blob: 5201e7fa1c8ce0f4c396f4d94c3c5ed5613b2dd9 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_private.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
VkResult genX(CreateQueryPool)(
VkDevice _device,
const VkQueryPoolCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkQueryPool* pQueryPool)
{
ANV_FROM_HANDLE(anv_device, device, _device);
const struct anv_physical_device *pdevice = &device->instance->physicalDevice;
struct anv_query_pool *pool;
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO);
/* Query pool slots are made up of some number of 64-bit values packed
* tightly together. The first 64-bit value is always the "available" bit
* which is 0 when the query is unavailable and 1 when it is available.
* The 64-bit values that follow are determined by the type of query.
*/
uint32_t uint64s_per_slot = 1;
VkQueryPipelineStatisticFlags pipeline_statistics = 0;
switch (pCreateInfo->queryType) {
case VK_QUERY_TYPE_OCCLUSION:
/* Occlusion queries have two values: begin and end. */
uint64s_per_slot += 2;
break;
case VK_QUERY_TYPE_TIMESTAMP:
/* Timestamps just have the one timestamp value */
uint64s_per_slot += 1;
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
pipeline_statistics = pCreateInfo->pipelineStatistics;
/* We're going to trust this field implicitly so we need to ensure that
* no unhandled extension bits leak in.
*/
pipeline_statistics &= ANV_PIPELINE_STATISTICS_MASK;
/* Statistics queries have a min and max for every statistic */
uint64s_per_slot += 2 * _mesa_bitcount(pipeline_statistics);
break;
default:
assert(!"Invalid query type");
}
pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pool == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
pool->type = pCreateInfo->queryType;
pool->pipeline_statistics = pipeline_statistics;
pool->stride = uint64s_per_slot * sizeof(uint64_t);
pool->slots = pCreateInfo->queryCount;
uint64_t size = pool->slots * pool->stride;
result = anv_bo_init_new(&pool->bo, device, size);
if (result != VK_SUCCESS)
goto fail;
if (pdevice->supports_48bit_addresses)
pool->bo.flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
if (pdevice->has_exec_async)
pool->bo.flags |= EXEC_OBJECT_ASYNC;
/* For query pools, we set the caching mode to I915_CACHING_CACHED. On LLC
* platforms, this does nothing. On non-LLC platforms, this means snooping
* which comes at a slight cost. However, the buffers aren't big, won't be
* written frequently, and trying to handle the flushing manually without
* doing too much flushing is extremely painful.
*/
anv_gem_set_caching(device, pool->bo.gem_handle, I915_CACHING_CACHED);
pool->bo.map = anv_gem_mmap(device, pool->bo.gem_handle, 0, size, 0);
*pQueryPool = anv_query_pool_to_handle(pool);
return VK_SUCCESS;
fail:
vk_free2(&device->alloc, pAllocator, pool);
return result;
}
void genX(DestroyQueryPool)(
VkDevice _device,
VkQueryPool _pool,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_query_pool, pool, _pool);
if (!pool)
return;
anv_gem_munmap(device, pool->bo.gem_handle, pool->bo.map, pool->bo.size);
anv_gem_close(device, pool->bo.gem_handle);
vk_free2(&device->alloc, pAllocator, pool);
}
static void
cpu_write_query_result(void *dst_slot, VkQueryResultFlags flags,
uint32_t value_index, uint64_t result)
{
if (flags & VK_QUERY_RESULT_64_BIT) {
uint64_t *dst64 = dst_slot;
dst64[value_index] = result;
} else {
uint32_t *dst32 = dst_slot;
dst32[value_index] = result;
}
}
static bool
query_is_available(uint64_t *slot)
{
return *(volatile uint64_t *)slot;
}
static VkResult
wait_for_available(struct anv_device *device,
struct anv_query_pool *pool, uint64_t *slot)
{
while (true) {
if (query_is_available(slot))
return VK_SUCCESS;
int ret = anv_gem_busy(device, pool->bo.gem_handle);
if (ret == 1) {
/* The BO is still busy, keep waiting. */
continue;
} else if (ret == -1) {
/* We don't know the real error. */
device->lost = true;
return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
"gem wait failed: %m");
} else {
assert(ret == 0);
/* The BO is no longer busy. */
if (query_is_available(slot)) {
return VK_SUCCESS;
} else {
VkResult status = anv_device_query_status(device);
if (status != VK_SUCCESS)
return status;
/* If we haven't seen availability yet, then we never will. This
* can only happen if we have a client error where they call
* GetQueryPoolResults on a query that they haven't submitted to
* the GPU yet. The spec allows us to do anything in this case,
* but returning VK_SUCCESS doesn't seem right and we shouldn't
* just keep spinning.
*/
return VK_NOT_READY;
}
}
}
}
VkResult genX(GetQueryPoolResults)(
VkDevice _device,
VkQueryPool queryPool,
uint32_t firstQuery,
uint32_t queryCount,
size_t dataSize,
void* pData,
VkDeviceSize stride,
VkQueryResultFlags flags)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
assert(pool->type == VK_QUERY_TYPE_OCCLUSION ||
pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS ||
pool->type == VK_QUERY_TYPE_TIMESTAMP);
if (unlikely(device->lost))
return VK_ERROR_DEVICE_LOST;
if (pData == NULL)
return VK_SUCCESS;
void *data_end = pData + dataSize;
VkResult status = VK_SUCCESS;
for (uint32_t i = 0; i < queryCount; i++) {
uint64_t *slot = pool->bo.map + (firstQuery + i) * pool->stride;
/* Availability is always at the start of the slot */
bool available = slot[0];
if (!available && (flags & VK_QUERY_RESULT_WAIT_BIT)) {
status = wait_for_available(device, pool, slot);
if (status != VK_SUCCESS)
return status;
available = true;
}
/* From the Vulkan 1.0.42 spec:
*
* "If VK_QUERY_RESULT_WAIT_BIT and VK_QUERY_RESULT_PARTIAL_BIT are
* both not set then no result values are written to pData for
* queries that are in the unavailable state at the time of the call,
* and vkGetQueryPoolResults returns VK_NOT_READY. However,
* availability state is still written to pData for those queries if
* VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set."
*/
bool write_results = available || (flags & VK_QUERY_RESULT_PARTIAL_BIT);
if (write_results) {
switch (pool->type) {
case VK_QUERY_TYPE_OCCLUSION: {
cpu_write_query_result(pData, flags, 0, slot[2] - slot[1]);
break;
}
case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
uint32_t statistics = pool->pipeline_statistics;
uint32_t idx = 0;
while (statistics) {
uint32_t stat = u_bit_scan(&statistics);
uint64_t result = slot[idx * 2 + 2] - slot[idx * 2 + 1];
/* WaDividePSInvocationCountBy4:HSW,BDW */
if ((device->info.gen == 8 || device->info.is_haswell) &&
(1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT)
result >>= 2;
cpu_write_query_result(pData, flags, idx, result);
idx++;
}
assert(idx == _mesa_bitcount(pool->pipeline_statistics));
break;
}
case VK_QUERY_TYPE_TIMESTAMP: {
cpu_write_query_result(pData, flags, 0, slot[1]);
break;
}
default:
unreachable("invalid pool type");
}
} else {
status = VK_NOT_READY;
}
if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
uint32_t idx = (pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS) ?
_mesa_bitcount(pool->pipeline_statistics) : 1;
cpu_write_query_result(pData, flags, idx, available);
}
pData += stride;
if (pData >= data_end)
break;
}
return status;
}
static void
emit_ps_depth_count(struct anv_cmd_buffer *cmd_buffer,
struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DestinationAddressType = DAT_PPGTT;
pc.PostSyncOperation = WritePSDepthCount;
pc.DepthStallEnable = true;
pc.Address = (struct anv_address) { bo, offset };
if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
pc.CommandStreamerStallEnable = true;
}
}
static void
emit_query_availability(struct anv_cmd_buffer *cmd_buffer,
struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DestinationAddressType = DAT_PPGTT;
pc.PostSyncOperation = WriteImmediateData;
pc.Address = (struct anv_address) { bo, offset };
pc.ImmediateData = 1;
}
}
/**
* Goes through a series of consecutive query indices in the given pool
* setting all element values to 0 and emitting them as available.
*/
static void
emit_zero_queries(struct anv_cmd_buffer *cmd_buffer,
struct anv_query_pool *pool,
uint32_t first_index, uint32_t num_queries)
{
const uint32_t num_elements = pool->stride / sizeof(uint64_t);
for (uint32_t i = 0; i < num_queries; i++) {
uint32_t slot_offset = (first_index + i) * pool->stride;
for (uint32_t j = 1; j < num_elements; j++) {
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
sdi.Address.bo = &pool->bo;
sdi.Address.offset = slot_offset + j * sizeof(uint64_t);
sdi.ImmediateData = 0ull;
}
}
emit_query_availability(cmd_buffer, &pool->bo, slot_offset);
}
}
void genX(CmdResetQueryPool)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t firstQuery,
uint32_t queryCount)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
for (uint32_t i = 0; i < queryCount; i++) {
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdm) {
sdm.Address = (struct anv_address) {
.bo = &pool->bo,
.offset = (firstQuery + i) * pool->stride,
};
sdm.ImmediateData = 0;
}
}
}
static const uint32_t vk_pipeline_stat_to_reg[] = {
GENX(IA_VERTICES_COUNT_num),
GENX(IA_PRIMITIVES_COUNT_num),
GENX(VS_INVOCATION_COUNT_num),
GENX(GS_INVOCATION_COUNT_num),
GENX(GS_PRIMITIVES_COUNT_num),
GENX(CL_INVOCATION_COUNT_num),
GENX(CL_PRIMITIVES_COUNT_num),
GENX(PS_INVOCATION_COUNT_num),
GENX(HS_INVOCATION_COUNT_num),
GENX(DS_INVOCATION_COUNT_num),
GENX(CS_INVOCATION_COUNT_num),
};
static void
emit_pipeline_stat(struct anv_cmd_buffer *cmd_buffer, uint32_t stat,
struct anv_bo *bo, uint32_t offset)
{
STATIC_ASSERT(ANV_PIPELINE_STATISTICS_MASK ==
(1 << ARRAY_SIZE(vk_pipeline_stat_to_reg)) - 1);
assert(stat < ARRAY_SIZE(vk_pipeline_stat_to_reg));
uint32_t reg = vk_pipeline_stat_to_reg[stat];
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), lrm) {
lrm.RegisterAddress = reg,
lrm.MemoryAddress = (struct anv_address) { bo, offset };
}
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), lrm) {
lrm.RegisterAddress = reg + 4,
lrm.MemoryAddress = (struct anv_address) { bo, offset + 4 };
}
}
void genX(CmdBeginQuery)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t query,
VkQueryControlFlags flags)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
switch (pool->type) {
case VK_QUERY_TYPE_OCCLUSION:
emit_ps_depth_count(cmd_buffer, &pool->bo, query * pool->stride + 8);
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
/* TODO: This might only be necessary for certain stats */
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.CommandStreamerStallEnable = true;
pc.StallAtPixelScoreboard = true;
}
uint32_t statistics = pool->pipeline_statistics;
uint32_t offset = query * pool->stride + 8;
while (statistics) {
uint32_t stat = u_bit_scan(&statistics);
emit_pipeline_stat(cmd_buffer, stat, &pool->bo, offset);
offset += 16;
}
break;
}
default:
unreachable("");
}
}
void genX(CmdEndQuery)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t query)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
switch (pool->type) {
case VK_QUERY_TYPE_OCCLUSION:
emit_ps_depth_count(cmd_buffer, &pool->bo, query * pool->stride + 16);
emit_query_availability(cmd_buffer, &pool->bo, query * pool->stride);
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
/* TODO: This might only be necessary for certain stats */
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.CommandStreamerStallEnable = true;
pc.StallAtPixelScoreboard = true;
}
uint32_t statistics = pool->pipeline_statistics;
uint32_t offset = query * pool->stride + 16;
while (statistics) {
uint32_t stat = u_bit_scan(&statistics);
emit_pipeline_stat(cmd_buffer, stat, &pool->bo, offset);
offset += 16;
}
emit_query_availability(cmd_buffer, &pool->bo, query * pool->stride);
break;
}
default:
unreachable("");
}
/* When multiview is active the spec requires that N consecutive query
* indices are used, where N is the number of active views in the subpass.
* The spec allows that we only write the results to one of the queries
* but we still need to manage result availability for all the query indices.
* Since we only emit a single query for all active views in the
* first index, mark the other query indices as being already available
* with result 0.
*/
if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) {
const uint32_t num_queries =
_mesa_bitcount(cmd_buffer->state.subpass->view_mask);
if (num_queries > 1)
emit_zero_queries(cmd_buffer, pool, query + 1, num_queries - 1);
}
}
#define TIMESTAMP 0x2358
void genX(CmdWriteTimestamp)(
VkCommandBuffer commandBuffer,
VkPipelineStageFlagBits pipelineStage,
VkQueryPool queryPool,
uint32_t query)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
uint32_t offset = query * pool->stride;
assert(pool->type == VK_QUERY_TYPE_TIMESTAMP);
switch (pipelineStage) {
case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT:
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
srm.RegisterAddress = TIMESTAMP;
srm.MemoryAddress = (struct anv_address) { &pool->bo, offset + 8 };
}
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
srm.RegisterAddress = TIMESTAMP + 4;
srm.MemoryAddress = (struct anv_address) { &pool->bo, offset + 12 };
}
break;
default:
/* Everything else is bottom-of-pipe */
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DestinationAddressType = DAT_PPGTT;
pc.PostSyncOperation = WriteTimestamp;
pc.Address = (struct anv_address) { &pool->bo, offset + 8 };
if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
pc.CommandStreamerStallEnable = true;
}
break;
}
emit_query_availability(cmd_buffer, &pool->bo, offset);
/* When multiview is active the spec requires that N consecutive query
* indices are used, where N is the number of active views in the subpass.
* The spec allows that we only write the results to one of the queries
* but we still need to manage result availability for all the query indices.
* Since we only emit a single query for all active views in the
* first index, mark the other query indices as being already available
* with result 0.
*/
if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) {
const uint32_t num_queries =
_mesa_bitcount(cmd_buffer->state.subpass->view_mask);
if (num_queries > 1)
emit_zero_queries(cmd_buffer, pool, query + 1, num_queries - 1);
}
}
#if GEN_GEN > 7 || GEN_IS_HASWELL
static uint32_t
mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
{
struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
.ALUOpcode = opcode,
.Operand1 = operand1,
.Operand2 = operand2,
};
uint32_t dw;
GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
return dw;
}
#define CS_GPR(n) (0x2600 + (n) * 8)
static void
emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg,
struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = reg,
lrm.MemoryAddress = (struct anv_address) { bo, offset };
}
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = reg + 4;
lrm.MemoryAddress = (struct anv_address) { bo, offset + 4 };
}
}
static void
emit_load_alu_reg_imm32(struct anv_batch *batch, uint32_t reg, uint32_t imm)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = reg;
lri.DataDWord = imm;
}
}
static void
emit_load_alu_reg_imm64(struct anv_batch *batch, uint32_t reg, uint64_t imm)
{
emit_load_alu_reg_imm32(batch, reg, (uint32_t)imm);
emit_load_alu_reg_imm32(batch, reg + 4, (uint32_t)(imm >> 32));
}
static void
emit_load_alu_reg_reg32(struct anv_batch *batch, uint32_t src, uint32_t dst)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
lrr.SourceRegisterAddress = src;
lrr.DestinationRegisterAddress = dst;
}
}
/*
* GPR0 = GPR0 & ((1ull << n) - 1);
*/
static void
keep_gpr0_lower_n_bits(struct anv_batch *batch, uint32_t n)
{
assert(n < 64);
emit_load_alu_reg_imm64(batch, CS_GPR(1), (1ull << n) - 1);
uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH));
if (!dw) {
anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
return;
}
dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
dw[3] = mi_alu(MI_ALU_AND, 0, 0);
dw[4] = mi_alu(MI_ALU_STORE, MI_ALU_REG0, MI_ALU_ACCU);
}
/*
* GPR0 = GPR0 << 30;
*/
static void
shl_gpr0_by_30_bits(struct anv_batch *batch)
{
/* First we mask 34 bits of GPR0 to prevent overflow */
keep_gpr0_lower_n_bits(batch, 34);
const uint32_t outer_count = 5;
const uint32_t inner_count = 6;
STATIC_ASSERT(outer_count * inner_count == 30);
const uint32_t cmd_len = 1 + inner_count * 4;
/* We'll emit 5 commands, each shifting GPR0 left by 6 bits, for a total of
* 30 left shifts.
*/
for (int o = 0; o < outer_count; o++) {
/* Submit one MI_MATH to shift left by 6 bits */
uint32_t *dw = anv_batch_emitn(batch, cmd_len, GENX(MI_MATH));
if (!dw) {
anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
return;
}
dw++;
for (int i = 0; i < inner_count; i++, dw += 4) {
dw[0] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0);
dw[2] = mi_alu(MI_ALU_ADD, 0, 0);
dw[3] = mi_alu(MI_ALU_STORE, MI_ALU_REG0, MI_ALU_ACCU);
}
}
}
/*
* GPR0 = GPR0 >> 2;
*
* Note that the upper 30 bits of GPR are lost!
*/
static void
shr_gpr0_by_2_bits(struct anv_batch *batch)
{
shl_gpr0_by_30_bits(batch);
emit_load_alu_reg_reg32(batch, CS_GPR(0) + 4, CS_GPR(0));
emit_load_alu_reg_imm32(batch, CS_GPR(0) + 4, 0);
}
static void
gpu_write_query_result(struct anv_batch *batch,
struct anv_buffer *dst_buffer, uint32_t dst_offset,
VkQueryResultFlags flags,
uint32_t value_index, uint32_t reg)
{
if (flags & VK_QUERY_RESULT_64_BIT)
dst_offset += value_index * 8;
else
dst_offset += value_index * 4;
anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
srm.RegisterAddress = reg;
srm.MemoryAddress = (struct anv_address) {
.bo = dst_buffer->bo,
.offset = dst_buffer->offset + dst_offset,
};
}
if (flags & VK_QUERY_RESULT_64_BIT) {
anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
srm.RegisterAddress = reg + 4;
srm.MemoryAddress = (struct anv_address) {
.bo = dst_buffer->bo,
.offset = dst_buffer->offset + dst_offset + 4,
};
}
}
}
static void
compute_query_result(struct anv_batch *batch, uint32_t dst_reg,
struct anv_bo *bo, uint32_t offset)
{
emit_load_alu_reg_u64(batch, CS_GPR(0), bo, offset);
emit_load_alu_reg_u64(batch, CS_GPR(1), bo, offset + 8);
/* FIXME: We need to clamp the result for 32 bit. */
uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH));
if (!dw) {
anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
return;
}
dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG1);
dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0);
dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
dw[4] = mi_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
}
void genX(CmdCopyQueryPoolResults)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t firstQuery,
uint32_t queryCount,
VkBuffer destBuffer,
VkDeviceSize destOffset,
VkDeviceSize destStride,
VkQueryResultFlags flags)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);
uint32_t slot_offset;
if (flags & VK_QUERY_RESULT_WAIT_BIT) {
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.CommandStreamerStallEnable = true;
pc.StallAtPixelScoreboard = true;
}
}
for (uint32_t i = 0; i < queryCount; i++) {
slot_offset = (firstQuery + i) * pool->stride;
switch (pool->type) {
case VK_QUERY_TYPE_OCCLUSION:
compute_query_result(&cmd_buffer->batch, MI_ALU_REG2,
&pool->bo, slot_offset + 8);
gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
flags, 0, CS_GPR(2));
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
uint32_t statistics = pool->pipeline_statistics;
uint32_t idx = 0;
while (statistics) {
uint32_t stat = u_bit_scan(&statistics);
compute_query_result(&cmd_buffer->batch, MI_ALU_REG0,
&pool->bo, slot_offset + idx * 16 + 8);
/* WaDividePSInvocationCountBy4:HSW,BDW */
if ((cmd_buffer->device->info.gen == 8 ||
cmd_buffer->device->info.is_haswell) &&
(1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT) {
shr_gpr0_by_2_bits(&cmd_buffer->batch);
}
gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
flags, idx, CS_GPR(0));
idx++;
}
assert(idx == _mesa_bitcount(pool->pipeline_statistics));
break;
}
case VK_QUERY_TYPE_TIMESTAMP:
emit_load_alu_reg_u64(&cmd_buffer->batch,
CS_GPR(2), &pool->bo, slot_offset + 8);
gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
flags, 0, CS_GPR(2));
break;
default:
unreachable("unhandled query type");
}
if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
uint32_t idx = (pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS) ?
_mesa_bitcount(pool->pipeline_statistics) : 1;
emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0),
&pool->bo, slot_offset);
gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
flags, idx, CS_GPR(0));
}
destOffset += destStride;
}
}
#else
void genX(CmdCopyQueryPoolResults)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t firstQuery,
uint32_t queryCount,
VkBuffer destBuffer,
VkDeviceSize destOffset,
VkDeviceSize destStride,
VkQueryResultFlags flags)
{
anv_finishme("Queries not yet supported on Ivy Bridge");
}
#endif