /* shadow comparator */
compare = ir3_get_src(ctx, &tex->src[i].src)[0];
break;
case nir_tex_src_projector:
proj = ir3_get_src(ctx, &tex->src[i].src)[0];
has_proj = true;
break;
case nir_tex_src_offset:
off = ir3_get_src(ctx, &tex->src[i].src);
has_off = true;
break;
case nir_tex_src_ddx:
ddx = ir3_get_src(ctx, &tex->src[i].src);
break;
case nir_tex_src_ddy:
ddy = ir3_get_src(ctx, &tex->src[i].src);
break;
case nir_tex_src_ms_index:
sample_index = ir3_get_src(ctx, &tex->src[i].src)[0];
break;
case nir_tex_src_texture_offset:
case nir_tex_src_sampler_offset:
/* handled in get_tex_samp_src() */
break;
default:
ir3_context_error(ctx, "Unhandled NIR tex src type: %d\n",
tex->src[i].src_type);
return;
}
}
switch (tex->op) {
case nir_texop_tex_prefetch:
compile_assert(ctx, !has_bias);
compile_assert(ctx, !has_lod);
compile_assert(ctx, !compare);
compile_assert(ctx, !has_proj);
compile_assert(ctx, !has_off);
compile_assert(ctx, !ddx);
compile_assert(ctx, !ddy);
compile_assert(ctx, !sample_index);
compile_assert(ctx, nir_tex_instr_src_index(tex, nir_tex_src_texture_offset) < 0);
compile_assert(ctx, nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset) < 0);
if (ctx->so->num_sampler_prefetch < IR3_MAX_SAMPLER_PREFETCH) {
opc = OPC_META_TEX_PREFETCH;
ctx->so->num_sampler_prefetch++;
break;
}
/* fallthru */
case nir_texop_tex: opc = has_lod ? OPC_SAML : OPC_SAM; break;
case nir_texop_txb: opc = OPC_SAMB; break;
case nir_texop_txl: opc = OPC_SAML; break;
case nir_texop_txd: opc = OPC_SAMGQ; break;
case nir_texop_txf: opc = OPC_ISAML; break;
case nir_texop_lod: opc = OPC_GETLOD; break;
case nir_texop_tg4:
/* NOTE: a4xx might need to emulate gather w/ txf (this is
* what blob does, seems gather is broken?), and a3xx did
* not support it (but probably could also emulate).
*/
switch (tex->component) {
case 0: opc = OPC_GATHER4R; break;
case 1: opc = OPC_GATHER4G; break;
case 2: opc = OPC_GATHER4B; break;
case 3: opc = OPC_GATHER4A; break;
}
break;
case nir_texop_txf_ms_fb:
case nir_texop_txf_ms: opc = OPC_ISAMM; break;
default:
ir3_context_error(ctx, "Unhandled NIR tex type: %d\n", tex->op);
return;
}
tex_info(tex, &flags, &coords);
/*
* lay out the first argument in the proper order:
* - actual coordinates first
* - shadow reference
* - array index
* - projection w
* - starting at offset 4, dpdx.xy, dpdy.xy
*
* bias/lod go into the second arg
*/
/* insert tex coords: */
for (i = 0; i < coords; i++)
src0[i] = coord[i];
nsrc0 = i;
/* scale up integer coords for TXF based on the LOD */
if (ctx->compiler->unminify_coords && (opc == OPC_ISAML)) {
assert(has_lod);
for (i = 0; i < coords; i++)
src0[i] = ir3_SHL_B(b, src0[i], 0, lod, 0);
}
if (coords == 1) {
/* hw doesn't do 1d, so we treat it as 2d with
* height of 1, and patch up the y coord.
*/
if (is_isam(opc)) {
src0[nsrc0++] = create_immed(b, 0);
} else {
src0[nsrc0++] = create_immed(b, fui(0.5));
}
}
if (tex->is_shadow && tex->op != nir_texop_lod)
src0[nsrc0++] = compare;
if (tex->is_array && tex->op != nir_texop_lod) {
struct ir3_instruction *idx = coord[coords];
/* the array coord for cube arrays needs 0.5 added to it */
if (ctx->compiler->array_index_add_half && !is_isam(opc))
idx = ir3_ADD_F(b, idx, 0, create_immed(b, fui(0.5)), 0);
src0[nsrc0++] = idx;
}
if (has_proj) {
src0[nsrc0++] = proj;
flags |= IR3_INSTR_P;
}
/* pad to 4, then ddx/ddy: */
if (tex->op == nir_texop_txd) {
while (nsrc0 < 4)
src0[nsrc0++] = create_immed(b, fui(0.0));
for (i = 0; i < coords; i++)
src0[nsrc0++] = ddx[i];
if (coords < 2)
src0[nsrc0++] = create_immed(b, fui(0.0));
for (i = 0; i < coords; i++)
src0[nsrc0++] = ddy[i];
if (coords < 2)
src0[nsrc0++] = create_immed(b, fui(0.0));
}
/* NOTE a3xx (and possibly a4xx?) might be different, using isaml
* with scaled x coord according to requested sample:
*/
if (opc == OPC_ISAMM) {
if (ctx->compiler->txf_ms_with_isaml) {
/* the samples are laid out in x dimension as
* 0 1 2 3
* x_ms = (x << ms) + sample_index;
*/
struct ir3_instruction *ms;
ms = create_immed(b, (ctx->samples >> (2 * tex->texture_index)) & 3);
src0[0] = ir3_SHL_B(b, src0[0], 0, ms, 0);
src0[0] = ir3_ADD_U(b, src0[0], 0, sample_index, 0);
opc = OPC_ISAML;
} else {
src0[nsrc0++] = sample_index;
}
}
/*
* second argument (if applicable):
* - offsets
* - lod
* - bias
*/
if (has_off | has_lod | has_bias) {
if (has_off) {
unsigned off_coords = coords;
if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
off_coords--;
for (i = 0; i < off_coords; i++)
src1[nsrc1++] = off[i];
if (off_coords < 2)
src1[nsrc1++] = create_immed(b, fui(0.0));
flags |= IR3_INSTR_O;
}
if (has_lod | has_bias)
src1[nsrc1++] = lod;
}
type = get_tex_dest_type(tex);
if (opc == OPC_GETLOD)
type = TYPE_S32;
struct ir3_instruction *samp_tex;
if (tex->op == nir_texop_txf_ms_fb) {
/* only expect a single txf_ms_fb per shader: */
compile_assert(ctx, !ctx->so->fb_read);
compile_assert(ctx, ctx->so->type == MESA_SHADER_FRAGMENT);
ctx->so->fb_read = true;
samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16),
create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16),
}, 2);
ctx->so->num_samp++;
} else {
samp_tex = get_tex_samp_tex_src(ctx, tex);
}
struct ir3_instruction *col0 = ir3_create_collect(ctx, src0, nsrc0);
struct ir3_instruction *col1 = ir3_create_collect(ctx, src1, nsrc1);
if (opc == OPC_META_TEX_PREFETCH) {
int idx = nir_tex_instr_src_index(tex, nir_tex_src_coord);
compile_assert(ctx, tex->src[idx].src.is_ssa);
sam = ir3_META_TEX_PREFETCH(b);
__ssa_dst(sam)->wrmask = MASK(ncomp); /* dst */
sam->prefetch.input_offset =
ir3_nir_coord_offset(tex->src[idx].src.ssa);
sam->prefetch.tex = tex->texture_index;
sam->prefetch.samp = tex->sampler_index;
} else {
sam = ir3_SAM(b, opc, type, MASK(ncomp), flags,
samp_tex, col0, col1);
}
if ((ctx->astc_srgb & (1 << tex->texture_index)) && !nir_tex_instr_is_query(tex)) {
assert(opc != OPC_META_TEX_PREFETCH);
/* only need first 3 components: */
sam->regs[0]->wrmask = 0x7;
ir3_split_dest(b, dst, sam, 0, 3);
/* we need to sample the alpha separately with a non-ASTC
* texture state:
*/
sam = ir3_SAM(b, opc, type, 0b1000, flags,
samp_tex, col0, col1);
array_insert(ctx->ir, ctx->ir->astc_srgb, sam);
/* fixup .w component: */
ir3_split_dest(b, &dst[3], sam, 3, 1);
} else {
/* normal (non-workaround) case: */
ir3_split_dest(b, dst, sam, 0, ncomp);
}
/* GETLOD returns results in 4.8 fixed point */
if (opc == OPC_GETLOD) {
struct ir3_instruction *factor = create_immed(b, fui(1.0 / 256));
compile_assert(ctx, tex->dest_type == nir_type_float);
for (i = 0; i < 2; i++) {
dst[i] = ir3_MUL_F(b, ir3_COV(b, dst[i], TYPE_S32, TYPE_F32), 0,
factor, 0);
}
}
ir3_put_dst(ctx, &tex->dest);
}
static void
emit_tex_info(struct ir3_context *ctx, nir_tex_instr *tex, unsigned idx)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction **dst, *sam;
type_t dst_type = get_tex_dest_type(tex);
dst = ir3_get_dst(ctx, &tex->dest, 1);
sam = ir3_SAM(b, OPC_GETINFO, dst_type, 1 << idx, 0,
get_tex_samp_tex_src(ctx, tex), NULL, NULL);
/* even though there is only one component, since it ends
* up in .y/.z/.w rather than .x, we need a split_dest()
*/
if (idx)
ir3_split_dest(b, dst, sam, 0, idx + 1);
/* The # of levels comes from getinfo.z. We need to add 1 to it, since
* the value in TEX_CONST_0 is zero-based.
*/
if (ctx->compiler->levels_add_one)
dst[0] = ir3_ADD_U(b, dst[0], 0, create_immed(b, 1), 0);
ir3_put_dst(ctx, &tex->dest);
}
static void
emit_tex_txs(struct ir3_context *ctx, nir_tex_instr *tex)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction **dst, *sam;
struct ir3_instruction *lod;
unsigned flags, coords;
type_t dst_type = get_tex_dest_type(tex);
tex_info(tex, &flags, &coords);
/* Actually we want the number of dimensions, not coordinates. This
* distinction only matters for cubes.
*/
if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
coords = 2;
dst = ir3_get_dst(ctx, &tex->dest, 4);
compile_assert(ctx, tex->num_srcs == 1);
compile_assert(ctx, tex->src[0].src_type == nir_tex_src_lod);
lod = ir3_get_src(ctx, &tex->src[0].src)[0];
sam = ir3_SAM(b, OPC_GETSIZE, dst_type, 0b1111, flags,
get_tex_samp_tex_src(ctx, tex), lod, NULL);
ir3_split_dest(b, dst, sam, 0, 4);
/* Array size actually ends up in .w rather than .z. This doesn't
* matter for miplevel 0, but for higher mips the value in z is
* minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
* returned, which means that we have to add 1 to it for arrays.
*/
if (tex->is_array) {
if (ctx->compiler->levels_add_one) {
dst[coords] = ir3_ADD_U(b, dst[3], 0, create_immed(b, 1), 0);
} else {
dst[coords] = ir3_MOV(b, dst[3], TYPE_U32);
}
}
ir3_put_dst(ctx, &tex->dest);
}
static void
emit_jump(struct ir3_context *ctx, nir_jump_instr *jump)
{
switch (jump->type) {
case nir_jump_break:
case nir_jump_continue:
case nir_jump_return:
/* I *think* we can simply just ignore this, and use the
* successor block link to figure out where we need to
* jump to for break/continue
*/
break;
default:
ir3_context_error(ctx, "Unhandled NIR jump type: %d\n", jump->type);
break;
}
}
static void
emit_instr(struct ir3_context *ctx, nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_alu:
emit_alu(ctx, nir_instr_as_alu(instr));
break;
case nir_instr_type_deref:
/* ignored, handled as part of the intrinsic they are src to */
break;
case nir_instr_type_intrinsic:
emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_load_const:
emit_load_const(ctx, nir_instr_as_load_const(instr));
break;
case nir_instr_type_ssa_undef:
emit_undef(ctx, nir_instr_as_ssa_undef(instr));
break;
case nir_instr_type_tex: {
nir_tex_instr *tex = nir_instr_as_tex(instr);
/* couple tex instructions get special-cased:
*/
switch (tex->op) {
case nir_texop_txs:
emit_tex_txs(ctx, tex);
break;
case nir_texop_query_levels:
emit_tex_info(ctx, tex, 2);
break;
case nir_texop_texture_samples:
emit_tex_info(ctx, tex, 3);
break;
default:
emit_tex(ctx, tex);
break;
}
break;
}
case nir_instr_type_jump:
emit_jump(ctx, nir_instr_as_jump(instr));
break;
case nir_instr_type_phi:
/* we have converted phi webs to regs in NIR by now */
ir3_context_error(ctx, "Unexpected NIR instruction type: %d\n", instr->type);
break;
case nir_instr_type_call:
case nir_instr_type_parallel_copy:
ir3_context_error(ctx, "Unhandled NIR instruction type: %d\n", instr->type);
break;
}
}
static struct ir3_block *
get_block(struct ir3_context *ctx, const nir_block *nblock)
{
struct ir3_block *block;
struct hash_entry *hentry;
hentry = _mesa_hash_table_search(ctx->block_ht, nblock);
if (hentry)
return hentry->data;
block = ir3_block_create(ctx->ir);
block->nblock = nblock;
_mesa_hash_table_insert(ctx->block_ht, nblock, block);
block->predecessors = _mesa_pointer_set_create(block);
set_foreach(nblock->predecessors, sentry) {
_mesa_set_add(block->predecessors, get_block(ctx, sentry->key));
}
return block;
}
static void
emit_block(struct ir3_context *ctx, nir_block *nblock)
{
struct ir3_block *block = get_block(ctx, nblock);
for (int i = 0; i < ARRAY_SIZE(block->successors); i++) {
if (nblock->successors[i]) {
block->successors[i] =
get_block(ctx, nblock->successors[i]);
}
}
ctx->block = block;
list_addtail(&block->node, &ctx->ir->block_list);
/* re-emit addr register in each block if needed: */
for (int i = 0; i < ARRAY_SIZE(ctx->addr_ht); i++) {
_mesa_hash_table_destroy(ctx->addr_ht[i], NULL);
ctx->addr_ht[i] = NULL;
}
nir_foreach_instr(instr, nblock) {
ctx->cur_instr = instr;
emit_instr(ctx, instr);
ctx->cur_instr = NULL;
if (ctx->error)
return;
}
}
static void emit_cf_list(struct ir3_context *ctx, struct exec_list *list);
static void
emit_if(struct ir3_context *ctx, nir_if *nif)
{
struct ir3_instruction *condition = ir3_get_src(ctx, &nif->condition)[0];
ctx->block->condition =
ir3_get_predicate(ctx, ir3_b2n(condition->block, condition));
emit_cf_list(ctx, &nif->then_list);
emit_cf_list(ctx, &nif->else_list);
}
static void
emit_loop(struct ir3_context *ctx, nir_loop *nloop)
{
emit_cf_list(ctx, &nloop->body);
ctx->so->loops++;
}
static void
stack_push(struct ir3_context *ctx)
{
ctx->stack++;
ctx->max_stack = MAX2(ctx->max_stack, ctx->stack);
}
static void
stack_pop(struct ir3_context *ctx)
{
compile_assert(ctx, ctx->stack > 0);
ctx->stack--;
}
static void
emit_cf_list(struct ir3_context *ctx, struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block:
emit_block(ctx, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
stack_push(ctx);
emit_if(ctx, nir_cf_node_as_if(node));
stack_pop(ctx);
break;
case nir_cf_node_loop:
stack_push(ctx);
emit_loop(ctx, nir_cf_node_as_loop(node));
stack_pop(ctx);
break;
case nir_cf_node_function:
ir3_context_error(ctx, "TODO\n");
break;
}
}
}
/* emit stream-out code. At this point, the current block is the original
* (nir) end block, and nir ensures that all flow control paths terminate
* into the end block. We re-purpose the original end block to generate
* the 'if (vtxcnt < maxvtxcnt)' condition, then append the conditional
* block holding stream-out write instructions, followed by the new end
* block:
*
* blockOrigEnd {
* p0.x = (vtxcnt < maxvtxcnt)
* // succs: blockStreamOut, blockNewEnd
* }
* blockStreamOut {
* ... stream-out instructions ...
* // succs: blockNewEnd
* }
* blockNewEnd {
* }
*/
static void
emit_stream_out(struct ir3_context *ctx)
{
struct ir3 *ir = ctx->ir;
struct ir3_stream_output_info *strmout =
&ctx->so->shader->stream_output;
struct ir3_block *orig_end_block, *stream_out_block, *new_end_block;
struct ir3_instruction *vtxcnt, *maxvtxcnt, *cond;
struct ir3_instruction *bases[IR3_MAX_SO_BUFFERS];
/* create vtxcnt input in input block at top of shader,
* so that it is seen as live over the entire duration
* of the shader:
*/
vtxcnt = create_sysval_input(ctx, SYSTEM_VALUE_VERTEX_CNT, 0x1);
maxvtxcnt = create_driver_param(ctx, IR3_DP_VTXCNT_MAX);
/* at this point, we are at the original 'end' block,
* re-purpose this block to stream-out condition, then
* append stream-out block and new-end block
*/
orig_end_block = ctx->block;
// TODO these blocks need to update predecessors..
// maybe w/ store_global intrinsic, we could do this
// stuff in nir->nir pass
stream_out_block = ir3_block_create(ir);
list_addtail(&stream_out_block->node, &ir->block_list);
new_end_block = ir3_block_create(ir);
list_addtail(&new_end_block->node, &ir->block_list);
orig_end_block->successors[0] = stream_out_block;
orig_end_block->successors[1] = new_end_block;
stream_out_block->successors[0] = new_end_block;
/* setup 'if (vtxcnt < maxvtxcnt)' condition: */
cond = ir3_CMPS_S(ctx->block, vtxcnt, 0, maxvtxcnt, 0);
cond->regs[0]->num = regid(REG_P0, 0);
cond->regs[0]->flags &= ~IR3_REG_SSA;
cond->cat2.condition = IR3_COND_LT;
/* condition goes on previous block to the conditional,
* since it is used to pick which of the two successor
* paths to take:
*/
orig_end_block->condition = cond;
/* switch to stream_out_block to generate the stream-out
* instructions:
*/
ctx->block = stream_out_block;
/* Calculate base addresses based on vtxcnt. Instructions
* generated for bases not used in following loop will be
* stripped out in the backend.
*/
for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
struct ir3_const_state *const_state = &ctx->so->shader->const_state;
unsigned stride = strmout->stride[i];
struct ir3_instruction *base, *off;
base = create_uniform(ctx->block, regid(const_state->offsets.tfbo, i));
/* 24-bit should be enough: */
off = ir3_MUL_U24(ctx->block, vtxcnt, 0,
create_immed(ctx->block, stride * 4), 0);
bases[i] = ir3_ADD_S(ctx->block, off, 0, base, 0);
}
/* Generate the per-output store instructions: */
for (unsigned i = 0; i < strmout->num_outputs; i++) {
for (unsigned j = 0; j < strmout->output[i].num_components; j++) {
unsigned c = j + strmout->output[i].start_component;
struct ir3_instruction *base, *out, *stg;
base = bases[strmout->output[i].output_buffer];
out = ctx->ir->outputs[regid(strmout->output[i].register_index, c)];
stg = ir3_STG(ctx->block, base, 0, out, 0,
create_immed(ctx->block, 1), 0);
stg->cat6.type = TYPE_U32;
stg->cat6.dst_offset = (strmout->output[i].dst_offset + j) * 4;
array_insert(ctx->block, ctx->block->keeps, stg);
}
}
/* and finally switch to the new_end_block: */
ctx->block = new_end_block;
}
static void
emit_function(struct ir3_context *ctx, nir_function_impl *impl)
{
nir_metadata_require(impl, nir_metadata_block_index);
compile_assert(ctx, ctx->stack == 0);
emit_cf_list(ctx, &impl->body);
emit_block(ctx, impl->end_block);
compile_assert(ctx, ctx->stack == 0);
/* at this point, we should have a single empty block,
* into which we emit the 'end' instruction.
*/
compile_assert(ctx, list_is_empty(&ctx->block->instr_list));
/* If stream-out (aka transform-feedback) enabled, emit the
* stream-out instructions, followed by a new empty block (into
* which the 'end' instruction lands).
*
* NOTE: it is done in this order, rather than inserting before
* we emit end_block, because NIR guarantees that all blocks
* flow into end_block, and that end_block has no successors.
* So by re-purposing end_block as the first block of stream-
* out, we guarantee that all exit paths flow into the stream-
* out instructions.
*/
if ((ctx->compiler->gpu_id < 500) &&
(ctx->so->shader->stream_output.num_outputs > 0) &&
!ctx->so->binning_pass) {
debug_assert(ctx->so->type == MESA_SHADER_VERTEX);
emit_stream_out(ctx);
}
/* Vertex shaders in a tessellation or geometry pipeline treat END as a
* NOP and has an epilogue that writes the VS outputs to local storage, to
* be read by the HS. Then it resets execution mask (chmask) and chains
* to the next shader (chsh).
*/
if ((ctx->so->type == MESA_SHADER_VERTEX &&
(ctx->so->key.has_gs || ctx->so->key.tessellation)) ||
(ctx->so->type == MESA_SHADER_TESS_EVAL && ctx->so->key.has_gs)) {
struct ir3_instruction *chmask =
ir3_CHMASK(ctx->block);
chmask->barrier_class = IR3_BARRIER_EVERYTHING;
chmask->barrier_conflict = IR3_BARRIER_EVERYTHING;
struct ir3_instruction *chsh =
ir3_CHSH(ctx->block);
chsh->barrier_class = IR3_BARRIER_EVERYTHING;
chsh->barrier_conflict = IR3_BARRIER_EVERYTHING;
} else {
ir3_END(ctx->block);
}
}
static void
setup_input(struct ir3_context *ctx, nir_variable *in)
{
struct ir3_shader_variant *so = ctx->so;
unsigned ncomp = glsl_get_components(in->type);
unsigned n = in->data.driver_location;
unsigned frac = in->data.location_frac;
unsigned slot = in->data.location;
/* Inputs are loaded using ldlw or ldg for these stages. */
if (ctx->so->type == MESA_SHADER_TESS_CTRL ||
ctx->so->type == MESA_SHADER_TESS_EVAL ||
ctx->so->type == MESA_SHADER_GEOMETRY)
return;
/* skip unread inputs, we could end up with (for example), unsplit
* matrix/etc inputs in the case they are not read, so just silently
* skip these.
*/
if (ncomp > 4)
return;
so->inputs[n].slot = slot;
so->inputs[n].compmask |= (1 << (ncomp + frac)) - 1;
so->inputs_count = MAX2(so->inputs_count, n + 1);
so->inputs[n].interpolate = in->data.interpolation;
if (ctx->so->type == MESA_SHADER_FRAGMENT) {
/* if any varyings have 'sample' qualifer, that triggers us
* to run in per-sample mode:
*/
so->per_samp |= in->data.sample;
for (int i = 0; i < ncomp; i++) {
struct ir3_instruction *instr = NULL;
unsigned idx = (n * 4) + i + frac;
if (slot == VARYING_SLOT_POS) {
ir3_context_error(ctx, "fragcoord should be a sysval!\n");
} else if (slot == VARYING_SLOT_PNTC) {
/* see for example st_nir_fixup_varying_slots().. this is
* maybe a bit mesa/st specific. But we need things to line
* up for this in fdN_program:
* unsigned texmask = 1 << (slot - VARYING_SLOT_VAR0);
* if (emit->sprite_coord_enable & texmask) {
* ...
* }
*/
so->inputs[n].slot = VARYING_SLOT_VAR8;
so->inputs[n].bary = true;
instr = create_frag_input(ctx, false, idx);
} else {
/* detect the special case for front/back colors where
* we need to do flat vs smooth shading depending on
* rast state:
*/
if (in->data.interpolation == INTERP_MODE_NONE) {
switch (slot) {
case VARYING_SLOT_COL0:
case VARYING_SLOT_COL1:
case VARYING_SLOT_BFC0:
case VARYING_SLOT_BFC1:
so->inputs[n].rasterflat = true;
break;
default:
break;
}
}
if (ctx->compiler->flat_bypass) {
if ((so->inputs[n].interpolate == INTERP_MODE_FLAT) ||
(so->inputs[n].rasterflat && ctx->so->key.rasterflat))
so->inputs[n].use_ldlv = true;
}
so->inputs[n].bary = true;
instr = create_frag_input(ctx, so->inputs[n].use_ldlv, idx);
}
compile_assert(ctx, idx < ctx->ninputs);
ctx->inputs[idx] = instr;
}
} else if (ctx->so->type == MESA_SHADER_VERTEX) {
struct ir3_instruction *input = NULL, *in;
struct ir3_instruction *components[4];
unsigned mask = (1 << (ncomp + frac)) - 1;
foreach_input(in, ctx->ir) {
if (in->input.inidx == n) {
input = in;
break;
}
}
if (!input) {
input = create_input(ctx, mask);
input->input.inidx = n;
} else {
input->regs[0]->wrmask |= mask;
}
ir3_split_dest(ctx->block, components, input, frac, ncomp);
for (int i = 0; i < ncomp; i++) {
unsigned idx = (n * 4) + i + frac;
compile_assert(ctx, idx < ctx->ninputs);
ctx->inputs[idx] = components[i];
}
} else {
ir3_context_error(ctx, "unknown shader type: %d\n", ctx->so->type);
}
if (so->inputs[n].bary || (ctx->so->type == MESA_SHADER_VERTEX)) {
so->total_in += ncomp;
}
}
/* Initially we assign non-packed inloc's for varyings, as we don't really
* know up-front which components will be unused. After all the compilation
* stages we scan the shader to see which components are actually used, and
* re-pack the inlocs to eliminate unneeded varyings.
*/
static void
pack_inlocs(struct ir3_context *ctx)
{
struct ir3_shader_variant *so = ctx->so;
uint8_t used_components[so->inputs_count];
memset(used_components, 0, sizeof(used_components));
/*
* First Step: scan shader to find which bary.f/ldlv remain:
*/
foreach_block (block, &ctx->ir->block_list) {
foreach_instr (instr, &block->instr_list) {
if (is_input(instr)) {
unsigned inloc = instr->regs[1]->iim_val;
unsigned i = inloc / 4;
unsigned j = inloc % 4;
compile_assert(ctx, instr->regs[1]->flags & IR3_REG_IMMED);
compile_assert(ctx, i < so->inputs_count);
used_components[i] |= 1 << j;
} else if (instr->opc == OPC_META_TEX_PREFETCH) {
for (int n = 0; n < 2; n++) {
unsigned inloc = instr->prefetch.input_offset + n;
unsigned i = inloc / 4;
unsigned j = inloc % 4;
compile_assert(ctx, i < so->inputs_count);
used_components[i] |= 1 << j;
}
}
}
}
/*
* Second Step: reassign varying inloc/slots:
*/
unsigned actual_in = 0;
unsigned inloc = 0;
for (unsigned i = 0; i < so->inputs_count; i++) {
unsigned compmask = 0, maxcomp = 0;
so->inputs[i].inloc = inloc;
so->inputs[i].bary = false;
for (unsigned j = 0; j < 4; j++) {
if (!(used_components[i] & (1 << j)))
continue;
compmask |= (1 << j);
actual_in++;
maxcomp = j + 1;
/* at this point, since used_components[i] mask is only
* considering varyings (ie. not sysvals) we know this
* is a varying:
*/
so->inputs[i].bary = true;
}
if (so->inputs[i].bary) {
so->varying_in++;
so->inputs[i].compmask = (1 << maxcomp) - 1;
inloc += maxcomp;
}
}
/*
* Third Step: reassign packed inloc's:
*/
foreach_block (block, &ctx->ir->block_list) {
foreach_instr (instr, &block->instr_list) {
if (is_input(instr)) {
unsigned inloc = instr->regs[1]->iim_val;
unsigned i = inloc / 4;
unsigned j = inloc % 4;
instr->regs[1]->iim_val = so->inputs[i].inloc + j;
} else if (instr->opc == OPC_META_TEX_PREFETCH) {
unsigned i = instr->prefetch.input_offset / 4;
unsigned j = instr->prefetch.input_offset % 4;
instr->prefetch.input_offset = so->inputs[i].inloc + j;
}
}
}
}
static void
setup_output(struct ir3_context *ctx, nir_variable *out)
{
struct ir3_shader_variant *so = ctx->so;
unsigned ncomp = glsl_get_components(out->type);
unsigned n = out->data.driver_location;
unsigned frac = out->data.location_frac;
unsigned slot = out->data.location;
unsigned comp = 0;
if (ctx->so->type == MESA_SHADER_FRAGMENT) {
switch (slot) {
case FRAG_RESULT_DEPTH:
comp = 2; /* tgsi will write to .z component */
so->writes_pos = true;
break;
case FRAG_RESULT_COLOR:
so->color0_mrt = 1;
break;
case FRAG_RESULT_SAMPLE_MASK:
so->writes_smask = true;
break;
default:
if (slot >= FRAG_RESULT_DATA0)
break;
ir3_context_error(ctx, "unknown FS output name: %s\n",
gl_frag_result_name(slot));
}
} else if (ctx->so->type == MESA_SHADER_VERTEX ||
ctx->so->type == MESA_SHADER_TESS_EVAL ||
ctx->so->type == MESA_SHADER_GEOMETRY) {
switch (slot) {
case VARYING_SLOT_POS:
so->writes_pos = true;
break;
case VARYING_SLOT_PSIZ:
so->writes_psize = true;
break;
case VARYING_SLOT_PRIMITIVE_ID:
case VARYING_SLOT_LAYER:
case VARYING_SLOT_GS_VERTEX_FLAGS_IR3:
debug_assert(ctx->so->type == MESA_SHADER_GEOMETRY);
/* fall through */
case VARYING_SLOT_COL0:
case VARYING_SLOT_COL1:
case VARYING_SLOT_BFC0:
case VARYING_SLOT_BFC1:
case VARYING_SLOT_FOGC:
case VARYING_SLOT_CLIP_DIST0:
case VARYING_SLOT_CLIP_DIST1:
case VARYING_SLOT_CLIP_VERTEX:
break;
default:
if (slot >= VARYING_SLOT_VAR0)
break;
if ((VARYING_SLOT_TEX0 <= slot) && (slot <= VARYING_SLOT_TEX7))
break;
ir3_context_error(ctx, "unknown %s shader output name: %s\n",
_mesa_shader_stage_to_string(ctx->so->type),
gl_varying_slot_name(slot));
}
} else if (ctx->so->type == MESA_SHADER_TESS_CTRL) {
/* output lowered to buffer writes. */
return;
} else {
ir3_context_error(ctx, "unknown shader type: %d\n", ctx->so->type);
}
compile_assert(ctx, n < ARRAY_SIZE(so->outputs));
so->outputs[n].slot = slot;
so->outputs[n].regid = regid(n, comp);
so->outputs_count = MAX2(so->outputs_count, n + 1);
for (int i = 0; i < ncomp; i++) {
unsigned idx = (n * 4) + i + frac;
compile_assert(ctx, idx < ctx->noutputs);
ctx->outputs[idx] = create_immed(ctx->block, fui(0.0));
}
/* if varying packing doesn't happen, we could end up in a situation
* with "holes" in the output, and since the per-generation code that
* sets up varying linkage registers doesn't expect to have more than
* one varying per vec4 slot, pad the holes.
*
* Note that this should probably generate a performance warning of
* some sort.
*/
for (int i = 0; i < frac; i++) {
unsigned idx = (n * 4) + i;
if (!ctx->outputs[idx]) {
ctx->outputs[idx] = create_immed(ctx->block, fui(0.0));
}
}
}
static int
max_drvloc(struct exec_list *vars)
{
int drvloc = -1;
nir_foreach_variable(var, vars) {
drvloc = MAX2(drvloc, (int)var->data.driver_location);
}
return drvloc;
}
static void
emit_instructions(struct ir3_context *ctx)
{
nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->s);
ctx->ninputs = (max_drvloc(&ctx->s->inputs) + 1) * 4;
ctx->noutputs = (max_drvloc(&ctx->s->outputs) + 1) * 4;
ctx->inputs = rzalloc_array(ctx, struct ir3_instruction *, ctx->ninputs);
ctx->outputs = rzalloc_array(ctx, struct ir3_instruction *, ctx->noutputs);
ctx->ir = ir3_create(ctx->compiler, ctx->so->type);
/* Create inputs in first block: */
ctx->block = get_block(ctx, nir_start_block(fxn));
ctx->in_block = ctx->block;
list_addtail(&ctx->block->node, &ctx->ir->block_list);
/* for fragment shader, the vcoord input register is used as the
* base for bary.f varying fetch instrs:
*
* TODO defer creating ctx->ij_pixel and corresponding sysvals
* until emit_intrinsic when we know they are actually needed.
* For now, we defer creating ctx->ij_centroid, etc, since we
* only need ij_pixel for "old style" varying inputs (ie.
* tgsi_to_nir)
*/
struct ir3_instruction *vcoord = NULL;
if (ctx->so->type == MESA_SHADER_FRAGMENT) {
struct ir3_instruction *xy[2];
vcoord = create_input(ctx, 0x3);
ir3_split_dest(ctx->block, xy, vcoord, 0, 2);
ctx->ij_pixel = ir3_create_collect(ctx, xy, 2);
}
/* Setup inputs: */
nir_foreach_variable(var, &ctx->s->inputs) {
setup_input(ctx, var);
}
/* Defer add_sysval_input() stuff until after setup_inputs(),
* because sysvals need to be appended after varyings:
*/
if (vcoord) {
add_sysval_input_compmask(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL,
0x3, vcoord);
}
/* Tesselation shaders always need primitive ID for indexing the
* BO. Geometry shaders don't always need it but when they do it has be
* delivered and unclobbered in the VS. To make things easy, we always
* make room for it in VS/DS.
*/
bool has_tess = ctx->so->key.tessellation != IR3_TESS_NONE;
bool has_gs = ctx->so->key.has_gs;
switch (ctx->so->type) {
case MESA_SHADER_VERTEX:
if (has_tess) {
ctx->tcs_header = create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1);
ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
} else if (has_gs) {
ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
}
break;
case MESA_SHADER_TESS_CTRL:
ctx->tcs_header = create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1);
ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
break;
case MESA_SHADER_TESS_EVAL:
if (has_gs)
ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
break;
case MESA_SHADER_GEOMETRY:
ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
break;
default:
break;
}
/* Setup outputs: */
nir_foreach_variable(var, &ctx->s->outputs) {
setup_output(ctx, var);
}
/* Find # of samplers: */
nir_foreach_variable(var, &ctx->s->uniforms) {
ctx->so->num_samp += glsl_type_get_sampler_count(var->type);
/* just assume that we'll be reading from images.. if it
* is write-only we don't have to count it, but not sure
* if there is a good way to know?
*/
ctx->so->num_samp += glsl_type_get_image_count(var->type);
}
/* NOTE: need to do something more clever when we support >1 fxn */
nir_foreach_register(reg, &fxn->registers) {
ir3_declare_array(ctx, reg);
}
/* And emit the body: */
ctx->impl = fxn;
emit_function(ctx, fxn);
}
/* Fixup tex sampler state for astc/srgb workaround instructions. We
* need to assign the tex state indexes for these after we know the
* max tex index.
*/
static void
fixup_astc_srgb(struct ir3_context *ctx)
{
struct ir3_shader_variant *so = ctx->so;
/* indexed by original tex idx, value is newly assigned alpha sampler
* state tex idx. Zero is invalid since there is at least one sampler
* if we get here.
*/
unsigned alt_tex_state[16] = {0};
unsigned tex_idx = ctx->max_texture_index + 1;
unsigned idx = 0;
so->astc_srgb.base = tex_idx;
for (unsigned i = 0; i < ctx->ir->astc_srgb_count; i++) {
struct ir3_instruction *sam = ctx->ir->astc_srgb[i];
compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state));
if (alt_tex_state[sam->cat5.tex] == 0) {
/* assign new alternate/alpha tex state slot: */
alt_tex_state[sam->cat5.tex] = tex_idx++;
so->astc_srgb.orig_idx[idx++] = sam->cat5.tex;
so->astc_srgb.count++;
}
sam->cat5.tex = alt_tex_state[sam->cat5.tex];
}
}
static void
fixup_binning_pass(struct ir3_context *ctx)
{
struct ir3_shader_variant *so = ctx->so;
struct ir3 *ir = ctx->ir;
unsigned i, j;
/* first pass, remove unused outputs from the IR level outputs: */
for (i = 0, j = 0; i < ir->outputs_count; i++) {
struct ir3_instruction *out = ir->outputs[i];
assert(out->opc == OPC_META_COLLECT);
unsigned outidx = out->collect.outidx;
unsigned slot = so->outputs[outidx].slot;
/* throw away everything but first position/psize */
if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) {
ir->outputs[j] = ir->outputs[i];
j++;
}
}
ir->outputs_count = j;
/* second pass, cleanup the unused slots in ir3_shader_variant::outputs
* table:
*/
for (i = 0, j = 0; i < so->outputs_count; i++) {
unsigned slot = so->outputs[i].slot;
/* throw away everything but first position/psize */
if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) {
so->outputs[j] = so->outputs[i];
/* fixup outidx to point to new output table entry: */
struct ir3_instruction *out;
foreach_output(out, ir) {
if (out->collect.outidx == i) {
out->collect.outidx = j;
break;
}
}
j++;
}
}
so->outputs_count = j;
}
static void
collect_tex_prefetches(struct ir3_context *ctx, struct ir3 *ir)
{
unsigned idx = 0;
/* Collect sampling instructions eligible for pre-dispatch. */
foreach_block (block, &ir->block_list) {
foreach_instr_safe (instr, &block->instr_list) {
if (instr->opc == OPC_META_TEX_PREFETCH) {
assert(idx < ARRAY_SIZE(ctx->so->sampler_prefetch));
struct ir3_sampler_prefetch *fetch =
&ctx->so->sampler_prefetch[idx];
idx++;
fetch->cmd = IR3_SAMPLER_PREFETCH_CMD;
fetch->wrmask = instr->regs[0]->wrmask;
fetch->tex_id = instr->prefetch.tex;
fetch->samp_id = instr->prefetch.samp;
fetch->dst = instr->regs[0]->num;
fetch->src = instr->prefetch.input_offset;
ctx->so->total_in =
MAX2(ctx->so->total_in, instr->prefetch.input_offset + 2);
/* Disable half precision until supported. */
fetch->half_precision = !!(instr->regs[0]->flags & IR3_REG_HALF);
/* Remove the prefetch placeholder instruction: */
list_delinit(&instr->node);
}
}
}
}
int
ir3_compile_shader_nir(struct ir3_compiler *compiler,
struct ir3_shader_variant *so)
{
struct ir3_context *ctx;
struct ir3 *ir;
int ret = 0, max_bary;
assert(!so->ir);
ctx = ir3_context_init(compiler, so);
if (!ctx) {
DBG("INIT failed!");
ret = -1;
goto out;
}
emit_instructions(ctx);
if (ctx->error) {
DBG("EMIT failed!");
ret = -1;
goto out;
}
ir = so->ir = ctx->ir;
assert((ctx->noutputs % 4) == 0);
/* Setup IR level outputs, which are "collects" that gather
* the scalar components of outputs.
*/
for (unsigned i = 0; i < ctx->noutputs; i += 4) {
unsigned ncomp = 0;
/* figure out the # of components written:
*
* TODO do we need to handle holes, ie. if .x and .z
* components written, but .y component not written?
*/
for (unsigned j = 0; j < 4; j++) {
if (!ctx->outputs[i + j])
break;
ncomp++;
}
/* Note that in some stages, like TCS, store_output is
* lowered to memory writes, so no components of the
* are "written" from the PoV of traditional store-
* output instructions:
*/
if (!ncomp)
continue;
struct ir3_instruction *out =
ir3_create_collect(ctx, &ctx->outputs[i], ncomp);
int outidx = i / 4;
assert(outidx < so->outputs_count);
/* stash index into so->outputs[] so we can map the
* output back to slot/etc later:
*/
out->collect.outidx = outidx;
array_insert(ir, ir->outputs, out);
}
/* Set up the gs header as an output for the vertex shader so it won't
* clobber it for the tess ctrl shader.
*
* TODO this could probably be done more cleanly in a nir pass.
*/
if (ctx->so->type == MESA_SHADER_VERTEX ||
(ctx->so->key.has_gs && ctx->so->type == MESA_SHADER_TESS_EVAL)) {
if (ctx->primitive_id) {
unsigned n = so->outputs_count++;
so->outputs[n].slot = VARYING_SLOT_PRIMITIVE_ID;
struct ir3_instruction *out =
ir3_create_collect(ctx, &ctx->primitive_id, 1);
out->collect.outidx = n;
array_insert(ir, ir->outputs, out);
}
if (ctx->gs_header) {
unsigned n = so->outputs_count++;
so->outputs[n].slot = VARYING_SLOT_GS_HEADER_IR3;
struct ir3_instruction *out =
ir3_create_collect(ctx, &ctx->gs_header, 1);
out->collect.outidx = n;
array_insert(ir, ir->outputs, out);
}
if (ctx->tcs_header) {
unsigned n = so->outputs_count++;
so->outputs[n].slot = VARYING_SLOT_TCS_HEADER_IR3;
struct ir3_instruction *out =
ir3_create_collect(ctx, &ctx->tcs_header, 1);
out->collect.outidx = n;
array_insert(ir, ir->outputs, out);
}
}
/* at this point, for binning pass, throw away unneeded outputs: */
if (so->binning_pass && (ctx->compiler->gpu_id < 600))
fixup_binning_pass(ctx);
ir3_debug_print(ir, "BEFORE CP");
ir3_cp(ir, so);
/* at this point, for binning pass, throw away unneeded outputs:
* Note that for a6xx and later, we do this after ir3_cp to ensure
* that the uniform/constant layout for BS and VS matches, so that
* we can re-use same VS_CONST state group.
*/
if (so->binning_pass && (ctx->compiler->gpu_id >= 600))
fixup_binning_pass(ctx);
/* for a6xx+, binning and draw pass VS use same VBO state, so we
* need to make sure not to remove any inputs that are used by
* the nonbinning VS.
*/
if (ctx->compiler->gpu_id >= 600 && so->binning_pass &&
so->type == MESA_SHADER_VERTEX) {
for (int i = 0; i < ctx->ninputs; i++) {
struct ir3_instruction *in = ctx->inputs[i];
if (!in)
continue;
unsigned n = i / 4;
unsigned c = i % 4;
debug_assert(n < so->nonbinning->inputs_count);
if (so->nonbinning->inputs[n].sysval)
continue;
/* be sure to keep inputs, even if only used in VS */
if (so->nonbinning->inputs[n].compmask & (1 << c))
array_insert(in->block, in->block->keeps, in);
}
}
ir3_debug_print(ir, "BEFORE GROUPING");
ir3_sched_add_deps(ir);
/* Group left/right neighbors, inserting mov's where needed to
* solve conflicts:
*/
ir3_group(ir);
ir3_debug_print(ir, "AFTER GROUPING");
ir3_depth(ir, so);
ir3_debug_print(ir, "AFTER DEPTH");
/* do Sethi–Ullman numbering before scheduling: */
ir3_sun(ir);
ret = ir3_sched(ir);
if (ret) {
DBG("SCHED failed!");
goto out;
}
if (compiler->gpu_id >= 600) {
ir3_a6xx_fixup_atomic_dests(ir, so);
}
ir3_debug_print(ir, "AFTER SCHED");
/* Pre-assign VS inputs on a6xx+ binning pass shader, to align
* with draw pass VS, so binning and draw pass can both use the
* same VBO state.
*
* Note that VS inputs are expected to be full precision.
*/
bool pre_assign_inputs = (ir->compiler->gpu_id >= 600) &&
(ir->type == MESA_SHADER_VERTEX) &&
so->binning_pass;
if (pre_assign_inputs) {
for (unsigned i = 0; i < ctx->ninputs; i++) {
struct ir3_instruction *instr = ctx->inputs[i];
if (!instr)
continue;
unsigned n = i / 4;
unsigned c = i % 4;
unsigned regid = so->nonbinning->inputs[n].regid + c;
instr->regs[0]->num = regid;
}
ret = ir3_ra(so, ctx->inputs, ctx->ninputs);
} else if (ctx->tcs_header) {
/* We need to have these values in the same registers between VS and TCS
* since the VS chains to TCS and doesn't get the sysvals redelivered.
*/
ctx->tcs_header->regs[0]->num = regid(0, 0);
ctx->primitive_id->regs[0]->num = regid(0, 1);
struct ir3_instruction *precolor[] = { ctx->tcs_header, ctx->primitive_id };
ret = ir3_ra(so, precolor, ARRAY_SIZE(precolor));
} else if (ctx->gs_header) {
/* We need to have these values in the same registers between producer
* (VS or DS) and GS since the producer chains to GS and doesn't get
* the sysvals redelivered.
*/
ctx->gs_header->regs[0]->num = regid(0, 0);
ctx->primitive_id->regs[0]->num = regid(0, 1);
struct ir3_instruction *precolor[] = { ctx->gs_header, ctx->primitive_id };
ret = ir3_ra(so, precolor, ARRAY_SIZE(precolor));
} else if (so->num_sampler_prefetch) {
assert(so->type == MESA_SHADER_FRAGMENT);
struct ir3_instruction *instr, *precolor[2];
int idx = 0;
foreach_input(instr, ir) {
if (instr->input.sysval != SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL)
continue;
assert(idx < ARRAY_SIZE(precolor));
precolor[idx] = instr;
instr->regs[0]->num = idx;
idx++;
}
ret = ir3_ra(so, precolor, idx);
} else {
ret = ir3_ra(so, NULL, 0);
}
if (ret) {
DBG("RA failed!");
goto out;
}
ir3_debug_print(ir, "AFTER RA");
if (so->type == MESA_SHADER_FRAGMENT)
pack_inlocs(ctx);
/*
* Fixup inputs/outputs to point to the actual registers assigned:
*
* 1) initialize to r63.x (invalid/unused)
* 2) iterate IR level inputs/outputs and update the variants
* inputs/outputs table based on the assigned registers for
* the remaining inputs/outputs.
*/
for (unsigned i = 0; i < so->inputs_count; i++)
so->inputs[i].regid = INVALID_REG;
for (unsigned i = 0; i < so->outputs_count; i++)
so->outputs[i].regid = INVALID_REG;
struct ir3_instruction *out;
foreach_output(out, ir) {
assert(out->opc == OPC_META_COLLECT);
unsigned outidx = out->collect.outidx;
so->outputs[outidx].regid = out->regs[0]->num;
so->outputs[outidx].half = !!(out->regs[0]->flags & IR3_REG_HALF);
}
struct ir3_instruction *in;
foreach_input(in, ir) {
assert(in->opc == OPC_META_INPUT);
unsigned inidx = in->input.inidx;
if (pre_assign_inputs && !so->inputs[inidx].sysval) {
if (VALIDREG(so->nonbinning->inputs[inidx].regid)) {
compile_assert(ctx, in->regs[0]->num ==
so->nonbinning->inputs[inidx].regid);
compile_assert(ctx, !!(in->regs[0]->flags & IR3_REG_HALF) ==
so->nonbinning->inputs[inidx].half);
}
so->inputs[inidx].regid = so->nonbinning->inputs[inidx].regid;
so->inputs[inidx].half = so->nonbinning->inputs[inidx].half;
} else {
so->inputs[inidx].regid = in->regs[0]->num;
so->inputs[inidx].half = !!(in->regs[0]->flags & IR3_REG_HALF);
}
}
if (ctx->astc_srgb)
fixup_astc_srgb(ctx);
/* We need to do legalize after (for frag shader's) the "bary.f"
* offsets (inloc) have been assigned.
*/
ir3_legalize(ir, so, &max_bary);
ir3_debug_print(ir, "AFTER LEGALIZE");
/* Set (ss)(sy) on first TCS and GEOMETRY instructions, since we don't
* know what we might have to wait on when coming in from VS chsh.
*/
if (so->type == MESA_SHADER_TESS_CTRL ||
so->type == MESA_SHADER_GEOMETRY ) {
foreach_block (block, &ir->block_list) {
foreach_instr (instr, &block->instr_list) {
instr->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
break;
}
}
}
so->branchstack = ctx->max_stack;
/* Note that actual_in counts inputs that are not bary.f'd for FS: */
if (so->type == MESA_SHADER_FRAGMENT)
so->total_in = max_bary + 1;
so->max_sun = ir->max_sun;
/* Collect sampling instructions eligible for pre-dispatch. */
collect_tex_prefetches(ctx, ir);
out:
if (ret) {
if (so->ir)
ir3_destroy(so->ir);
so->ir = NULL;
}
ir3_context_free(ctx);
return ret;
}