blob: 975536acc6e958acf2372d8f6a5f0c7e7ed1e2cc [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <fcntl.h>
#include <stdbool.h>
#include <string.h>
#include "util/disk_cache.h"
#include "radv_cs.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "vk_util.h"
#ifdef _WIN32
typedef void *drmDevicePtr;
#else
#include <amdgpu.h>
#include <xf86drm.h>
#include "drm-uapi/amdgpu_drm.h"
#include "winsys/amdgpu/radv_amdgpu_winsys_public.h"
#endif
#include "util/build_id.h"
#include "util/debug.h"
#include "util/driconf.h"
#include "util/mesa-sha1.h"
#include "util/timespec.h"
#include "util/u_atomic.h"
#include "winsys/null/radv_null_winsys_public.h"
#include "ac_llvm_util.h"
#include "git_sha1.h"
#include "sid.h"
#include "vk_format.h"
/* The number of IBs per submit isn't infinite, it depends on the ring type
* (ie. some initial setup needed for a submit) and the number of IBs (4 DW).
* This limit is arbitrary but should be safe for now. Ideally, we should get
* this limit from the KMD.
*/
#define RADV_MAX_IBS_PER_SUBMIT 192
/* The "RAW" clocks on Linux are called "FAST" on FreeBSD */
#if !defined(CLOCK_MONOTONIC_RAW) && defined(CLOCK_MONOTONIC_FAST)
#define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC_FAST
#endif
static struct radv_timeline_point *
radv_timeline_find_point_at_least_locked(struct radv_device *device, struct radv_timeline *timeline,
uint64_t p);
static struct radv_timeline_point *radv_timeline_add_point_locked(struct radv_device *device,
struct radv_timeline *timeline,
uint64_t p);
static void radv_timeline_trigger_waiters_locked(struct radv_timeline *timeline,
struct list_head *processing_list);
static void radv_destroy_semaphore_part(struct radv_device *device,
struct radv_semaphore_part *part);
uint64_t
radv_get_current_time(void)
{
return os_time_get_nano();
}
static uint64_t
radv_get_absolute_timeout(uint64_t timeout)
{
uint64_t current_time = radv_get_current_time();
timeout = MIN2(UINT64_MAX - current_time, timeout);
return current_time + timeout;
}
static int
radv_device_get_cache_uuid(enum radeon_family family, void *uuid)
{
struct mesa_sha1 ctx;
unsigned char sha1[20];
unsigned ptr_size = sizeof(void *);
memset(uuid, 0, VK_UUID_SIZE);
_mesa_sha1_init(&ctx);
if (!disk_cache_get_function_identifier(radv_device_get_cache_uuid, &ctx) ||
!disk_cache_get_function_identifier(LLVMInitializeAMDGPUTargetInfo, &ctx))
return -1;
_mesa_sha1_update(&ctx, &family, sizeof(family));
_mesa_sha1_update(&ctx, &ptr_size, sizeof(ptr_size));
_mesa_sha1_final(&ctx, sha1);
memcpy(uuid, sha1, VK_UUID_SIZE);
return 0;
}
static void
radv_get_driver_uuid(void *uuid)
{
ac_compute_driver_uuid(uuid, VK_UUID_SIZE);
}
static void
radv_get_device_uuid(struct radeon_info *info, void *uuid)
{
ac_compute_device_uuid(info, uuid, VK_UUID_SIZE);
}
static uint64_t
radv_get_adjusted_vram_size(struct radv_physical_device *device)
{
int ov = driQueryOptioni(&device->instance->dri_options, "override_vram_size");
if (ov >= 0)
return MIN2(device->rad_info.vram_size, (uint64_t)ov << 20);
return device->rad_info.vram_size;
}
static uint64_t
radv_get_visible_vram_size(struct radv_physical_device *device)
{
return MIN2(radv_get_adjusted_vram_size(device), device->rad_info.vram_vis_size);
}
static uint64_t
radv_get_vram_size(struct radv_physical_device *device)
{
uint64_t total_size = radv_get_adjusted_vram_size(device);
return total_size - MIN2(total_size, device->rad_info.vram_vis_size);
}
enum radv_heap {
RADV_HEAP_VRAM = 1 << 0,
RADV_HEAP_GTT = 1 << 1,
RADV_HEAP_VRAM_VIS = 1 << 2,
RADV_HEAP_MAX = 1 << 3,
};
static void
radv_physical_device_init_mem_types(struct radv_physical_device *device)
{
uint64_t visible_vram_size = radv_get_visible_vram_size(device);
uint64_t vram_size = radv_get_vram_size(device);
int vram_index = -1, visible_vram_index = -1, gart_index = -1;
device->memory_properties.memoryHeapCount = 0;
device->heaps = 0;
/* Only get a VRAM heap if it is significant, not if it is a 16 MiB
* remainder above visible VRAM. */
if (vram_size > 0 && vram_size * 9 >= visible_vram_size) {
vram_index = device->memory_properties.memoryHeapCount++;
device->heaps |= RADV_HEAP_VRAM;
device->memory_properties.memoryHeaps[vram_index] = (VkMemoryHeap){
.size = vram_size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
};
}
if (device->rad_info.gart_size > 0) {
gart_index = device->memory_properties.memoryHeapCount++;
device->heaps |= RADV_HEAP_GTT;
device->memory_properties.memoryHeaps[gart_index] = (VkMemoryHeap){
.size = device->rad_info.gart_size,
.flags = 0,
};
}
if (visible_vram_size) {
visible_vram_index = device->memory_properties.memoryHeapCount++;
device->heaps |= RADV_HEAP_VRAM_VIS;
device->memory_properties.memoryHeaps[visible_vram_index] = (VkMemoryHeap){
.size = visible_vram_size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
};
}
unsigned type_count = 0;
if (vram_index >= 0 || visible_vram_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
device->memory_flags[type_count] = RADEON_FLAG_NO_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.heapIndex = vram_index >= 0 ? vram_index : visible_vram_index,
};
}
if (gart_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_GTT;
device->memory_flags[type_count] = RADEON_FLAG_GTT_WC | RADEON_FLAG_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags =
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
.heapIndex = gart_index,
};
}
if (visible_vram_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
device->memory_flags[type_count] = RADEON_FLAG_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
.heapIndex = visible_vram_index,
};
}
if (gart_index >= 0) {
device->memory_domains[type_count] = RADEON_DOMAIN_GTT;
device->memory_flags[type_count] = RADEON_FLAG_CPU_ACCESS;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
.heapIndex = gart_index,
};
}
device->memory_properties.memoryTypeCount = type_count;
if (device->rad_info.has_l2_uncached) {
for (int i = 0; i < device->memory_properties.memoryTypeCount; i++) {
VkMemoryType mem_type = device->memory_properties.memoryTypes[i];
if ((mem_type.propertyFlags &
(VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) ||
mem_type.propertyFlags == VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) {
VkMemoryPropertyFlags property_flags = mem_type.propertyFlags |
VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD |
VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD;
device->memory_domains[type_count] = device->memory_domains[i];
device->memory_flags[type_count] = device->memory_flags[i] | RADEON_FLAG_VA_UNCACHED;
device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
.propertyFlags = property_flags,
.heapIndex = mem_type.heapIndex,
};
}
}
device->memory_properties.memoryTypeCount = type_count;
}
}
static const char *
radv_get_compiler_string(struct radv_physical_device *pdevice)
{
if (!pdevice->use_llvm) {
/* Some games like SotTR apply shader workarounds if the LLVM
* version is too old or if the LLVM version string is
* missing. This gives 2-5% performance with SotTR and ACO.
*/
if (driQueryOptionb(&pdevice->instance->dri_options, "radv_report_llvm9_version_string")) {
return "ACO/LLVM 9.0.1";
}
return "ACO";
}
return "LLVM " MESA_LLVM_VERSION_STRING;
}
int
radv_get_int_debug_option(const char *name, int default_value)
{
const char *str;
int result;
str = getenv(name);
if (!str) {
result = default_value;
} else {
char *endptr;
result = strtol(str, &endptr, 0);
if (str == endptr) {
/* No digits founs. */
result = default_value;
}
}
return result;
}
static bool
radv_thread_trace_enabled()
{
return radv_get_int_debug_option("RADV_THREAD_TRACE", -1) >= 0 ||
getenv("RADV_THREAD_TRACE_TRIGGER");
}
#if defined(VK_USE_PLATFORM_WAYLAND_KHR) || defined(VK_USE_PLATFORM_XCB_KHR) || \
defined(VK_USE_PLATFORM_XLIB_KHR) || defined(VK_USE_PLATFORM_DISPLAY_KHR)
#define RADV_USE_WSI_PLATFORM
#endif
#ifdef ANDROID
#define RADV_API_VERSION VK_MAKE_VERSION(1, 1, VK_HEADER_VERSION)
#else
#define RADV_API_VERSION VK_MAKE_VERSION(1, 2, VK_HEADER_VERSION)
#endif
VkResult
radv_EnumerateInstanceVersion(uint32_t *pApiVersion)
{
*pApiVersion = RADV_API_VERSION;
return VK_SUCCESS;
}
static const struct vk_instance_extension_table radv_instance_extensions_supported = {
.KHR_device_group_creation = true,
.KHR_external_fence_capabilities = true,
.KHR_external_memory_capabilities = true,
.KHR_external_semaphore_capabilities = true,
.KHR_get_physical_device_properties2 = true,
.EXT_debug_report = true,
#ifdef RADV_USE_WSI_PLATFORM
.KHR_get_surface_capabilities2 = true,
.KHR_surface = true,
.KHR_surface_protected_capabilities = true,
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
.KHR_wayland_surface = true,
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
.KHR_xcb_surface = true,
#endif
#ifdef VK_USE_PLATFORM_XLIB_KHR
.KHR_xlib_surface = true,
#endif
#ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT
.EXT_acquire_xlib_display = true,
#endif
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
.KHR_display = true,
.KHR_get_display_properties2 = true,
.EXT_direct_mode_display = true,
.EXT_display_surface_counter = true,
#endif
};
static void
radv_physical_device_get_supported_extensions(const struct radv_physical_device *device,
struct vk_device_extension_table *ext)
{
*ext = (struct vk_device_extension_table){
.KHR_8bit_storage = true,
.KHR_16bit_storage = true,
.KHR_bind_memory2 = true,
.KHR_buffer_device_address = true,
.KHR_copy_commands2 = true,
.KHR_create_renderpass2 = true,
.KHR_dedicated_allocation = true,
.KHR_deferred_host_operations = true,
.KHR_depth_stencil_resolve = true,
.KHR_descriptor_update_template = true,
.KHR_device_group = true,
.KHR_draw_indirect_count = true,
.KHR_driver_properties = true,
.KHR_external_fence = true,
.KHR_external_fence_fd = true,
.KHR_external_memory = true,
.KHR_external_memory_fd = true,
.KHR_external_semaphore = true,
.KHR_external_semaphore_fd = true,
.KHR_fragment_shading_rate = device->rad_info.chip_class >= GFX10_3,
.KHR_get_memory_requirements2 = true,
.KHR_image_format_list = true,
.KHR_imageless_framebuffer = true,
#ifdef RADV_USE_WSI_PLATFORM
.KHR_incremental_present = true,
#endif
.KHR_maintenance1 = true,
.KHR_maintenance2 = true,
.KHR_maintenance3 = true,
.KHR_multiview = true,
.KHR_pipeline_executable_properties = true,
.KHR_push_descriptor = true,
.KHR_relaxed_block_layout = true,
.KHR_sampler_mirror_clamp_to_edge = true,
.KHR_sampler_ycbcr_conversion = true,
.KHR_separate_depth_stencil_layouts = true,
.KHR_shader_atomic_int64 = LLVM_VERSION_MAJOR >= 9 || !device->use_llvm,
.KHR_shader_clock = true,
.KHR_shader_draw_parameters = true,
.KHR_shader_float16_int8 = true,
.KHR_shader_float_controls = true,
.KHR_shader_non_semantic_info = true,
.KHR_shader_subgroup_extended_types = true,
.KHR_shader_terminate_invocation = true,
.KHR_spirv_1_4 = true,
.KHR_storage_buffer_storage_class = true,
#ifdef RADV_USE_WSI_PLATFORM
.KHR_swapchain = true,
.KHR_swapchain_mutable_format = true,
#endif
.KHR_timeline_semaphore = true,
.KHR_uniform_buffer_standard_layout = true,
.KHR_variable_pointers = true,
.KHR_vulkan_memory_model = true,
.KHR_workgroup_memory_explicit_layout = true,
.KHR_zero_initialize_workgroup_memory = true,
.EXT_4444_formats = true,
.EXT_buffer_device_address = true,
.EXT_calibrated_timestamps = RADV_SUPPORT_CALIBRATED_TIMESTAMPS,
.EXT_conditional_rendering = true,
.EXT_conservative_rasterization = device->rad_info.chip_class >= GFX9,
.EXT_custom_border_color = true,
.EXT_debug_marker = radv_thread_trace_enabled(),
.EXT_depth_clip_enable = true,
.EXT_depth_range_unrestricted = true,
.EXT_descriptor_indexing = true,
.EXT_discard_rectangles = true,
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
.EXT_display_control = true,
#endif
.EXT_extended_dynamic_state = true,
.EXT_external_memory_dma_buf = true,
.EXT_external_memory_host = device->rad_info.has_userptr,
.EXT_global_priority = true,
.EXT_host_query_reset = true,
.EXT_image_drm_format_modifier = device->rad_info.chip_class >= GFX9,
.EXT_image_robustness = true,
.EXT_index_type_uint8 = device->rad_info.chip_class >= GFX8,
.EXT_inline_uniform_block = true,
.EXT_line_rasterization = true,
.EXT_memory_budget = true,
.EXT_memory_priority = true,
.EXT_pci_bus_info = true,
.EXT_pipeline_creation_cache_control = true,
.EXT_pipeline_creation_feedback = true,
.EXT_post_depth_coverage = device->rad_info.chip_class >= GFX10,
.EXT_private_data = true,
.EXT_queue_family_foreign = true,
.EXT_robustness2 = true,
.EXT_sample_locations = device->rad_info.chip_class < GFX10,
.EXT_sampler_filter_minmax = true,
.EXT_scalar_block_layout = device->rad_info.chip_class >= GFX7,
.EXT_shader_atomic_float = true,
.EXT_shader_demote_to_helper_invocation = LLVM_VERSION_MAJOR >= 9 || !device->use_llvm,
.EXT_shader_image_atomic_int64 = LLVM_VERSION_MAJOR >= 11 || !device->use_llvm,
.EXT_shader_stencil_export = true,
.EXT_shader_subgroup_ballot = true,
.EXT_shader_subgroup_vote = true,
.EXT_shader_viewport_index_layer = true,
.EXT_subgroup_size_control = true,
.EXT_texel_buffer_alignment = true,
.EXT_transform_feedback = true,
.EXT_vertex_attribute_divisor = true,
.EXT_ycbcr_image_arrays = true,
.AMD_buffer_marker = true,
.AMD_device_coherent_memory = true,
.AMD_draw_indirect_count = true,
.AMD_gcn_shader = true,
.AMD_gpu_shader_half_float = device->rad_info.has_packed_math_16bit,
.AMD_gpu_shader_int16 = device->rad_info.has_packed_math_16bit,
.AMD_memory_overallocation_behavior = true,
.AMD_mixed_attachment_samples = true,
.AMD_rasterization_order = device->rad_info.has_out_of_order_rast,
.AMD_shader_ballot = true,
.AMD_shader_core_properties = true,
.AMD_shader_core_properties2 = true,
.AMD_shader_explicit_vertex_parameter = true,
.AMD_shader_fragment_mask = true,
.AMD_shader_image_load_store_lod = true,
.AMD_shader_info = true,
.AMD_shader_trinary_minmax = true,
.AMD_texture_gather_bias_lod = true,
#ifdef ANDROID
.ANDROID_external_memory_android_hardware_buffer = RADV_SUPPORT_ANDROID_HARDWARE_BUFFER,
.ANDROID_native_buffer = true,
#endif
.GOOGLE_decorate_string = true,
.GOOGLE_hlsl_functionality1 = true,
.GOOGLE_user_type = true,
.NV_compute_shader_derivatives = true,
.VALVE_mutable_descriptor_type = true,
};
}
static VkResult
radv_physical_device_try_create(struct radv_instance *instance, drmDevicePtr drm_device,
struct radv_physical_device **device_out)
{
VkResult result;
int fd = -1;
int master_fd = -1;
#ifdef _WIN32
assert(drm_device == NULL);
#else
if (drm_device) {
const char *path = drm_device->nodes[DRM_NODE_RENDER];
drmVersionPtr version;
fd = open(path, O_RDWR | O_CLOEXEC);
if (fd < 0) {
if (instance->debug_flags & RADV_DEBUG_STARTUP)
radv_logi("Could not open device '%s'", path);
return vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
}
version = drmGetVersion(fd);
if (!version) {
close(fd);
if (instance->debug_flags & RADV_DEBUG_STARTUP)
radv_logi("Could not get the kernel driver version for device '%s'", path);
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER, "failed to get version %s: %m",
path);
}
if (strcmp(version->name, "amdgpu")) {
drmFreeVersion(version);
close(fd);
if (instance->debug_flags & RADV_DEBUG_STARTUP)
radv_logi("Device '%s' is not using the amdgpu kernel driver.", path);
return VK_ERROR_INCOMPATIBLE_DRIVER;
}
drmFreeVersion(version);
if (instance->debug_flags & RADV_DEBUG_STARTUP)
radv_logi("Found compatible device '%s'.", path);
}
#endif
struct radv_physical_device *device = vk_zalloc2(&instance->vk.alloc, NULL, sizeof(*device), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!device) {
result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_fd;
}
struct vk_physical_device_dispatch_table dispatch_table;
vk_physical_device_dispatch_table_from_entrypoints(&dispatch_table,
&radv_physical_device_entrypoints, true);
result = vk_physical_device_init(&device->vk, &instance->vk, NULL, &dispatch_table);
if (result != VK_SUCCESS) {
goto fail_alloc;
}
device->instance = instance;
#ifdef _WIN32
device->ws = radv_null_winsys_create();
#else
if (drm_device) {
device->ws = radv_amdgpu_winsys_create(fd, instance->debug_flags, instance->perftest_flags);
} else {
device->ws = radv_null_winsys_create();
}
#endif
if (!device->ws) {
result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED, "failed to initialize winsys");
goto fail_base;
}
#ifndef _WIN32
if (drm_device && instance->vk.enabled_extensions.KHR_display) {
master_fd = open(drm_device->nodes[DRM_NODE_PRIMARY], O_RDWR | O_CLOEXEC);
if (master_fd >= 0) {
uint32_t accel_working = 0;
struct drm_amdgpu_info request = {.return_pointer = (uintptr_t)&accel_working,
.return_size = sizeof(accel_working),
.query = AMDGPU_INFO_ACCEL_WORKING};
if (drmCommandWrite(master_fd, DRM_AMDGPU_INFO, &request, sizeof(struct drm_amdgpu_info)) <
0 ||
!accel_working) {
close(master_fd);
master_fd = -1;
}
}
}
#endif
device->master_fd = master_fd;
device->local_fd = fd;
device->ws->query_info(device->ws, &device->rad_info);
device->use_llvm = instance->debug_flags & RADV_DEBUG_LLVM;
snprintf(device->name, sizeof(device->name), "AMD RADV %s (%s)", device->rad_info.name,
radv_get_compiler_string(device));
#ifdef ENABLE_SHADER_CACHE
if (radv_device_get_cache_uuid(device->rad_info.family, device->cache_uuid)) {
result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED, "cannot generate UUID");
goto fail_wsi;
}
/* These flags affect shader compilation. */
uint64_t shader_env_flags = (device->use_llvm ? 0 : 0x2);
/* The gpu id is already embedded in the uuid so we just pass "radv"
* when creating the cache.
*/
char buf[VK_UUID_SIZE * 2 + 1];
disk_cache_format_hex_id(buf, device->cache_uuid, VK_UUID_SIZE * 2);
device->disk_cache = disk_cache_create(device->name, buf, shader_env_flags);
#endif
if (device->rad_info.chip_class < GFX8 || device->rad_info.chip_class > GFX10)
fprintf(stderr,
"WARNING: radv is not a conformant vulkan implementation, testing use only.\n");
radv_get_driver_uuid(&device->driver_uuid);
radv_get_device_uuid(&device->rad_info, &device->device_uuid);
device->out_of_order_rast_allowed =
device->rad_info.has_out_of_order_rast &&
!(device->instance->debug_flags & RADV_DEBUG_NO_OUT_OF_ORDER);
device->dcc_msaa_allowed = (device->instance->perftest_flags & RADV_PERFTEST_DCC_MSAA);
device->use_ngg = device->rad_info.chip_class >= GFX10 &&
device->rad_info.family != CHIP_NAVI14 &&
!(device->instance->debug_flags & RADV_DEBUG_NO_NGG);
device->use_ngg_streamout = false;
/* Determine the number of threads per wave for all stages. */
device->cs_wave_size = 64;
device->ps_wave_size = 64;
device->ge_wave_size = 64;
if (device->rad_info.chip_class >= GFX10) {
if (device->instance->perftest_flags & RADV_PERFTEST_CS_WAVE_32)
device->cs_wave_size = 32;
/* For pixel shaders, wave64 is recommanded. */
if (device->instance->perftest_flags & RADV_PERFTEST_PS_WAVE_32)
device->ps_wave_size = 32;
if (device->instance->perftest_flags & RADV_PERFTEST_GE_WAVE_32)
device->ge_wave_size = 32;
}
radv_physical_device_init_mem_types(device);
radv_physical_device_get_supported_extensions(device, &device->vk.supported_extensions);
#ifndef _WIN32
if (drm_device)
device->bus_info = *drm_device->businfo.pci;
#endif
if ((device->instance->debug_flags & RADV_DEBUG_INFO))
ac_print_gpu_info(&device->rad_info, stdout);
/* The WSI is structured as a layer on top of the driver, so this has
* to be the last part of initialization (at least until we get other
* semi-layers).
*/
result = radv_init_wsi(device);
if (result != VK_SUCCESS) {
vk_error(instance, result);
goto fail_disk_cache;
}
*device_out = device;
return VK_SUCCESS;
fail_disk_cache:
disk_cache_destroy(device->disk_cache);
fail_wsi:
device->ws->destroy(device->ws);
fail_base:
vk_physical_device_finish(&device->vk);
fail_alloc:
vk_free(&instance->vk.alloc, device);
fail_fd:
if (fd != -1)
close(fd);
if (master_fd != -1)
close(master_fd);
return result;
}
static void
radv_physical_device_destroy(struct radv_physical_device *device)
{
radv_finish_wsi(device);
device->ws->destroy(device->ws);
disk_cache_destroy(device->disk_cache);
if (device->local_fd != -1)
close(device->local_fd);
if (device->master_fd != -1)
close(device->master_fd);
vk_physical_device_finish(&device->vk);
vk_free(&device->instance->vk.alloc, device);
}
static void *
default_alloc_func(void *pUserData, size_t size, size_t align,
VkSystemAllocationScope allocationScope)
{
return malloc(size);
}
static void *
default_realloc_func(void *pUserData, void *pOriginal, size_t size, size_t align,
VkSystemAllocationScope allocationScope)
{
return realloc(pOriginal, size);
}
static void
default_free_func(void *pUserData, void *pMemory)
{
free(pMemory);
}
static const VkAllocationCallbacks default_alloc = {
.pUserData = NULL,
.pfnAllocation = default_alloc_func,
.pfnReallocation = default_realloc_func,
.pfnFree = default_free_func,
};
static const struct debug_control radv_debug_options[] = {
{"nofastclears", RADV_DEBUG_NO_FAST_CLEARS},
{"nodcc", RADV_DEBUG_NO_DCC},
{"shaders", RADV_DEBUG_DUMP_SHADERS},
{"nocache", RADV_DEBUG_NO_CACHE},
{"shaderstats", RADV_DEBUG_DUMP_SHADER_STATS},
{"nohiz", RADV_DEBUG_NO_HIZ},
{"nocompute", RADV_DEBUG_NO_COMPUTE_QUEUE},
{"allbos", RADV_DEBUG_ALL_BOS},
{"noibs", RADV_DEBUG_NO_IBS},
{"spirv", RADV_DEBUG_DUMP_SPIRV},
{"vmfaults", RADV_DEBUG_VM_FAULTS},
{"zerovram", RADV_DEBUG_ZERO_VRAM},
{"syncshaders", RADV_DEBUG_SYNC_SHADERS},
{"preoptir", RADV_DEBUG_PREOPTIR},
{"nodynamicbounds", RADV_DEBUG_NO_DYNAMIC_BOUNDS},
{"nooutoforder", RADV_DEBUG_NO_OUT_OF_ORDER},
{"info", RADV_DEBUG_INFO},
{"errors", RADV_DEBUG_ERRORS},
{"startup", RADV_DEBUG_STARTUP},
{"checkir", RADV_DEBUG_CHECKIR},
{"nothreadllvm", RADV_DEBUG_NOTHREADLLVM},
{"nobinning", RADV_DEBUG_NOBINNING},
{"nongg", RADV_DEBUG_NO_NGG},
{"metashaders", RADV_DEBUG_DUMP_META_SHADERS},
{"nomemorycache", RADV_DEBUG_NO_MEMORY_CACHE},
{"discardtodemote", RADV_DEBUG_DISCARD_TO_DEMOTE},
{"llvm", RADV_DEBUG_LLVM},
{"forcecompress", RADV_DEBUG_FORCE_COMPRESS},
{"hang", RADV_DEBUG_HANG},
{"img", RADV_DEBUG_IMG},
{"noumr", RADV_DEBUG_NO_UMR},
{"invariantgeom", RADV_DEBUG_INVARIANT_GEOM},
{"nodisplaydcc", RADV_DEBUG_NO_DISPLAY_DCC},
{"notccompatcmask", RADV_DEBUG_NO_TC_COMPAT_CMASK},
{"novrsflatshading", RADV_DEBUG_NO_VRS_FLAT_SHADING},
{NULL, 0}};
const char *
radv_get_debug_option_name(int id)
{
assert(id < ARRAY_SIZE(radv_debug_options) - 1);
return radv_debug_options[id].string;
}
static const struct debug_control radv_perftest_options[] = {
{"localbos", RADV_PERFTEST_LOCAL_BOS}, {"dccmsaa", RADV_PERFTEST_DCC_MSAA},
{"bolist", RADV_PERFTEST_BO_LIST}, {"tccompatcmask", RADV_PERFTEST_TC_COMPAT_CMASK},
{"cswave32", RADV_PERFTEST_CS_WAVE_32}, {"pswave32", RADV_PERFTEST_PS_WAVE_32},
{"gewave32", RADV_PERFTEST_GE_WAVE_32}, {"dfsm", RADV_PERFTEST_DFSM},
{"nosam", RADV_PERFTEST_NO_SAM}, {"sam", RADV_PERFTEST_SAM},
{"dccstores", RADV_PERFTEST_DCC_STORES}, {NULL, 0}};
const char *
radv_get_perftest_option_name(int id)
{
assert(id < ARRAY_SIZE(radv_perftest_options) - 1);
return radv_perftest_options[id].string;
}
static void
radv_handle_per_app_options(struct radv_instance *instance, const VkApplicationInfo *info)
{
const char *name = info ? info->pApplicationName : NULL;
const char *engine_name = info ? info->pEngineName : NULL;
if (name) {
if (!strcmp(name, "DOOM_VFR")) {
/* Work around a Doom VFR game bug */
instance->debug_flags |= RADV_DEBUG_NO_DYNAMIC_BOUNDS;
} else if (!strcmp(name, "Fledge")) {
/*
* Zero VRAM for "The Surge 2"
*
* This avoid a hang when when rendering any level. Likely
* uninitialized data in an indirect draw.
*/
instance->debug_flags |= RADV_DEBUG_ZERO_VRAM;
} else if (!strcmp(name, "No Man's Sky")) {
/* Work around a NMS game bug */
instance->debug_flags |= RADV_DEBUG_DISCARD_TO_DEMOTE;
} else if (!strcmp(name, "DOOMEternal")) {
/* Zero VRAM for Doom Eternal to fix rendering issues. */
instance->debug_flags |= RADV_DEBUG_ZERO_VRAM;
} else if (!strcmp(name, "ShadowOfTheTomb")) {
/* Work around flickering foliage for native Shadow of the Tomb Raider
* on GFX10.3 */
instance->debug_flags |= RADV_DEBUG_INVARIANT_GEOM;
}
}
if (engine_name) {
if (!strcmp(engine_name, "vkd3d")) {
/* Zero VRAM for all VKD3D (DX12->VK) games to fix
* rendering issues.
*/
instance->debug_flags |= RADV_DEBUG_ZERO_VRAM;
} else if (!strcmp(engine_name, "Quantic Dream Engine")) {
/* Fix various artifacts in Detroit: Become Human */
instance->debug_flags |= RADV_DEBUG_ZERO_VRAM | RADV_DEBUG_DISCARD_TO_DEMOTE;
/* Fix rendering issues in Detroit: Become Human
* because the game uses render loops (it
* samples/renders from/to the same depth/stencil
* texture inside the same draw) without input
* attachments and that is invalid Vulkan usage.
*/
instance->disable_tc_compat_htile_in_general = true;
}
}
instance->enable_mrt_output_nan_fixup =
driQueryOptionb(&instance->dri_options, "radv_enable_mrt_output_nan_fixup");
instance->disable_shrink_image_store =
driQueryOptionb(&instance->dri_options, "radv_disable_shrink_image_store");
instance->absolute_depth_bias =
driQueryOptionb(&instance->dri_options, "radv_absolute_depth_bias");
if (driQueryOptionb(&instance->dri_options, "radv_no_dynamic_bounds"))
instance->debug_flags |= RADV_DEBUG_NO_DYNAMIC_BOUNDS;
}
static const driOptionDescription radv_dri_options[] = {
DRI_CONF_SECTION_PERFORMANCE DRI_CONF_ADAPTIVE_SYNC(
true) DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0) DRI_CONF_VK_X11_STRICT_IMAGE_COUNT(false)
DRI_CONF_VK_X11_ENSURE_MIN_IMAGE_COUNT(false) DRI_CONF_RADV_REPORT_LLVM9_VERSION_STRING(false)
DRI_CONF_RADV_ENABLE_MRT_OUTPUT_NAN_FIXUP(false)
DRI_CONF_RADV_DISABLE_SHRINK_IMAGE_STORE(false) DRI_CONF_RADV_NO_DYNAMIC_BOUNDS(false)
DRI_CONF_RADV_ABSOLUTE_DEPTH_BIAS(false) DRI_CONF_RADV_OVERRIDE_UNIFORM_OFFSET_ALIGNMENT(0) DRI_CONF_SECTION_END
DRI_CONF_SECTION_DEBUG DRI_CONF_OVERRIDE_VRAM_SIZE()
DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST(false) DRI_CONF_SECTION_END};
static void
radv_init_dri_options(struct radv_instance *instance)
{
driParseOptionInfo(&instance->available_dri_options, radv_dri_options,
ARRAY_SIZE(radv_dri_options));
driParseConfigFiles(&instance->dri_options, &instance->available_dri_options, 0, "radv", NULL,
instance->vk.app_info.app_name, instance->vk.app_info.app_version,
instance->vk.app_info.engine_name, instance->vk.app_info.engine_version);
}
VkResult
radv_CreateInstance(const VkInstanceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkInstance *pInstance)
{
struct radv_instance *instance;
VkResult result;
if (!pAllocator)
pAllocator = &default_alloc;
instance = vk_zalloc(pAllocator, sizeof(*instance), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!instance)
return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
struct vk_instance_dispatch_table dispatch_table;
vk_instance_dispatch_table_from_entrypoints(&dispatch_table, &radv_instance_entrypoints, true);
result = vk_instance_init(&instance->vk, &radv_instance_extensions_supported, &dispatch_table,
pCreateInfo, pAllocator);
if (result != VK_SUCCESS) {
vk_free(pAllocator, instance);
return vk_error(instance, result);
}
instance->debug_flags = parse_debug_string(getenv("RADV_DEBUG"), radv_debug_options);
const char *radv_perftest_str = getenv("RADV_PERFTEST");
instance->perftest_flags = parse_debug_string(radv_perftest_str, radv_perftest_options);
if (radv_perftest_str) {
/* Output warnings for famous RADV_PERFTEST options that no
* longer exist or are deprecated.
*/
if (strstr(radv_perftest_str, "aco")) {
fprintf(
stderr,
"*******************************************************************************\n");
fprintf(
stderr,
"* WARNING: Unknown option RADV_PERFTEST='aco'. ACO is enabled by default now. *\n");
fprintf(
stderr,
"*******************************************************************************\n");
}
if (strstr(radv_perftest_str, "llvm")) {
fprintf(
stderr,
"*********************************************************************************\n");
fprintf(
stderr,
"* WARNING: Unknown option 'RADV_PERFTEST=llvm'. Did you mean 'RADV_DEBUG=llvm'? *\n");
fprintf(
stderr,
"*********************************************************************************\n");
abort();
}
}
if (instance->debug_flags & RADV_DEBUG_STARTUP)
radv_logi("Created an instance");
instance->physical_devices_enumerated = false;
list_inithead(&instance->physical_devices);
VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
radv_init_dri_options(instance);
radv_handle_per_app_options(instance, pCreateInfo->pApplicationInfo);
*pInstance = radv_instance_to_handle(instance);
return VK_SUCCESS;
}
void
radv_DestroyInstance(VkInstance _instance, const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
if (!instance)
return;
list_for_each_entry_safe(struct radv_physical_device, pdevice, &instance->physical_devices, link)
{
radv_physical_device_destroy(pdevice);
}
VG(VALGRIND_DESTROY_MEMPOOL(instance));
driDestroyOptionCache(&instance->dri_options);
driDestroyOptionInfo(&instance->available_dri_options);
vk_instance_finish(&instance->vk);
vk_free(&instance->vk.alloc, instance);
}
static VkResult
radv_enumerate_physical_devices(struct radv_instance *instance)
{
if (instance->physical_devices_enumerated)
return VK_SUCCESS;
instance->physical_devices_enumerated = true;
VkResult result = VK_SUCCESS;
if (getenv("RADV_FORCE_FAMILY")) {
/* When RADV_FORCE_FAMILY is set, the driver creates a nul
* device that allows to test the compiler without having an
* AMDGPU instance.
*/
struct radv_physical_device *pdevice;
result = radv_physical_device_try_create(instance, NULL, &pdevice);
if (result != VK_SUCCESS)
return result;
list_addtail(&pdevice->link, &instance->physical_devices);
return VK_SUCCESS;
}
#ifndef _WIN32
/* TODO: Check for more devices ? */
drmDevicePtr devices[8];
int max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
if (instance->debug_flags & RADV_DEBUG_STARTUP)
radv_logi("Found %d drm nodes", max_devices);
if (max_devices < 1)
return vk_error(instance, VK_SUCCESS);
for (unsigned i = 0; i < (unsigned)max_devices; i++) {
if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
devices[i]->bustype == DRM_BUS_PCI &&
devices[i]->deviceinfo.pci->vendor_id == ATI_VENDOR_ID) {
struct radv_physical_device *pdevice;
result = radv_physical_device_try_create(instance, devices[i], &pdevice);
/* Incompatible DRM device, skip. */
if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
result = VK_SUCCESS;
continue;
}
/* Error creating the physical device, report the error. */
if (result != VK_SUCCESS)
break;
list_addtail(&pdevice->link, &instance->physical_devices);
}
}
drmFreeDevices(devices, max_devices);
#endif
/* If we successfully enumerated any devices, call it success */
return result;
}
VkResult
radv_EnumeratePhysicalDevices(VkInstance _instance, uint32_t *pPhysicalDeviceCount,
VkPhysicalDevice *pPhysicalDevices)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
VK_OUTARRAY_MAKE_TYPED(VkPhysicalDevice, out, pPhysicalDevices, pPhysicalDeviceCount);
VkResult result = radv_enumerate_physical_devices(instance);
if (result != VK_SUCCESS)
return result;
list_for_each_entry(struct radv_physical_device, pdevice, &instance->physical_devices, link)
{
vk_outarray_append_typed(VkPhysicalDevice, &out, i)
{
*i = radv_physical_device_to_handle(pdevice);
}
}
return vk_outarray_status(&out);
}
VkResult
radv_EnumeratePhysicalDeviceGroups(VkInstance _instance, uint32_t *pPhysicalDeviceGroupCount,
VkPhysicalDeviceGroupProperties *pPhysicalDeviceGroupProperties)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceGroupProperties, out, pPhysicalDeviceGroupProperties,
pPhysicalDeviceGroupCount);
VkResult result = radv_enumerate_physical_devices(instance);
if (result != VK_SUCCESS)
return result;
list_for_each_entry(struct radv_physical_device, pdevice, &instance->physical_devices, link)
{
vk_outarray_append_typed(VkPhysicalDeviceGroupProperties, &out, p)
{
p->physicalDeviceCount = 1;
memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
p->physicalDevices[0] = radv_physical_device_to_handle(pdevice);
p->subsetAllocation = false;
}
}
return vk_outarray_status(&out);
}
void
radv_GetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures *pFeatures)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
memset(pFeatures, 0, sizeof(*pFeatures));
*pFeatures = (VkPhysicalDeviceFeatures){
.robustBufferAccess = true,
.fullDrawIndexUint32 = true,
.imageCubeArray = true,
.independentBlend = true,
.geometryShader = true,
.tessellationShader = true,
.sampleRateShading = true,
.dualSrcBlend = true,
.logicOp = true,
.multiDrawIndirect = true,
.drawIndirectFirstInstance = true,
.depthClamp = true,
.depthBiasClamp = true,
.fillModeNonSolid = true,
.depthBounds = true,
.wideLines = true,
.largePoints = true,
.alphaToOne = false,
.multiViewport = true,
.samplerAnisotropy = true,
.textureCompressionETC2 = radv_device_supports_etc(pdevice),
.textureCompressionASTC_LDR = false,
.textureCompressionBC = true,
.occlusionQueryPrecise = true,
.pipelineStatisticsQuery = true,
.vertexPipelineStoresAndAtomics = true,
.fragmentStoresAndAtomics = true,
.shaderTessellationAndGeometryPointSize = true,
.shaderImageGatherExtended = true,
.shaderStorageImageExtendedFormats = true,
.shaderStorageImageMultisample = true,
.shaderUniformBufferArrayDynamicIndexing = true,
.shaderSampledImageArrayDynamicIndexing = true,
.shaderStorageBufferArrayDynamicIndexing = true,
.shaderStorageImageArrayDynamicIndexing = true,
.shaderStorageImageReadWithoutFormat = true,
.shaderStorageImageWriteWithoutFormat = true,
.shaderClipDistance = true,
.shaderCullDistance = true,
.shaderFloat64 = true,
.shaderInt64 = true,
.shaderInt16 = true,
.sparseBinding = true,
.sparseResidencyBuffer = pdevice->rad_info.family >= CHIP_POLARIS10,
.sparseResidencyImage2D = pdevice->rad_info.family >= CHIP_POLARIS10,
.sparseResidencyAliased = pdevice->rad_info.family >= CHIP_POLARIS10,
.variableMultisampleRate = true,
.shaderResourceMinLod = true,
.shaderResourceResidency = true,
.inheritedQueries = true,
};
}
static void
radv_get_physical_device_features_1_1(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan11Features *f)
{
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
f->storageBuffer16BitAccess = true;
f->uniformAndStorageBuffer16BitAccess = true;
f->storagePushConstant16 = true;
f->storageInputOutput16 =
pdevice->rad_info.has_packed_math_16bit && (LLVM_VERSION_MAJOR >= 9 || !pdevice->use_llvm);
f->multiview = true;
f->multiviewGeometryShader = true;
f->multiviewTessellationShader = true;
f->variablePointersStorageBuffer = true;
f->variablePointers = true;
f->protectedMemory = false;
f->samplerYcbcrConversion = true;
f->shaderDrawParameters = true;
}
static void
radv_get_physical_device_features_1_2(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan12Features *f)
{
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
f->samplerMirrorClampToEdge = true;
f->drawIndirectCount = true;
f->storageBuffer8BitAccess = true;
f->uniformAndStorageBuffer8BitAccess = true;
f->storagePushConstant8 = true;
f->shaderBufferInt64Atomics = LLVM_VERSION_MAJOR >= 9 || !pdevice->use_llvm;
f->shaderSharedInt64Atomics = LLVM_VERSION_MAJOR >= 9 || !pdevice->use_llvm;
f->shaderFloat16 = pdevice->rad_info.has_packed_math_16bit;
f->shaderInt8 = true;
f->descriptorIndexing = true;
f->shaderInputAttachmentArrayDynamicIndexing = true;
f->shaderUniformTexelBufferArrayDynamicIndexing = true;
f->shaderStorageTexelBufferArrayDynamicIndexing = true;
f->shaderUniformBufferArrayNonUniformIndexing = true;
f->shaderSampledImageArrayNonUniformIndexing = true;
f->shaderStorageBufferArrayNonUniformIndexing = true;
f->shaderStorageImageArrayNonUniformIndexing = true;
f->shaderInputAttachmentArrayNonUniformIndexing = true;
f->shaderUniformTexelBufferArrayNonUniformIndexing = true;
f->shaderStorageTexelBufferArrayNonUniformIndexing = true;
f->descriptorBindingUniformBufferUpdateAfterBind = true;
f->descriptorBindingSampledImageUpdateAfterBind = true;
f->descriptorBindingStorageImageUpdateAfterBind = true;
f->descriptorBindingStorageBufferUpdateAfterBind = true;
f->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
f->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
f->descriptorBindingUpdateUnusedWhilePending = true;
f->descriptorBindingPartiallyBound = true;
f->descriptorBindingVariableDescriptorCount = true;
f->runtimeDescriptorArray = true;
f->samplerFilterMinmax = true;
f->scalarBlockLayout = pdevice->rad_info.chip_class >= GFX7;
f->imagelessFramebuffer = true;
f->uniformBufferStandardLayout = true;
f->shaderSubgroupExtendedTypes = true;
f->separateDepthStencilLayouts = true;
f->hostQueryReset = true;
f->timelineSemaphore = true, f->bufferDeviceAddress = true;
f->bufferDeviceAddressCaptureReplay = false;
f->bufferDeviceAddressMultiDevice = false;
f->vulkanMemoryModel = true;
f->vulkanMemoryModelDeviceScope = true;
f->vulkanMemoryModelAvailabilityVisibilityChains = false;
f->shaderOutputViewportIndex = true;
f->shaderOutputLayer = true;
f->subgroupBroadcastDynamicId = true;
}
void
radv_GetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures2 *pFeatures)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
radv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
VkPhysicalDeviceVulkan11Features core_1_1 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
};
radv_get_physical_device_features_1_1(pdevice, &core_1_1);
VkPhysicalDeviceVulkan12Features core_1_2 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
};
radv_get_physical_device_features_1_2(pdevice, &core_1_2);
#define CORE_FEATURE(major, minor, feature) features->feature = core_##major##_##minor.feature
vk_foreach_struct(ext, pFeatures->pNext)
{
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
CORE_FEATURE(1, 1, variablePointersStorageBuffer);
CORE_FEATURE(1, 1, variablePointers);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
VkPhysicalDeviceMultiviewFeatures *features = (VkPhysicalDeviceMultiviewFeatures *)ext;
CORE_FEATURE(1, 1, multiview);
CORE_FEATURE(1, 1, multiviewGeometryShader);
CORE_FEATURE(1, 1, multiviewTessellationShader);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
VkPhysicalDeviceShaderDrawParametersFeatures *features =
(VkPhysicalDeviceShaderDrawParametersFeatures *)ext;
CORE_FEATURE(1, 1, shaderDrawParameters);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
VkPhysicalDeviceProtectedMemoryFeatures *features =
(VkPhysicalDeviceProtectedMemoryFeatures *)ext;
CORE_FEATURE(1, 1, protectedMemory);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
VkPhysicalDevice16BitStorageFeatures *features =
(VkPhysicalDevice16BitStorageFeatures *)ext;
CORE_FEATURE(1, 1, storageBuffer16BitAccess);
CORE_FEATURE(1, 1, uniformAndStorageBuffer16BitAccess);
CORE_FEATURE(1, 1, storagePushConstant16);
CORE_FEATURE(1, 1, storageInputOutput16);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
(VkPhysicalDeviceSamplerYcbcrConversionFeatures *)ext;
CORE_FEATURE(1, 1, samplerYcbcrConversion);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES: {
VkPhysicalDeviceDescriptorIndexingFeatures *features =
(VkPhysicalDeviceDescriptorIndexingFeatures *)ext;
CORE_FEATURE(1, 2, shaderInputAttachmentArrayDynamicIndexing);
CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayDynamicIndexing);
CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayDynamicIndexing);
CORE_FEATURE(1, 2, shaderUniformBufferArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderSampledImageArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderStorageBufferArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderStorageImageArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderInputAttachmentArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayNonUniformIndexing);
CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayNonUniformIndexing);
CORE_FEATURE(1, 2, descriptorBindingUniformBufferUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingSampledImageUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingStorageImageUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingStorageBufferUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingUniformTexelBufferUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingStorageTexelBufferUpdateAfterBind);
CORE_FEATURE(1, 2, descriptorBindingUpdateUnusedWhilePending);
CORE_FEATURE(1, 2, descriptorBindingPartiallyBound);
CORE_FEATURE(1, 2, descriptorBindingVariableDescriptorCount);
CORE_FEATURE(1, 2, runtimeDescriptorArray);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
(VkPhysicalDeviceConditionalRenderingFeaturesEXT *)ext;
features->conditionalRendering = true;
features->inheritedConditionalRendering = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
(VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
features->vertexAttributeInstanceRateDivisor = true;
features->vertexAttributeInstanceRateZeroDivisor = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
(VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
features->transformFeedback = true;
features->geometryStreams = !pdevice->use_ngg_streamout;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES: {
VkPhysicalDeviceScalarBlockLayoutFeatures *features =
(VkPhysicalDeviceScalarBlockLayoutFeatures *)ext;
CORE_FEATURE(1, 2, scalarBlockLayout);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PRIORITY_FEATURES_EXT: {
VkPhysicalDeviceMemoryPriorityFeaturesEXT *features =
(VkPhysicalDeviceMemoryPriorityFeaturesEXT *)ext;
features->memoryPriority = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features =
(VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *)ext;
features->bufferDeviceAddress = true;
features->bufferDeviceAddressCaptureReplay = false;
features->bufferDeviceAddressMultiDevice = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES: {
VkPhysicalDeviceBufferDeviceAddressFeatures *features =
(VkPhysicalDeviceBufferDeviceAddressFeatures *)ext;
CORE_FEATURE(1, 2, bufferDeviceAddress);
CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
(VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
features->depthClipEnable = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES: {
VkPhysicalDeviceHostQueryResetFeatures *features =
(VkPhysicalDeviceHostQueryResetFeatures *)ext;
CORE_FEATURE(1, 2, hostQueryReset);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES: {
VkPhysicalDevice8BitStorageFeatures *features = (VkPhysicalDevice8BitStorageFeatures *)ext;
CORE_FEATURE(1, 2, storageBuffer8BitAccess);
CORE_FEATURE(1, 2, uniformAndStorageBuffer8BitAccess);
CORE_FEATURE(1, 2, storagePushConstant8);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES: {
VkPhysicalDeviceShaderFloat16Int8Features *features =
(VkPhysicalDeviceShaderFloat16Int8Features *)ext;
CORE_FEATURE(1, 2, shaderFloat16);
CORE_FEATURE(1, 2, shaderInt8);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES: {
VkPhysicalDeviceShaderAtomicInt64Features *features =
(VkPhysicalDeviceShaderAtomicInt64Features *)ext;
CORE_FEATURE(1, 2, shaderBufferInt64Atomics);
CORE_FEATURE(1, 2, shaderSharedInt64Atomics);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features =
(VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *)ext;
features->shaderDemoteToHelperInvocation = LLVM_VERSION_MAJOR >= 9 || !pdevice->use_llvm;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
(VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
features->inlineUniformBlock = true;
features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
(VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
features->computeDerivativeGroupQuads = false;
features->computeDerivativeGroupLinear = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
(VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
features->ycbcrImageArrays = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES: {
VkPhysicalDeviceUniformBufferStandardLayoutFeatures *features =
(VkPhysicalDeviceUniformBufferStandardLayoutFeatures *)ext;
CORE_FEATURE(1, 2, uniformBufferStandardLayout);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
(VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
features->indexTypeUint8 = pdevice->rad_info.chip_class >= GFX8;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES: {
VkPhysicalDeviceImagelessFramebufferFeatures *features =
(VkPhysicalDeviceImagelessFramebufferFeatures *)ext;
CORE_FEATURE(1, 2, imagelessFramebuffer);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
(VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
features->pipelineExecutableInfo = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
VkPhysicalDeviceShaderClockFeaturesKHR *features =
(VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
features->shaderSubgroupClock = true;
features->shaderDeviceClock = pdevice->rad_info.chip_class >= GFX8;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
(VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
features->texelBufferAlignment = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES: {
VkPhysicalDeviceTimelineSemaphoreFeatures *features =
(VkPhysicalDeviceTimelineSemaphoreFeatures *)ext;
CORE_FEATURE(1, 2, timelineSemaphore);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
(VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
features->subgroupSizeControl = true;
features->computeFullSubgroups = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COHERENT_MEMORY_FEATURES_AMD: {
VkPhysicalDeviceCoherentMemoryFeaturesAMD *features =
(VkPhysicalDeviceCoherentMemoryFeaturesAMD *)ext;
features->deviceCoherentMemory = pdevice->rad_info.has_l2_uncached;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES: {
VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures *features =
(VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures *)ext;
CORE_FEATURE(1, 2, shaderSubgroupExtendedTypes);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
(VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
CORE_FEATURE(1, 2, separateDepthStencilLayouts);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES: {
radv_get_physical_device_features_1_1(pdevice, (void *)ext);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES: {
radv_get_physical_device_features_1_2(pdevice, (void *)ext);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
(VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
features->rectangularLines = false;
features->bresenhamLines = true;
features->smoothLines = false;
features->stippledRectangularLines = false;
/* FIXME: Some stippled Bresenham CTS fails on Vega10
* but work on Raven.
*/
features->stippledBresenhamLines = pdevice->rad_info.chip_class != GFX9;
features->stippledSmoothLines = false;
break;
}
case VK_STRUCTURE_TYPE_DEVICE_MEMORY_OVERALLOCATION_CREATE_INFO_AMD: {
VkDeviceMemoryOverallocationCreateInfoAMD *features =
(VkDeviceMemoryOverallocationCreateInfoAMD *)ext;
features->overallocationBehavior = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
VkPhysicalDeviceRobustness2FeaturesEXT *features =
(VkPhysicalDeviceRobustness2FeaturesEXT *)ext;
features->robustBufferAccess2 = true;
features->robustImageAccess2 = true;
features->nullDescriptor = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
VkPhysicalDeviceCustomBorderColorFeaturesEXT *features =
(VkPhysicalDeviceCustomBorderColorFeaturesEXT *)ext;
features->customBorderColors = true;
features->customBorderColorWithoutFormat = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES_EXT: {
VkPhysicalDevicePrivateDataFeaturesEXT *features =
(VkPhysicalDevicePrivateDataFeaturesEXT *)ext;
features->privateData = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES_EXT: {
VkPhysicalDevicePipelineCreationCacheControlFeaturesEXT *features =
(VkPhysicalDevicePipelineCreationCacheControlFeaturesEXT *)ext;
features->pipelineCreationCacheControl = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features =
(VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *)ext;
CORE_FEATURE(1, 2, vulkanMemoryModel);
CORE_FEATURE(1, 2, vulkanMemoryModelDeviceScope);
CORE_FEATURE(1, 2, vulkanMemoryModelAvailabilityVisibilityChains);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_FEATURES_EXT: {
VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *features =
(VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *)ext;
features->extendedDynamicState = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES_EXT: {
VkPhysicalDeviceImageRobustnessFeaturesEXT *features =
(VkPhysicalDeviceImageRobustnessFeaturesEXT *)ext;
features->robustImageAccess = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT: {
VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *features =
(VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *)ext;
features->shaderBufferFloat32Atomics = true;
features->shaderBufferFloat32AtomicAdd = false;
features->shaderBufferFloat64Atomics = true;
features->shaderBufferFloat64AtomicAdd = false;
features->shaderSharedFloat32Atomics = true;
features->shaderSharedFloat32AtomicAdd = pdevice->rad_info.chip_class >= GFX8 &&
(!pdevice->use_llvm || LLVM_VERSION_MAJOR >= 10);
features->shaderSharedFloat64Atomics = true;
features->shaderSharedFloat64AtomicAdd = false;
features->shaderImageFloat32Atomics = true;
features->shaderImageFloat32AtomicAdd = false;
features->sparseImageFloat32Atomics = true;
features->sparseImageFloat32AtomicAdd = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_4444_FORMATS_FEATURES_EXT: {
VkPhysicalDevice4444FormatsFeaturesEXT *features =
(VkPhysicalDevice4444FormatsFeaturesEXT *)ext;
features->formatA4R4G4B4 = true;
features->formatA4B4G4R4 = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TERMINATE_INVOCATION_FEATURES_KHR: {
VkPhysicalDeviceShaderTerminateInvocationFeaturesKHR *features =
(VkPhysicalDeviceShaderTerminateInvocationFeaturesKHR *)ext;
features->shaderTerminateInvocation = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_IMAGE_ATOMIC_INT64_FEATURES_EXT: {
VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT *features =
(VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT *)ext;
features->shaderImageInt64Atomics = LLVM_VERSION_MAJOR >= 11 || !pdevice->use_llvm;
features->sparseImageInt64Atomics = LLVM_VERSION_MAJOR >= 11 || !pdevice->use_llvm;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MUTABLE_DESCRIPTOR_TYPE_FEATURES_VALVE: {
VkPhysicalDeviceMutableDescriptorTypeFeaturesVALVE *features =
(VkPhysicalDeviceMutableDescriptorTypeFeaturesVALVE *)ext;
features->mutableDescriptorType = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR: {
VkPhysicalDeviceFragmentShadingRateFeaturesKHR *features =
(VkPhysicalDeviceFragmentShadingRateFeaturesKHR *)ext;
features->pipelineFragmentShadingRate = true;
features->primitiveFragmentShadingRate = true;
features->attachmentFragmentShadingRate = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_WORKGROUP_MEMORY_EXPLICIT_LAYOUT_FEATURES_KHR: {
VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR *features =
(VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR *)ext;
features->workgroupMemoryExplicitLayout = true;
features->workgroupMemoryExplicitLayoutScalarBlockLayout = true;
features->workgroupMemoryExplicitLayout8BitAccess = true;
features->workgroupMemoryExplicitLayout16BitAccess = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ZERO_INITIALIZE_WORKGROUP_MEMORY_FEATURES_KHR: {
VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeaturesKHR *features =
(VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeaturesKHR *)ext;
features->shaderZeroInitializeWorkgroupMemory = true;
break;
}
default:
break;
}
}
#undef CORE_FEATURE
}
static size_t
radv_max_descriptor_set_size()
{
/* make sure that the entire descriptor set is addressable with a signed
* 32-bit int. So the sum of all limits scaled by descriptor size has to
* be at most 2 GiB. the combined image & samples object count as one of
* both. This limit is for the pipeline layout, not for the set layout, but
* there is no set limit, so we just set a pipeline limit. I don't think
* any app is going to hit this soon. */
return ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS -
MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
(32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
32 /* storage buffer, 32 due to potential space wasted on alignment */ +
32 /* sampler, largest when combined with image */ + 64 /* sampled image */ +
64 /* storage image */);
}
static uint32_t
radv_uniform_buffer_offset_alignment(const struct radv_physical_device *pdevice)
{
uint32_t uniform_offset_alignment =
driQueryOptioni(&pdevice->instance->dri_options, "radv_override_uniform_offset_alignment");
if (!util_is_power_of_two_or_zero(uniform_offset_alignment)) {
fprintf(stderr,
"ERROR: invalid radv_override_uniform_offset_alignment setting %d:"
"not a power of two\n",
uniform_offset_alignment);
uniform_offset_alignment = 0;
}
/* Take at least the hardware limit. */
return MAX2(uniform_offset_alignment, 4);
}
void
radv_GetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties *pProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
VkSampleCountFlags sample_counts = 0xf;
size_t max_descriptor_set_size = radv_max_descriptor_set_size();
VkPhysicalDeviceLimits limits = {
.maxImageDimension1D = (1 << 14),
.maxImageDimension2D = (1 << 14),
.maxImageDimension3D = (1 << 11),
.maxImageDimensionCube = (1 << 14),
.maxImageArrayLayers = (1 << 11),
.maxTexelBufferElements = UINT32_MAX,
.maxUniformBufferRange = UINT32_MAX,
.maxStorageBufferRange = UINT32_MAX,
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
.maxMemoryAllocationCount = UINT32_MAX,
.maxSamplerAllocationCount = 64 * 1024,
.bufferImageGranularity = 64, /* A cache line */
.sparseAddressSpaceSize = RADV_MAX_MEMORY_ALLOCATION_SIZE, /* buffer max size */
.maxBoundDescriptorSets = MAX_SETS,
.maxPerStageDescriptorSamplers = max_descriptor_set_size,
.maxPerStageDescriptorUniformBuffers = max_descriptor_set_size,
.maxPerStageDescriptorStorageBuffers = max_descriptor_set_size,
.maxPerStageDescriptorSampledImages = max_descriptor_set_size,
.maxPerStageDescriptorStorageImages = max_descriptor_set_size,
.maxPerStageDescriptorInputAttachments = max_descriptor_set_size,
.maxPerStageResources = max_descriptor_set_size,
.maxDescriptorSetSamplers = max_descriptor_set_size,
.maxDescriptorSetUniformBuffers = max_descriptor_set_size,
.maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS,
.maxDescriptorSetStorageBuffers = max_descriptor_set_size,
.maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS,
.maxDescriptorSetSampledImages = max_descriptor_set_size,
.maxDescriptorSetStorageImages = max_descriptor_set_size,
.maxDescriptorSetInputAttachments = max_descriptor_set_size,
.maxVertexInputAttributes = MAX_VERTEX_ATTRIBS,
.maxVertexInputBindings = MAX_VBS,
.maxVertexInputAttributeOffset = 2047,
.maxVertexInputBindingStride = 2048,
.maxVertexOutputComponents = 128,
.maxTessellationGenerationLevel = 64,
.maxTessellationPatchSize = 32,
.maxTessellationControlPerVertexInputComponents = 128,
.maxTessellationControlPerVertexOutputComponents = 128,
.maxTessellationControlPerPatchOutputComponents = 120,
.maxTessellationControlTotalOutputComponents = 4096,
.maxTessellationEvaluationInputComponents = 128,
.maxTessellationEvaluationOutputComponents = 128,
.maxGeometryShaderInvocations = 127,
.maxGeometryInputComponents = 64,
.maxGeometryOutputComponents = 128,
.maxGeometryOutputVertices = 256,
.maxGeometryTotalOutputComponents = 1024,
.maxFragmentInputComponents = 128,
.maxFragmentOutputAttachments = 8,
.maxFragmentDualSrcAttachments = 1,
.maxFragmentCombinedOutputResources = 8,
.maxComputeSharedMemorySize = 32768,
.maxComputeWorkGroupCount = {65535, 65535, 65535},
.maxComputeWorkGroupInvocations = 1024,
.maxComputeWorkGroupSize = {1024, 1024, 1024},
.subPixelPrecisionBits = 8,
.subTexelPrecisionBits = 8,
.mipmapPrecisionBits = 8,
.maxDrawIndexedIndexValue = UINT32_MAX,
.maxDrawIndirectCount = UINT32_MAX,
.maxSamplerLodBias = 16,
.maxSamplerAnisotropy = 16,
.maxViewports = MAX_VIEWPORTS,
.maxViewportDimensions = {(1 << 14), (1 << 14)},
.viewportBoundsRange = {INT16_MIN, INT16_MAX},
.viewportSubPixelBits = 8,
.minMemoryMapAlignment = 4096, /* A page */
.minTexelBufferOffsetAlignment = 4,
.minUniformBufferOffsetAlignment = radv_uniform_buffer_offset_alignment(pdevice),
.minStorageBufferOffsetAlignment = 4,
.minTexelOffset = -32,
.maxTexelOffset = 31,
.minTexelGatherOffset = -32,
.maxTexelGatherOffset = 31,
.minInterpolationOffset = -2,
.maxInterpolationOffset = 2,
.subPixelInterpolationOffsetBits = 8,
.maxFramebufferWidth = (1 << 14),
.maxFramebufferHeight = (1 << 14),
.maxFramebufferLayers = (1 << 10),
.framebufferColorSampleCounts = sample_counts,
.framebufferDepthSampleCounts = sample_counts,
.framebufferStencilSampleCounts = sample_counts,
.framebufferNoAttachmentsSampleCounts = sample_counts,
.maxColorAttachments = MAX_RTS,
.sampledImageColorSampleCounts = sample_counts,
.sampledImageIntegerSampleCounts = sample_counts,
.sampledImageDepthSampleCounts = sample_counts,
.sampledImageStencilSampleCounts = sample_counts,
.storageImageSampleCounts = sample_counts,
.maxSampleMaskWords = 1,
.timestampComputeAndGraphics = true,
.timestampPeriod = 1000000.0 / pdevice->rad_info.clock_crystal_freq,
.maxClipDistances = 8,
.maxCullDistances = 8,
.maxCombinedClipAndCullDistances = 8,
.discreteQueuePriorities = 2,
.pointSizeRange = {0.0, 8191.875},
.lineWidthRange = {0.0, 8191.875},
.pointSizeGranularity = (1.0 / 8.0),
.lineWidthGranularity = (1.0 / 8.0),
.strictLines = false, /* FINISHME */
.standardSampleLocations = true,
.optimalBufferCopyOffsetAlignment = 128,
.optimalBufferCopyRowPitchAlignment = 128,
.nonCoherentAtomSize = 64,
};
*pProperties = (VkPhysicalDeviceProperties){
.apiVersion = RADV_API_VERSION,
.driverVersion = vk_get_driver_version(),
.vendorID = ATI_VENDOR_ID,
.deviceID = pdevice->rad_info.pci_id,
.deviceType = pdevice->rad_info.has_dedicated_vram ? VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU
: VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
.limits = limits,
.sparseProperties =
{
.residencyNonResidentStrict = pdevice->rad_info.family >= CHIP_POLARIS10,
.residencyStandard2DBlockShape = pdevice->rad_info.family >= CHIP_POLARIS10,
},
};
strcpy(pProperties->deviceName, pdevice->name);
memcpy(pProperties->pipelineCacheUUID, pdevice->cache_uuid, VK_UUID_SIZE);
}
static void
radv_get_physical_device_properties_1_1(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan11Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
memset(p->deviceLUID, 0, VK_LUID_SIZE);
/* The LUID is for Windows. */
p->deviceLUIDValid = false;
p->deviceNodeMask = 0;
p->subgroupSize = RADV_SUBGROUP_SIZE;
p->subgroupSupportedStages = VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT;
p->subgroupSupportedOperations =
VK_SUBGROUP_FEATURE_BASIC_BIT | VK_SUBGROUP_FEATURE_VOTE_BIT |
VK_SUBGROUP_FEATURE_ARITHMETIC_BIT | VK_SUBGROUP_FEATURE_BALLOT_BIT |
VK_SUBGROUP_FEATURE_CLUSTERED_BIT | VK_SUBGROUP_FEATURE_QUAD_BIT |
VK_SUBGROUP_FEATURE_SHUFFLE_BIT | VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT;
p->subgroupQuadOperationsInAllStages = true;
p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
p->maxMultiviewViewCount = MAX_VIEWS;
p->maxMultiviewInstanceIndex = INT_MAX;
p->protectedNoFault = false;
p->maxPerSetDescriptors = RADV_MAX_PER_SET_DESCRIPTORS;
p->maxMemoryAllocationSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
}
static void
radv_get_physical_device_properties_1_2(struct radv_physical_device *pdevice,
VkPhysicalDeviceVulkan12Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
p->driverID = VK_DRIVER_ID_MESA_RADV;
snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE, "radv");
snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE, "Mesa " PACKAGE_VERSION MESA_GIT_SHA1 " (%s)",
radv_get_compiler_string(pdevice));
p->conformanceVersion = (VkConformanceVersion){
.major = 1,
.minor = 2,
.subminor = 3,
.patch = 0,
};
/* On AMD hardware, denormals and rounding modes for fp16/fp64 are
* controlled by the same config register.
*/
if (pdevice->rad_info.has_packed_math_16bit) {
p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR;
p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR;
} else {
p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
}
/* With LLVM, do not allow both preserving and flushing denorms because
* different shaders in the same pipeline can have different settings and
* this won't work for merged shaders. To make it work, this requires LLVM
* support for changing the register. The same logic applies for the
* rounding modes because they are configured with the same config
* register.
*/
p->shaderDenormFlushToZeroFloat32 = true;
p->shaderDenormPreserveFloat32 = !pdevice->use_llvm;
p->shaderRoundingModeRTEFloat32 = true;
p->shaderRoundingModeRTZFloat32 = !pdevice->use_llvm;
p->shaderSignedZeroInfNanPreserveFloat32 = true;
p->shaderDenormFlushToZeroFloat16 =
pdevice->rad_info.has_packed_math_16bit && !pdevice->use_llvm;
p->shaderDenormPreserveFloat16 = pdevice->rad_info.has_packed_math_16bit;
p->shaderRoundingModeRTEFloat16 = pdevice->rad_info.has_packed_math_16bit;
p->shaderRoundingModeRTZFloat16 = pdevice->rad_info.has_packed_math_16bit && !pdevice->use_llvm;
p->shaderSignedZeroInfNanPreserveFloat16 = pdevice->rad_info.has_packed_math_16bit;
p->shaderDenormFlushToZeroFloat64 = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_llvm;
p->shaderDenormPreserveFloat64 = pdevice->rad_info.chip_class >= GFX8;
p->shaderRoundingModeRTEFloat64 = pdevice->rad_info.chip_class >= GFX8;
p->shaderRoundingModeRTZFloat64 = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_llvm;
p->shaderSignedZeroInfNanPreserveFloat64 = pdevice->rad_info.chip_class >= GFX8;
p->maxUpdateAfterBindDescriptorsInAllPools = UINT32_MAX / 64;
p->shaderUniformBufferArrayNonUniformIndexingNative = false;
p->shaderSampledImageArrayNonUniformIndexingNative = false;
p->shaderStorageBufferArrayNonUniformIndexingNative = false;
p->shaderStorageImageArrayNonUniformIndexingNative = false;
p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
p->robustBufferAccessUpdateAfterBind = true;
p->quadDivergentImplicitLod = false;
size_t max_descriptor_set_size =
((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS -
MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
(32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
32 /* storage buffer, 32 due to potential space wasted on alignment */ +
32 /* sampler, largest when combined with image */ + 64 /* sampled image */ +
64 /* storage image */);
p->maxPerStageDescriptorUpdateAfterBindSamplers = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_descriptor_set_size;
p->maxPerStageDescriptorUpdateAfterBindInputAttachments = max_descriptor_set_size;
p->maxPerStageUpdateAfterBindResources = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindSamplers = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindUniformBuffers = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS;
p->maxDescriptorSetUpdateAfterBindStorageBuffers = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS;
p->maxDescriptorSetUpdateAfterBindSampledImages = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindStorageImages = max_descriptor_set_size;
p->maxDescriptorSetUpdateAfterBindInputAttachments = max_descriptor_set_size;
/* We support all of the depth resolve modes */
p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
VK_RESOLVE_MODE_AVERAGE_BIT_KHR | VK_RESOLVE_MODE_MIN_BIT_KHR |
VK_RESOLVE_MODE_MAX_BIT_KHR;
/* Average doesn't make sense for stencil so we don't support that */
p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
VK_RESOLVE_MODE_MIN_BIT_KHR | VK_RESOLVE_MODE_MAX_BIT_KHR;
p->independentResolveNone = true;
p->independentResolve = true;
/* GFX6-8 only support single channel min/max filter. */
p->filterMinmaxImageComponentMapping = pdevice->rad_info.chip_class >= GFX9;
p->filterMinmaxSingleComponentFormats = true;
p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
p->framebufferIntegerColorSampleCounts = VK_SAMPLE_COUNT_1_BIT;
}
void
radv_GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties2 *pProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
radv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
VkPhysicalDeviceVulkan11Properties core_1_1 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
};
radv_get_physical_device_properties_1_1(pdevice, &core_1_1);
VkPhysicalDeviceVulkan12Properties core_1_2 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
};
radv_get_physical_device_properties_1_2(pdevice, &core_1_2);
#define CORE_RENAMED_PROPERTY(major, minor, ext_property, core_property) \
memcpy(&properties->ext_property, &core_##major##_##minor.core_property, \
sizeof(core_##major##_##minor.core_property))
#define CORE_PROPERTY(major, minor, property) \
CORE_RENAMED_PROPERTY(major, minor, property, property)
vk_foreach_struct(ext, pProperties->pNext)
{
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
(VkPhysicalDevicePushDescriptorPropertiesKHR *)ext;
properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
VkPhysicalDeviceIDProperties *properties = (VkPhysicalDeviceIDProperties *)ext;
CORE_PROPERTY(1, 1, deviceUUID);
CORE_PROPERTY(1, 1, driverUUID);
CORE_PROPERTY(1, 1, deviceLUID);
CORE_PROPERTY(1, 1, deviceLUIDValid);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
VkPhysicalDeviceMultiviewProperties *properties =
(VkPhysicalDeviceMultiviewProperties *)ext;
CORE_PROPERTY(1, 1, maxMultiviewViewCount);
CORE_PROPERTY(1, 1, maxMultiviewInstanceIndex);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
VkPhysicalDevicePointClippingProperties *properties =
(VkPhysicalDevicePointClippingProperties *)ext;
CORE_PROPERTY(1, 1, pointClippingBehavior);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT: {
VkPhysicalDeviceDiscardRectanglePropertiesEXT *properties =
(VkPhysicalDeviceDiscardRectanglePropertiesEXT *)ext;
properties->maxDiscardRectangles = MAX_DISCARD_RECTANGLES;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
VkPhysicalDeviceExternalMemoryHostPropertiesEXT *properties =
(VkPhysicalDeviceExternalMemoryHostPropertiesEXT *)ext;
properties->minImportedHostPointerAlignment = 4096;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
VkPhysicalDeviceSubgroupProperties *properties = (VkPhysicalDeviceSubgroupProperties *)ext;
CORE_PROPERTY(1, 1, subgroupSize);
CORE_RENAMED_PROPERTY(1, 1, supportedStages, subgroupSupportedStages);
CORE_RENAMED_PROPERTY(1, 1, supportedOperations, subgroupSupportedOperations);
CORE_RENAMED_PROPERTY(1, 1, quadOperationsInAllStages, subgroupQuadOperationsInAllStages);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
VkPhysicalDeviceMaintenance3Properties *properties =
(VkPhysicalDeviceMaintenance3Properties *)ext;
CORE_PROPERTY(1, 1, maxPerSetDescriptors);
CORE_PROPERTY(1, 1, maxMemoryAllocationSize);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES: {
VkPhysicalDeviceSamplerFilterMinmaxProperties *properties =
(VkPhysicalDeviceSamplerFilterMinmaxProperties *)ext;
CORE_PROPERTY(1, 2, filterMinmaxImageComponentMapping);
CORE_PROPERTY(1, 2, filterMinmaxSingleComponentFormats);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD: {
VkPhysicalDeviceShaderCorePropertiesAMD *properties =
(VkPhysicalDeviceShaderCorePropertiesAMD *)ext;
/* Shader engines. */
properties->shaderEngineCount = pdevice->rad_info.max_se;
properties->shaderArraysPerEngineCount = pdevice->rad_info.max_sa_per_se;
properties->computeUnitsPerShaderArray = pdevice->rad_info.min_good_cu_per_sa;
properties->simdPerComputeUnit = pdevice->rad_info.num_simd_per_compute_unit;
properties->wavefrontsPerSimd = pdevice->rad_info.max_wave64_per_simd;
properties->wavefrontSize = 64;
/* SGPR. */
properties->sgprsPerSimd = pdevice->rad_info.num_physical_sgprs_per_simd;
properties->minSgprAllocation = pdevice->rad_info.min_sgpr_alloc;
properties->maxSgprAllocation = pdevice->rad_info.max_sgpr_alloc;
properties->sgprAllocationGranularity = pdevice->rad_info.sgpr_alloc_granularity;
/* VGPR. */
properties->vgprsPerSimd = pdevice->rad_info.num_physical_wave64_vgprs_per_simd;
properties->minVgprAllocation = pdevice->rad_info.min_wave64_vgpr_alloc;
properties->maxVgprAllocation = pdevice->rad_info.max_vgpr_alloc;
properties->vgprAllocationGranularity = pdevice->rad_info.wave64_vgpr_alloc_granularity;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_2_AMD: {
VkPhysicalDeviceShaderCoreProperties2AMD *properties =
(VkPhysicalDeviceShaderCoreProperties2AMD *)ext;
properties->shaderCoreFeatures = 0;
properties->activeComputeUnitCount = pdevice->rad_info.num_good_compute_units;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *properties =
(VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
properties->maxVertexAttribDivisor = UINT32_MAX;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES: {
VkPhysicalDeviceDescriptorIndexingProperties *properties =
(VkPhysicalDeviceDescriptorIndexingProperties *)ext;
CORE_PROPERTY(1, 2, maxUpdateAfterBindDescriptorsInAllPools);
CORE_PROPERTY(1, 2, shaderUniformBufferArrayNonUniformIndexingNative);
CORE_PROPERTY(1, 2, shaderSampledImageArrayNonUniformIndexingNative);
CORE_PROPERTY(1, 2, shaderStorageBufferArrayNonUniformIndexingNative);
CORE_PROPERTY(1, 2, shaderStorageImageArrayNonUniformIndexingNative);
CORE_PROPERTY(1, 2, shaderInputAttachmentArrayNonUniformIndexingNative);
CORE_PROPERTY(1, 2, robustBufferAccessUpdateAfterBind);
CORE_PROPERTY(1, 2, quadDivergentImplicitLod);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSamplers);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindUniformBuffers);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageBuffers);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSampledImages);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageImages);
CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindInputAttachments);
CORE_PROPERTY(1, 2, maxPerStageUpdateAfterBindResources);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSamplers);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffers);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffersDynamic);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffers);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffersDynamic);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSampledImages);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageImages);
CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindInputAttachments);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
VkPhysicalDeviceProtectedMemoryProperties *properties =
(VkPhysicalDeviceProtectedMemoryProperties *)ext;
CORE_PROPERTY(1, 1, protectedNoFault);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: {
VkPhysicalDeviceConservativeRasterizationPropertiesEXT *properties =
(VkPhysicalDeviceConservativeRasterizationPropertiesEXT *)ext;
properties->primitiveOverestimationSize = 0;
properties->maxExtraPrimitiveOverestimationSize = 0;
properties->extraPrimitiveOverestimationSizeGranularity = 0;
properties->primitiveUnderestimation = false;
properties->conservativePointAndLineRasterization = false;
properties->degenerateTrianglesRasterized = true;
properties->degenerateLinesRasterized = false;
properties->fullyCoveredFragmentShaderInputVariable = false;
properties->conservativeRasterizationPostDepthCoverage = false;
break;
}
#ifndef _WIN32
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
(VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
properties->pciDomain = pdevice->bus_info.domain;
properties->pciBus = pdevice->bus_info.bus;
properties->pciDevice = pdevice->bus_info.dev;
properties->pciFunction = pdevice->bus_info.func;
break;
}
#endif
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES: {
VkPhysicalDeviceDriverProperties *properties = (VkPhysicalDeviceDriverProperties *)ext;
CORE_PROPERTY(1, 2, driverID);
CORE_PROPERTY(1, 2, driverName);
CORE_PROPERTY(1, 2, driverInfo);
CORE_PROPERTY(1, 2, conformanceVersion);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
VkPhysicalDeviceTransformFeedbackPropertiesEXT *properties =
(VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
properties->maxTransformFeedbackStreams = MAX_SO_STREAMS;
properties->maxTransformFeedbackBuffers = MAX_SO_BUFFERS;
properties->maxTransformFeedbackBufferSize = UINT32_MAX;
properties->maxTransformFeedbackStreamDataSize = 512;
properties->maxTransformFeedbackBufferDataSize = 512;
properties->maxTransformFeedbackBufferDataStride = 512;
properties->transformFeedbackQueries = !pdevice->use_ngg_streamout;
properties->transformFeedbackStreamsLinesTriangles = !pdevice->use_ngg_streamout;
properties->transformFeedbackRasterizationStreamSelect = false;
properties->transformFeedbackDraw = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
(VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
props->maxPerStageDescriptorInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
props->maxDescriptorSetInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: {
VkPhysicalDeviceSampleLocationsPropertiesEXT *properties =
(VkPhysicalDeviceSampleLocationsPropertiesEXT *)ext;
VkSampleCountFlagBits supported_samples = VK_SAMPLE_COUNT_2_BIT | VK_SAMPLE_COUNT_4_BIT;
if (pdevice->rad_info.chip_class < GFX10) {
/* FIXME: Some MSAA8x tests fail for weird
* reasons on GFX10+ when the same pattern is
* used inside the same render pass.
*/
supported_samples |= VK_SAMPLE_COUNT_8_BIT;
}
properties->sampleLocationSampleCounts = supported_samples;
properties->maxSampleLocationGridSize = (VkExtent2D){2, 2};
properties->sampleLocationCoordinateRange[0] = 0.0f;
properties->sampleLocationCoordinateRange[1] = 0.9375f;
properties->sampleLocationSubPixelBits = 4;
properties->variableSampleLocations = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES: {
VkPhysicalDeviceDepthStencilResolveProperties *properties =
(VkPhysicalDeviceDepthStencilResolveProperties *)ext;
CORE_PROPERTY(1, 2, supportedDepthResolveModes);
CORE_PROPERTY(1, 2, supportedStencilResolveModes);
CORE_PROPERTY(1, 2, independentResolveNone);
CORE_PROPERTY(1, 2, independentResolve);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *properties =
(VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
properties->storageTexelBufferOffsetAlignmentBytes = 4;
properties->storageTexelBufferOffsetSingleTexelAlignment = true;
properties->uniformTexelBufferOffsetAlignmentBytes = 4;
properties->uniformTexelBufferOffsetSingleTexelAlignment = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES: {
VkPhysicalDeviceFloatControlsProperties *properties =
(VkPhysicalDeviceFloatControlsProperties *)ext;
CORE_PROPERTY(1, 2, denormBehaviorIndependence);
CORE_PROPERTY(1, 2, roundingModeIndependence);
CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat16);
CORE_PROPERTY(1, 2, shaderDenormPreserveFloat16);
CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat16);
CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat16);
CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat16);
CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat32);
CORE_PROPERTY(1, 2, shaderDenormPreserveFloat32);
CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat32);
CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat32);
CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat32);
CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat64);
CORE_PROPERTY(1, 2, shaderDenormPreserveFloat64);
CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat64);
CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat64);
CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat64);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES: {
VkPhysicalDeviceTimelineSemaphoreProperties *properties =
(VkPhysicalDeviceTimelineSemaphoreProperties *)ext;
CORE_PROPERTY(1, 2, maxTimelineSemaphoreValueDifference);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
(VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
props->minSubgroupSize = 64;
props->maxSubgroupSize = 64;
props->maxComputeWorkgroupSubgroups = UINT32_MAX;
props->requiredSubgroupSizeStages = 0;
if (pdevice->rad_info.chip_class >= GFX10) {
/* Only GFX10+ supports wave32. */
props->minSubgroupSize = 32;
props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
}
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES:
radv_get_physical_device_properties_1_1(pdevice, (void *)ext);
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES:
radv_get_physical_device_properties_1_2(pdevice, (void *)ext);
break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
(VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
props->lineSubPixelPrecisionBits = 4;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
VkPhysicalDeviceRobustness2PropertiesEXT *properties =
(VkPhysicalDeviceRobustness2PropertiesEXT *)ext;
properties->robustStorageBufferAccessSizeAlignment = 4;
properties->robustUniformBufferAccessSizeAlignment = 4;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: {
VkPhysicalDeviceCustomBorderColorPropertiesEXT *props =
(VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext;
props->maxCustomBorderColorSamplers = RADV_BORDER_COLOR_COUNT;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR: {
VkPhysicalDeviceFragmentShadingRatePropertiesKHR *props =
(VkPhysicalDeviceFragmentShadingRatePropertiesKHR *)ext;
props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D){8, 8};
props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D){8, 8};
props->maxFragmentShadingRateAttachmentTexelSizeAspectRatio = 1;
props->primitiveFragmentShadingRateWithMultipleViewports = true;
props->layeredShadingRateAttachments = false; /* TODO */
props->fragmentShadingRateNonTrivialCombinerOps = true;
props->maxFragmentSize = (VkExtent2D){2, 2};
props->maxFragmentSizeAspectRatio = 1;
props->maxFragmentShadingRateCoverageSamples = 2 * 2;
props->maxFragmentShadingRateRasterizationSamples = VK_SAMPLE_COUNT_8_BIT;
props->fragmentShadingRateWithShaderDepthStencilWrites = false;
props->fragmentShadingRateWithSampleMask = true;
props->fragmentShadingRateWithShaderSampleMask = false;
props->fragmentShadingRateWithConservativeRasterization = true;
props->fragmentShadingRateWithFragmentShaderInterlock = false;
props->fragmentShadingRateWithCustomSampleLocations = true;
props->fragmentShadingRateStrictMultiplyCombiner = true;
break;
}
default:
break;
}
}
}
static void
radv_get_physical_device_queue_family_properties(struct radv_physical_device *pdevice,
uint32_t *pCount,
VkQueueFamilyProperties **pQueueFamilyProperties)
{
int num_queue_families = 1;
int idx;
if (pdevice->rad_info.num_rings[RING_COMPUTE] > 0 &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE))
num_queue_families++;
if (pQueueFamilyProperties == NULL) {
*pCount = num_queue_families;
return;
}
if (!*pCount)
return;
idx = 0;
if (*pCount >= 1) {
*pQueueFamilyProperties[idx] = (VkQueueFamilyProperties){
.queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT |
VK_QUEUE_SPARSE_BINDING_BIT,
.queueCount = 1,
.timestampValidBits = 64,
.minImageTransferGranularity = (VkExtent3D){1, 1, 1},
};
idx++;
}
if (pdevice->rad_info.num_rings[RING_COMPUTE] > 0 &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) {
if (*pCount > idx) {
*pQueueFamilyProperties[idx] = (VkQueueFamilyProperties){
.queueFlags =
VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT,
.queueCount = pdevice->rad_info.num_rings[RING_COMPUTE],
.timestampValidBits = 64,
.minImageTransferGranularity = (VkExtent3D){1, 1, 1},
};
idx++;
}
}
*pCount = idx;
}
void
radv_GetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice, uint32_t *pCount,
VkQueueFamilyProperties *pQueueFamilyProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
if (!pQueueFamilyProperties) {
radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
return;
}
VkQueueFamilyProperties *properties[] = {
pQueueFamilyProperties + 0,
pQueueFamilyProperties + 1,
pQueueFamilyProperties + 2,
};
radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
assert(*pCount <= 3);
}
void
radv_GetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice, uint32_t *pCount,
VkQueueFamilyProperties2 *pQueueFamilyProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
if (!pQueueFamilyProperties) {
radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
return;
}
VkQueueFamilyProperties *properties[] = {
&pQueueFamilyProperties[0].queueFamilyProperties,
&pQueueFamilyProperties[1].queueFamilyProperties,
&pQueueFamilyProperties[2].queueFamilyProperties,
};
radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
assert(*pCount <= 3);
}
void
radv_GetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties *pMemoryProperties)
{
RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
*pMemoryProperties = physical_device->memory_properties;
}
static void
radv_get_memory_budget_properties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
{
RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice);
VkPhysicalDeviceMemoryProperties *memory_properties = &device->memory_properties;
/* For all memory heaps, the computation of budget is as follow:
* heap_budget = heap_size - global_heap_usage + app_heap_usage
*
* The Vulkan spec 1.1.97 says that the budget should include any
* currently allocated device memory.
*
* Note that the application heap usages are not really accurate (eg.
* in presence of shared buffers).
*/
unsigned mask = device->heaps;
unsigned heap = 0;
while (mask) {
uint64_t internal_usage = 0, total_usage = 0;
unsigned type = 1u << u_bit_scan(&mask);
switch (type) {
case RADV_HEAP_VRAM:
internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM);
total_usage = device->ws->query_value(device->ws, RADEON_VRAM_USAGE);
break;
case RADV_HEAP_VRAM_VIS:
internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM_VIS);
if (!(device->heaps & RADV_HEAP_VRAM))
internal_usage += device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM);
total_usage = device->ws->query_value(device->ws, RADEON_VRAM_VIS_USAGE);
break;
case RADV_HEAP_GTT:
internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_GTT);
total_usage = device->ws->query_value(device->ws, RADEON_GTT_USAGE);
break;
}
uint64_t free_space = device->memory_properties.memoryHeaps[heap].size -
MIN2(device->memory_properties.memoryHeaps[heap].size, total_usage);
memoryBudget->heapBudget[heap] = free_space + internal_usage;
memoryBudget->heapUsage[heap] = internal_usage;
++heap;
}
assert(heap == memory_properties->memoryHeapCount);
/* The heapBudget and heapUsage values must be zero for array elements
* greater than or equal to
* VkPhysicalDeviceMemoryProperties::memoryHeapCount.
*/
for (uint32_t i = memory_properties->memoryHeapCount; i < VK_MAX_MEMORY_HEAPS; i++) {
memoryBudget->heapBudget[i] = 0;
memoryBudget->heapUsage[i] = 0;
}
}
void
radv_GetPhysicalDeviceMemoryProperties2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties2 *pMemoryProperties)
{
radv_GetPhysicalDeviceMemoryProperties(physicalDevice, &pMemoryProperties->memoryProperties);
VkPhysicalDeviceMemoryBudgetPropertiesEXT *memory_budget =
vk_find_struct(pMemoryProperties->pNext, PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT);
if (memory_budget)
radv_get_memory_budget_properties(physicalDevice, memory_budget);
}
VkResult
radv_GetMemoryHostPointerPropertiesEXT(
VkDevice _device, VkExternalMemoryHandleTypeFlagBits handleType, const void *pHostPointer,
VkMemoryHostPointerPropertiesEXT *pMemoryHostPointerProperties)
{
RADV_FROM_HANDLE(radv_device, device, _device);
switch (handleType) {
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
const struct radv_physical_device *physical_device = device->physical_device;
uint32_t memoryTypeBits = 0;
for (int i = 0; i < physical_device->memory_properties.memoryTypeCount; i++) {
if (physical_device->memory_domains[i] == RADEON_DOMAIN_GTT &&
!(physical_device->memory_flags[i] & RADEON_FLAG_GTT_WC)) {
memoryTypeBits = (1 << i);
break;
}
}
pMemoryHostPointerProperties->memoryTypeBits = memoryTypeBits;
return VK_SUCCESS;
}
default:
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
}
}
static enum radeon_ctx_priority
radv_get_queue_global_priority(const VkDeviceQueueGlobalPriorityCreateInfoEXT *pObj)
{
/* Default to MEDIUM when a specific global priority isn't requested */
if (!pObj)
return RADEON_CTX_PRIORITY_MEDIUM;
switch (pObj->globalPriority) {
case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
return RADEON_CTX_PRIORITY_REALTIME;
case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
return RADEON_CTX_PRIORITY_HIGH;
case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
return RADEON_CTX_PRIORITY_MEDIUM;
case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
return RADEON_CTX_PRIORITY_LOW;
default:
unreachable("Illegal global priority value");
return RADEON_CTX_PRIORITY_INVALID;
}
}
static int
radv_queue_init(struct radv_device *device, struct radv_queue *queue, uint32_t queue_family_index,
int idx, VkDeviceQueueCreateFlags flags,
const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority)
{
queue->device = device;
queue->queue_family_index = queue_family_index;
queue->queue_idx = idx;
queue->priority = radv_get_queue_global_priority(global_priority);
queue->flags = flags;
queue->hw_ctx = device->hw_ctx[queue->priority];
vk_object_base_init(&device->vk, &queue->base, VK_OBJECT_TYPE_QUEUE);
list_inithead(&queue->pending_submissions);
mtx_init(&queue->pending_mutex, mtx_plain);
mtx_init(&queue->thread_mutex, mtx_plain);
if (u_cnd_monotonic_init(&queue->thread_cond)) {
vk_object_base_finish(&queue->base);
return vk_error(device->instance, VK_ERROR_INITIALIZATION_FAILED);
}
queue->cond_created = true;
return VK_SUCCESS;
}
static void
radv_queue_finish(struct radv_queue *queue)
{
if (queue->hw_ctx) {
if (queue->cond_created) {
if (queue->thread_running) {
p_atomic_set(&queue->thread_exit, true);
u_cnd_monotonic_broadcast(&queue->thread_cond);
thrd_join(queue->submission_thread, NULL);
}
u_cnd_monotonic_destroy(&queue->thread_cond);
}
mtx_destroy(&queue->pending_mutex);
mtx_destroy(&queue->thread_mutex);
}
if (queue->initial_full_flush_preamble_cs)
queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs);
if (queue->initial_preamble_cs)
queue->device->ws->cs_destroy(queue->initial_preamble_cs);
if (queue->continue_preamble_cs)
queue->device->ws->cs_destroy(queue->continue_preamble_cs);
if (queue->descriptor_bo)
queue->device->ws->buffer_destroy(queue->device->ws, queue->descriptor_bo);
if (queue->scratch_bo)
queue->device->ws->buffer_destroy(queue->device->ws, queue->scratch_bo);
if (queue->esgs_ring_bo)
queue->device->ws->buffer_destroy(queue->device->ws, queue->esgs_ring_bo);
if (queue->gsvs_ring_bo)
queue->device->ws->buffer_destroy(queue->device->ws, queue->gsvs_ring_bo);
if (queue->tess_rings_bo)
queue->device->ws->buffer_destroy(queue->device->ws, queue->tess_rings_bo);
if (queue->gds_bo)
queue->device->ws->buffer_destroy(queue->device->ws, queue->gds_bo);
if (queue->gds_oa_bo)
queue->device->ws->buffer_destroy(queue->device->ws, queue->gds_oa_bo);
if (queue->compute_scratch_bo)
queue->device->ws->buffer_destroy(queue->device->ws, queue->compute_scratch_bo);
vk_object_base_finish(&queue->base);
}
static void
radv_device_init_gs_info(struct radv_device *device)
{
device->gs_table_depth = ac_get_gs_table_depth(device->physical_device->rad_info.chip_class,
device->physical_device->rad_info.family);
}
static VkResult
check_physical_device_features(VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceFeatures *features)
{
RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
VkPhysicalDeviceFeatures supported_features;
radv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
VkBool32 *supported_feature = (VkBool32 *)&supported_features;
VkBool32 *enabled_feature = (VkBool32 *)features;
unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
for (uint32_t i = 0; i < num_features; i++) {
if (enabled_feature[i] && !supported_feature[i])
return vk_error(physical_device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
}
return VK_SUCCESS;
}
static VkResult
radv_device_init_border_color(struct radv_device *device)
{
VkResult result;
device->border_color_data.bo = device->ws->buffer_create(
device->ws, RADV_BORDER_COLOR_BUFFER_SIZE, 4096, RADEON_DOMAIN_VRAM,
RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_READ_ONLY | RADEON_FLAG_NO_INTERPROCESS_SHARING,
RADV_BO_PRIORITY_SHADER);
if (device->border_color_data.bo == NULL)
return vk_error(device->physical_device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
result = device->ws->buffer_make_resident(device->ws, device->border_color_data.bo, true);
if (result != VK_SUCCESS)
return vk_error(device->physical_device->instance, result);
device->border_color_data.colors_gpu_ptr = device->ws->buffer_map(device->border_color_data.bo);
if (!device->border_color_data.colors_gpu_ptr)
return vk_error(device->physical_device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
mtx_init(&device->border_color_data.mutex, mtx_plain);
return VK_SUCCESS;
}
static void
radv_device_finish_border_color(struct radv_device *device)
{
if (device->border_color_data.bo) {
device->ws->buffer_make_resident(device->ws, device->border_color_data.bo, false);
device->ws->buffer_destroy(device->ws, device->border_color_data.bo);
mtx_destroy(&device->border_color_data.mutex);
}
}
VkResult
radv_device_init_vrs_image(struct radv_device *device)
{
/* FIXME: 4k depth buffers should be large enough for now but we might want to adjust this
* dynamically at some point. Also, it's probably better to use S8_UINT but no HTILE support yet.
*/
uint32_t width = 4096, height = 4096;
VkMemoryRequirements mem_req;
VkDeviceMemory mem;
VkResult result;
VkImage image;
VkImageCreateInfo image_create_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.imageType = VK_IMAGE_TYPE_2D,
.format = VK_FORMAT_D16_UNORM,
.extent = {width, height, 1},
.mipLevels = 1,
.arrayLayers = 1,
.samples = VK_SAMPLE_COUNT_1_BIT,
.tiling = VK_IMAGE_TILING_OPTIMAL,
.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = NULL,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
};
result = radv_CreateImage(radv_device_to_handle(device), &image_create_info,
&device->meta_state.alloc, &image);
if (result != VK_SUCCESS)
return result;
radv_GetImageMemoryRequirements(radv_device_to_handle(device), image, &mem_req);
VkMemoryAllocateInfo alloc_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
.allocationSize = mem_req.size,
};
result = radv_AllocateMemory(radv_device_to_handle(device), &alloc_info,
&device->meta_state.alloc, &mem);
if (result != VK_SUCCESS)
goto fail_alloc;
result = radv_BindImageMemory(radv_device_to_handle(device), image, mem, 0);
if (result != VK_SUCCESS)
goto fail_bind;
device->vrs.image = radv_image_from_handle(image);
device->vrs.mem = radv_device_memory_from_handle(mem);
return VK_SUCCESS;
fail_bind:
radv_FreeMemory(radv_device_to_handle(device), mem, &device->meta_state.alloc);
fail_alloc:
radv_DestroyImage(radv_device_to_handle(device), image, &device->meta_state.alloc);
return result;
}
static void
radv_device_finish_vrs_image(struct radv_device *device)
{
radv_FreeMemory(radv_device_to_handle(device), radv_device_memory_to_handle(device->vrs.mem),
&device->meta_state.alloc);
radv_DestroyImage(radv_device_to_handle(device), radv_image_to_handle(device->vrs.image),
&device->meta_state.alloc);
}
VkResult
_radv_device_set_lost(struct radv_device *device, const char *file, int line, const char *msg, ...)
{
VkResult err;
va_list ap;
p_atomic_inc(&device->lost);
va_start(ap, msg);
err =
__vk_errorv(device->physical_device->instance, device, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
VK_ERROR_DEVICE_LOST, file, line, msg, ap);
va_end(ap);
return err;
}
VkResult
radv_CreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice)
{
RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
VkResult result;
struct radv_device *device;
bool keep_shader_info = false;
bool robust_buffer_access = false;
bool robust_buffer_access2 = false;
bool overallocation_disallowed = false;
bool custom_border_colors = false;
bool vrs_enabled = false;
bool attachment_vrs_enabled = false;
/* Check enabled features */
if (pCreateInfo->pEnabledFeatures) {
result = check_physical_device_features(physicalDevice, pCreateInfo->pEnabledFeatures);
if (result != VK_SUCCESS)
return result;
if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
robust_buffer_access = true;
}
vk_foreach_struct_const(ext, pCreateInfo->pNext)
{
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
result = check_physical_device_features(physicalDevice, &features->features);
if (result != VK_SUCCESS)
return result;
if (features->features.robustBufferAccess)
robust_buffer_access = true;
break;
}
case VK_STRUCTURE_TYPE_DEVICE_MEMORY_OVERALLOCATION_CREATE_INFO_AMD: {
const VkDeviceMemoryOverallocationCreateInfoAMD *overallocation = (const void *)ext;
if (overallocation->overallocationBehavior ==
VK_MEMORY_OVERALLOCATION_BEHAVIOR_DISALLOWED_AMD)
overallocation_disallowed = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
const VkPhysicalDeviceCustomBorderColorFeaturesEXT *border_color_features =
(const void *)ext;
custom_border_colors = border_color_features->customBorderColors;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR: {
const VkPhysicalDeviceFragmentShadingRateFeaturesKHR *vrs = (const void *)ext;
attachment_vrs_enabled = vrs->attachmentFragmentShadingRate;
vrs_enabled = vrs->pipelineFragmentShadingRate || vrs->primitiveFragmentShadingRate ||
attachment_vrs_enabled;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
const VkPhysicalDeviceRobustness2FeaturesEXT *features = (const void *)ext;
if (features->robustBufferAccess2)
robust_buffer_access2 = true;
break;
}
default:
break;
}
}
device = vk_zalloc2(&physical_device->instance->vk.alloc, pAllocator, sizeof(*device), 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!device)
return vk_error(physical_device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
struct vk_device_dispatch_table dispatch_table;
if (radv_thread_trace_enabled()) {
vk_device_dispatch_table_from_entrypoints(&dispatch_table, &sqtt_device_entrypoints, true);
vk_device_dispatch_table_from_entrypoints(&dispatch_table, &radv_device_entrypoints, false);
} else {
vk_device_dispatch_table_from_entrypoints(&dispatch_table, &radv_device_entrypoints, true);
}
result =
vk_device_init(&device->vk, &physical_device->vk, &dispatch_table, pCreateInfo, pAllocator);
if (result != VK_SUCCESS) {
vk_free(&device->vk.alloc, device);
return result;
}
device->instance = physical_device->instance;
device->physical_device = physical_device;
device->ws = physical_device->ws;
keep_shader_info = device->vk.enabled_extensions.AMD_shader_info;
/* With update after bind we can't attach bo's to the command buffer
* from the descriptor set anymore, so we have to use a global BO list.
*/
device->use_global_bo_list = (device->instance->perftest_flags & RADV_PERFTEST_BO_LIST) ||
device->vk.enabled_extensions.EXT_descriptor_indexing ||
device->vk.enabled_extensions.EXT_buffer_device_address ||
device->vk.enabled_extensions.KHR_buffer_device_address;
device->robust_buffer_access = robust_buffer_access || robust_buffer_access2;
device->robust_buffer_access2 = robust_buffer_access2;
device->adjust_frag_coord_z =
(vrs_enabled || device->vk.enabled_extensions.KHR_fragment_shading_rate ||
device->force_vrs != RADV_FORCE_VRS_NONE) &&
(device->physical_device->rad_info.family == CHIP_SIENNA_CICHLID ||
device->physical_device->rad_info.family == CHIP_NAVY_FLOUNDER ||
device->physical_device->rad_info.family == CHIP_VANGOGH);
device->attachment_vrs_enabled = attachment_vrs_enabled;
mtx_init(&device->shader_slab_mutex, mtx_plain);
list_inithead(&device->shader_slabs);
device->overallocation_disallowed = overallocation_disallowed;
mtx_init(&device->overallocation_mutex, mtx_plain);
/* Create one context per queue priority. */
for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
const VkDeviceQueueCreateInfo *queue_create = &pCreateInfo->pQueueCreateInfos[i];
const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority =
vk_find_struct_const(queue_create->pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
enum radeon_ctx_priority priority = radv_get_queue_global_priority(global_priority);
if (device->hw_ctx[priority])
continue;
result = device->ws->ctx_create(device->ws, priority, &device->hw_ctx[priority]);
if (result != VK_SUCCESS)
goto fail;
}
for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
const VkDeviceQueueCreateInfo *queue_create = &pCreateInfo->pQueueCreateInfos[i];
uint32_t qfi = queue_create->queueFamilyIndex;
const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority =
vk_find_struct_const(queue_create->pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
device->queues[qfi] =
vk_alloc(&device->vk.alloc, queue_create->queueCount * sizeof(struct radv_queue), 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!device->queues[qfi]) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
memset(device->queues[qfi], 0, queue_create->queueCount * sizeof(struct radv_queue));
device->queue_count[qfi] = queue_create->queueCount;
for (unsigned q = 0; q < queue_create->queueCount; q++) {
result = radv_queue_init(device, &device->queues[qfi][q], qfi, q, queue_create->flags,
global_priority);
if (result != VK_SUCCESS)
goto fail;
}
}
device->pbb_allowed = device->physical_device->rad_info.chip_class >= GFX9 &&
!(device->instance->debug_flags & RADV_DEBUG_NOBINNING);
/* Disable DFSM by default. As of 2019-09-15 Talos on Low is still 3% slower on Raven. */
device->dfsm_allowed =
device->pbb_allowed && (device->instance->perftest_flags & RADV_PERFTEST_DFSM);
/* The maximum number of scratch waves. Scratch space isn't divided
* evenly between CUs. The number is only a function of the number of CUs.
* We can decrease the constant to decrease the scratch buffer size.
*
* sctx->scratch_waves must be >= the maximum possible size of
* 1 threadgroup, so that the hw doesn't hang from being unable
* to start any.
*
* The recommended value is 4 per CU at most. Higher numbers don't
* bring much benefit, but they still occupy chip resources (think
* async compute). I've seen ~2% performance difference between 4 and 32.
*/
uint32_t max_threads_per_block = 2048;
device->scratch_waves =
MAX2(32 * physical_device->rad_info.num_good_compute_units, max_threads_per_block / 64);
device->dispatch_initiator = S_00B800_COMPUTE_SHADER_EN(1);
if (device->physical_device->rad_info.chip_class >= GFX7) {
/* If the KMD allows it (there is a KMD hw register for it),
* allow launching waves out-of-order.
*/
device->dispatch_initiator |= S_00B800_ORDER_MODE(1);
}
radv_device_init_gs_info(device);
device->tess_offchip_block_dw_size =
device->physical_device->rad_info.family == CHIP_HAWAII ? 4096 : 8192;
if (getenv("RADV_TRACE_FILE")) {
fprintf(
stderr,
"***********************************************************************************\n");
fprintf(
stderr,
"* WARNING: RADV_TRACE_FILE=<file> is deprecated and replaced by RADV_DEBUG=hang *\n");
fprintf(
stderr,
"***********************************************************************************\n");
abort();
}
if (device->instance->debug_flags & RADV_DEBUG_HANG) {
/* Enable GPU hangs detection and dump logs if a GPU hang is
* detected.
*/
keep_shader_info = true;
if (!radv_init_trace(device))
goto fail;
fprintf(stderr,
"*****************************************************************************\n");
fprintf(stderr,
"* WARNING: RADV_DEBUG=hang is costly and should only be used for debugging! *\n");
fprintf(stderr,
"*****************************************************************************\n");
/* Wait for idle after every draw/dispatch to identify the
* first bad call.
*/
device->instance->debug_flags |= RADV_DEBUG_SYNC_SHADERS;
radv_dump_enabled_options(device, stderr);
}
if (radv_thread_trace_enabled()) {
fprintf(stderr, "*************************************************\n");
fprintf(stderr, "* WARNING: Thread trace support is experimental *\n");
fprintf(stderr, "*************************************************\n");
if (device->physical_device->rad_info.chip_class < GFX8 ||
device->physical_device->rad_info.chip_class > GFX10_3) {
fprintf(stderr, "GPU hardware not supported: refer to "
"the RGP documentation for the list of "
"supported GPUs!\n");
abort();
}
if (!radv_thread_trace_init(device))
goto fail;
}
if (getenv("RADV_TRAP_HANDLER")) {
/* TODO: Add support for more hardware. */
assert(device->physical_device->rad_info.chip_class == GFX8);
fprintf(stderr, "**********************************************************************\n");
fprintf(stderr, "* WARNING: RADV_TRAP_HANDLER is experimental and only for debugging! *\n");
fprintf(stderr, "**********************************************************************\n");
/* To get the disassembly of the faulty shaders, we have to
* keep some shader info around.
*/
keep_shader_info = true;
if (!radv_trap_handler_init(device))
goto fail;
}
if (getenv("RADV_FORCE_VRS")) {
const char *vrs_rates = getenv("RADV_FORCE_VRS");
if (device->physical_device->rad_info.chip_class < GFX10_3)
fprintf(stderr, "radv: VRS is only supported on RDNA2+\n");
else if (device->physical_device->use_llvm)
fprintf(stderr, "radv: Forcing VRS rates is only supported with ACO\n");
else if (!strcmp(vrs_rates, "2x2"))
device->force_vrs = RADV_FORCE_VRS_2x2;
else if (!strcmp(vrs_rates, "2x1"))
device->force_vrs = RADV_FORCE_VRS_2x1;
else if (!strcmp(vrs_rates, "1x2"))
device->force_vrs = RADV_FORCE_VRS_1x2;
else
fprintf(stderr, "radv: Invalid VRS rates specified "
"(valid values are 2x2, 2x1 and 1x2)\n");
}
device->keep_shader_info = keep_shader_info;
result = radv_device_init_meta(device);
if (result != VK_SUCCESS)
goto fail;
radv_device_init_msaa(device);
/* If the border color extension is enabled, let's create the buffer we need. */
if (custom_border_colors) {
result = radv_device_init_border_color(device);
if (result != VK_SUCCESS)
goto fail;
}
for (int family = 0; family < RADV_MAX_QUEUE_FAMILIES; ++family) {
device->empty_cs[family] = device->ws->cs_create(device->ws, family);
if (!device->empty_cs[family])
goto fail;
switch (family) {
case RADV_QUEUE_GENERAL:
radeon_emit(device->empty_cs[family], PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
radeon_emit(device->empty_cs[family], CC0_UPDATE_LOAD_ENABLES(1));
radeon_emit(device->empty_cs[family], CC1_UPDATE_SHADOW_ENABLES(1));
break;
case RADV_QUEUE_COMPUTE:
radeon_emit(device->empty_cs[family], PKT3(PKT3_NOP, 0, 0));
radeon_emit(device->empty_cs[family], 0);
break;
}
result = device->ws->cs_finalize(device->empty_cs[family]);
if (result != VK_SUCCESS)
goto fail;
}
if (device->physical_device->rad_info.chip_class >= GFX7)
cik_create_gfx_config(device);
VkPipelineCacheCreateInfo ci;
ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
ci.pNext = NULL;
ci.flags = 0;
ci.pInitialData = NULL;
ci.initialDataSize = 0;
VkPipelineCache pc;
result = radv_CreatePipelineCache(radv_device_to_handle(device), &ci, NULL, &pc);
if (result != VK_SUCCESS)
goto fail_meta;
device->mem_cache = radv_pipeline_cache_from_handle(pc);
if (u_cnd_monotonic_init(&device->timeline_cond)) {
result = VK_ERROR_INITIALIZATION_FAILED;
goto fail_mem_cache;
}
device->force_aniso = MIN2(16, radv_get_int_debug_option("RADV_TEX_ANISO", -1));
if (device->force_aniso >= 0) {
fprintf(stderr, "radv: Forcing anisotropy filter to %ix\n",
1 << util_logbase2(device->force_aniso));
}
*pDevice = radv_device_to_handle(device);
return VK_SUCCESS;
fail_mem_cache:
radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
fail_meta:
radv_device_finish_meta(device);
fail:
radv_thread_trace_finish(device);
free(device->thread_trace.trigger_file);
radv_trap_handler_finish(device);
radv_finish_trace(device);
if (device->gfx_init)
device->ws->buffer_destroy(device->ws, device->gfx_init);
radv_device_finish_border_color(device);
for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
for (unsigned q = 0; q < device->queue_count[i]; q++)
radv_queue_finish(&device->queues[i][q]);
if (device->queue_count[i])
vk_free(&device->vk.alloc, device->queues[i]);
}
for (unsigned i = 0; i < RADV_NUM_HW_CTX; i++) {
if (device->hw_ctx[i])
device->ws->ctx_destroy(device->hw_ctx[i]);
}
vk_device_finish(&device->vk);
vk_free(&device->vk.alloc, device);
return result;
}
void
radv_DestroyDevice(VkDevice _device, const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
if (!device)
return;
if (device->gfx_init)
device->ws->buffer_destroy(device->ws, device->gfx_init);
radv_device_finish_border_color(device);
radv_device_finish_vrs_image(device);
for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
for (unsigned q = 0; q < device->queue_count[i]; q++)
radv_queue_finish(&device->queues[i][q]);
if (device->queue_count[i])
vk_free(&device->vk.alloc, device->queues[i]);
if (device->empty_cs[i])
device->ws->cs_destroy(device->empty_cs[i]);
}
for (unsigned i = 0; i < RADV_NUM_HW_CTX; i++) {
if (device->hw_ctx[i])
device->ws->ctx_destroy(device->hw_ctx[i]);
}
radv_device_finish_meta(device);
VkPipelineCache pc = radv_pipeline_cache_to_handle(device->mem_cache);
radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
radv_trap_handler_finish(device);
radv_finish_trace(device);
radv_destroy_shader_slabs(device);
u_cnd_monotonic_destroy(&device->timeline_cond);
free(device->thread_trace.trigger_file);
radv_thread_trace_finish(device);
vk_device_finish(&device->vk);
vk_free(&device->vk.alloc, device);
}
VkResult
radv_EnumerateInstanceLayerProperties(uint32_t *pPropertyCount, VkLayerProperties *pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = 0;
return VK_SUCCESS;
}
/* None supported at this time */
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
}
VkResult
radv_EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount,
VkLayerProperties *pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = 0;
return VK_SUCCESS;
}
/* None supported at this time */
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
}
void
radv_GetDeviceQueue2(VkDevice _device, const VkDeviceQueueInfo2 *pQueueInfo, VkQueue *pQueue)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_queue *queue;
queue = &device->queues[pQueueInfo->queueFamilyIndex][pQueueInfo->queueIndex];
if (pQueueInfo->flags != queue->flags) {
/* From the Vulkan 1.1.70 spec:
*
* "The queue returned by vkGetDeviceQueue2 must have the same
* flags value from this structure as that used at device
* creation time in a VkDeviceQueueCreateInfo instance. If no
* matching flags were specified at device creation time then
* pQueue will return VK_NULL_HANDLE."
*/
*pQueue = VK_NULL_HANDLE;
return;
}
*pQueue = radv_queue_to_handle(queue);
}
void
radv_GetDeviceQueue(VkDevice _device, uint32_t queueFamilyIndex, uint32_t queueIndex,
VkQueue *pQueue)
{
const VkDeviceQueueInfo2 info =
(VkDeviceQueueInfo2){.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
.queueFamilyIndex = queueFamilyIndex,
.queueIndex = queueIndex};
radv_GetDeviceQueue2(_device, &info, pQueue);
}
static void
fill_geom_tess_rings(struct radv_queue *queue, uint32_t *map, bool add_sample_positions,
uint32_t esgs_ring_size, struct radeon_winsys_bo *esgs_ring_bo,
uint32_t gsvs_ring_size, struct radeon_winsys_bo *gsvs_ring_bo,
uint32_t tess_factor_ring_size, uint32_t tess_offchip_ring_offset,
uint32_t tess_offchip_ring_size, struct radeon_winsys_bo *tess_rings_bo)
{
uint32_t *desc = &map[4];
if (esgs_ring_bo) {
uint64_t esgs_va = radv_buffer_get_va(esgs_ring_bo);
/* stride 0, num records - size, add tid, swizzle, elsize4,
index stride 64 */
desc[0] = esgs_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32) | S_008F04_SWIZZLE_ENABLE(true);
desc[2] = esgs_ring_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_INDEX_STRIDE(3) | S_008F0C_ADD_TID_ENABLE(1);
if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(1);
}
/* GS entry for ES->GS ring */
/* stride 0, num records - size, elsize0,
index stride 0 */
desc[4] = esgs_va;
desc[5] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32);
desc[6] = esgs_ring_size;
desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
desc[7] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
}
desc += 8;
if (gsvs_ring_bo) {
uint64_t gsvs_va = radv_buffer_get_va(gsvs_ring_bo);
/* VS entry for GS->VS ring */
/* stride 0, num records - size, elsize0,
index stride 0 */
desc[0] = gsvs_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32);
desc[2] = gsvs_ring_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
/* stride gsvs_itemsize, num records 64
elsize 4, index stride 16 */
/* shader will patch stride and desc[2] */
desc[4] = gsvs_va;
desc[5] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32) | S_008F04_SWIZZLE_ENABLE(1);
desc[6] = 0;
desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_INDEX_STRIDE(1) | S_008F0C_ADD_TID_ENABLE(true);
if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
desc[7] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(1);
}
}
desc += 8;
if (tess_rings_bo) {
uint64_t tess_va = radv_buffer_get_va(tess_rings_bo);
uint64_t tess_offchip_va = tess_va + tess_offchip_ring_offset;
desc[0] = tess_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(tess_va >> 32);
desc[2] = tess_factor_ring_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
desc[4] = tess_offchip_va;
desc[5] = S_008F04_BASE_ADDRESS_HI(tess_offchip_va >> 32);
desc[6] = tess_offchip_ring_size;
desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
desc[7] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1);
} else {
desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
}
desc += 8;
if (add_sample_positions) {
/* add sample positions after all rings */
memcpy(desc, queue->device->sample_locations_1x, 8);
desc += 2;
memcpy(desc, queue->device->sample_locations_2x, 16);
desc += 4;
memcpy(desc, queue->device->sample_locations_4x, 32);
desc += 8;
memcpy(desc, queue->device->sample_locations_8x, 64);
}
}
static unsigned
radv_get_hs_offchip_param(struct radv_device *device, uint32_t *max_offchip_buffers_p)
{
bool double_offchip_buffers = device->physical_device->rad_info.chip_class >= GFX7 &&
device->physical_device->rad_info.family != CHIP_CARRIZO &&
device->physical_device->rad_info.family != CHIP_STONEY;
unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
unsigned max_offchip_buffers;
unsigned offchip_granularity;
unsigned hs_offchip_param;
/*
* Per RadeonSI:
* This must be one less than the maximum number due to a hw limitation.
* Various hardware bugs need thGFX7
*
* Per AMDVLK:
* Vega10 should limit max_offchip_buffers to 508 (4 * 127).
* Gfx7 should limit max_offchip_buffers to 508
* Gfx6 should limit max_offchip_buffers to 126 (2 * 63)
*
* Follow AMDVLK here.
*/
if (device->physical_device->rad_info.chip_class >= GFX10) {
max_offchip_buffers_per_se = 128;
} else if (device->physical_device->rad_info.family == CHIP_VEGA10 ||
device->physical_device->rad_info.chip_class == GFX7 ||
device->physical_device->rad_info.chip_class == GFX6)
--max_offchip_buffers_per_se;
max_offchip_buffers = max_offchip_buffers_per_se * device->physical_device->rad_info.max_se;
/* Hawaii has a bug with offchip buffers > 256 that can be worked
* around by setting 4K granularity.
*/
if (device->tess_offchip_block_dw_size == 4096) {
assert(device->physical_device->rad_info.family == CHIP_HAWAII);
offchip_granularity = V_03093C_X_4K_DWORDS;
} else {
assert(device->tess_offchip_block_dw_size == 8192);
offchip_granularity = V_03093C_X_8K_DWORDS;
}
switch (device->physical_device->rad_info.chip_class) {
case GFX6:
max_offchip_buffers = MIN2(max_offchip_buffers, 126);
break;
case GFX7:
case GFX8:
case GFX9:
max_offchip_buffers = MIN2(max_offchip_buffers, 508);
break;
case GFX10:
break;
default:
break;
}
*max_offchip_buffers_p = max_offchip_buffers;
if (device->physical_device->rad_info.chip_class >= GFX10_3) {
hs_offchip_param = S_03093C_OFFCHIP_BUFFERING_GFX103(max_offchip_buffers - 1) |
S_03093C_OFFCHIP_GRANULARITY_GFX103(offchip_granularity);
} else if (device->physical_device->rad_info.chip_class >= GFX7) {
if (device->physical_device->rad_info.chip_class >= GFX8)
--max_offchip_buffers;
hs_offchip_param = S_03093C_OFFCHIP_BUFFERING_GFX7(max_offchip_buffers) |
S_03093C_OFFCHIP_GRANULARITY_GFX7(offchip_granularity);
} else {
hs_offchip_param = S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers);
}
return hs_offchip_param;
}
static void
radv_emit_gs_ring_sizes(struct radv_queue *queue, struct radeon_cmdbuf *cs,
struct radeon_winsys_bo *esgs_ring_bo, uint32_t esgs_ring_size,
struct radeon_winsys_bo *gsvs_ring_bo, uint32_t gsvs_ring_size)
{
if (!esgs_ring_bo && !gsvs_ring_bo)
return;
if (esgs_ring_bo)
radv_cs_add_buffer(queue->device->ws, cs, esgs_ring_bo);
if (gsvs_ring_bo)
radv_cs_add_buffer(queue->device->ws, cs, gsvs_ring_bo);
if (queue->device->physical_device->rad_info.chip_class >= GFX7) {
radeon_set_uconfig_reg_seq(cs, R_030900_VGT_ESGS_RING_SIZE, 2);
radeon_emit(cs, esgs_ring_size >> 8);
radeon_emit(cs, gsvs_ring_size >> 8);
} else {
radeon_set_config_reg_seq(cs, R_0088C8_VGT_ESGS_RING_SIZE, 2);
radeon_emit(cs, esgs_ring_size >> 8);
radeon_emit(cs, gsvs_ring_size >> 8);
}
}
static void
radv_emit_tess_factor_ring(struct radv_queue *queue, struct radeon_cmdbuf *cs,
unsigned hs_offchip_param, unsigned tf_ring_size,
struct radeon_winsys_bo *tess_rings_bo)
{
uint64_t tf_va;
if (!tess_rings_bo)
return;
tf_va = radv_buffer_get_va(tess_rings_bo);
radv_cs_add_buffer(queue->device->ws, cs, tess_rings_bo);
if (queue->device->physical_device->rad_info.chip_class >= GFX7) {
radeon_set_uconfig_reg(cs, R_030938_VGT_TF_RING_SIZE, S_030938_SIZE(tf_ring_size / 4));
radeon_set_uconfig_reg(cs, R_030940_VGT_TF_MEMORY_BASE, tf_va >> 8);
if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
radeon_set_uconfig_reg(cs, R_030984_VGT_TF_MEMORY_BASE_HI_UMD,
S_030984_BASE_HI(tf_va >> 40));
} else if (queue->device->physical_device->rad_info.chip_class == GFX9) {
radeon_set_uconfig_reg(cs, R_030944_VGT_TF_MEMORY_BASE_HI, S_030944_BASE_HI(tf_va >> 40));
}
radeon_set_uconfig_reg(cs, R_03093C_VGT_HS_OFFCHIP_PARAM, hs_offchip_param);
} else {
radeon_set_config_reg(cs, R_008988_VGT_TF_RING_SIZE, S_008988_SIZE(tf_ring_size / 4));
radeon_set_config_reg(cs, R_0089B8_VGT_TF_MEMORY_BASE, tf_va >> 8);
radeon_set_config_reg(cs, R_0089B0_VGT_HS_OFFCHIP_PARAM, hs_offchip_param);
}
}
static void
radv_emit_graphics_scratch(struct radv_queue *queue, struct radeon_cmdbuf *cs,
uint32_t size_per_wave, uint32_t waves,
struct radeon_winsys_bo *scratch_bo)
{
if (queue->queue_family_index != RADV_QUEUE_GENERAL)
return;
if (!scratch_bo)
return;
radv_cs_add_buffer(queue->device->ws, cs, scratch_bo);
radeon_set_context_reg(
cs, R_0286E8_SPI_TMPRING_SIZE,
S_0286E8_WAVES(waves) | S_0286E8_WAVESIZE(round_up_u32(size_per_wave, 1024)));
}
static void
radv_emit_compute_scratch(struct radv_queue *queue, struct radeon_cmdbuf *cs,
uint32_t size_per_wave, uint32_t waves,
struct radeon_winsys_bo *compute_scratch_bo)
{
uint64_t scratch_va;
if (!compute_scratch_bo)
return;
scratch_va = radv_buffer_get_va(compute_scratch_bo);
radv_cs_add_buffer(queue->device->ws, cs, compute_scratch_bo);
radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, 2);
radeon_emit(cs, scratch_va);
radeon_emit(cs, S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) | S_008F04_SWIZZLE_ENABLE(1));
radeon_set_sh_reg(cs, R_00B860_COMPUTE_TMPRING_SIZE,
S_00B860_WAVES(waves) | S_00B860_WAVESIZE(round_up_u32(size_per_wave, 1024)));
}
static void
radv_emit_global_shader_pointers(struct radv_queue *queue, struct radeon_cmdbuf *cs,
struct radeon_winsys_bo *descriptor_bo)
{
uint64_t va;
if (!descriptor_bo)
return;
va = radv_buffer_get_va(descriptor_bo);
radv_cs_add_buffer(queue->device->ws, cs, descriptor_bo);
if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0,
R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS,
R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radv_emit_shader_pointer(queue->device, cs, regs[i], va, true);
}
} else if (queue->device->physical_device->rad_info.chip_class == GFX9) {
uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0,
R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS,
R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radv_emit_shader_pointer(queue->device, cs, regs[i], va, true);
}
} else {
uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0,
R_00B230_SPI_SHADER_USER_DATA_GS_0, R_00B330_SPI_SHADER_USER_DATA_ES_0,
R_00B430_SPI_SHADER_USER_DATA_HS_0, R_00B530_SPI_SHADER_USER_DATA_LS_0};
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radv_emit_shader_pointer(queue->device, cs, regs[i], va, true);
}
}
}
static void
radv_init_graphics_state(struct radeon_cmdbuf *cs, struct radv_queue *queue)
{
struct radv_device *device = queue->device;
if (device->gfx_init) {
uint64_t va = radv_buffer_get_va(device->gfx_init);
radeon_emit(cs, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, device->gfx_init_size_dw & 0xffff);
radv_cs_add_buffer(device->ws, cs, device->gfx_init);
} else {
si_emit_graphics(device, cs);
}
}
static void
radv_init_compute_state(struct radeon_cmdbuf *cs, struct radv_queue *queue)
{
si_emit_compute(queue->device, cs);
}
static VkResult
radv_get_preamble_cs(struct radv_queue *queue, uint32_t scratch_size_per_wave,
uint32_t scratch_waves, uint32_t compute_scratch_size_per_wave,
uint32_t compute_scratch_waves, uint32_t esgs_ring_size,
uint32_t gsvs_ring_size, bool needs_tess_rings, bool needs_gds,
bool needs_gds_oa, bool needs_sample_positions,
struct radeon_cmdbuf **initial_full_flush_preamble_cs,
struct radeon_cmdbuf **initial_preamble_cs,
struct radeon_cmdbuf **continue_preamble_cs)
{
struct radeon_winsys_bo *scratch_bo = NULL;
struct radeon_winsys_bo *descriptor_bo = NULL;
struct radeon_winsys_bo *compute_scratch_bo = NULL;
struct radeon_winsys_bo *esgs_ring_bo = NULL;
struct radeon_winsys_bo *gsvs_ring_bo = NULL;
struct radeon_winsys_bo *tess_rings_bo = NULL;
struct radeon_winsys_bo *gds_bo = NULL;
struct radeon_winsys_bo *gds_oa_bo = NULL;
struct radeon_cmdbuf *dest_cs[3] = {0};
bool add_tess_rings = false, add_gds = false, add_gds_oa = false, add_sample_positions = false;
unsigned tess_factor_ring_size = 0, tess_offchip_ring_size = 0;
unsigned max_offchip_buffers;
unsigned hs_offchip_param = 0;
unsigned tess_offchip_ring_offset;
uint32_t ring_bo_flags = RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING;
if (!queue->has_tess_rings) {
if (needs_tess_rings)
add_tess_rings = true;
}
if (!queue->has_gds) {
if (needs_gds)
add_gds = true;
}
if (!queue->has_gds_oa) {
if (needs_gds_oa)
add_gds_oa = true;
}
if (!queue->has_sample_positions) {
if (needs_sample_positions)
add_sample_positions = true;
}
tess_factor_ring_size = 32768 * queue->device->physical_device->rad_info.max_se;
hs_offchip_param = radv_get_hs_offchip_param(queue->device, &max_offchip_buffers);
tess_offchip_ring_offset = align(tess_factor_ring_size, 64 * 1024);
tess_offchip_ring_size = max_offchip_buffers * queue->device->tess_offchip_block_dw_size * 4;
scratch_size_per_wave = MAX2(scratch_size_per_wave, queue->scratch_size_per_wave);
if (scratch_size_per_wave)
scratch_waves = MIN2(scratch_waves, UINT32_MAX / scratch_size_per_wave);
else
scratch_waves = 0;
compute_scratch_size_per_wave =
MAX2(compute_scratch_size_per_wave, queue->compute_scratch_size_per_wave);
if (compute_scratch_size_per_wave)
compute_scratch_waves =
MIN2(compute_scratch_waves, UINT32_MAX / compute_scratch_size_per_wave);
else
compute_scratch_waves = 0;
if (scratch_size_per_wave <= queue->scratch_size_per_wave &&
scratch_waves <= queue->scratch_waves &&
compute_scratch_size_per_wave <= queue->compute_scratch_size_per_wave &&
compute_scratch_waves <= queue->compute_scratch_waves &&
esgs_ring_size <= queue->esgs_ring_size && gsvs_ring_size <= queue->gsvs_ring_size &&
!add_tess_rings && !add_gds && !add_gds_oa && !add_sample_positions &&
queue->initial_preamble_cs) {
*initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs;
*initial_preamble_cs = queue->initial_preamble_cs;
*continue_preamble_cs = queue->continue_preamble_cs;
if (!scratch_size_per_wave && !compute_scratch_size_per_wave && !esgs_ring_size &&
!gsvs_ring_size && !needs_tess_rings && !needs_gds && !needs_gds_oa &&
!needs_sample_positions)
*continue_preamble_cs = NULL;
return VK_SUCCESS;
}
uint32_t scratch_size = scratch_size_per_wave * scratch_waves;
uint32_t queue_scratch_size = queue->scratch_size_per_wave * queue->scratch_waves;
if (scratch_size > queue_scratch_size) {
scratch_bo =
queue->device->ws->buffer_create(queue->device->ws, scratch_size, 4096, RADEON_DOMAIN_VRAM,
ring_bo_flags, RADV_BO_PRIORITY_SCRATCH);
if (!scratch_bo)
goto fail;
} else
scratch_bo = queue->scratch_bo;
uint32_t compute_scratch_size = compute_scratch_size_per_wave * compute_scratch_waves;
uint32_t compute_queue_scratch_size =
queue->compute_scratch_size_per_wave * queue->compute_scratch_waves;
if (compute_scratch_size > compute_queue_scratch_size) {
compute_scratch_bo = queue->device->ws->buffer_create(queue->device->ws, compute_scratch_size,
4096, RADEON_DOMAIN_VRAM, ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH);
if (!compute_scratch_bo)
goto fail;
} else
compute_scratch_bo = queue->compute_scratch_bo;
if (esgs_ring_size > queue->esgs_ring_size) {
esgs_ring_bo = queue->device->ws->buffer_create(queue->device->ws, esgs_ring_size, 4096,
RADEON_DOMAIN_VRAM, ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH);
if (!esgs_ring_bo)
goto fail;
} else {
esgs_ring_bo = queue->esgs_ring_bo;
esgs_ring_size = queue->esgs_ring_size;
}
if (gsvs_ring_size > queue->gsvs_ring_size) {
gsvs_ring_bo = queue->device->ws->buffer_create(queue->device->ws, gsvs_ring_size, 4096,
RADEON_DOMAIN_VRAM, ring_bo_flags,
RADV_BO_PRIORITY_SCRATCH);
if (!gsvs_ring_bo)
goto fail;
} else {
gsvs_ring_bo = queue->gsvs_ring_bo;
gsvs_ring_size = queue->gsvs_ring_size;
}
if (add_tess_rings) {
tess_rings_bo = queue->device->ws->buffer_create(
queue->device->ws, tess_offchip_ring_offset + tess_offchip_ring_size, 256,
RADEON_DOMAIN_VRAM, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH);
if (!tess_rings_bo)
goto fail;
} else {
tess_rings_bo = queue->tess_rings_bo;
}
if (add_gds) {
assert(queue->device->physical_device->rad_info.chip_class >= GFX10);
/* 4 streamout GDS counters.
* We need 256B (64 dw) of GDS, otherwise streamout hangs.
*/
gds_bo = queue->device->ws->buffer_create(queue->device->ws, 256, 4, RADEON_DOMAIN_GDS,
ring_bo_flags, RADV_BO_PRIORITY_SCRATCH);
if (!gds_bo)
goto fail;
} else {
gds_bo = queue->gds_bo;
}
if (add_gds_oa) {
assert(queue->device->physical_device->rad_info.chip_class >= GFX10);
gds_oa_bo = queue->device->ws->buffer_create(queue->device->ws, 4, 1, RADEON_DOMAIN_OA,
ring_bo_flags, RADV_BO_PRIORITY_SCRATCH);
if (!gds_oa_bo)
goto fail;
} else {
gds_oa_bo = queue->gds_oa_bo;
}
if (scratch_bo != queue->scratch_bo || esgs_ring_bo != queue->esgs_ring_bo ||
gsvs_ring_bo != queue->gsvs_ring_bo || tess_rings_bo != queue->tess_rings_bo ||
add_sample_positions) {
uint32_t size = 0;
if (gsvs_ring_bo || esgs_ring_bo || tess_rings_bo || add_sample_positions) {
size = 112; /* 2 dword + 2 padding + 4 dword * 6 */
if (add_sample_positions)
size += 128; /* 64+32+16+8 = 120 bytes */
} else if (scratch_bo)
size = 8; /* 2 dword */
descriptor_bo = queue->device->ws->buffer_create(
queue->device->ws, size, 4096, RADEON_DOMAIN_VRAM,
RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_READ_ONLY,
RADV_BO_PRIORITY_DESCRIPTOR);
if (!descriptor_bo)
goto fail;
} else
descriptor_bo = queue->descriptor_bo;
if (descriptor_bo != queue->descriptor_bo) {
uint32_t *map = (uint32_t *)queue->device->ws->buffer_map(descriptor_bo);
if (!map)
goto fail;
if (scratch_bo) {
uint64_t scratch_va = radv_buffer_get_va(scratch_bo);
uint32_t rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) | S_008F04_SWIZZLE_ENABLE(1);
map[0] = scratch_va;
map[1] = rsrc1;
}
if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo || add_sample_positions)
fill_geom_tess_rings(queue, map, add_sample_positions, esgs_ring_size, esgs_ring_bo,
gsvs_ring_size, gsvs_ring_bo, tess_factor_ring_size,
tess_offchip_ring_offset, tess_offchip_ring_size, tess_rings_bo);
queue->device->ws->buffer_unmap(descriptor_bo);
}
for (int i = 0; i < 3; ++i) {
enum rgp_flush_bits sqtt_flush_bits = 0;
struct radeon_cmdbuf *cs = NULL;
cs = queue->device->ws->cs_create(queue->device->ws,
queue->queue_family_index ? RING_COMPUTE : RING_GFX);
if (!cs)
goto fail;
dest_cs[i] = cs;
if (scratch_bo)
radv_cs_add_buffer(queue->device->ws, cs, scratch_bo);
/* Emit initial configuration. */
switch (queue->queue_family_index) {
case RADV_QUEUE_GENERAL:
radv_init_graphics_state(cs, queue);
break;
case RADV_QUEUE_COMPUTE:
radv_init_compute_state(cs, queue);
break;
case RADV_QUEUE_TRANSFER:
break;
}
if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
}
radv_emit_gs_ring_sizes(queue, cs, esgs_ring_bo, esgs_ring_size, gsvs_ring_bo,
gsvs_ring_size);
radv_emit_tess_factor_ring(queue, cs, hs_offchip_param, tess_factor_ring_size, tess_rings_bo);
radv_emit_global_shader_pointers(queue, cs, descriptor_bo);
radv_emit_compute_scratch(queue, cs, compute_scratch_size_per_wave, compute_scratch_waves,
compute_scratch_bo);
radv_emit_graphics_scratch(queue, cs, scratch_size_per_wave, scratch_waves, scratch_bo);
if (gds_bo)
radv_cs_add_buffer(queue->device->ws, cs, gds_bo);
if (gds_oa_bo)
radv_cs_add_buffer(queue->device->ws, cs, gds_oa_bo);
if (i == 0) {
si_cs_emit_cache_flush(
cs, queue->device->physical_device->rad_info.chip_class, NULL, 0,
queue->queue_family_index == RING_COMPUTE &&
queue->device->physical_device->rad_info.chip_class >= GFX7,
(queue->queue_family_index == RADV_QUEUE_COMPUTE
? RADV_CMD_FLAG_CS_PARTIAL_FLUSH
: (RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_PS_PARTIAL_FLUSH)) |
RADV_CMD_FLAG_INV_ICACHE | RADV_CMD_FLAG_INV_SCACHE | RADV_CMD_FLAG_INV_VCACHE |
RADV_CMD_FLAG_INV_L2 | RADV_CMD_FLAG_START_PIPELINE_STATS,
&sqtt_flush_bits, 0);
} else if (i == 1) {
si_cs_emit_cache_flush(cs, queue->device->physical_device->rad_info.chip_class, NULL, 0,
queue->queue_family_index == RING_COMPUTE &&
queue->device->physical_device->rad_info.chip_class >= GFX7,
RADV_CMD_FLAG_INV_ICACHE | RADV_CMD_FLAG_INV_SCACHE |
RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_L2 |
RADV_CMD_FLAG_START_PIPELINE_STATS,
&sqtt_flush_bits, 0);
}
if (queue->device->ws->cs_finalize(cs) != VK_SUCCESS)
goto fail;
}
if (queue->initial_full_flush_preamble_cs)
queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs);
if (queue->initial_preamble_cs)
queue->device->ws->cs_destroy(queue->initial_preamble_cs);
if (queue->continue_preamble_cs)
queue->device->ws->cs_destroy(queue->continue_preamble_cs);
queue->initial_full_flush_preamble_cs = dest_cs[0];
queue->initial_preamble_cs = dest_cs[1];
queue->continue_preamble_cs = dest_cs[2];
if (scratch_bo != queue->scratch_bo) {
if (queue->scratch_bo)
queue->device->ws->buffer_destroy(queue->device->ws, queue->scratch_bo);
queue->scratch_bo = scratch_bo;
}
queue->scratch_size_per_wave = scratch_size_per_wave;
queue->scratch_waves = scratch_waves;
if (compute_scratch_bo != queue->compute_scratch_bo) {
if (queue->compute_scratch_bo)
queue->device->ws->buffer_destroy(queue->device->ws, queue->compute_scratch_bo);
queue->compute_scratch_bo = compute_scratch_bo;
}
queue->compute_scratch_size_per_wave = compute_scratch_size_per_wave;
queue->compute_scratch_waves = compute_scratch_waves;
if (esgs_ring_bo != queue->esgs_ring_bo) {
if (queue->esgs_ring_bo)
queue->device->ws->buffer_destroy(queue->device->ws, queue->esgs_ring_bo);
queue->esgs_ring_bo = esgs_ring_bo;
queue->esgs_ring_size = esgs_ring_size;
}
if (gsvs_ring_bo != queue->gsvs_ring_bo) {
if (queue->gsvs_ring_bo)
queue->device->ws->buffer_destroy(queue->device->ws, queue->gsvs_ring_bo);
queue->gsvs_ring_bo = gsvs_ring_bo;
queue->gsvs_ring_size = gsvs_ring_size;
}
if (tess_rings_bo != queue->tess_rings_bo) {
queue->tess_rings_bo = tess_rings_bo;
queue->has_tess_rings = true;
}
if (gds_bo != queue->gds_bo) {
queue->gds_bo = gds_bo;
queue->has_gds = true;
}
if (gds_oa_bo != queue->gds_oa_bo) {
queue->gds_oa_bo = gds_oa_bo;
queue->has_gds_oa = true;
}
if (descriptor_bo != queue->descriptor_bo) {
if (queue->descriptor_bo)
queue->device->ws->buffer_destroy(queue->device->ws, queue->descriptor_bo);
queue->descriptor_bo = descriptor_bo;
}
if (add_sample_positions)
queue->has_sample_positions = true;
*initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs;
*initial_preamble_cs = queue->initial_preamble_cs;
*continue_preamble_cs = queue->continue_preamble_cs;
if (!scratch_size && !compute_scratch_size && !esgs_ring_size && !gsvs_ring_size)
*continue_preamble_cs = NULL;
return VK_SUCCESS;
fail:
for (int i = 0; i < ARRAY_SIZE(dest_cs); ++i)
if (dest_cs[i])
queue->device->ws->cs_destroy(dest_cs[i]);
if (descriptor_bo && descriptor_bo != queue->descriptor_bo)
queue->device->ws->buffer_destroy(queue->device->ws, descriptor_bo);
if (scratch_bo && scratch_bo != queue->scratch_bo)
queue->device->ws->buffer_destroy(queue->device->ws, scratch_bo);
if (compute_scratch_bo && compute_scratch_bo != queue->compute_scratch_bo)
queue->device->ws->buffer_destroy(queue->device->ws, compute_scratch_bo);
if (esgs_ring_bo && esgs_ring_bo != queue->esgs_ring_bo)
queue->device->ws->buffer_destroy(queue->device->ws, esgs_ring_bo);
if (gsvs_ring_bo && gsvs_ring_bo != queue->gsvs_ring_bo)
queue->device->ws->buffer_destroy(queue->device->ws, gsvs_ring_bo);
if (tess_rings_bo && tess_rings_bo != queue->tess_rings_bo)
queue->device->ws->buffer_destroy(queue->device->ws, tess_rings_bo);
if (gds_bo && gds_bo != queue->gds_bo)
queue->device->ws->buffer_destroy(queue->device->ws, gds_bo);
if (gds_oa_bo && gds_oa_bo != queue->gds_oa_bo)
queue->device->ws->buffer_destroy(queue->device->ws, gds_oa_bo);
return vk_error(queue->device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
}
static VkResult
radv_alloc_sem_counts(struct radv_device *device, struct radv_winsys_sem_counts *counts,
int num_sems, struct radv_semaphore_part **sems,
const uint64_t *timeline_values, VkFence _fence, bool is_signal)
{
int syncobj_idx = 0, non_reset_idx = 0, timeline_idx = 0;
if (num_sems == 0 && _fence == VK_NULL_HANDLE)
return VK_SUCCESS;
for (uint32_t i = 0; i < num_sems; i++) {
switch (sems[i]->kind) {
case RADV_SEMAPHORE_SYNCOBJ:
counts->syncobj_count++;
counts->syncobj_reset_count++;
break;
case RADV_SEMAPHORE_NONE:
break;
case RADV_SEMAPHORE_TIMELINE:
counts->syncobj_count++;
break;
case RADV_SEMAPHORE_TIMELINE_SYNCOBJ:
counts->timeline_syncobj_count++;
break;
}
}
if (_fence != VK_NULL_HANDLE)
counts->syncobj_count++;
if (counts->syncobj_count || counts->timeline_syncobj_count) {
counts->points = (uint64_t *)malloc(sizeof(*counts->syncobj) * counts->syncobj_count +
(sizeof(*counts->syncobj) + sizeof(*counts->points)) *
counts->timeline_syncobj_count);
if (!counts->points)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
counts->syncobj = (uint32_t *)(counts->points + counts->timeline_syncobj_count);
}
non_reset_idx = counts->syncobj_reset_count;
for (uint32_t i = 0; i < num_sems; i++) {
switch (sems[i]->kind) {
case RADV_SEMAPHORE_NONE:
unreachable("Empty semaphore");
break;
case RADV_SEMAPHORE_SYNCOBJ:
counts->syncobj[syncobj_idx++] = sems[i]->syncobj;
break;
case RADV_SEMAPHORE_TIMELINE: {
mtx_lock(&sems[i]->timeline.mutex);
struct radv_timeline_point *point = NULL;
if (is_signal) {
point = radv_timeline_add_point_locked(device, &sems[i]->timeline, timeline_values[i]);
} else {
point = radv_timeline_find_point_at_least_locked(device, &sems[i]->timeline,
timeline_values[i]);
}
mtx_unlock(&sems[i]->timeline.mutex);
if (point) {
counts->syncobj[non_reset_idx++] = point->syncobj;
} else {
/* Explicitly remove the semaphore so we might not find
* a point later post-submit. */
sems[i] = NULL;
}
break;
}
case RADV_SEMAPHORE_TIMELINE_SYNCOBJ:
counts->syncobj[counts->syncobj_count + timeline_idx] = sems[i]->syncobj;
counts->points[timeline_idx] = timeline_values[i];
++timeline_idx;
break;
}
}
if (_fence != VK_NULL_HANDLE) {
RADV_FROM_HANDLE(radv_fence, fence, _fence);
struct radv_fence_part *part =
fence->temporary.kind != RADV_FENCE_NONE ? &fence->temporary : &fence->permanent;
counts->syncobj[non_reset_idx++] = part->syncobj;
}
assert(MAX2(syncobj_idx, non_reset_idx) <= counts->syncobj_count);
counts->syncobj_count = MAX2(syncobj_idx, non_reset_idx);
return VK_SUCCESS;
}
static void
radv_free_sem_info(struct radv_winsys_sem_info *sem_info)
{
free(sem_info->wait.points);
free(sem_info->signal.points);
}
static void
radv_free_temp_syncobjs(struct radv_device *device, int num_sems, struct radv_semaphore_part *sems)
{
for (uint32_t i = 0; i < num_sems; i++) {
radv_destroy_semaphore_part(device, sems + i);
}
}
static VkResult
radv_alloc_sem_info(struct radv_device *device, struct radv_winsys_sem_info *sem_info,
int num_wait_sems, struct radv_semaphore_part **wait_sems,
const uint64_t *wait_values, int num_signal_sems,
struct radv_semaphore_part **signal_sems, const uint64_t *signal_values,
VkFence fence)
{
VkResult ret;
ret = radv_alloc_sem_counts(device, &sem_info->wait, num_wait_sems, wait_sems, wait_values,
VK_NULL_HANDLE, false);
if (ret)
return ret;
ret = radv_alloc_sem_counts(device, &sem_info->signal, num_signal_sems, signal_sems,
signal_values, fence, true);
if (ret)
radv_free_sem_info(sem_info);
/* caller can override these */
sem_info->cs_emit_wait = true;
sem_info->cs_emit_signal = true;
return ret;
}
static void
radv_finalize_timelines(struct radv_device *device, uint32_t num_wait_sems,
struct radv_semaphore_part **wait_sems, const uint64_t *wait_values,
uint32_t num_signal_sems, struct radv_semaphore_part **signal_sems,
const uint64_t *signal_values, struct list_head *processing_list)
{
for (uint32_t i = 0; i < num_wait_sems; ++i) {
if (wait_sems[i] && wait_sems[i]->kind == RADV_SEMAPHORE_TIMELINE) {
mtx_lock(&wait_sems[i]->timeline.mutex);
struct radv_timeline_point *point = radv_timeline_find_point_at_least_locked(
device, &wait_sems[i]->timeline, wait_values[i]);
point->wait_count -= 2;
mtx_unlock(&wait_sems[i]->timeline.mutex);
}
}
for (uint32_t i = 0; i < num_signal_sems; ++i) {
if (signal_sems[i] && signal_sems[i]->kind == RADV_SEMAPHORE_TIMELINE) {
mtx_lock(&signal_sems[i]->timeline.mutex);
struct radv_timeline_point *point = radv_timeline_find_point_at_least_locked(
device, &signal_sems[i]->timeline, signal_values[i]);
signal_sems[i]->timeline.highest_submitted =
MAX2(signal_sems[i]->timeline.highest_submitted, point->value);
point->wait_count -= 2;
radv_timeline_trigger_waiters_locked(&signal_sems[i]->timeline, processing_list);
mtx_unlock(&signal_sems[i]->timeline.mutex);
} else if (signal_sems[i] && signal_sems[i]->kind == RADV_SEMAPHORE_TIMELINE_SYNCOBJ) {
signal_sems[i]->timeline_syncobj.max_point =
MAX2(signal_sems[i]->timeline_syncobj.max_point, signal_values[i]);
}
}
}
static VkResult
radv_sparse_buffer_bind_memory(struct radv_device *device, const VkSparseBufferMemoryBindInfo *bind)
{
RADV_FROM_HANDLE(radv_buffer, buffer, bind->buffer);
VkResult result;
for (uint32_t i = 0; i < bind->bindCount; ++i) {
struct radv_device_memory *mem = NULL;
if (bind->pBinds[i].memory != VK_NULL_HANDLE)
mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
result = device->ws->buffer_virtual_bind(device->ws, buffer->bo,
bind->pBinds[i].resourceOffset, bind->pBinds[i].size,
mem ? mem->bo : NULL, bind->pBinds[i].memoryOffset);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
static VkResult
radv_sparse_image_opaque_bind_memory(struct radv_device *device,
const VkSparseImageOpaqueMemoryBindInfo *bind)
{
RADV_FROM_HANDLE(radv_image, image, bind->image);
VkResult result;
for (uint32_t i = 0; i < bind->bindCount; ++i) {
struct radv_device_memory *mem = NULL;
if (bind->pBinds[i].memory != VK_NULL_HANDLE)
mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
result = device->ws->buffer_virtual_bind(device->ws, image->bo,
bind->pBinds[i].resourceOffset, bind->pBinds[i].size,
mem ? mem->bo : NULL, bind->pBinds[i].memoryOffset);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
static VkResult
radv_sparse_image_bind_memory(struct radv_device *device, const VkSparseImageMemoryBindInfo *bind)
{
RADV_FROM_HANDLE(radv_image, image, bind->image);
struct radeon_surf *surface = &image->planes[0].surface;
uint32_t bs = vk_format_get_blocksize(image->vk_format);
VkResult result;
for (uint32_t i = 0; i < bind->bindCount; ++i) {
struct radv_device_memory *mem = NULL;
uint32_t offset, pitch;
uint32_t mem_offset = bind->pBinds[i].memoryOffset;
const uint32_t layer = bind->pBinds[i].subresource.arrayLayer;
const uint32_t level = bind->pBinds[i].subresource.mipLevel;
VkExtent3D bind_extent = bind->pBinds[i].extent;
bind_extent.width =
DIV_ROUND_UP(bind_extent.width, vk_format_get_blockwidth(image->vk_format));
bind_extent.height =
DIV_ROUND_UP(bind_extent.height, vk_format_get_blockheight(image->vk_format));
VkOffset3D bind_offset = bind->pBinds[i].offset;
bind_offset.x /= vk_format_get_blockwidth(image->vk_format);
bind_offset.y /= vk_format_get_blockheight(image->vk_format);
if (bind->pBinds[i].memory != VK_NULL_HANDLE)
mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
if (device->physical_device->rad_info.chip_class >= GFX9) {
offset = surface->u.gfx9.surf_slice_size * layer + surface->u.gfx9.prt_level_offset[level];
pitch = surface->u.gfx9.prt_level_pitch[level];
} else {
offset = (uint64_t)surface->u.legacy.level[level].offset_256B * 256 +
surface->u.legacy.level[level].slice_size_dw * 4 * layer;
pitch = surface->u.legacy.level[level].nblk_x;
}
offset += (bind_offset.y * pitch * bs) + (bind_offset.x * surface->prt_tile_height * bs);
uint32_t aligned_extent_width = ALIGN(bind_extent.width, surface->prt_tile_width);
bool whole_subres = bind_offset.x == 0 && aligned_extent_width == pitch;
if (whole_subres) {
uint32_t aligned_extent_height = ALIGN(bind_extent.height, surface->prt_tile_height);
uint32_t size = aligned_extent_width * aligned_extent_height * bs;
result = device->ws->buffer_virtual_bind(device->ws, image->bo, offset, size,
mem ? mem->bo : NULL, mem_offset);
if (result != VK_SUCCESS)
return result;
} else {
uint32_t img_increment = pitch * bs;
uint32_t mem_increment = aligned_extent_width * bs;
uint32_t size = mem_increment * surface->prt_tile_height;
for (unsigned y = 0; y < bind_extent.height; y += surface->prt_tile_height) {
result = device->ws->buffer_virtual_bind(
device->ws, image->bo, offset + img_increment * y, size, mem ? mem->bo : NULL,
mem_offset + mem_increment * y);
if (result != VK_SUCCESS)
return result;
}
}
}
return VK_SUCCESS;
}
static VkResult
radv_get_preambles(struct radv_queue *queue, const VkCommandBuffer *cmd_buffers,
uint32_t cmd_buffer_count, struct radeon_cmdbuf **initial_full_flush_preamble_cs,
struct radeon_cmdbuf **initial_preamble_cs,
struct radeon_cmdbuf **continue_preamble_cs)
{
uint32_t scratch_size_per_wave = 0, waves_wanted = 0;
uint32_t compute_scratch_size_per_wave = 0, compute_waves_wanted = 0;
uint32_t esgs_ring_size = 0, gsvs_ring_size = 0;
bool tess_rings_needed = false;
bool gds_needed = false;
bool gds_oa_needed = false;
bool sample_positions_needed = false;
for (uint32_t j = 0; j < cmd_buffer_count; j++) {
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, cmd_buffers[j]);
scratch_size_per_wave = MAX2(scratch_size_per_wave, cmd_buffer->scratch_size_per_wave_needed);
waves_wanted = MAX2(waves_wanted, cmd_buffer->scratch_waves_wanted);
compute_scratch_size_per_wave =
MAX2(compute_scratch_size_per_wave, cmd_buffer->compute_scratch_size_per_wave_needed);
compute_waves_wanted = MAX2(compute_waves_wanted, cmd_buffer->compute_scratch_waves_wanted);
esgs_ring_size = MAX2(esgs_ring_size, cmd_buffer->esgs_ring_size_needed);
gsvs_ring_size = MAX2(gsvs_ring_size, cmd_buffer->gsvs_ring_size_needed);
tess_rings_needed |= cmd_buffer->tess_rings_needed;
gds_needed |= cmd_buffer->gds_needed;
gds_oa_needed |= cmd_buffer->gds_oa_needed;
sample_positions_needed |= cmd_buffer->sample_positions_needed;
}
return radv_get_preamble_cs(queue, scratch_size_per_wave, waves_wanted,
compute_scratch_size_per_wave, compute_waves_wanted, esgs_ring_size,
gsvs_ring_size, tess_rings_needed, gds_needed, gds_oa_needed,
sample_positions_needed, initial_full_flush_preamble_cs,
initial_preamble_cs, continue_preamble_cs);
}
struct radv_deferred_queue_submission {
struct radv_queue *queue;
VkCommandBuffer *cmd_buffers;
uint32_t cmd_buffer_count;
/* Sparse bindings that happen on a queue. */
VkSparseBufferMemoryBindInfo *buffer_binds;
uint32_t buffer_bind_count;
VkSparseImageOpaqueMemoryBindInfo *image_opaque_binds;
uint32_t image_opaque_bind_count;
VkSparseImageMemoryBindInfo *image_binds;
uint32_t image_bind_count;
bool flush_caches;
VkShaderStageFlags wait_dst_stage_mask;
struct radv_semaphore_part **wait_semaphores;
uint32_t wait_semaphore_count;
struct radv_semaphore_part **signal_semaphores;
uint32_t signal_semaphore_count;
VkFence fence;
uint64_t *wait_values;
uint64_t *signal_values;
struct radv_semaphore_part *temporary_semaphore_parts;
uint32_t temporary_semaphore_part_count;
struct list_head queue_pending_list;
uint32_t submission_wait_count;
struct radv_timeline_waiter *wait_nodes;
struct list_head processing_list;
};
struct radv_queue_submission {
const VkCommandBuffer *cmd_buffers;
uint32_t cmd_buffer_count;
/* Sparse bindings that happen on a queue. */
const VkSparseBufferMemoryBindInfo *buffer_binds;
uint32_t buffer_bind_count;
const VkSparseImageOpaqueMemoryBindInfo *image_opaque_binds;
uint32_t image_opaque_bind_count;
const VkSparseImageMemoryBindInfo *image_binds;
uint32_t image_bind_count;
bool flush_caches;
VkPipelineStageFlags wait_dst_stage_mask;
const VkSemaphore *wait_semaphores;
uint32_t wait_semaphore_count;
const VkSemaphore *signal_semaphores;
uint32_t signal_semaphore_count;
VkFence fence;
const uint64_t *wait_values;
uint32_t wait_value_count;
const uint64_t *signal_values;
uint32_t signal_value_count;
};
static VkResult radv_queue_trigger_submission(struct radv_deferred_queue_submission *submission,
uint32_t decrement,
struct list_head *processing_list);
static VkResult
radv_create_deferred_submission(struct radv_queue *queue,
const struct radv_queue_submission *submission,
struct radv_deferred_queue_submission **out)
{
struct radv_deferred_queue_submission *deferred = NULL;
size_t size = sizeof(struct radv_deferred_queue_submission);
uint32_t temporary_count = 0;
for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
RADV_FROM_HANDLE(radv_semaphore, semaphore, submission->wait_semaphores[i]);
if (semaphore->temporary.kind != RADV_SEMAPHORE_NONE)
++temporary_count;
}
size += submission->cmd_buffer_count * sizeof(VkCommandBuffer);
size += submission->buffer_bind_count * sizeof(VkSparseBufferMemoryBindInfo);
size += submission->image_opaque_bind_count * sizeof(VkSparseImageOpaqueMemoryBindInfo);
size += submission->image_bind_count * sizeof(VkSparseImageMemoryBindInfo);
for (uint32_t i = 0; i < submission->image_bind_count; ++i)
size += submission->image_binds[i].bindCount * sizeof(VkSparseImageMemoryBind);
size += submission->wait_semaphore_count * sizeof(struct radv_semaphore_part *);
size += temporary_count * sizeof(struct radv_semaphore_part);
size += submission->signal_semaphore_count * sizeof(struct radv_semaphore_part *);
size += submission->wait_value_count * sizeof(uint64_t);
size += submission->signal_value_count * sizeof(uint64_t);
size += submission->wait_semaphore_count * sizeof(struct radv_timeline_waiter);
deferred = calloc(1, size);
if (!deferred)
return VK_ERROR_OUT_OF_HOST_MEMORY;
deferred->queue = queue;
deferred->cmd_buffers = (void *)(deferred + 1);
deferred->cmd_buffer_count = submission->cmd_buffer_count;
if (submission->cmd_buffer_count) {
memcpy(deferred->cmd_buffers, submission->cmd_buffers,
submission->cmd_buffer_count * sizeof(*deferred->cmd_buffers));
}
deferred->buffer_binds = (void *)(deferred->cmd_buffers + submission->cmd_buffer_count);
deferred->buffer_bind_count = submission->buffer_bind_count;
if (submission->buffer_bind_count) {
memcpy(deferred->buffer_binds, submission->buffer_binds,
submission->buffer_bind_count * sizeof(*deferred->buffer_binds));
}
deferred->image_opaque_binds = (void *)(deferred->buffer_binds + submission->buffer_bind_count);
deferred->image_opaque_bind_count = submission->image_opaque_bind_count;
if (submission->image_opaque_bind_count) {
memcpy(deferred->image_opaque_binds, submission->image_opaque_binds,
submission->image_opaque_bind_count * sizeof(*deferred->image_opaque_binds));
}
deferred->image_binds =
(void *)(deferred->image_opaque_binds + deferred->image_opaque_bind_count);
deferred->image_bind_count = submission->image_bind_count;
VkSparseImageMemoryBind *sparse_image_binds =
(void *)(deferred->image_binds + deferred->image_bind_count);
for (uint32_t i = 0; i < deferred->image_bind_count; ++i) {
deferred->image_binds[i] = submission->image_binds[i];
deferred->image_binds[i].pBinds = sparse_image_binds;
for (uint32_t j = 0; j < deferred->image_binds[i].bindCount; ++j)
*sparse_image_binds++ = submission->image_binds[i].pBinds[j];
}
deferred->flush_caches = submission->flush_caches;
deferred->wait_dst_stage_mask = submission->wait_dst_stage_mask;
deferred->wait_semaphores = (void *)sparse_image_binds;
deferred->wait_semaphore_count = submission->wait_semaphore_count;
deferred->signal_semaphores =
(void *)(deferred->wait_semaphores + deferred->wait_semaphore_count);
deferred->signal_semaphore_count = submission->signal_semaphore_count;
deferred->fence = submission->fence;
deferred->temporary_semaphore_parts =
(void *)(deferred->signal_semaphores + deferred->signal_semaphore_count);
deferred->temporary_semaphore_part_count = temporary_count;
uint32_t temporary_idx = 0;
for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
RADV_FROM_HANDLE(radv_semaphore, semaphore, submission->wait_semaphores[i]);
if (semaphore->temporary.kind != RADV_SEMAPHORE_NONE) {
deferred->wait_semaphores[i] = &deferred->temporary_semaphore_parts[temporary_idx];
deferred->temporary_semaphore_parts[temporary_idx] = semaphore->temporary;
semaphore->temporary.kind = RADV_SEMAPHORE_NONE;
++temporary_idx;
} else
deferred->wait_semaphores[i] = &semaphore->permanent;
}
for (uint32_t i = 0; i < submission->signal_semaphore_count; ++i) {
RADV_FROM_HANDLE(radv_semaphore, semaphore, submission->signal_semaphores[i]);
if (semaphore->temporary.kind != RADV_SEMAPHORE_NONE) {
deferred->signal_semaphores[i] = &semaphore->temporary;
} else {
deferred->signal_semaphores[i] = &semaphore->permanent;
}
}
deferred->wait_values = (void *)(deferred->temporary_semaphore_parts + temporary_count);
if (submission->wait_value_count) {
memcpy(deferred->wait_values, submission->wait_values,
submission->wait_value_count * sizeof(uint64_t));
}
deferred->signal_values = deferred->wait_values + submission->wait_value_count;
if (submission->signal_value_count) {
memcpy(deferred->signal_values, submission->signal_values,
submission->signal_value_count * sizeof(uint64_t));
}
deferred->wait_nodes = (void *)(deferred->signal_values + submission->signal_value_count);
/* This is worst-case. radv_queue_enqueue_submission will fill in further, but this
* ensure the submission is not accidentally triggered early when adding wait timelines. */
deferred->submission_wait_count = 1 + submission->wait_semaphore_count;
*out = deferred;
return VK_SUCCESS;
}
static VkResult
radv_queue_enqueue_submission(struct radv_deferred_queue_submission *submission,
struct list_head *processing_list)
{
uint32_t wait_cnt = 0;
struct radv_timeline_waiter *waiter = submission->wait_nodes;
for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
if (submission->wait_semaphores[i]->kind == RADV_SEMAPHORE_TIMELINE) {
mtx_lock(&submission->wait_semaphores[i]->timeline.mutex);
if (submission->wait_semaphores[i]->timeline.highest_submitted <
submission->wait_values[i]) {
++wait_cnt;
waiter->value = submission->wait_values[i];
waiter->submission = submission;
list_addtail(&waiter->list, &submission->wait_semaphores[i]->timeline.waiters);
++waiter;
}
mtx_unlock(&submission->wait_semaphores[i]->timeline.mutex);
}
}
mtx_lock(&submission->queue->pending_mutex);
bool is_first = list_is_empty(&submission->queue->pending_submissions);
list_addtail(&submission->queue_pending_list, &submission->queue->pending_submissions);
mtx_unlock(&submission->queue->pending_mutex);
/* If there is already a submission in the queue, that will decrement the counter by 1 when
* submitted, but if the queue was empty, we decrement ourselves as there is no previous
* submission. */
uint32_t decrement = submission->wait_semaphore_count - wait_cnt + (is_first ? 1 : 0);
/* if decrement is zero, then we don't have a refcounted reference to the
* submission anymore, so it is not safe to access the submission. */
if (!decrement)
return VK_SUCCESS;
return radv_queue_trigger_submission(submission, decrement, processing_list);
}
static void
radv_queue_submission_update_queue(struct radv_deferred_queue_submission *submission,
struct list_head *processing_list)
{
mtx_lock(&submission->queue->pending_mutex);
list_del(&submission->queue_pending_list);
/* trigger the next submission in the queue. */
if (!list_is_empty(&submission->queue->pending_submissions)) {
struct radv_deferred_queue_submission *next_submission =
list_first_entry(&submission->queue->pending_submissions,
struct radv_deferred_queue_submission, queue_pending_list);
radv_queue_trigger_submission(next_submission, 1, processing_list);
}
mtx_unlock(&submission->queue->pending_mutex);
u_cnd_monotonic_broadcast(&submission->queue->device->timeline_cond);
}
static VkResult
radv_queue_submit_deferred(struct radv_deferred_queue_submission *submission,
struct list_head *processing_list)
{
struct radv_queue *queue = submission->queue;
struct radeon_winsys_ctx *ctx = queue->hw_ctx;
uint32_t max_cs_submission = queue->device->trace_bo ? 1 : RADV_MAX_IBS_PER_SUBMIT;
bool do_flush = submission->flush_caches || submission->wait_dst_stage_mask;
bool can_patch = true;
uint32_t advance;
struct radv_winsys_sem_info sem_info = {0};
VkResult result;
struct radeon_cmdbuf *initial_preamble_cs = NULL;
struct radeon_cmdbuf *initial_flush_preamble_cs = NULL;
struct radeon_cmdbuf *continue_preamble_cs = NULL;
result =
radv_get_preambles(queue, submission->cmd_buffers, submission->cmd_buffer_count,
&initial_preamble_cs, &initial_flush_preamble_cs, &continue_preamble_cs);
if (result != VK_SUCCESS)
goto fail;
result = radv_alloc_sem_info(queue->device, &sem_info, submission->wait_semaphore_count,
submission->wait_semaphores, submission->wait_values,
submission->signal_semaphore_count, submission->signal_semaphores,
submission->signal_values, submission->fence);
if (result != VK_SUCCESS)
goto fail;
for (uint32_t i = 0; i < submission->buffer_bind_count; ++i) {
result = radv_sparse_buffer_bind_memory(queue->device, submission->buffer_binds + i);
if (result != VK_SUCCESS)
goto fail;
}
for (uint32_t i = 0; i < submission->image_opaque_bind_count; ++i) {
result =
radv_sparse_image_opaque_bind_memory(queue->device, submission->image_opaque_binds + i);
if (result != VK_SUCCESS)
goto fail;
}
for (uint32_t i = 0; i < submission->image_bind_count; ++i) {
result = radv_sparse_image_bind_memory(queue->device, submission->image_binds + i);
if (result != VK_SUCCESS)
goto fail;
}
if (!submission->cmd_buffer_count) {
result = queue->device->ws->cs_submit(ctx, queue->queue_idx,
&queue->device->empty_cs[queue->queue_family_index], 1,
NULL, NULL, &sem_info, false);
if (result != VK_SUCCESS)
goto fail;
} else {
struct radeon_cmdbuf **cs_array =
malloc(sizeof(struct radeon_cmdbuf *) * (submission->cmd_buffer_count));
for (uint32_t j = 0; j < submission->cmd_buffer_count; j++) {
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, submission->cmd_buffers[j]);
assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
cs_array[j] = cmd_buffer->cs;
if ((cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT))
can_patch = false;
cmd_buffer->status = RADV_CMD_BUFFER_STATUS_PENDING;
}
for (uint32_t j = 0; j < submission->cmd_buffer_count; j += advance) {
struct radeon_cmdbuf *initial_preamble =
(do_flush && !j) ? initial_flush_preamble_cs : initial_preamble_cs;
advance = MIN2(max_cs_submission, submission->cmd_buffer_count - j);
if (queue->device->trace_bo)
*queue->device->trace_id_ptr = 0;
sem_info.cs_emit_wait = j == 0;
sem_info.cs_emit_signal = j + advance == submission->cmd_buffer_count;
result = queue->device->ws->cs_submit(ctx, queue->queue_idx, cs_array + j, advance,
initial_preamble, continue_preamble_cs, &sem_info,
can_patch);
if (result != VK_SUCCESS) {
free(cs_array);
goto fail;
}
if (queue->device->trace_bo) {
radv_check_gpu_hangs(queue, cs_array[j]);
}
if (queue->device->tma_bo) {
radv_check_trap_handler(queue);
}
}
free(cs_array);
}
radv_finalize_timelines(queue->device, submission->wait_semaphore_count,
submission->wait_semaphores, submission->wait_values,
submission->signal_semaphore_count, submission->signal_semaphores,
submission->signal_values, processing_list);
/* Has to happen after timeline finalization to make sure the
* condition variable is only triggered when timelines and queue have
* been updated. */
radv_queue_submission_update_queue(submission, processing_list);
fail:
if (result != VK_SUCCESS && result != VK_ERROR_DEVICE_LOST) {
/* When something bad happened during the submission, such as
* an out of memory issue, it might be hard to recover from
* this inconsistent state. To avoid this sort of problem, we
* assume that we are in a really bad situation and return
* VK_ERROR_DEVICE_LOST to ensure the clients do not attempt
* to submit the same job again to this device.
*/
result = radv_device_set_lost(queue->device, "vkQueueSubmit() failed");
}
radv_free_temp_syncobjs(queue->device, submission->temporary_semaphore_part_count,
submission->temporary_semaphore_parts);
radv_free_sem_info(&sem_info);
free(submission);
return result;
}
static VkResult
radv_process_submissions(struct list_head *processing_list)
{
while (!list_is_empty(processing_list)) {
struct radv_deferred_queue_submission *submission =
list_first_entry(processing_list, struct radv_deferred_queue_submission, processing_list);
list_del(&submission->processing_list);
VkResult result = radv_queue_submit_deferred(submission, processing_list);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
static VkResult
wait_for_submission_timelines_available(struct radv_deferred_queue_submission *submission,
uint64_t timeout)
{
struct radv_device *device = submission->queue->device;
uint32_t syncobj_count = 0;
uint32_t syncobj_idx = 0;
for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
if (submission->wait_semaphores[i]->kind != RADV_SEMAPHORE_TIMELINE_SYNCOBJ)
continue;
if (submission->wait_semaphores[i]->timeline_syncobj.max_point >= submission->wait_values[i])
continue;
++syncobj_count;
}
if (!syncobj_count)
return VK_SUCCESS;
uint64_t *points = malloc((sizeof(uint64_t) + sizeof(uint32_t)) * syncobj_count);
if (!points)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
uint32_t *syncobj = (uint32_t *)(points + syncobj_count);
for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
if (submission->wait_semaphores[i]->kind != RADV_SEMAPHORE_TIMELINE_SYNCOBJ)
continue;
if (submission->wait_semaphores[i]->timeline_syncobj.max_point >= submission->wait_values[i])
continue;
syncobj[syncobj_idx] = submission->wait_semaphores[i]->syncobj;
points[syncobj_idx] = submission->wait_values[i];
++syncobj_idx;
}
bool success = device->ws->wait_timeline_syncobj(device->ws, syncobj, points, syncobj_idx, true,
true, timeout);
free(points);
return success ? VK_SUCCESS : VK_TIMEOUT;
}
static int
radv_queue_submission_thread_run(void *q)
{
struct radv_queue *queue = q;
mtx_lock(&queue->thread_mutex);
while (!p_atomic_read(&queue->thread_exit)) {
struct radv_deferred_queue_submission *submission = queue->thread_submission;
struct list_head processing_list;
VkResult result = VK_SUCCESS;
if (!submission) {
u_cnd_monotonic_wait(&queue->thread_cond, &queue->thread_mutex);
continue;
}
mtx_unlock(&queue->thread_mutex);
/* Wait at most 5 seconds so we have a chance to notice shutdown when
* a semaphore never gets signaled. If it takes longer we just retry
* the wait next iteration. */
result =
wait_for_submission_timelines_available(submission, radv_get_absolute_timeout(5000000000));
if (result != VK_SUCCESS) {
mtx_lock(&queue->thread_mutex);
continue;
}
/* The lock isn't held but nobody will add one until we finish
* the current submission. */
p_atomic_set(&queue->thread_submission, NULL);
list_inithead(&processing_list);
list_addtail(&submission->processing_list, &processing_list);
result = radv_process_submissions(&processing_list);
mtx_lock(&queue->thread_mutex);
}
mtx_unlock(&queue->thread_mutex);
return 0;
}
static VkResult
radv_queue_trigger_submission(struct radv_deferred_queue_submission *submission, uint32_t decrement,
struct list_head *processing_list)
{
struct radv_queue *queue = submission->queue;
int ret;
if (p_atomic_add_return(&submission->submission_wait_count, -decrement))
return VK_SUCCESS;
if (wait_for_submission_timelines_available(submission, radv_get_absolute_timeout(0)) ==
VK_SUCCESS) {
list_addtail(&submission->processing_list, processing_list);
return VK_SUCCESS;
}
mtx_lock(&queue->thread_mutex);
/* A submission can only be ready for the thread if it doesn't have
* any predecessors in the same queue, so there can only be one such
* submission at a time. */
assert(queue->thread_submission == NULL);
/* Only start the thread on demand to save resources for the many games
* which only use binary semaphores. */
if (!queue->thread_running) {
ret = thrd_create(&queue->submission_thread, radv_queue_submission_thread_run, queue);
if (ret) {
mtx_unlock(&queue->thread_mutex);
return vk_errorf(queue->device->instance, VK_ERROR_DEVICE_LOST,
"Failed to start submission thread");
}
queue->thread_running = true;
}
queue->thread_submission = submission;
mtx_unlock(&queue->thread_mutex);
u_cnd_monotonic_signal(&queue->thread_cond);
return VK_SUCCESS;
}
static VkResult
radv_queue_submit(struct radv_queue *queue, const struct radv_queue_submission *submission)
{
struct radv_deferred_queue_submission *deferred = NULL;
VkResult result = radv_create_deferred_submission(queue, submission, &deferred);
if (result != VK_SUCCESS)
return result;
struct list_head processing_list;
list_inithead(&processing_list);
result = radv_queue_enqueue_submission(deferred, &processing_list);
if (result != VK_SUCCESS) {
/* If anything is in the list we leak. */
assert(list_is_empty(&processing_list));
return result;
}
return radv_process_submissions(&processing_list);
}
bool
radv_queue_internal_submit(struct radv_queue *queue, struct radeon_cmdbuf *cs)
{
struct radeon_winsys_ctx *ctx = queue->hw_ctx;
struct radv_winsys_sem_info sem_info = {0};
VkResult result;
result = radv_alloc_sem_info(queue->device, &sem_info, 0, NULL, 0, 0, 0, NULL, VK_NULL_HANDLE);
if (result != VK_SUCCESS)
return false;
result =
queue->device->ws->cs_submit(ctx, queue->queue_idx, &cs, 1, NULL, NULL, &sem_info, false);
radv_free_sem_info(&sem_info);
if (result != VK_SUCCESS)
return false;
return true;
}
/* Signals fence as soon as all the work currently put on queue is done. */
static VkResult
radv_signal_fence(struct radv_queue *queue, VkFence fence)
{
return radv_queue_submit(queue, &(struct radv_queue_submission){.fence = fence});
}
static bool
radv_submit_has_effects(const VkSubmitInfo *info)
{
return info->commandBufferCount || info->waitSemaphoreCount || info->signalSemaphoreCount;
}
VkResult
radv_QueueSubmit(VkQueue _queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence)
{
RADV_FROM_HANDLE(radv_queue, queue, _queue);
VkResult result;
uint32_t fence_idx = 0;
bool flushed_caches = false;
if (radv_device_is_lost(queue->device))
return VK_ERROR_DEVICE_LOST;
if (fence != VK_NULL_HANDLE) {
for (uint32_t i = 0; i < submitCount; ++i)
if (radv_submit_has_effects(pSubmits + i))
fence_idx = i;
} else
fence_idx = UINT32_MAX;
for (uint32_t i = 0; i < submitCount; i++) {
if (!radv_submit_has_effects(pSubmits + i) && fence_idx != i)
continue;
VkPipelineStageFlags wait_dst_stage_mask = 0;
for (unsigned j = 0; j < pSubmits[i].waitSemaphoreCount; ++j) {
wait_dst_stage_mask |= pSubmits[i].pWaitDstStageMask[j];
}
const VkTimelineSemaphoreSubmitInfo *timeline_info =
vk_find_struct_const(pSubmits[i].pNext, TIMELINE_SEMAPHORE_SUBMIT_INFO);
result = radv_queue_submit(
queue, &(struct radv_queue_submission){
.cmd_buffers = pSubmits[i].pCommandBuffers,
.cmd_buffer_count = pSubmits[i].commandBufferCount,
.wait_dst_stage_mask = wait_dst_stage_mask,
.flush_caches = !flushed_caches,
.wait_semaphores = pSubmits[i].pWaitSemaphores,
.wait_semaphore_count = pSubmits[i].waitSemaphoreCount,
.signal_semaphores = pSubmits[i].pSignalSemaphores,
.signal_semaphore_count = pSubmits[i].signalSemaphoreCount,
.fence = i == fence_idx ? fence : VK_NULL_HANDLE,
.wait_values = timeline_info ? timeline_info->pWaitSemaphoreValues : NULL,
.wait_value_count = timeline_info && timeline_info->pWaitSemaphoreValues
? timeline_info->waitSemaphoreValueCount
: 0,
.signal_values = timeline_info ? timeline_info->pSignalSemaphoreValues : NULL,
.signal_value_count = timeline_info && timeline_info->pSignalSemaphoreValues
? timeline_info->signalSemaphoreValueCount
: 0,
});
if (result != VK_SUCCESS)
return result;
flushed_caches = true;
}
if (fence != VK_NULL_HANDLE && !submitCount) {
result = radv_signal_fence(queue, fence);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
static const char *
radv_get_queue_family_name(struct radv_queue *queue)
{
switch (queue->queue_family_index) {
case RADV_QUEUE_GENERAL:
return "graphics";
case RADV_QUEUE_COMPUTE:
return "compute";
case RADV_QUEUE_TRANSFER:
return "transfer";
default:
unreachable("Unknown queue family");
}
}
VkResult
radv_QueueWaitIdle(VkQueue _queue)
{
RADV_FROM_HANDLE(radv_queue, queue, _queue);
if (radv_device_is_lost(queue->device))
return VK_ERROR_DEVICE_LOST;
mtx_lock(&queue->pending_mutex);
while (!list_is_empty(&queue->pending_submissions)) {
u_cnd_monotonic_wait(&queue->device->timeline_cond, &queue->pending_mutex);
}
mtx_unlock(&queue->pending_mutex);
if (!queue->device->ws->ctx_wait_idle(
queue->hw_ctx, radv_queue_family_to_ring(queue->queue_family_index), queue->queue_idx)) {
return radv_device_set_lost(queue->device,
"Failed to wait for a '%s' queue "
"to be idle. GPU hang ?",
radv_get_queue_family_name(queue));
}
return VK_SUCCESS;
}
VkResult
radv_DeviceWaitIdle(VkDevice _device)
{
RADV_FROM_HANDLE(radv_device, device, _device);
for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
for (unsigned q = 0; q < device->queue_count[i]; q++) {
VkResult result = radv_QueueWaitIdle(radv_queue_to_handle(&device->queues[i][q]));
if (result != VK_SUCCESS)
return result;
}
}
return VK_SUCCESS;
}
VkResult
radv_EnumerateInstanceExtensionProperties(const char *pLayerName, uint32_t *pPropertyCount,
VkExtensionProperties *pProperties)
{
if (pLayerName)
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
return vk_enumerate_instance_extension_properties(&radv_instance_extensions_supported,
pPropertyCount, pProperties);
}
PFN_vkVoidFunction
radv_GetInstanceProcAddr(VkInstance _instance, const char *pName)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
/* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
* when we have to return valid function pointers, NULL, or it's left
* undefined. See the table for exact details.
*/
if (pName == NULL)
return NULL;
#define LOOKUP_RADV_ENTRYPOINT(entrypoint) \
if (strcmp(pName, "vk" #entrypoint) == 0) \
return (PFN_vkVoidFunction)radv_##entrypoint
LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceLayerProperties);
LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceVersion);
LOOKUP_RADV_ENTRYPOINT(CreateInstance);
/* GetInstanceProcAddr() can also be called with a NULL instance.
* See https://gitlab.khronos.org/vulkan/vulkan/issues/2057
*/
LOOKUP_RADV_ENTRYPOINT(GetInstanceProcAddr);
#undef LOOKUP_RADV_ENTRYPOINT
if (instance == NULL)
return NULL;
return vk_instance_get_proc_addr(&instance->vk, &radv_instance_entrypoints, pName);
}
/* The loader wants us to expose a second GetInstanceProcAddr function
* to work around certain LD_PRELOAD issues seen in apps.
*/
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL
vk_icdGetInstanceProcAddr(VkInstance instance, const char *pName)
{
return radv_GetInstanceProcAddr(instance, pName);
}
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL
vk_icdGetPhysicalDeviceProcAddr(VkInstance _instance, const char *pName)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
return vk_instance_get_physical_device_proc_addr(&instance->vk, pName);
}
bool
radv_get_memory_fd(struct radv_device *device, struct radv_device_memory *memory, int *pFD)
{
/* Only set BO metadata for the first plane */
if (memory->image && memory->image->offset == 0) {
struct radeon_bo_metadata metadata;
radv_init_metadata(device, memory->image, &metadata);
device->ws->buffer_set_metadata(device->ws, memory->bo, &metadata);
}
return device->ws->buffer_get_fd(device->ws, memory->bo, pFD);
}
void
radv_free_memory(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
struct radv_device_memory *mem)
{
if (mem == NULL)
return;
#if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER
if (mem->android_hardware_buffer)
AHardwareBuffer_release(mem->android_hardware_buffer);
#endif
if (mem->bo) {
if (device->overallocation_disallowed) {
mtx_lock(&device->overallocation_mutex);
device->allocated_memory_size[mem->heap_index] -= mem->alloc_size;
mtx_unlock(&device->overallocation_mutex);
}
if (device->use_global_bo_list)
device->ws->buffer_make_resident(device->ws, mem->bo, false);
device->ws->buffer_destroy(device->ws, mem->bo);
mem->bo = NULL;
}
vk_object_base_finish(&mem->base);
vk_free2(&device->vk.alloc, pAllocator, mem);
}
static VkResult
radv_alloc_memory(struct radv_device *device, const VkMemoryAllocateInfo *pAllocateInfo,
const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMem)
{
struct radv_device_memory *mem;
VkResult result;
enum radeon_bo_domain domain;
uint32_t flags = 0;
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
const VkImportMemoryFdInfoKHR *import_info =
vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
const VkMemoryDedicatedAllocateInfo *dedicate_info =
vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
const VkExportMemoryAllocateInfo *export_info =
vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
const struct VkImportAndroidHardwareBufferInfoANDROID *ahb_import_info =
vk_find_struct_const(pAllocateInfo->pNext, IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
const struct wsi_memory_allocate_info *wsi_info =
vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
if (pAllocateInfo->allocationSize == 0 && !ahb_import_info &&
!(export_info && (export_info->handleTypes &
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID))) {
/* Apparently, this is allowed */
*pMem = VK_NULL_HANDLE;
return VK_SUCCESS;
}
mem =
vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*mem), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (mem == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &mem->base, VK_OBJECT_TYPE_DEVICE_MEMORY);
if (wsi_info && wsi_info->implicit_sync)
flags |= RADEON_FLAG_IMPLICIT_SYNC;
if (dedicate_info) {
mem->image = radv_image_from_handle(dedicate_info->image);
mem->buffer = radv_buffer_from_handle(dedicate_info->buffer);
} else {
mem->image = NULL;
mem->buffer = NULL;
}
float priority_float = 0.5;
const struct VkMemoryPriorityAllocateInfoEXT *priority_ext =
vk_find_struct_const(pAllocateInfo->pNext, MEMORY_PRIORITY_ALLOCATE_INFO_EXT);
if (priority_ext)
priority_float = priority_ext->priority;
unsigned priority = MIN2(RADV_BO_PRIORITY_APPLICATION_MAX - 1,
(int)(priority_float * RADV_BO_PRIORITY_APPLICATION_MAX));
mem->user_ptr = NULL;
mem->bo = NULL;
#if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER
mem->android_hardware_buffer = NULL;
#endif
if (ahb_import_info) {
result = radv_import_ahb_memory(device, mem, priority, ahb_import_info);
if (result != VK_SUCCESS)
goto fail;
} else if (export_info && (export_info->handleTypes &
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)) {
result = radv_create_ahb_memory(device, mem, priority, pAllocateInfo);
if (result != VK_SUCCESS)
goto fail;
} else if (import_info) {
assert(import_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
import_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
mem->bo = device->ws->buffer_from_fd(device->ws, import_info->fd, priority, NULL);
if (!mem->bo) {
result = VK_ERROR_INVALID_EXTERNAL_HANDLE;
goto fail;
} else {
close(import_info->fd);
}
if (mem->image && mem->image->plane_count == 1 &&
!vk_format_is_depth_or_stencil(mem->image->vk_format) && mem->image->info.samples == 1 &&
mem->image->tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
struct radeon_bo_metadata metadata;
device->ws->buffer_get_metadata(device->ws, mem->bo, &metadata);
struct radv_image_create_info create_info = {.no_metadata_planes = true,
.bo_metadata = &metadata};
/* This gives a basic ability to import radeonsi images
* that don't have DCC. This is not guaranteed by any
* spec and can be removed after we support modifiers. */
result = radv_image_create_layout(device, create_info, NULL, mem->image);
if (result != VK_SUCCESS) {
device->ws->buffer_destroy(device->ws, mem->bo);
goto fail;
}
}
} else if (host_ptr_info) {
assert(host_ptr_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
mem->bo = device->ws->buffer_from_ptr(device->ws, host_ptr_info->pHostPointer,
pAllocateInfo->allocationSize, priority);
if (!mem->bo) {
result = VK_ERROR_INVALID_EXTERNAL_HANDLE;
goto fail;
} else {
mem->user_ptr = host_ptr_info->pHostPointer;
}
} else {
uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
uint32_t heap_index;
heap_index =
device->physical_device->memory_properties.memoryTypes[pAllocateInfo->memoryTypeIndex]
.heapIndex;
domain = device->physical_device->memory_domains[pAllocateInfo->memoryTypeIndex];
flags |= device->physical_device->memory_flags[pAllocateInfo->memoryTypeIndex];
if (!import_info && (!export_info || !export_info->handleTypes)) {
flags |= RADEON_FLAG_NO_INTERPROCESS_SHARING;
if (device->use_global_bo_list) {
flags |= RADEON_FLAG_PREFER_LOCAL_BO;
}
}
if (device->overallocation_disallowed) {
uint64_t total_size =
device->physical_device->memory_properties.memoryHeaps[heap_index].size;
mtx_lock(&device->overallocation_mutex);
if (device->allocated_memory_size[heap_index] + alloc_size > total_size) {
mtx_unlock(&device->overallocation_mutex);
result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
goto fail;
}
device->allocated_memory_size[heap_index] += alloc_size;
mtx_unlock(&device->overallocation_mutex);
}
mem->bo = device->ws->buffer_create(device->ws, alloc_size,
device->physical_device->rad_info.max_alignment, domain,
flags, priority);
if (!mem->bo) {
if (device->overallocation_disallowed) {
mtx_lock(&device->overallocation_mutex);
device->allocated_memory_size[heap_index] -= alloc_size;
mtx_unlock(&device->overallocation_mutex);
}
result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
goto fail;
}
mem->heap_index = heap_index;
mem->alloc_size = alloc_size;
}
if (!wsi_info) {
if (device->use_global_bo_list) {
result = device->ws->buffer_make_resident(device->ws, mem->bo, true);
if (result != VK_SUCCESS)
goto fail;
}
}
*pMem = radv_device_memory_to_handle(mem);
return VK_SUCCESS;
fail:
radv_free_memory(device, pAllocator, mem);
return result;
}
VkResult
radv_AllocateMemory(VkDevice _device, const VkMemoryAllocateInfo *pAllocateInfo,
const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMem)
{
RADV_FROM_HANDLE(radv_device, device, _device);
return radv_alloc_memory(device, pAllocateInfo, pAllocator, pMem);
}
void
radv_FreeMemory(VkDevice _device, VkDeviceMemory _mem, const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, mem, _mem);
radv_free_memory(device, pAllocator, mem);
}
VkResult
radv_MapMemory(VkDevice _device, VkDeviceMemory _memory, VkDeviceSize offset, VkDeviceSize size,
VkMemoryMapFlags flags, void **ppData)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
if (mem == NULL) {
*ppData = NULL;
return VK_SUCCESS;
}
if (mem->user_ptr)
*ppData = mem->user_ptr;
else
*ppData = device->ws->buffer_map(mem->bo);
if (*ppData) {
*ppData = (uint8_t *)*ppData + offset;
return VK_SUCCESS;
}
return vk_error(device->instance, VK_ERROR_MEMORY_MAP_FAILED);
}
void
radv_UnmapMemory(VkDevice _device, VkDeviceMemory _memory)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
if (mem == NULL)
return;
if (mem->user_ptr == NULL)
device->ws->buffer_unmap(mem->bo);
}
VkResult
radv_FlushMappedMemoryRanges(VkDevice _device, uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges)
{
return VK_SUCCESS;
}
VkResult
radv_InvalidateMappedMemoryRanges(VkDevice _device, uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges)
{
return VK_SUCCESS;
}
void
radv_GetBufferMemoryRequirements(VkDevice _device, VkBuffer _buffer,
VkMemoryRequirements *pMemoryRequirements)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
pMemoryRequirements->memoryTypeBits =
(1u << device->physical_device->memory_properties.memoryTypeCount) - 1;
if (buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT)
pMemoryRequirements->alignment = 4096;
else
pMemoryRequirements->alignment = 16;
pMemoryRequirements->size = align64(buffer->size, pMemoryRequirements->alignment);
}
void
radv_GetBufferMemoryRequirements2(VkDevice device, const VkBufferMemoryRequirementsInfo2 *pInfo,
VkMemoryRequirements2 *pMemoryRequirements)
{
radv_GetBufferMemoryRequirements(device, pInfo->buffer,
&pMemoryRequirements->memoryRequirements);
vk_foreach_struct(ext, pMemoryRequirements->pNext)
{
switch (ext->sType) {
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
VkMemoryDedicatedRequirements *req = (VkMemoryDedicatedRequirements *)ext;
req->requiresDedicatedAllocation = false;
req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
break;
}
default:
break;
}
}
}
void
radv_GetImageMemoryRequirements(VkDevice _device, VkImage _image,
VkMemoryRequirements *pMemoryRequirements)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_image, image, _image);
pMemoryRequirements->memoryTypeBits =
(1u << device->physical_device->memory_properties.memoryTypeCount) - 1;
pMemoryRequirements->size = image->size;
pMemoryRequirements->alignment = image->alignment;
}
void
radv_GetImageMemoryRequirements2(VkDevice device, const VkImageMemoryRequirementsInfo2 *pInfo,
VkMemoryRequirements2 *pMemoryRequirements)
{
radv_GetImageMemoryRequirements(device, pInfo->image, &pMemoryRequirements->memoryRequirements);
RADV_FROM_HANDLE(radv_image, image, pInfo->image);
vk_foreach_struct(ext, pMemoryRequirements->pNext)
{
switch (ext->sType) {
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
VkMemoryDedicatedRequirements *req = (VkMemoryDedicatedRequirements *)ext;
req->requiresDedicatedAllocation =
image->shareable && image->tiling != VK_IMAGE_TILING_LINEAR;
req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
break;
}
default:
break;
}
}
}
void
radv_GetDeviceMemoryCommitment(VkDevice device, VkDeviceMemory memory,
VkDeviceSize *pCommittedMemoryInBytes)
{
*pCommittedMemoryInBytes = 0;
}
VkResult
radv_BindBufferMemory2(VkDevice device, uint32_t bindInfoCount,
const VkBindBufferMemoryInfo *pBindInfos)
{
for (uint32_t i = 0; i < bindInfoCount; ++i) {
RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory);
RADV_FROM_HANDLE(radv_buffer, buffer, pBindInfos[i].buffer);
if (mem) {
buffer->bo = mem->bo;
buffer->offset = pBindInfos[i].memoryOffset;
} else {
buffer->bo = NULL;
}
}
return VK_SUCCESS;
}
VkResult
radv_BindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory,
VkDeviceSize memoryOffset)
{
const VkBindBufferMemoryInfo info = {.sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
.buffer = buffer,
.memory = memory,
.memoryOffset = memoryOffset};
return radv_BindBufferMemory2(device, 1, &info);
}
VkResult
radv_BindImageMemory2(VkDevice device, uint32_t bindInfoCount,
const VkBindImageMemoryInfo *pBindInfos)
{
for (uint32_t i = 0; i < bindInfoCount; ++i) {
RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory);
RADV_FROM_HANDLE(radv_image, image, pBindInfos[i].image);
if (mem) {
image->bo = mem->bo;
image->offset = pBindInfos[i].memoryOffset;
} else {
image->bo = NULL;
image->offset = 0;
}
}
return VK_SUCCESS;
}
VkResult
radv_BindImageMemory(VkDevice device, VkImage image, VkDeviceMemory memory,
VkDeviceSize memoryOffset)
{
const VkBindImageMemoryInfo info = {.sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
.image = image,
.memory = memory,
.memoryOffset = memoryOffset};
return radv_BindImageMemory2(device, 1, &info);
}
static bool
radv_sparse_bind_has_effects(const VkBindSparseInfo *info)
{
return info->bufferBindCount || info->imageOpaqueBindCount || info->imageBindCount ||
info->waitSemaphoreCount || info->signalSemaphoreCount;
}
VkResult
radv_QueueBindSparse(VkQueue _queue, uint32_t bindInfoCount, const VkBindSparseInfo *pBindInfo,
VkFence fence)
{
RADV_FROM_HANDLE(radv_queue, queue, _queue);
uint32_t fence_idx = 0;
if (radv_device_is_lost(queue->device))
return VK_ERROR_DEVICE_LOST;
if (fence != VK_NULL_HANDLE) {
for (uint32_t i = 0; i < bindInfoCount; ++i)
if (radv_sparse_bind_has_effects(pBindInfo + i))
fence_idx = i;
} else
fence_idx = UINT32_MAX;
for (uint32_t i = 0; i < bindInfoCount; ++i) {
if (i != fence_idx && !radv_sparse_bind_has_effects(pBindInfo + i))
continue;
const VkTimelineSemaphoreSubmitInfo *timeline_info =
vk_find_struct_const(pBindInfo[i].pNext, TIMELINE_SEMAPHORE_SUBMIT_INFO);
VkResult result = radv_queue_submit(
queue, &(struct radv_queue_submission){
.buffer_binds = pBindInfo[i].pBufferBinds,
.buffer_bind_count = pBindInfo[i].bufferBindCount,
.image_opaque_binds = pBindInfo[i].pImageOpaqueBinds,
.image_opaque_bind_count = pBindInfo[i].imageOpaqueBindCount,
.image_binds = pBindInfo[i].pImageBinds,
.image_bind_count = pBindInfo[i].imageBindCount,
.wait_semaphores = pBindInfo[i].pWaitSemaphores,
.wait_semaphore_count = pBindInfo[i].waitSemaphoreCount,
.signal_semaphores = pBindInfo[i].pSignalSemaphores,
.signal_semaphore_count = pBindInfo[i].signalSemaphoreCount,
.fence = i == fence_idx ? fence : VK_NULL_HANDLE,
.wait_values = timeline_info ? timeline_info->pWaitSemaphoreValues : NULL,
.wait_value_count = timeline_info && timeline_info->pWaitSemaphoreValues
? timeline_info->waitSemaphoreValueCount
: 0,
.signal_values = timeline_info ? timeline_info->pSignalSemaphoreValues : NULL,
.signal_value_count = timeline_info && timeline_info->pSignalSemaphoreValues
? timeline_info->signalSemaphoreValueCount
: 0,
});
if (result != VK_SUCCESS)
return result;
}
if (fence != VK_NULL_HANDLE && !bindInfoCount) {
VkResult result = radv_signal_fence(queue, fence);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
static void
radv_destroy_fence_part(struct radv_device *device, struct radv_fence_part *part)
{
if (part->kind != RADV_FENCE_NONE)
device->ws->destroy_syncobj(device->ws, part->syncobj);
part->kind = RADV_FENCE_NONE;
}
static void
radv_destroy_fence(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
struct radv_fence *fence)
{
radv_destroy_fence_part(device, &fence->temporary);
radv_destroy_fence_part(device, &fence->permanent);
vk_object_base_finish(&fence->base);
vk_free2(&device->vk.alloc, pAllocator, fence);
}
VkResult
radv_CreateFence(VkDevice _device, const VkFenceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkFence *pFence)
{
RADV_FROM_HANDLE(radv_device, device, _device);
bool create_signaled = false;
struct radv_fence *fence;
int ret;
fence = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*fence), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!fence)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &fence->base, VK_OBJECT_TYPE_FENCE);
fence->permanent.kind = RADV_FENCE_SYNCOBJ;
if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT)
create_signaled = true;
ret = device->ws->create_syncobj(device->ws, create_signaled, &fence->permanent.syncobj);
if (ret) {
radv_destroy_fence(device, pAllocator, fence);
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
}
*pFence = radv_fence_to_handle(fence);
return VK_SUCCESS;
}
void
radv_DestroyFence(VkDevice _device, VkFence _fence, const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_fence, fence, _fence);
if (!fence)
return;
radv_destroy_fence(device, pAllocator, fence);
}
VkResult
radv_WaitForFences(VkDevice _device, uint32_t fenceCount, const VkFence *pFences, VkBool32 waitAll,
uint64_t timeout)
{
RADV_FROM_HANDLE(radv_device, device, _device);
uint32_t *handles;
if (radv_device_is_lost(device))
return VK_ERROR_DEVICE_LOST;
timeout = radv_get_absolute_timeout(timeout);
handles = malloc(sizeof(uint32_t) * fenceCount);
if (!handles)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
for (uint32_t i = 0; i < fenceCount; ++i) {
RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
struct radv_fence_part *part =
fence->temporary.kind != RADV_FENCE_NONE ? &fence->temporary : &fence->permanent;
assert(part->kind == RADV_FENCE_SYNCOBJ);
handles[i] = part->syncobj;
}
bool success = device->ws->wait_syncobj(device->ws, handles, fenceCount, waitAll, timeout);
free(handles);
return success ? VK_SUCCESS : VK_TIMEOUT;
}
VkResult
radv_ResetFences(VkDevice _device, uint32_t fenceCount, const VkFence *pFences)
{
RADV_FROM_HANDLE(radv_device, device, _device);
for (unsigned i = 0; i < fenceCount; ++i) {
RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
/* From the Vulkan 1.0.53 spec:
*
* "If any member of pFences currently has its payload
* imported with temporary permanence, that fence’s prior
* permanent payload is irst restored. The remaining
* operations described therefore operate on the restored
* payload."
*/
if (fence->temporary.kind != RADV_FENCE_NONE)
radv_destroy_fence_part(device, &fence->temporary);
device->ws->reset_syncobj(device->ws, fence->permanent.syncobj);
}
return VK_SUCCESS;
}
VkResult
radv_GetFenceStatus(VkDevice _device, VkFence _fence)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_fence, fence, _fence);
struct radv_fence_part *part =
fence->temporary.kind != RADV_FENCE_NONE ? &fence->temporary : &fence->permanent;
if (radv_device_is_lost(device))
return VK_ERROR_DEVICE_LOST;
bool success = device->ws->wait_syncobj(device->ws, &part->syncobj, 1, true, 0);
return success ? VK_SUCCESS : VK_NOT_READY;
}
// Queue semaphore functions
static void
radv_create_timeline(struct radv_timeline *timeline, uint64_t value)
{
timeline->highest_signaled = value;
timeline->highest_submitted = value;
list_inithead(&timeline->points);
list_inithead(&timeline->free_points);
list_inithead(&timeline->waiters);
mtx_init(&timeline->mutex, mtx_plain);
}
static void
radv_destroy_timeline(struct radv_device *device, struct radv_timeline *timeline)
{
list_for_each_entry_safe(struct radv_timeline_point, point, &timeline->free_points, list)
{
list_del(&point->list);
device->ws->destroy_syncobj(device->ws, point->syncobj);
free(point);
}
list_for_each_entry_safe(struct radv_timeline_point, point, &timeline->points, list)
{
list_del(&point->list);
device->ws->destroy_syncobj(device->ws, point->syncobj);
free(point);
}
mtx_destroy(&timeline->mutex);
}
static void
radv_timeline_gc_locked(struct radv_device *device, struct radv_timeline *timeline)
{
list_for_each_entry_safe(struct radv_timeline_point, point, &timeline->points, list)
{
if (point->wait_count || point->value > timeline->highest_submitted)
return;
if (device->ws->wait_syncobj(device->ws, &point->syncobj, 1, true, 0)) {
timeline->highest_signaled = point->value;
list_del(&point->list);
list_add(&point->list, &timeline->free_points);
}
}
}
static struct radv_timeline_point *
radv_timeline_find_point_at_least_locked(struct radv_device *device, struct radv_timeline *timeline,
uint64_t p)
{
radv_timeline_gc_locked(device, timeline);
if (p <= timeline->highest_signaled)
return NULL;
list_for_each_entry(struct radv_timeline_point, point, &timeline->points, list)
{
if (point->value >= p) {
++point->wait_count;
return point;
}
}
return NULL;
}
static struct radv_timeline_point *
radv_timeline_add_point_locked(struct radv_device *device, struct radv_timeline *timeline,
uint64_t p)
{
radv_timeline_gc_locked(device, timeline);
struct radv_timeline_point *ret = NULL;
struct radv_timeline_point *prev = NULL;
int r;
if (p <= timeline->highest_signaled)
return NULL;
list_for_each_entry(struct radv_timeline_point, point, &timeline->points, list)
{
if (point->value == p) {
return NULL;
}
if (point->value < p)
prev = point;
}
if (list_is_empty(&timeline->free_points)) {
ret = malloc(sizeof(struct radv_timeline_point));
r = device->ws->create_syncobj(device->ws, false, &ret->syncobj);
if (r) {
free(ret);
return NULL;
}
} else {
ret = list_first_entry(&timeline->free_points, struct radv_timeline_point, list);
list_del(&ret->list);
device->ws->reset_syncobj(device->ws, ret->syncobj);
}
ret->value = p;
ret->wait_count = 1;
if (prev) {
list_add(&ret->list, &prev->list);
} else {
list_addtail(&ret->list, &timeline->points);
}
return ret;
}
static VkResult
radv_timeline_wait(struct radv_device *device, struct radv_timeline *timeline, uint64_t value,
uint64_t abs_timeout)
{
mtx_lock(&timeline->mutex);
while (timeline->highest_submitted < value) {
struct timespec abstime;
timespec_from_nsec(&abstime, abs_timeout);
u_cnd_monotonic_timedwait(&device->timeline_cond, &timeline->mutex, &abstime);
if (radv_get_current_time() >= abs_timeout && timeline->highest_submitted < value) {
mtx_unlock(&timeline->mutex);
return VK_TIMEOUT;
}
}
struct radv_timeline_point *point =
radv_timeline_find_point_at_least_locked(device, timeline, value);
mtx_unlock(&timeline->mutex);
if (!point)
return VK_SUCCESS;
bool success = device->ws->wait_syncobj(device->ws, &point->syncobj, 1, true, abs_timeout);
mtx_lock(&timeline->mutex);
point->wait_count--;
mtx_unlock(&timeline->mutex);
return success ? VK_SUCCESS : VK_TIMEOUT;
}
static void
radv_timeline_trigger_waiters_locked(struct radv_timeline *timeline,
struct list_head *processing_list)
{
list_for_each_entry_safe(struct radv_timeline_waiter, waiter, &timeline->waiters, list)
{
if (waiter->value > timeline->highest_submitted)
continue;
radv_queue_trigger_submission(waiter->submission, 1, processing_list);
list_del(&waiter->list);
}
}
static void
radv_destroy_semaphore_part(struct radv_device *device, struct radv_semaphore_part *part)
{
switch (part->kind) {
case RADV_SEMAPHORE_NONE:
break;
case RADV_SEMAPHORE_TIMELINE:
radv_destroy_timeline(device, &part->timeline);
break;
case RADV_SEMAPHORE_SYNCOBJ:
case RADV_SEMAPHORE_TIMELINE_SYNCOBJ:
device->ws->destroy_syncobj(device->ws, part->syncobj);
break;
}
part->kind = RADV_SEMAPHORE_NONE;
}
static VkSemaphoreTypeKHR
radv_get_semaphore_type(const void *pNext, uint64_t *initial_value)
{
const VkSemaphoreTypeCreateInfo *type_info =
vk_find_struct_const(pNext, SEMAPHORE_TYPE_CREATE_INFO);
if (!type_info)
return VK_SEMAPHORE_TYPE_BINARY;
if (initial_value)
*initial_value = type_info->initialValue;
return type_info->semaphoreType;
}
static void
radv_destroy_semaphore(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
struct radv_semaphore *sem)
{
radv_destroy_semaphore_part(device, &sem->temporary);
radv_destroy_semaphore_part(device, &sem->permanent);
vk_object_base_finish(&sem->base);
vk_free2(&device->vk.alloc, pAllocator, sem);
}
VkResult
radv_CreateSemaphore(VkDevice _device, const VkSemaphoreCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkSemaphore *pSemaphore)
{
RADV_FROM_HANDLE(radv_device, device, _device);
uint64_t initial_value = 0;
VkSemaphoreTypeKHR type = radv_get_semaphore_type(pCreateInfo->pNext, &initial_value);
struct radv_semaphore *sem =
vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*sem), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!sem)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &sem->base, VK_OBJECT_TYPE_SEMAPHORE);
sem->temporary.kind = RADV_SEMAPHORE_NONE;
sem->permanent.kind = RADV_SEMAPHORE_NONE;
if (type == VK_SEMAPHORE_TYPE_TIMELINE &&
device->physical_device->rad_info.has_timeline_syncobj) {
int ret = device->ws->create_syncobj(device->ws, false, &sem->permanent.syncobj);
if (ret) {
radv_destroy_semaphore(device, pAllocator, sem);
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
}
device->ws->signal_syncobj(device->ws, sem->permanent.syncobj, initial_value);
sem->permanent.timeline_syncobj.max_point = initial_value;
sem->permanent.kind = RADV_SEMAPHORE_TIMELINE_SYNCOBJ;
} else if (type == VK_SEMAPHORE_TYPE_TIMELINE) {
radv_create_timeline(&sem->permanent.timeline, initial_value);
sem->permanent.kind = RADV_SEMAPHORE_TIMELINE;
} else {
int ret = device->ws->create_syncobj(device->ws, false, &sem->permanent.syncobj);
if (ret) {
radv_destroy_semaphore(device, pAllocator, sem);
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
}
sem->permanent.kind = RADV_SEMAPHORE_SYNCOBJ;
}
*pSemaphore = radv_semaphore_to_handle(sem);
return VK_SUCCESS;
}
void
radv_DestroySemaphore(VkDevice _device, VkSemaphore _semaphore,
const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_semaphore, sem, _semaphore);
if (!_semaphore)
return;
radv_destroy_semaphore(device, pAllocator, sem);
}
VkResult
radv_GetSemaphoreCounterValue(VkDevice _device, VkSemaphore _semaphore, uint64_t *pValue)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_semaphore, semaphore, _semaphore);
if (radv_device_is_lost(device))
return VK_ERROR_DEVICE_LOST;
struct radv_semaphore_part *part = semaphore->temporary.kind != RADV_SEMAPHORE_NONE
? &semaphore->temporary
: &semaphore->permanent;
switch (part->kind) {
case RADV_SEMAPHORE_TIMELINE: {
mtx_lock(&part->timeline.mutex);
radv_timeline_gc_locked(device, &part->timeline);
*pValue = part->timeline.highest_signaled;
mtx_unlock(&part->timeline.mutex);
return VK_SUCCESS;
}
case RADV_SEMAPHORE_TIMELINE_SYNCOBJ: {
return device->ws->query_syncobj(device->ws, part->syncobj, pValue);
}
case RADV_SEMAPHORE_NONE:
case RADV_SEMAPHORE_SYNCOBJ:
unreachable("Invalid semaphore type");
}
unreachable("Unhandled semaphore type");
}
static VkResult
radv_wait_timelines(struct radv_device *device, const VkSemaphoreWaitInfo *pWaitInfo,
uint64_t abs_timeout)
{
if ((pWaitInfo->flags & VK_SEMAPHORE_WAIT_ANY_BIT_KHR) && pWaitInfo->semaphoreCount > 1) {
for (;;) {
for (uint32_t i = 0; i < pWaitInfo->semaphoreCount; ++i) {
RADV_FROM_HANDLE(radv_semaphore, semaphore, pWaitInfo->pSemaphores[i]);
VkResult result =
radv_timeline_wait(device, &semaphore->permanent.timeline, pWaitInfo->pValues[i], 0);
if (result == VK_SUCCESS)
return VK_SUCCESS;
}
if (radv_get_current_time() > abs_timeout)
return VK_TIMEOUT;
}
}
for (uint32_t i = 0; i < pWaitInfo->semaphoreCount; ++i) {
RADV_FROM_HANDLE(radv_semaphore, semaphore, pWaitInfo->pSemaphores[i]);
VkResult result = radv_timeline_wait(device, &semaphore->permanent.timeline,
pWaitInfo->pValues[i], abs_timeout);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
VkResult
radv_WaitSemaphores(VkDevice _device, const VkSemaphoreWaitInfo *pWaitInfo, uint64_t timeout)
{
RADV_FROM_HANDLE(radv_device, device, _device);
if (radv_device_is_lost(device))
return VK_ERROR_DEVICE_LOST;
uint64_t abs_timeout = radv_get_absolute_timeout(timeout);
if (radv_semaphore_from_handle(pWaitInfo->pSemaphores[0])->permanent.kind ==
RADV_SEMAPHORE_TIMELINE)
return radv_wait_timelines(device, pWaitInfo, abs_timeout);
if (pWaitInfo->semaphoreCount > UINT32_MAX / sizeof(uint32_t))
return vk_errorf(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY,
"semaphoreCount integer overflow");
bool wait_all = !(pWaitInfo->flags & VK_SEMAPHORE_WAIT_ANY_BIT_KHR);
uint32_t *handles = malloc(sizeof(*handles) * pWaitInfo->semaphoreCount);
if (!handles)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
for (uint32_t i = 0; i < pWaitInfo->semaphoreCount; ++i) {
RADV_FROM_HANDLE(radv_semaphore, semaphore, pWaitInfo->pSemaphores[i]);
handles[i] = semaphore->permanent.syncobj;
}
bool success =
device->ws->wait_timeline_syncobj(device->ws, handles, pWaitInfo->pValues,
pWaitInfo->semaphoreCount, wait_all, false, abs_timeout);
free(handles);
return success ? VK_SUCCESS : VK_TIMEOUT;
}
VkResult
radv_SignalSemaphore(VkDevice _device, const VkSemaphoreSignalInfo *pSignalInfo)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_semaphore, semaphore, pSignalInfo->semaphore);
struct radv_semaphore_part *part = semaphore->temporary.kind != RADV_SEMAPHORE_NONE
? &semaphore->temporary
: &semaphore->permanent;
switch (part->kind) {
case RADV_SEMAPHORE_TIMELINE: {
mtx_lock(&part->timeline.mutex);
radv_timeline_gc_locked(device, &part->timeline);
part->timeline.highest_submitted = MAX2(part->timeline.highest_submitted, pSignalInfo->value);
part->timeline.highest_signaled = MAX2(part->timeline.highest_signaled, pSignalInfo->value);
struct list_head processing_list;
list_inithead(&processing_list);
radv_timeline_trigger_waiters_locked(&part->timeline, &processing_list);
mtx_unlock(&part->timeline.mutex);
VkResult result = radv_process_submissions(&processing_list);
/* This needs to happen after radv_process_submissions, so
* that any submitted submissions that are now unblocked get
* processed before we wake the application. This way we
* ensure that any binary semaphores that are now unblocked
* are usable by the application. */
u_cnd_monotonic_broadcast(&device->timeline_cond);
return result;
}
case RADV_SEMAPHORE_TIMELINE_SYNCOBJ: {
part->timeline_syncobj.max_point = MAX2(part->timeline_syncobj.max_point, pSignalInfo->value);
device->ws->signal_syncobj(device->ws, part->syncobj, pSignalInfo->value);
break;
}
case RADV_SEMAPHORE_NONE:
case RADV_SEMAPHORE_SYNCOBJ:
unreachable("Invalid semaphore type");
}
return VK_SUCCESS;
}
static void
radv_destroy_event(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
struct radv_event *event)
{
if (event->bo)
device->ws->buffer_destroy(device->ws, event->bo);
vk_object_base_finish(&event->base);
vk_free2(&device->vk.alloc, pAllocator, event);
}
VkResult
radv_CreateEvent(VkDevice _device, const VkEventCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkEvent *pEvent)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_event *event = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*event), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!event)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &event->base, VK_OBJECT_TYPE_EVENT);
event->bo = device->ws->buffer_create(
device->ws, 8, 8, RADEON_DOMAIN_GTT,
RADEON_FLAG_VA_UNCACHED | RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING,
RADV_BO_PRIORITY_FENCE);
if (!event->bo) {
radv_destroy_event(device, pAllocator, event);
return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
}
event->map = (uint64_t *)device->ws->buffer_map(event->bo);
if (!event->map) {
radv_destroy_event(device, pAllocator, event);
return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
}
*pEvent = radv_event_to_handle(event);
return VK_SUCCESS;
}
void
radv_DestroyEvent(VkDevice _device, VkEvent _event, const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_event, event, _event);
if (!event)
return;
radv_destroy_event(device, pAllocator, event);
}
VkResult
radv_GetEventStatus(VkDevice _device, VkEvent _event)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_event, event, _event);
if (radv_device_is_lost(device))
return VK_ERROR_DEVICE_LOST;
if (*event->map == 1)
return VK_EVENT_SET;
return VK_EVENT_RESET;
}
VkResult
radv_SetEvent(VkDevice _device, VkEvent _event)
{
RADV_FROM_HANDLE(radv_event, event, _event);
*event->map = 1;
return VK_SUCCESS;
}
VkResult
radv_ResetEvent(VkDevice _device, VkEvent _event)
{
RADV_FROM_HANDLE(radv_event, event, _event);
*event->map = 0;
return VK_SUCCESS;
}
static void
radv_destroy_buffer(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
struct radv_buffer *buffer)
{
if ((buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) && buffer->bo)
device->ws->buffer_destroy(device->ws, buffer->bo);
vk_object_base_finish(&buffer->base);
vk_free2(&device->vk.alloc, pAllocator, buffer);
}
VkResult
radv_CreateBuffer(VkDevice _device, const VkBufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_buffer *buffer;
if (pCreateInfo->size > RADV_MAX_MEMORY_ALLOCATION_SIZE)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
buffer = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*buffer), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (buffer == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &buffer->base, VK_OBJECT_TYPE_BUFFER);
buffer->size = pCreateInfo->size;
buffer->usage = pCreateInfo->usage;
buffer->bo = NULL;
buffer->offset = 0;
buffer->flags = pCreateInfo->flags;
buffer->shareable =
vk_find_struct_const(pCreateInfo->pNext, EXTERNAL_MEMORY_BUFFER_CREATE_INFO) != NULL;
if (pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) {
buffer->bo = device->ws->buffer_create(device->ws, align64(buffer->size, 4096), 4096, 0,
RADEON_FLAG_VIRTUAL, RADV_BO_PRIORITY_VIRTUAL);
if (!buffer->bo) {
radv_destroy_buffer(device, pAllocator, buffer);
return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
}
}
*pBuffer = radv_buffer_to_handle(buffer);
return VK_SUCCESS;
}
void
radv_DestroyBuffer(VkDevice _device, VkBuffer _buffer, const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
if (!buffer)
return;
radv_destroy_buffer(device, pAllocator, buffer);
}
VkDeviceAddress
radv_GetBufferDeviceAddress(VkDevice device, const VkBufferDeviceAddressInfo *pInfo)
{
RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer);
return radv_buffer_get_va(buffer->bo) + buffer->offset;
}
uint64_t
radv_GetBufferOpaqueCaptureAddress(VkDevice device, const VkBufferDeviceAddressInfo *pInfo)
{
return 0;
}
uint64_t
radv_GetDeviceMemoryOpaqueCaptureAddress(VkDevice device,
const VkDeviceMemoryOpaqueCaptureAddressInfo *pInfo)
{
return 0;
}
static inline unsigned
si_tile_mode_index(const struct radv_image_plane *plane, unsigned level, bool stencil)
{
if (stencil)
return plane->surface.u.legacy.zs.stencil_tiling_index[level];
else
return plane->surface.u.legacy.tiling_index[level];
}
static uint32_t
radv_surface_max_layer_count(struct radv_image_view *iview)
{
return iview->type == VK_IMAGE_VIEW_TYPE_3D ? iview->extent.depth
: (iview->base_layer + iview->layer_count);
}
static unsigned
get_dcc_max_uncompressed_block_size(const struct radv_device *device,
const struct radv_image_view *iview)
{
if (device->physical_device->rad_info.chip_class < GFX10 && iview->image->info.samples > 1) {
if (iview->image->planes[0].surface.bpe == 1)
return V_028C78_MAX_BLOCK_SIZE_64B;
else if (iview->image->planes[0].surface.bpe == 2)
return V_028C78_MAX_BLOCK_SIZE_128B;
}
return V_028C78_MAX_BLOCK_SIZE_256B;
}
static unsigned
get_dcc_min_compressed_block_size(const struct radv_device *device)
{
if (!device->physical_device->rad_info.has_dedicated_vram) {
/* amdvlk: [min-compressed-block-size] should be set to 32 for
* dGPU and 64 for APU because all of our APUs to date use
* DIMMs which have a request granularity size of 64B while all
* other chips have a 32B request size.
*/
return V_028C78_MIN_BLOCK_SIZE_64B;
}
return V_028C78_MIN_BLOCK_SIZE_32B;
}
static uint32_t
radv_init_dcc_control_reg(struct radv_device *device, struct radv_image_view *iview)
{
unsigned max_uncompressed_block_size = get_dcc_max_uncompressed_block_size(device, iview);
unsigned min_compressed_block_size = get_dcc_min_compressed_block_size(device);
unsigned max_compressed_block_size;
unsigned independent_128b_blocks;
unsigned independent_64b_blocks;
if (!radv_dcc_enabled(iview->image, iview->base_mip))
return 0;
/* For GFX9+ ac_surface computes values for us (except min_compressed
* and max_uncompressed) */
if (device->physical_device->rad_info.chip_class >= GFX9) {
max_compressed_block_size =
iview->image->planes[0].surface.u.gfx9.color.dcc.max_compressed_block_size;
independent_128b_blocks = iview->image->planes[0].surface.u.gfx9.color.dcc.independent_128B_blocks;
independent_64b_blocks = iview->image->planes[0].surface.u.gfx9.color.dcc.independent_64B_blocks;
} else {
independent_128b_blocks = 0;
if (iview->image->usage & (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
/* If this DCC image is potentially going to be used in texture
* fetches, we need some special settings.
*/
independent_64b_blocks = 1;
max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B;
} else {
/* MAX_UNCOMPRESSED_BLOCK_SIZE must be >=
* MAX_COMPRESSED_BLOCK_SIZE. Set MAX_COMPRESSED_BLOCK_SIZE as
* big as possible for better compression state.
*/
independent_64b_blocks = 0;
max_compressed_block_size = max_uncompressed_block_size;
}
}
return S_028C78_MAX_UNCOMPRESSED_BLOCK_SIZE(max_uncompressed_block_size) |
S_028C78_MAX_COMPRESSED_BLOCK_SIZE(max_compressed_block_size) |
S_028C78_MIN_COMPRESSED_BLOCK_SIZE(min_compressed_block_size) |
S_028C78_INDEPENDENT_64B_BLOCKS(independent_64b_blocks) |
S_028C78_INDEPENDENT_128B_BLOCKS(independent_128b_blocks);
}
void
radv_initialise_color_surface(struct radv_device *device, struct radv_color_buffer_info *cb,
struct radv_image_view *iview)
{
const struct util_format_description *desc;
unsigned ntype, format, swap, endian;
unsigned blend_clamp = 0, blend_bypass = 0;
uint64_t va;
const struct radv_image_plane *plane = &iview->image->planes[iview->plane_id];
const struct radeon_surf *surf = &plane->surface;
desc = vk_format_description(iview->vk_format);
memset(cb, 0, sizeof(*cb));
/* Intensity is implemented as Red, so treat it that way. */
cb->cb_color_attrib = S_028C74_FORCE_DST_ALPHA_1(desc->swizzle[3] == PIPE_SWIZZLE_1);
va = radv_buffer_get_va(iview->bo) + iview->image->offset;
cb->cb_color_base = va >> 8;
if (device->physical_device->rad_info.chip_class >= GFX9) {
if (device->physical_device->rad_info.chip_class >= GFX10) {
cb->cb_color_attrib3 |= S_028EE0_COLOR_SW_MODE(surf->u.gfx9.swizzle_mode) |
S_028EE0_FMASK_SW_MODE(surf->u.gfx9.color.fmask_swizzle_mode) |
S_028EE0_CMASK_PIPE_ALIGNED(1) |
S_028EE0_DCC_PIPE_ALIGNED(surf->u.gfx9.color.dcc.pipe_aligned);
} else {
struct gfx9_surf_meta_flags meta = {
.rb_aligned = 1,
.pipe_aligned = 1,
};
if (surf->meta_offset)
meta = surf->u.gfx9.color.dcc;
cb->cb_color_attrib |= S_028C74_COLOR_SW_MODE(surf->u.gfx9.swizzle_mode) |
S_028C74_FMASK_SW_MODE(surf->u.gfx9.color.fmask_swizzle_mode) |
S_028C74_RB_ALIGNED(meta.rb_aligned) |
S_028C74_PIPE_ALIGNED(meta.pipe_aligned);
cb->cb_mrt_epitch = S_0287A0_EPITCH(surf->u.gfx9.epitch);
}
cb->cb_color_base += surf->u.gfx9.surf_offset >> 8;
cb->cb_color_base |= surf->tile_swizzle;
} else {
const struct legacy_surf_level *level_info = &surf->u.legacy.level[iview->base_mip];
unsigned pitch_tile_max, slice_tile_max, tile_mode_index;
cb->cb_color_base += level_info->offset_256B;
if (level_info->mode == RADEON_SURF_MODE_2D)
cb->cb_color_base |= surf->tile_swizzle;
pitch_tile_max = level_info->nblk_x / 8 - 1;
slice_tile_max = (level_info->nblk_x * level_info->nblk_y) / 64 - 1;
tile_mode_index = si_tile_mode_index(plane, iview->base_mip, false);
cb->cb_color_pitch = S_028C64_TILE_MAX(pitch_tile_max);
cb->cb_color_slice = S_028C68_TILE_MAX(slice_tile_max);
cb->cb_color_cmask_slice = surf->u.legacy.color.cmask_slice_tile_max;
cb->cb_color_attrib |= S_028C74_TILE_MODE_INDEX(tile_mode_index);
if (radv_image_has_fmask(iview->image)) {
if (device->physical_device->rad_info.chip_class >= GFX7)
cb->cb_color_pitch |=
S_028C64_FMASK_TILE_MAX(surf->u.legacy.color.fmask.pitch_in_pixels / 8 - 1);
cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(surf->u.legacy.color.fmask.tiling_index);
cb->cb_color_fmask_slice = S_028C88_TILE_MAX(surf->u.legacy.color.fmask.slice_tile_max);
} else {
/* This must be set for fast clear to work without FMASK. */
if (device->physical_device->rad_info.chip_class >= GFX7)
cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(pitch_tile_max);
cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(tile_mode_index);
cb->cb_color_fmask_slice = S_028C88_TILE_MAX(slice_tile_max);
}
}
/* CMASK variables */
va = radv_buffer_get_va(iview->bo) + iview->image->offset;
va += surf->cmask_offset;
cb->cb_color_cmask = va >> 8;
va = radv_buffer_get_va(iview->bo) + iview->image->offset;
va += surf->meta_offset;
if (radv_dcc_enabled(iview->image, iview->base_mip) &&
device->physical_device->rad_info.chip_class <= GFX8)
va += plane->surface.u.legacy.color.dcc_level[iview->base_mip].dcc_offset;
unsigned dcc_tile_swizzle = surf->tile_swizzle;
dcc_tile_swizzle &= ((1 << surf->meta_alignment_log2) - 1) >> 8;
cb->cb_dcc_base = va >> 8;
cb->cb_dcc_base |= dcc_tile_swizzle;
/* GFX10 field has the same base shift as the GFX6 field. */
uint32_t max_slice = radv_surface_max_layer_count(iview) - 1;
cb->cb_color_view =
S_028C6C_SLICE_START(iview->base_layer) | S_028C6C_SLICE_MAX_GFX10(max_slice);
if (iview->image->info.samples > 1) {
unsigned log_samples = util_logbase2(iview->image->info.samples);
cb->cb_color_attrib |=
S_028C74_NUM_SAMPLES(log_samples) | S_028C74_NUM_FRAGMENTS(log_samples);
}
if (radv_image_has_fmask(iview->image)) {
va = radv_buffer_get_va(iview->bo) + iview->image->offset + surf->fmask_offset;
cb->cb_color_fmask = va >> 8;
cb->cb_color_fmask |= surf->fmask_tile_swizzle;
} else {
cb->cb_color_fmask = cb->cb_color_base;
}
ntype = radv_translate_color_numformat(iview->vk_format, desc,
vk_format_get_first_non_void_channel(iview->vk_format));
format = radv_translate_colorformat(iview->vk_format);
if (format == V_028C70_COLOR_INVALID || ntype == ~0u)
radv_finishme("Illegal color\n");
swap = radv_translate_colorswap(iview->vk_format, false);
endian = radv_colorformat_endian_swap(format);
/* blend clamp should be set for all NORM/SRGB types */
if (ntype == V_028C70_NUMBER_UNORM || ntype == V_028C70_NUMBER_SNORM ||
ntype == V_028C70_NUMBER_SRGB)
blend_clamp = 1;
/* set blend bypass according to docs if SINT/UINT or
8/24 COLOR variants */
if (ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT ||
format == V_028C70_COLOR_8_24 || format == V_028C70_COLOR_24_8 ||
format == V_028C70_COLOR_X24_8_32_FLOAT) {
blend_clamp = 0;
blend_bypass = 1;
}
#if 0
if ((ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT) &&
(format == V_028C70_COLOR_8 ||
format == V_028C70_COLOR_8_8 ||
format == V_028C70_COLOR_8_8_8_8))
->color_is_int8 = true;
#endif
cb->cb_color_info =
S_028C70_FORMAT(format) | S_028C70_COMP_SWAP(swap) | S_028C70_BLEND_CLAMP(blend_clamp) |
S_028C70_BLEND_BYPASS(blend_bypass) | S_028C70_SIMPLE_FLOAT(1) |
S_028C70_ROUND_MODE(ntype != V_028C70_NUMBER_UNORM && ntype != V_028C70_NUMBER_SNORM &&
ntype != V_028C70_NUMBER_SRGB && format != V_028C70_COLOR_8_24 &&
format != V_028C70_COLOR_24_8) |
S_028C70_NUMBER_TYPE(ntype) | S_028C70_ENDIAN(endian);
if (radv_image_has_fmask(iview->image)) {
cb->cb_color_info |= S_028C70_COMPRESSION(1);
if (device->physical_device->rad_info.chip_class == GFX6) {
unsigned fmask_bankh = util_logbase2(surf->u.legacy.color.fmask.bankh);
cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(fmask_bankh);
}
if (radv_image_is_tc_compat_cmask(iview->image)) {
/* Allow the texture block to read FMASK directly
* without decompressing it. This bit must be cleared
* when performing FMASK_DECOMPRESS or DCC_COMPRESS,
* otherwise the operation doesn't happen.
*/
cb->cb_color_info |= S_028C70_FMASK_COMPRESS_1FRAG_ONLY(1);
if (device->physical_device->rad_info.chip_class == GFX8) {
/* Set CMASK into a tiling format that allows
* the texture block to read it.
*/
cb->cb_color_info |= S_028C70_CMASK_ADDR_TYPE(2);
}
}
}
if (radv_image_has_cmask(iview->image) &&
!(device->instance->debug_flags & RADV_DEBUG_NO_FAST_CLEARS))
cb->cb_color_info |= S_028C70_FAST_CLEAR(1);
if (radv_dcc_enabled(iview->image, iview->base_mip))
cb->cb_color_info |= S_028C70_DCC_ENABLE(1);
cb->cb_dcc_control = radv_init_dcc_control_reg(device, iview);
/* This must be set for fast clear to work without FMASK. */
if (!radv_image_has_fmask(iview->image) &&
device->physical_device->rad_info.chip_class == GFX6) {
unsigned bankh = util_logbase2(surf->u.legacy.bankh);
cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(bankh);
}
if (device->physical_device->rad_info.chip_class >= GFX9) {
unsigned mip0_depth = iview->image->type == VK_IMAGE_TYPE_3D
? (iview->extent.depth - 1)
: (iview->image->info.array_size - 1);
unsigned width =
vk_format_get_plane_width(iview->image->vk_format, iview->plane_id, iview->extent.width);
unsigned height =
vk_format_get_plane_height(iview->image->vk_format, iview->plane_id, iview->extent.height);
if (device->physical_device->rad_info.chip_class >= GFX10) {
cb->cb_color_view |= S_028C6C_MIP_LEVEL_GFX10(iview->base_mip);
cb->cb_color_attrib3 |= S_028EE0_MIP0_DEPTH(mip0_depth) |
S_028EE0_RESOURCE_TYPE(surf->u.gfx9.resource_type) |
S_028EE0_RESOURCE_LEVEL(1);
} else {
cb->cb_color_view |= S_028C6C_MIP_LEVEL_GFX9(iview->base_mip);
cb->cb_color_attrib |=
S_028C74_MIP0_DEPTH(mip0_depth) | S_028C74_RESOURCE_TYPE(surf->u.gfx9.resource_type);
}
cb->cb_color_attrib2 = S_028C68_MIP0_WIDTH(width - 1) | S_028C68_MIP0_HEIGHT(height - 1) |
S_028C68_MAX_MIP(iview->image->info.levels - 1);
}
}
static unsigned
radv_calc_decompress_on_z_planes(struct radv_device *device, struct radv_image_view *iview)
{
unsigned max_zplanes = 0;
assert(radv_image_is_tc_compat_htile(iview->image));
if (device->physical_device->rad_info.chip_class >= GFX9) {
/* Default value for 32-bit depth surfaces. */
max_zplanes = 4;
if (iview->vk_format == VK_FORMAT_D16_UNORM && iview->image->info.samples > 1)
max_zplanes = 2;
/* Workaround for a DB hang when ITERATE_256 is set to 1. Only affects 4X MSAA D/S images. */
if (device->physical_device->rad_info.has_two_planes_iterate256_bug &&
radv_image_get_iterate256(device, iview->image) &&
!radv_image_tile_stencil_disabled(device, iview->image) &&
iview->image->info.samples == 4) {
max_zplanes = 1;
}
max_zplanes = max_zplanes + 1;
} else {
if (iview->vk_format == VK_FORMAT_D16_UNORM) {
/* Do not enable Z plane compression for 16-bit depth
* surfaces because isn't supported on GFX8. Only
* 32-bit depth surfaces are supported by the hardware.
* This allows to maintain shader compatibility and to
* reduce the number of depth decompressions.
*/
max_zplanes = 1;
} else {
if (iview->image->info.samples <= 1)
max_zplanes = 5;
else if (iview->image->info.samples <= 4)
max_zplanes = 3;
else
max_zplanes = 2;
}
}
return max_zplanes;
}
void
radv_initialise_ds_surface(struct radv_device *device, struct radv_ds_buffer_info *ds,
struct radv_image_view *iview)
{
unsigned level = iview->base_mip;
unsigned format, stencil_format;
uint64_t va, s_offs, z_offs;
bool stencil_only = iview->image->vk_format == VK_FORMAT_S8_UINT;
const struct radv_image_plane *plane = &iview->image->planes[0];
const struct radeon_surf *surf = &plane->surface;
assert(vk_format_get_plane_count(iview->image->vk_format) == 1);
memset(ds, 0, sizeof(*ds));
if (!device->instance->absolute_depth_bias) {
switch (iview->image->vk_format) {
case VK_FORMAT_D24_UNORM_S8_UINT:
case VK_FORMAT_X8_D24_UNORM_PACK32:
ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24);
break;
case VK_FORMAT_D16_UNORM:
case VK_FORMAT_D16_UNORM_S8_UINT:
ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
break;
case VK_FORMAT_D32_SFLOAT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
ds->pa_su_poly_offset_db_fmt_cntl =
S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) | S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1);
break;
default:
break;
}
}
format = radv_translate_dbformat(iview->image->vk_format);
stencil_format = surf->has_stencil ? V_028044_STENCIL_8 : V_028044_STENCIL_INVALID;
uint32_t max_slice = radv_surface_max_layer_count(iview) - 1;
ds->db_depth_view = S_028008_SLICE_START(iview->base_layer) | S_028008_SLICE_MAX(max_slice);
if (device->physical_device->rad_info.chip_class >= GFX10) {
ds->db_depth_view |=
S_028008_SLICE_START_HI(iview->base_layer >> 11) | S_028008_SLICE_MAX_HI(max_slice >> 11);
}
ds->db_htile_data_base = 0;
ds->db_htile_surface = 0;
va = radv_buffer_get_va(iview->bo) + iview->image->offset;
s_offs = z_offs = va;
if (device->physical_device->rad_info.chip_class >= GFX9) {
assert(surf->u.gfx9.surf_offset == 0);
s_offs += surf->u.gfx9.zs.stencil_offset;
ds->db_z_info = S_028038_FORMAT(format) |
S_028038_NUM_SAMPLES(util_logbase2(iview->image->info.samples)) |
S_028038_SW_MODE(surf->u.gfx9.swizzle_mode) |
S_028038_MAXMIP(iview->image->info.levels - 1) | S_028038_ZRANGE_PRECISION(1);
ds->db_stencil_info =
S_02803C_FORMAT(stencil_format) | S_02803C_SW_MODE(surf->u.gfx9.zs.stencil_swizzle_mode);
if (device->physical_device->rad_info.chip_class == GFX9) {
ds->db_z_info2 = S_028068_EPITCH(surf->u.gfx9.epitch);
ds->db_stencil_info2 = S_02806C_EPITCH(surf->u.gfx9.zs.stencil_epitch);
}
ds->db_depth_view |= S_028008_MIPID(level);
ds->db_depth_size = S_02801C_X_MAX(iview->image->info.width - 1) |
S_02801C_Y_MAX(iview->image->info.height - 1);
if (radv_htile_enabled(iview->image, level)) {
ds->db_z_info |= S_028038_TILE_SURFACE_ENABLE(1);
if (radv_image_is_tc_compat_htile(iview->image)) {
unsigned max_zplanes = radv_calc_decompress_on_z_planes(device, iview);
ds->db_z_info |= S_028038_DECOMPRESS_ON_N_ZPLANES(max_zplanes);
if (device->physical_device->rad_info.chip_class >= GFX10) {
bool iterate256 = radv_image_get_iterate256(device, iview->image);
ds->db_z_info |= S_028040_ITERATE_FLUSH(1);
ds->db_stencil_info |= S_028044_ITERATE_FLUSH(1);
ds->db_z_info |= S_028040_ITERATE_256(iterate256);
ds->db_stencil_info |= S_028044_ITERATE_256(iterate256);
} else {
ds->db_z_info |= S_028038_ITERATE_FLUSH(1);
ds->db_stencil_info |= S_02803C_ITERATE_FLUSH(1);
}
}
if (radv_image_tile_stencil_disabled(device, iview->image)) {
ds->db_stencil_info |= S_02803C_TILE_STENCIL_DISABLE(1);
}
va = radv_buffer_get_va(iview->bo) + iview->image->offset + surf->meta_offset;
ds->db_htile_data_base = va >> 8;
ds->db_htile_surface = S_028ABC_FULL_CACHE(1) | S_028ABC_PIPE_ALIGNED(1);
if (device->physical_device->rad_info.chip_class == GFX9) {
ds->db_htile_surface |= S_028ABC_RB_ALIGNED(1);
}
if (radv_image_has_vrs_htile(device, iview->image)) {
ds->db_htile_surface |= S_028ABC_VRS_HTILE_ENCODING(V_028ABC_VRS_HTILE_4BIT_ENCODING);
}
}
} else {
const struct legacy_surf_level *level_info = &surf->u.legacy.level[level];
if (stencil_only)
level_info = &surf->u.legacy.zs.stencil_level[level];
z_offs += (uint64_t)surf->u.legacy.level[level].offset_256B * 256;
s_offs += (uint64_t)surf->u.legacy.zs.stencil_level[level].offset_256B * 256;
ds->db_depth_info = S_02803C_ADDR5_SWIZZLE_MASK(!radv_image_is_tc_compat_htile(iview->image));
ds->db_z_info = S_028040_FORMAT(format) | S_028040_ZRANGE_PRECISION(1);
ds->db_stencil_info = S_028044_FORMAT(stencil_format);
if (iview->image->info.samples > 1)
ds->db_z_info |= S_028040_NUM_SAMPLES(util_logbase2(iview->image->info.samples));
if (device->physical_device->rad_info.chip_class >= GFX7) {
struct radeon_info *info = &device->physical_device->rad_info;
unsigned tiling_index = surf->u.legacy.tiling_index[level];
unsigned stencil_index = surf->u.legacy.zs.stencil_tiling_index[level];
unsigned macro_index = surf->u.legacy.macro_tile_index;
unsigned tile_mode = info->si_tile_mode_array[tiling_index];
unsigned stencil_tile_mode = info->si_tile_mode_array[stencil_index];
unsigned macro_mode = info->cik_macrotile_mode_array[macro_index];
if (stencil_only)
tile_mode = stencil_tile_mode;
ds->db_depth_info |= S_02803C_ARRAY_MODE(G_009910_ARRAY_MODE(tile_mode)) |
S_02803C_PIPE_CONFIG(G_009910_PIPE_CONFIG(tile_mode)) |
S_02803C_BANK_WIDTH(G_009990_BANK_WIDTH(macro_mode)) |
S_02803C_BANK_HEIGHT(G_009990_BANK_HEIGHT(macro_mode)) |
S_02803C_MACRO_TILE_ASPECT(G_009990_MACRO_TILE_ASPECT(macro_mode)) |
S_02803C_NUM_BANKS(G_009990_NUM_BANKS(macro_mode));
ds->db_z_info |= S_028040_TILE_SPLIT(G_009910_TILE_SPLIT(tile_mode));
ds->db_stencil_info |= S_028044_TILE_SPLIT(G_009910_TILE_SPLIT(stencil_tile_mode));
} else {
unsigned tile_mode_index = si_tile_mode_index(&iview->image->planes[0], level, false);
ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
tile_mode_index = si_tile_mode_index(&iview->image->planes[0], level, true);
ds->db_stencil_info |= S_028044_TILE_MODE_INDEX(tile_mode_index);
if (stencil_only)
ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
}
ds->db_depth_size = S_028058_PITCH_TILE_MAX((level_info->nblk_x / 8) - 1) |
S_028058_HEIGHT_TILE_MAX((level_info->nblk_y / 8) - 1);
ds->db_depth_slice =
S_02805C_SLICE_TILE_MAX((level_info->nblk_x * level_info->nblk_y) / 64 - 1);
if (radv_htile_enabled(iview->image, level)) {
ds->db_z_info |= S_028040_TILE_SURFACE_ENABLE(1);
if (radv_image_tile_stencil_disabled(device, iview->image)) {
ds->db_stencil_info |= S_028044_TILE_STENCIL_DISABLE(1);
}
va = radv_buffer_get_va(iview->bo) + iview->image->offset + surf->meta_offset;
ds->db_htile_data_base = va >> 8;
ds->db_htile_surface = S_028ABC_FULL_CACHE(1);
if (radv_image_is_tc_compat_htile(iview->image)) {
unsigned max_zplanes = radv_calc_decompress_on_z_planes(device, iview);
ds->db_htile_surface |= S_028ABC_TC_COMPATIBLE(1);
ds->db_z_info |= S_028040_DECOMPRESS_ON_N_ZPLANES(max_zplanes);
}
}
}
ds->db_z_read_base = ds->db_z_write_base = z_offs >> 8;
ds->db_stencil_read_base = ds->db_stencil_write_base = s_offs >> 8;
}
VkResult
radv_CreateFramebuffer(VkDevice _device, const VkFramebufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkFramebuffer *pFramebuffer)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_framebuffer *framebuffer;
const VkFramebufferAttachmentsCreateInfo *imageless_create_info =
vk_find_struct_const(pCreateInfo->pNext, FRAMEBUFFER_ATTACHMENTS_CREATE_INFO);
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
size_t size = sizeof(*framebuffer);
if (!imageless_create_info)
size += sizeof(struct radv_image_view *) * pCreateInfo->attachmentCount;
framebuffer =
vk_alloc2(&device->vk.alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (framebuffer == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &framebuffer->base, VK_OBJECT_TYPE_FRAMEBUFFER);
framebuffer->attachment_count = pCreateInfo->attachmentCount;
framebuffer->width = pCreateInfo->width;
framebuffer->height = pCreateInfo->height;
framebuffer->layers = pCreateInfo->layers;
framebuffer->imageless = !!imageless_create_info;
if (!imageless_create_info) {
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
VkImageView _iview = pCreateInfo->pAttachments[i];
struct radv_image_view *iview = radv_image_view_from_handle(_iview);
framebuffer->attachments[i] = iview;
}
}
*pFramebuffer = radv_framebuffer_to_handle(framebuffer);
return VK_SUCCESS;
}
void
radv_DestroyFramebuffer(VkDevice _device, VkFramebuffer _fb,
const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_framebuffer, fb, _fb);
if (!fb)
return;
vk_object_base_finish(&fb->base);
vk_free2(&device->vk.alloc, pAllocator, fb);
}
static unsigned
radv_tex_wrap(VkSamplerAddressMode address_mode)
{
switch (address_mode) {
case VK_SAMPLER_ADDRESS_MODE_REPEAT:
return V_008F30_SQ_TEX_WRAP;
case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT:
return V_008F30_SQ_TEX_MIRROR;
case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:
return V_008F30_SQ_TEX_CLAMP_LAST_TEXEL;
case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER:
return V_008F30_SQ_TEX_CLAMP_BORDER;
case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE:
return V_008F30_SQ_TEX_MIRROR_ONCE_LAST_TEXEL;
default:
unreachable("illegal tex wrap mode");
break;
}
}
static unsigned
radv_tex_compare(VkCompareOp op)
{
switch (op) {
case VK_COMPARE_OP_NEVER:
return V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
case VK_COMPARE_OP_LESS:
return V_008F30_SQ_TEX_DEPTH_COMPARE_LESS;
case VK_COMPARE_OP_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_EQUAL;
case VK_COMPARE_OP_LESS_OR_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_LESSEQUAL;
case VK_COMPARE_OP_GREATER:
return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATER;
case VK_COMPARE_OP_NOT_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_NOTEQUAL;
case VK_COMPARE_OP_GREATER_OR_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATEREQUAL;
case VK_COMPARE_OP_ALWAYS:
return V_008F30_SQ_TEX_DEPTH_COMPARE_ALWAYS;
default:
unreachable("illegal compare mode");
break;
}
}
static unsigned
radv_tex_filter(VkFilter filter, unsigned max_ansio)
{
switch (filter) {
case VK_FILTER_NEAREST:
return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_POINT
: V_008F38_SQ_TEX_XY_FILTER_POINT);
case VK_FILTER_LINEAR:
return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_BILINEAR
: V_008F38_SQ_TEX_XY_FILTER_BILINEAR);
case VK_FILTER_CUBIC_IMG:
default:
fprintf(stderr, "illegal texture filter");
return 0;
}
}
static unsigned
radv_tex_mipfilter(VkSamplerMipmapMode mode)
{
switch (mode) {
case VK_SAMPLER_MIPMAP_MODE_NEAREST:
return V_008F38_SQ_TEX_Z_FILTER_POINT;
case VK_SAMPLER_MIPMAP_MODE_LINEAR:
return V_008F38_SQ_TEX_Z_FILTER_LINEAR;
default:
return V_008F38_SQ_TEX_Z_FILTER_NONE;
}
}
static unsigned
radv_tex_bordercolor(VkBorderColor bcolor)
{
switch (bcolor) {
case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK:
case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK:
return V_008F3C_SQ_TEX_BORDER_COLOR_TRANS_BLACK;
case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK:
case VK_BORDER_COLOR_INT_OPAQUE_BLACK:
return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_BLACK;
case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE:
case VK_BORDER_COLOR_INT_OPAQUE_WHITE:
return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_WHITE;
case VK_BORDER_COLOR_FLOAT_CUSTOM_EXT:
case VK_BORDER_COLOR_INT_CUSTOM_EXT:
return V_008F3C_SQ_TEX_BORDER_COLOR_REGISTER;
default:
break;
}
return 0;
}
static unsigned
radv_tex_aniso_filter(unsigned filter)
{
if (filter < 2)
return 0;
if (filter < 4)
return 1;
if (filter < 8)
return 2;
if (filter < 16)
return 3;
return 4;
}
static unsigned
radv_tex_filter_mode(VkSamplerReductionMode mode)
{
switch (mode) {
case VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT:
return V_008F30_SQ_IMG_FILTER_MODE_BLEND;
case VK_SAMPLER_REDUCTION_MODE_MIN_EXT:
return V_008F30_SQ_IMG_FILTER_MODE_MIN;
case VK_SAMPLER_REDUCTION_MODE_MAX_EXT:
return V_008F30_SQ_IMG_FILTER_MODE_MAX;
default:
break;
}
return 0;
}
static uint32_t
radv_get_max_anisotropy(struct radv_device *device, const VkSamplerCreateInfo *pCreateInfo)
{
if (device->force_aniso >= 0)
return device->force_aniso;
if (pCreateInfo->anisotropyEnable && pCreateInfo->maxAnisotropy > 1.0f)
return (uint32_t)pCreateInfo->maxAnisotropy;
return 0;
}
static inline int
S_FIXED(float value, unsigned frac_bits)
{
return value * (1 << frac_bits);
}
static uint32_t
radv_register_border_color(struct radv_device *device, VkClearColorValue value)
{
uint32_t slot;
mtx_lock(&device->border_color_data.mutex);
for (slot = 0; slot < RADV_BORDER_COLOR_COUNT; slot++) {
if (!device->border_color_data.used[slot]) {
/* Copy to the GPU wrt endian-ness. */
util_memcpy_cpu_to_le32(&device->border_color_data.colors_gpu_ptr[slot], &value,
sizeof(VkClearColorValue));
device->border_color_data.used[slot] = true;
break;
}
}
mtx_unlock(&device->border_color_data.mutex);
return slot;
}
static void
radv_unregister_border_color(struct radv_device *device, uint32_t slot)
{
mtx_lock(&device->border_color_data.mutex);
device->border_color_data.used[slot] = false;
mtx_unlock(&device->border_color_data.mutex);
}
static void
radv_init_sampler(struct radv_device *device, struct radv_sampler *sampler,
const VkSamplerCreateInfo *pCreateInfo)
{
uint32_t max_aniso = radv_get_max_anisotropy(device, pCreateInfo);
uint32_t max_aniso_ratio = radv_tex_aniso_filter(max_aniso);
bool compat_mode = device->physical_device->rad_info.chip_class == GFX8 ||
device->physical_device->rad_info.chip_class == GFX9;
unsigned filter_mode = V_008F30_SQ_IMG_FILTER_MODE_BLEND;
unsigned depth_compare_func = V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
bool trunc_coord =
pCreateInfo->minFilter == VK_FILTER_NEAREST && pCreateInfo->magFilter == VK_FILTER_NEAREST;
bool uses_border_color = pCreateInfo->addressModeU == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER ||
pCreateInfo->addressModeV == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER ||
pCreateInfo->addressModeW == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
VkBorderColor border_color =
uses_border_color ? pCreateInfo->borderColor : VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
uint32_t border_color_ptr;
const struct VkSamplerReductionModeCreateInfo *sampler_reduction =
vk_find_struct_const(pCreateInfo->pNext, SAMPLER_REDUCTION_MODE_CREATE_INFO);
if (sampler_reduction)
filter_mode = radv_tex_filter_mode(sampler_reduction->reductionMode);
if (pCreateInfo->compareEnable)
depth_compare_func = radv_tex_compare(pCreateInfo->compareOp);
sampler->border_color_slot = RADV_BORDER_COLOR_COUNT;
if (border_color == VK_BORDER_COLOR_FLOAT_CUSTOM_EXT ||
border_color == VK_BORDER_COLOR_INT_CUSTOM_EXT) {
const VkSamplerCustomBorderColorCreateInfoEXT *custom_border_color =
vk_find_struct_const(pCreateInfo->pNext, SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT);
assert(custom_border_color);
sampler->border_color_slot =
radv_register_border_color(device, custom_border_color->customBorderColor);
/* Did we fail to find a slot? */
if (sampler->border_color_slot == RADV_BORDER_COLOR_COUNT) {
fprintf(stderr, "WARNING: no free border color slots, defaulting to TRANS_BLACK.\n");
border_color = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
}
}
/* If we don't have a custom color, set the ptr to 0 */
border_color_ptr =
sampler->border_color_slot != RADV_BORDER_COLOR_COUNT ? sampler->border_color_slot : 0;
sampler->state[0] =
(S_008F30_CLAMP_X(radv_tex_wrap(pCreateInfo->addressModeU)) |
S_008F30_CLAMP_Y(radv_tex_wrap(pCreateInfo->addressModeV)) |
S_008F30_CLAMP_Z(radv_tex_wrap(pCreateInfo->addressModeW)) |
S_008F30_MAX_ANISO_RATIO(max_aniso_ratio) | S_008F30_DEPTH_COMPARE_FUNC(depth_compare_func) |
S_008F30_FORCE_UNNORMALIZED(pCreateInfo->unnormalizedCoordinates ? 1 : 0) |
S_008F30_ANISO_THRESHOLD(max_aniso_ratio >> 1) | S_008F30_ANISO_BIAS(max_aniso_ratio) |
S_008F30_DISABLE_CUBE_WRAP(0) | S_008F30_COMPAT_MODE(compat_mode) |
S_008F30_FILTER_MODE(filter_mode) | S_008F30_TRUNC_COORD(trunc_coord));
sampler->state[1] = (S_008F34_MIN_LOD(S_FIXED(CLAMP(pCreateInfo->minLod, 0, 15), 8)) |
S_008F34_MAX_LOD(S_FIXED(CLAMP(pCreateInfo->maxLod, 0, 15), 8)) |
S_008F34_PERF_MIP(max_aniso_ratio ? max_aniso_ratio + 6 : 0));
sampler->state[2] = (S_008F38_LOD_BIAS(S_FIXED(CLAMP(pCreateInfo->mipLodBias, -16, 16), 8)) |
S_008F38_XY_MAG_FILTER(radv_tex_filter(pCreateInfo->magFilter, max_aniso)) |
S_008F38_XY_MIN_FILTER(radv_tex_filter(pCreateInfo->minFilter, max_aniso)) |
S_008F38_MIP_FILTER(radv_tex_mipfilter(pCreateInfo->mipmapMode)) |
S_008F38_MIP_POINT_PRECLAMP(0));
sampler->state[3] = (S_008F3C_BORDER_COLOR_PTR(border_color_ptr) |
S_008F3C_BORDER_COLOR_TYPE(radv_tex_bordercolor(border_color)));
if (device->physical_device->rad_info.chip_class >= GFX10) {
sampler->state[2] |= S_008F38_ANISO_OVERRIDE_GFX10(1);
} else {
sampler->state[2] |=
S_008F38_DISABLE_LSB_CEIL(device->physical_device->rad_info.chip_class <= GFX8) |
S_008F38_FILTER_PREC_FIX(1) |
S_008F38_ANISO_OVERRIDE_GFX8(device->physical_device->rad_info.chip_class >= GFX8);
}
}
VkResult
radv_CreateSampler(VkDevice _device, const VkSamplerCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkSampler *pSampler)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_sampler *sampler;
const struct VkSamplerYcbcrConversionInfo *ycbcr_conversion =
vk_find_struct_const(pCreateInfo->pNext, SAMPLER_YCBCR_CONVERSION_INFO);
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);
sampler = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*sampler), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!sampler)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &sampler->base, VK_OBJECT_TYPE_SAMPLER);
radv_init_sampler(device, sampler, pCreateInfo);
sampler->ycbcr_sampler =
ycbcr_conversion ? radv_sampler_ycbcr_conversion_from_handle(ycbcr_conversion->conversion)
: NULL;
*pSampler = radv_sampler_to_handle(sampler);
return VK_SUCCESS;
}
void
radv_DestroySampler(VkDevice _device, VkSampler _sampler, const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_sampler, sampler, _sampler);
if (!sampler)
return;
if (sampler->border_color_slot != RADV_BORDER_COLOR_COUNT)
radv_unregister_border_color(device, sampler->border_color_slot);
vk_object_base_finish(&sampler->base);
vk_free2(&device->vk.alloc, pAllocator, sampler);
}
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion)
{
/* For the full details on loader interface versioning, see
* <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
* What follows is a condensed summary, to help you navigate the large and
* confusing official doc.
*
* - Loader interface v0 is incompatible with later versions. We don't
* support it.
*
* - In loader interface v1:
* - The first ICD entrypoint called by the loader is
* vk_icdGetInstanceProcAddr(). The ICD must statically expose this
* entrypoint.
* - The ICD must statically expose no other Vulkan symbol unless it is
* linked with -Bsymbolic.
* - Each dispatchable Vulkan handle created by the ICD must be
* a pointer to a struct whose first member is VK_LOADER_DATA. The
* ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
* - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
* vkDestroySurfaceKHR(). The ICD must be capable of working with
* such loader-managed surfaces.
*
* - Loader interface v2 differs from v1 in:
* - The first ICD entrypoint called by the loader is
* vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
* statically expose this entrypoint.
*
* - Loader interface v3 differs from v2 in:
* - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
* vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
* because the loader no longer does so.
*/
*pSupportedVersion = MIN2(*pSupportedVersion, 4u);
return VK_SUCCESS;
}
VkResult
radv_GetMemoryFdKHR(VkDevice _device, const VkMemoryGetFdInfoKHR *pGetFdInfo, int *pFD)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, memory, pGetFdInfo->memory);
assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
/* At the moment, we support only the below handle types. */
assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
bool ret = radv_get_memory_fd(device, memory, pFD);
if (ret == false)
return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
return VK_SUCCESS;
}
static uint32_t
radv_compute_valid_memory_types_attempt(struct radv_physical_device *dev,
enum radeon_bo_domain domains, enum radeon_bo_flag flags,
enum radeon_bo_flag ignore_flags)
{
/* Don't count GTT/CPU as relevant:
*
* - We're not fully consistent between the two.
* - Sometimes VRAM gets VRAM|GTT.
*/
const enum radeon_bo_domain relevant_domains =
RADEON_DOMAIN_VRAM | RADEON_DOMAIN_GDS | RADEON_DOMAIN_OA;
uint32_t bits = 0;
for (unsigned i = 0; i < dev->memory_properties.memoryTypeCount; ++i) {
if ((domains & relevant_domains) != (dev->memory_domains[i] & relevant_domains))
continue;
if ((flags & ~ignore_flags) != (dev->memory_flags[i] & ~ignore_flags))
continue;
bits |= 1u << i;
}
return bits;
}
static uint32_t
radv_compute_valid_memory_types(struct radv_physical_device *dev, enum radeon_bo_domain domains,
enum radeon_bo_flag flags)
{
enum radeon_bo_flag ignore_flags = ~(RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_GTT_WC);
uint32_t bits = radv_compute_valid_memory_types_attempt(dev, domains, flags, ignore_flags);
if (!bits) {
ignore_flags |= RADEON_FLAG_GTT_WC;
bits = radv_compute_valid_memory_types_attempt(dev, domains, flags, ignore_flags);
}
if (!bits) {
ignore_flags |= RADEON_FLAG_NO_CPU_ACCESS;
bits = radv_compute_valid_memory_types_attempt(dev, domains, flags, ignore_flags);
}
return bits;
}
VkResult
radv_GetMemoryFdPropertiesKHR(VkDevice _device, VkExternalMemoryHandleTypeFlagBits handleType,
int fd, VkMemoryFdPropertiesKHR *pMemoryFdProperties)
{
RADV_FROM_HANDLE(radv_device, device, _device);
switch (handleType) {
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT: {
enum radeon_bo_domain domains;
enum radeon_bo_flag flags;
if (!device->ws->buffer_get_flags_from_fd(device->ws, fd, &domains, &flags))
return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
pMemoryFdProperties->memoryTypeBits =
radv_compute_valid_memory_types(device->physical_device, domains, flags);
return VK_SUCCESS;
}
default:
/* The valid usage section for this function says:
*
* "handleType must not be one of the handle types defined as
* opaque."
*
* So opaque handle types fall into the default "unsupported" case.
*/
return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
}
}
static VkResult
radv_import_opaque_fd(struct radv_device *device, int fd, uint32_t *syncobj)
{
uint32_t syncobj_handle = 0;
int ret = device->ws->import_syncobj(device->ws, fd, &syncobj_handle);
if (ret != 0)
return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
if (*syncobj)
device->ws->destroy_syncobj(device->ws, *syncobj);
*syncobj = syncobj_handle;
close(fd);
return VK_SUCCESS;
}
static VkResult
radv_import_sync_fd(struct radv_device *device, int fd, uint32_t *syncobj)
{
/* If we create a syncobj we do it locally so that if we have an error, we don't
* leave a syncobj in an undetermined state in the fence. */
uint32_t syncobj_handle = *syncobj;
if (!syncobj_handle) {
bool create_signaled = fd == -1 ? true : false;
int ret = device->ws->create_syncobj(device->ws, create_signaled, &syncobj_handle);
if (ret) {
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
}
} else {
if (fd == -1)
device->ws->signal_syncobj(device->ws, syncobj_handle, 0);
}
if (fd != -1) {
int ret = device->ws->import_syncobj_from_sync_file(device->ws, syncobj_handle, fd);
if (ret)
return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE);
close(fd);
}
*syncobj = syncobj_handle;
return VK_SUCCESS;
}
VkResult
radv_ImportSemaphoreFdKHR(VkDevice _device,
const VkImportSemaphoreFdInfoKHR *pImportSemaphoreFdInfo)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_semaphore, sem, pImportSemaphoreFdInfo->semaphore);
VkResult result;
struct radv_semaphore_part *dst = NULL;
bool timeline = sem->permanent.kind == RADV_SEMAPHORE_TIMELINE_SYNCOBJ;
if (pImportSemaphoreFdInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT) {
assert(!timeline);
dst = &sem->temporary;
} else {
dst = &sem->permanent;
}
uint32_t syncobj =
(dst->kind == RADV_SEMAPHORE_SYNCOBJ || dst->kind == RADV_SEMAPHORE_TIMELINE_SYNCOBJ)
? dst->syncobj
: 0;
switch (pImportSemaphoreFdInfo->handleType) {
case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT:
result = radv_import_opaque_fd(device, pImportSemaphoreFdInfo->fd, &syncobj);
break;
case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT:
assert(!timeline);
result = radv_import_sync_fd(device, pImportSemaphoreFdInfo->fd, &syncobj);
break;
default:
unreachable("Unhandled semaphore handle type");
}
if (result == VK_SUCCESS) {
dst->syncobj = syncobj;
dst->kind = RADV_SEMAPHORE_SYNCOBJ;
if (timeline) {
dst->kind = RADV_SEMAPHORE_TIMELINE_SYNCOBJ;
dst->timeline_syncobj.max_point = 0;
}
}
return result;
}
VkResult
radv_GetSemaphoreFdKHR(VkDevice _device, const VkSemaphoreGetFdInfoKHR *pGetFdInfo, int *pFd)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_semaphore, sem, pGetFdInfo->semaphore);
int ret;
uint32_t syncobj_handle;
if (sem->temporary.kind != RADV_SEMAPHORE_NONE) {
assert(sem->temporary.kind == RADV_SEMAPHORE_SYNCOBJ ||
sem->temporary.kind == RADV_SEMAPHORE_TIMELINE_SYNCOBJ);
syncobj_handle = sem->temporary.syncobj;
} else {
assert(sem->permanent.kind == RADV_SEMAPHORE_SYNCOBJ ||
sem->permanent.kind == RADV_SEMAPHORE_TIMELINE_SYNCOBJ);
syncobj_handle = sem->permanent.syncobj;
}
switch (pGetFdInfo->handleType) {
case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT:
ret = device->ws->export_syncobj(device->ws, syncobj_handle, pFd);
if (ret)
return vk_error(device->instance, VK_ERROR_TOO_MANY_OBJECTS);
break;
case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT:
ret = device->ws->export_syncobj_to_sync_file(device->ws, syncobj_handle, pFd);
if (ret)
return vk_error(device->instance, VK_ERROR_TOO_MANY_OBJECTS);
if (sem->temporary.kind != RADV_SEMAPHORE_NONE) {
radv_destroy_semaphore_part(device, &sem->temporary);
} else {
device->ws->reset_syncobj(device->ws, syncobj_handle);
}
break;
default:
unreachable("Unhandled semaphore handle type");
}
return VK_SUCCESS;
}
void
radv_GetPhysicalDeviceExternalSemaphoreProperties(
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceExternalSemaphoreInfo *pExternalSemaphoreInfo,
VkExternalSemaphoreProperties *pExternalSemaphoreProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
VkSemaphoreTypeKHR type = radv_get_semaphore_type(pExternalSemaphoreInfo->pNext, NULL);
if (type == VK_SEMAPHORE_TYPE_TIMELINE && pdevice->rad_info.has_timeline_syncobj &&
pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) {
pExternalSemaphoreProperties->exportFromImportedHandleTypes =
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
pExternalSemaphoreProperties->compatibleHandleTypes =
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
pExternalSemaphoreProperties->externalSemaphoreFeatures =
VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
} else if (type == VK_SEMAPHORE_TYPE_TIMELINE) {
pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
pExternalSemaphoreProperties->compatibleHandleTypes = 0;
pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
} else if (pExternalSemaphoreInfo->handleType ==
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT ||
pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT) {
pExternalSemaphoreProperties->exportFromImportedHandleTypes =
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT |
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
pExternalSemaphoreProperties->compatibleHandleTypes =
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT |
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
pExternalSemaphoreProperties->externalSemaphoreFeatures =
VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
} else if (pExternalSemaphoreInfo->handleType ==
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) {
pExternalSemaphoreProperties->exportFromImportedHandleTypes =
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
pExternalSemaphoreProperties->compatibleHandleTypes =
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
pExternalSemaphoreProperties->externalSemaphoreFeatures =
VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
} else {
pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
pExternalSemaphoreProperties->compatibleHandleTypes = 0;
pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
}
}
VkResult
radv_ImportFenceFdKHR(VkDevice _device, const VkImportFenceFdInfoKHR *pImportFenceFdInfo)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_fence, fence, pImportFenceFdInfo->fence);
struct radv_fence_part *dst = NULL;
VkResult result;
if (pImportFenceFdInfo->flags & VK_FENCE_IMPORT_TEMPORARY_BIT) {
dst = &fence->temporary;
} else {
dst = &fence->permanent;
}
uint32_t syncobj = dst->kind == RADV_FENCE_SYNCOBJ ? dst->syncobj : 0;
switch (pImportFenceFdInfo->handleType) {
case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT:
result = radv_import_opaque_fd(device, pImportFenceFdInfo->fd, &syncobj);
break;
case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT:
result = radv_import_sync_fd(device, pImportFenceFdInfo->fd, &syncobj);
break;
default:
unreachable("Unhandled fence handle type");
}
if (result == VK_SUCCESS) {
dst->syncobj = syncobj;
dst->kind = RADV_FENCE_SYNCOBJ;
}
return result;
}
VkResult
radv_GetFenceFdKHR(VkDevice _device, const VkFenceGetFdInfoKHR *pGetFdInfo, int *pFd)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_fence, fence, pGetFdInfo->fence);
int ret;
struct radv_fence_part *part =
fence->temporary.kind != RADV_FENCE_NONE ? &fence->temporary : &fence->permanent;
switch (pGetFdInfo->handleType) {
case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT:
ret = device->ws->export_syncobj(device->ws, part->syncobj, pFd);
if (ret)
return vk_error(device->instance, VK_ERROR_TOO_MANY_OBJECTS);
break;
case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT:
ret = device->ws->export_syncobj_to_sync_file(device->ws, part->syncobj, pFd);
if (ret)
return vk_error(device->instance, VK_ERROR_TOO_MANY_OBJECTS);
if (part == &fence->temporary) {
radv_destroy_fence_part(device, part);
} else {
device->ws->reset_syncobj(device->ws, part->syncobj);
}
break;
default:
unreachable("Unhandled fence handle type");
}
return VK_SUCCESS;
}
void
radv_GetPhysicalDeviceExternalFenceProperties(
VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalFenceInfo *pExternalFenceInfo,
VkExternalFenceProperties *pExternalFenceProperties)
{
if (pExternalFenceInfo->handleType == VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT ||
pExternalFenceInfo->handleType == VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT) {
pExternalFenceProperties->exportFromImportedHandleTypes =
VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT;
pExternalFenceProperties->compatibleHandleTypes =
VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT;
pExternalFenceProperties->externalFenceFeatures =
VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT | VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
} else {
pExternalFenceProperties->exportFromImportedHandleTypes = 0;
pExternalFenceProperties->compatibleHandleTypes = 0;
pExternalFenceProperties->externalFenceFeatures = 0;
}
}
void
radv_GetDeviceGroupPeerMemoryFeatures(VkDevice device, uint32_t heapIndex,
uint32_t localDeviceIndex, uint32_t remoteDeviceIndex,
VkPeerMemoryFeatureFlags *pPeerMemoryFeatures)
{
assert(localDeviceIndex == remoteDeviceIndex);
*pPeerMemoryFeatures =
VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT | VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT | VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
}
static const VkTimeDomainEXT radv_time_domains[] = {
VK_TIME_DOMAIN_DEVICE_EXT,
VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
#ifdef CLOCK_MONOTONIC_RAW
VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
#endif
};
VkResult
radv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(VkPhysicalDevice physicalDevice,
uint32_t *pTimeDomainCount,
VkTimeDomainEXT *pTimeDomains)
{
int d;
VK_OUTARRAY_MAKE_TYPED(VkTimeDomainEXT, out, pTimeDomains, pTimeDomainCount);
for (d = 0; d < ARRAY_SIZE(radv_time_domains); d++) {
vk_outarray_append_typed(VkTimeDomainEXT, &out, i)
{
*i = radv_time_domains[d];
}
}
return vk_outarray_status(&out);
}
#ifndef _WIN32
static uint64_t
radv_clock_gettime(clockid_t clock_id)
{
struct timespec current;
int ret;
ret = clock_gettime(clock_id, &current);
#ifdef CLOCK_MONOTONIC_RAW
if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
ret = clock_gettime(CLOCK_MONOTONIC, &current);
#endif
if (ret < 0)
return 0;
return (uint64_t)current.tv_sec * 1000000000ULL + current.tv_nsec;
}
VkResult
radv_GetCalibratedTimestampsEXT(VkDevice _device, uint32_t timestampCount,
const VkCalibratedTimestampInfoEXT *pTimestampInfos,
uint64_t *pTimestamps, uint64_t *pMaxDeviation)
{
RADV_FROM_HANDLE(radv_device, device, _device);
uint32_t clock_crystal_freq = device->physical_device->rad_info.clock_crystal_freq;
int d;
uint64_t begin, end;
uint64_t max_clock_period = 0;
#ifdef CLOCK_MONOTONIC_RAW
begin = radv_clock_gettime(CLOCK_MONOTONIC_RAW);
#else
begin = radv_clock_gettime(CLOCK_MONOTONIC);
#endif
for (d = 0; d < timestampCount; d++) {
switch (pTimestampInfos[d].timeDomain) {
case VK_TIME_DOMAIN_DEVICE_EXT:
pTimestamps[d] = device->ws->query_value(device->ws, RADEON_TIMESTAMP);
uint64_t device_period = DIV_ROUND_UP(1000000, clock_crystal_freq);
max_clock_period = MAX2(max_clock_period, device_period);
break;
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
pTimestamps[d] = radv_clock_gettime(CLOCK_MONOTONIC);
max_clock_period = MAX2(max_clock_period, 1);
break;
#ifdef CLOCK_MONOTONIC_RAW
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
pTimestamps[d] = begin;
break;
#endif
default:
pTimestamps[d] = 0;
break;
}
}
#ifdef CLOCK_MONOTONIC_RAW
end = radv_clock_gettime(CLOCK_MONOTONIC_RAW);
#else
end = radv_clock_gettime(CLOCK_MONOTONIC);
#endif
/*
* The maximum deviation is the sum of the interval over which we
* perform the sampling and the maximum period of any sampled
* clock. That's because the maximum skew between any two sampled
* clock edges is when the sampled clock with the largest period is
* sampled at the end of that period but right at the beginning of the
* sampling interval and some other clock is sampled right at the
* begining of its sampling period and right at the end of the
* sampling interval. Let's assume the GPU has the longest clock
* period and that the application is sampling GPU and monotonic:
*
* s e
* w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
* Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
*
* g
* 0 1 2 3
* GPU -----_____-----_____-----_____-----_____
*
* m
* x y z 0 1 2 3 4 5 6 7 8 9 a b c
* Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
*
* Interval <----------------->
* Deviation <-------------------------->
*
* s = read(raw) 2
* g = read(GPU) 1
* m = read(monotonic) 2
* e = read(raw) b
*
* We round the sample interval up by one tick to cover sampling error
* in the interval clock
*/
uint64_t sample_interval = end - begin + 1;
*pMaxDeviation = sample_interval + max_clock_period;
return VK_SUCCESS;
}
#endif
void
radv_GetPhysicalDeviceMultisamplePropertiesEXT(VkPhysicalDevice physicalDevice,
VkSampleCountFlagBits samples,
VkMultisamplePropertiesEXT *pMultisampleProperties)
{
RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
VkSampleCountFlagBits supported_samples = VK_SAMPLE_COUNT_2_BIT | VK_SAMPLE_COUNT_4_BIT;
if (physical_device->rad_info.chip_class < GFX10)
supported_samples |= VK_SAMPLE_COUNT_8_BIT;
if (samples & supported_samples) {
pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){2, 2};
} else {
pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){0, 0};
}
}
VkResult
radv_GetPhysicalDeviceFragmentShadingRatesKHR(
VkPhysicalDevice physicalDevice, uint32_t *pFragmentShadingRateCount,
VkPhysicalDeviceFragmentShadingRateKHR *pFragmentShadingRates)
{
VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceFragmentShadingRateKHR, out, pFragmentShadingRates,
pFragmentShadingRateCount);
#define append_rate(w, h, s) \
{ \
VkPhysicalDeviceFragmentShadingRateKHR rate = { \
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR, \
.sampleCounts = s, \
.fragmentSize = {.width = w, .height = h}, \
}; \
vk_outarray_append_typed(VkPhysicalDeviceFragmentShadingRateKHR, &out, r) *r = rate; \
}
for (uint32_t x = 2; x >= 1; x--) {
for (uint32_t y = 2; y >= 1; y--) {
append_rate(x, y,
VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_2_BIT | VK_SAMPLE_COUNT_4_BIT |
VK_SAMPLE_COUNT_8_BIT);
}
}
#undef append_rate
return vk_outarray_status(&out);
}