blob: 752b5a942897614f55a0c1e69e2dd1df0f1de391 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "util/mesa-sha1.h"
#include "vk_util.h"
#include "anv_private.h"
/*
* Descriptor set layouts.
*/
static enum anv_descriptor_data
anv_descriptor_data_for_type(const struct anv_physical_device *device,
VkDescriptorType type)
{
enum anv_descriptor_data data = 0;
switch (type) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
data = ANV_DESCRIPTOR_SAMPLER_STATE;
if (device->has_bindless_samplers)
data |= ANV_DESCRIPTOR_SAMPLED_IMAGE;
break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
data = ANV_DESCRIPTOR_SURFACE_STATE |
ANV_DESCRIPTOR_SAMPLER_STATE;
if (device->has_bindless_images || device->has_bindless_samplers)
data |= ANV_DESCRIPTOR_SAMPLED_IMAGE;
break;
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
data = ANV_DESCRIPTOR_SURFACE_STATE;
if (device->has_bindless_images)
data |= ANV_DESCRIPTOR_SAMPLED_IMAGE;
break;
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
data = ANV_DESCRIPTOR_SURFACE_STATE;
break;
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
data = ANV_DESCRIPTOR_SURFACE_STATE;
if (device->info.gen < 9)
data |= ANV_DESCRIPTOR_IMAGE_PARAM;
if (device->has_bindless_images)
data |= ANV_DESCRIPTOR_STORAGE_IMAGE;
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
data = ANV_DESCRIPTOR_SURFACE_STATE |
ANV_DESCRIPTOR_BUFFER_VIEW;
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
data = ANV_DESCRIPTOR_SURFACE_STATE;
break;
case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT:
data = ANV_DESCRIPTOR_INLINE_UNIFORM;
break;
default:
unreachable("Unsupported descriptor type");
}
/* On gen8 and above when we have softpin enabled, we also need to push
* SSBO address ranges so that we can use A64 messages in the shader.
*/
if (device->has_a64_buffer_access &&
(type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER ||
type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC))
data |= ANV_DESCRIPTOR_ADDRESS_RANGE;
/* On Ivy Bridge and Bay Trail, we need swizzles textures in the shader
* Do not handle VK_DESCRIPTOR_TYPE_STORAGE_IMAGE and
* VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT because they already must
* have identity swizzle.
*/
if (device->info.gen == 7 && !device->info.is_haswell &&
(type == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE ||
type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER))
data |= ANV_DESCRIPTOR_TEXTURE_SWIZZLE;
return data;
}
static unsigned
anv_descriptor_data_size(enum anv_descriptor_data data)
{
unsigned size = 0;
if (data & ANV_DESCRIPTOR_SAMPLED_IMAGE)
size += sizeof(struct anv_sampled_image_descriptor);
if (data & ANV_DESCRIPTOR_STORAGE_IMAGE)
size += sizeof(struct anv_storage_image_descriptor);
if (data & ANV_DESCRIPTOR_IMAGE_PARAM)
size += BRW_IMAGE_PARAM_SIZE * 4;
if (data & ANV_DESCRIPTOR_ADDRESS_RANGE)
size += sizeof(struct anv_address_range_descriptor);
if (data & ANV_DESCRIPTOR_TEXTURE_SWIZZLE)
size += sizeof(struct anv_texture_swizzle_descriptor);
return size;
}
static bool
anv_needs_descriptor_buffer(VkDescriptorType desc_type,
enum anv_descriptor_data desc_data)
{
if (desc_type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT ||
anv_descriptor_data_size(desc_data) > 0)
return true;
return false;
}
/** Returns the size in bytes of each descriptor with the given layout */
unsigned
anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout)
{
if (layout->data & ANV_DESCRIPTOR_INLINE_UNIFORM) {
assert(layout->data == ANV_DESCRIPTOR_INLINE_UNIFORM);
return layout->array_size;
}
unsigned size = anv_descriptor_data_size(layout->data);
/* For multi-planar bindings, we make every descriptor consume the maximum
* number of planes so we don't have to bother with walking arrays and
* adding things up every time. Fortunately, YCbCr samplers aren't all
* that common and likely won't be in the middle of big arrays.
*/
if (layout->max_plane_count > 1)
size *= layout->max_plane_count;
return size;
}
/** Returns the size in bytes of each descriptor of the given type
*
* This version of the function does not have access to the entire layout so
* it may only work on certain descriptor types where the descriptor size is
* entirely determined by the descriptor type. Whenever possible, code should
* use anv_descriptor_size() instead.
*/
unsigned
anv_descriptor_type_size(const struct anv_physical_device *pdevice,
VkDescriptorType type)
{
assert(type != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT &&
type != VK_DESCRIPTOR_TYPE_SAMPLER &&
type != VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE &&
type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
return anv_descriptor_data_size(anv_descriptor_data_for_type(pdevice, type));
}
static bool
anv_descriptor_data_supports_bindless(const struct anv_physical_device *pdevice,
enum anv_descriptor_data data,
bool sampler)
{
if (data & ANV_DESCRIPTOR_ADDRESS_RANGE) {
assert(pdevice->has_a64_buffer_access);
return true;
}
if (data & ANV_DESCRIPTOR_SAMPLED_IMAGE) {
assert(pdevice->has_bindless_images || pdevice->has_bindless_samplers);
return sampler ? pdevice->has_bindless_samplers :
pdevice->has_bindless_images;
}
if (data & ANV_DESCRIPTOR_STORAGE_IMAGE) {
assert(pdevice->has_bindless_images);
return true;
}
return false;
}
bool
anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
const struct anv_descriptor_set_binding_layout *binding,
bool sampler)
{
return anv_descriptor_data_supports_bindless(pdevice, binding->data,
sampler);
}
bool
anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
const struct anv_descriptor_set_binding_layout *binding,
bool sampler)
{
if (pdevice->always_use_bindless)
return anv_descriptor_supports_bindless(pdevice, binding, sampler);
static const VkDescriptorBindingFlagBitsEXT flags_requiring_bindless =
VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT |
VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT |
VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT;
return (binding->flags & flags_requiring_bindless) != 0;
}
void anv_GetDescriptorSetLayoutSupport(
VkDevice _device,
const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
VkDescriptorSetLayoutSupport* pSupport)
{
ANV_FROM_HANDLE(anv_device, device, _device);
const struct anv_physical_device *pdevice = device->physical;
uint32_t surface_count[MESA_SHADER_STAGES] = { 0, };
bool needs_descriptor_buffer = false;
for (uint32_t b = 0; b < pCreateInfo->bindingCount; b++) {
const VkDescriptorSetLayoutBinding *binding = &pCreateInfo->pBindings[b];
enum anv_descriptor_data desc_data =
anv_descriptor_data_for_type(pdevice, binding->descriptorType);
if (anv_needs_descriptor_buffer(binding->descriptorType, desc_data))
needs_descriptor_buffer = true;
switch (binding->descriptorType) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
/* There is no real limit on samplers */
break;
case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT:
/* Inline uniforms don't use a binding */
break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
if (anv_descriptor_data_supports_bindless(pdevice, desc_data, false))
break;
if (binding->pImmutableSamplers) {
for (uint32_t i = 0; i < binding->descriptorCount; i++) {
ANV_FROM_HANDLE(anv_sampler, sampler,
binding->pImmutableSamplers[i]);
anv_foreach_stage(s, binding->stageFlags)
surface_count[s] += sampler->n_planes;
}
} else {
anv_foreach_stage(s, binding->stageFlags)
surface_count[s] += binding->descriptorCount;
}
break;
default:
if (anv_descriptor_data_supports_bindless(pdevice, desc_data, false))
break;
anv_foreach_stage(s, binding->stageFlags)
surface_count[s] += binding->descriptorCount;
break;
}
}
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (needs_descriptor_buffer)
surface_count[s] += 1;
}
bool supported = true;
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
/* Our maximum binding table size is 240 and we need to reserve 8 for
* render targets.
*/
if (surface_count[s] > MAX_BINDING_TABLE_SIZE - MAX_RTS)
supported = false;
}
pSupport->supported = supported;
}
VkResult anv_CreateDescriptorSetLayout(
VkDevice _device,
const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDescriptorSetLayout* pSetLayout)
{
ANV_FROM_HANDLE(anv_device, device, _device);
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
uint32_t max_binding = 0;
uint32_t immutable_sampler_count = 0;
for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
max_binding = MAX2(max_binding, pCreateInfo->pBindings[j].binding);
/* From the Vulkan 1.1.97 spec for VkDescriptorSetLayoutBinding:
*
* "If descriptorType specifies a VK_DESCRIPTOR_TYPE_SAMPLER or
* VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER type descriptor, then
* pImmutableSamplers can be used to initialize a set of immutable
* samplers. [...] If descriptorType is not one of these descriptor
* types, then pImmutableSamplers is ignored.
*
* We need to be careful here and only parse pImmutableSamplers if we
* have one of the right descriptor types.
*/
VkDescriptorType desc_type = pCreateInfo->pBindings[j].descriptorType;
if ((desc_type == VK_DESCRIPTOR_TYPE_SAMPLER ||
desc_type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) &&
pCreateInfo->pBindings[j].pImmutableSamplers)
immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
}
struct anv_descriptor_set_layout *set_layout;
struct anv_descriptor_set_binding_layout *bindings;
struct anv_sampler **samplers;
/* We need to allocate decriptor set layouts off the device allocator
* with DEVICE scope because they are reference counted and may not be
* destroyed when vkDestroyDescriptorSetLayout is called.
*/
ANV_MULTIALLOC(ma);
anv_multialloc_add(&ma, &set_layout, 1);
anv_multialloc_add(&ma, &bindings, max_binding + 1);
anv_multialloc_add(&ma, &samplers, immutable_sampler_count);
if (!anv_multialloc_alloc(&ma, &device->alloc,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE))
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
memset(set_layout, 0, sizeof(*set_layout));
set_layout->ref_cnt = 1;
set_layout->binding_count = max_binding + 1;
for (uint32_t b = 0; b <= max_binding; b++) {
/* Initialize all binding_layout entries to -1 */
memset(&set_layout->binding[b], -1, sizeof(set_layout->binding[b]));
set_layout->binding[b].flags = 0;
set_layout->binding[b].data = 0;
set_layout->binding[b].max_plane_count = 0;
set_layout->binding[b].array_size = 0;
set_layout->binding[b].immutable_samplers = NULL;
}
/* Initialize all samplers to 0 */
memset(samplers, 0, immutable_sampler_count * sizeof(*samplers));
uint32_t buffer_view_count = 0;
uint32_t dynamic_offset_count = 0;
uint32_t descriptor_buffer_size = 0;
for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
const VkDescriptorSetLayoutBinding *binding = &pCreateInfo->pBindings[j];
uint32_t b = binding->binding;
/* We temporarily store pCreateInfo->pBindings[] index (plus one) in the
* immutable_samplers pointer. This provides us with a quick-and-dirty
* way to sort the bindings by binding number.
*/
set_layout->binding[b].immutable_samplers = (void *)(uintptr_t)(j + 1);
}
const VkDescriptorSetLayoutBindingFlagsCreateInfoEXT *binding_flags_info =
vk_find_struct_const(pCreateInfo->pNext,
DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT);
for (uint32_t b = 0; b <= max_binding; b++) {
/* We stashed the pCreateInfo->pBindings[] index (plus one) in the
* immutable_samplers pointer. Check for NULL (empty binding) and then
* reset it and compute the index.
*/
if (set_layout->binding[b].immutable_samplers == NULL)
continue;
const uint32_t info_idx =
(uintptr_t)(void *)set_layout->binding[b].immutable_samplers - 1;
set_layout->binding[b].immutable_samplers = NULL;
const VkDescriptorSetLayoutBinding *binding =
&pCreateInfo->pBindings[info_idx];
if (binding->descriptorCount == 0)
continue;
#ifndef NDEBUG
set_layout->binding[b].type = binding->descriptorType;
#endif
if (binding_flags_info && binding_flags_info->bindingCount > 0) {
assert(binding_flags_info->bindingCount == pCreateInfo->bindingCount);
set_layout->binding[b].flags =
binding_flags_info->pBindingFlags[info_idx];
}
set_layout->binding[b].data =
anv_descriptor_data_for_type(device->physical,
binding->descriptorType);
set_layout->binding[b].array_size = binding->descriptorCount;
set_layout->binding[b].descriptor_index = set_layout->size;
set_layout->size += binding->descriptorCount;
if (set_layout->binding[b].data & ANV_DESCRIPTOR_BUFFER_VIEW) {
set_layout->binding[b].buffer_view_index = buffer_view_count;
buffer_view_count += binding->descriptorCount;
}
switch (binding->descriptorType) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
set_layout->binding[b].max_plane_count = 1;
if (binding->pImmutableSamplers) {
set_layout->binding[b].immutable_samplers = samplers;
samplers += binding->descriptorCount;
for (uint32_t i = 0; i < binding->descriptorCount; i++) {
ANV_FROM_HANDLE(anv_sampler, sampler,
binding->pImmutableSamplers[i]);
set_layout->binding[b].immutable_samplers[i] = sampler;
if (set_layout->binding[b].max_plane_count < sampler->n_planes)
set_layout->binding[b].max_plane_count = sampler->n_planes;
}
}
break;
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
set_layout->binding[b].max_plane_count = 1;
break;
default:
break;
}
switch (binding->descriptorType) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
set_layout->binding[b].dynamic_offset_index = dynamic_offset_count;
anv_foreach_stage(s, binding->stageFlags) {
STATIC_ASSERT(MAX_DYNAMIC_BUFFERS <=
sizeof(set_layout->stage_dynamic_offsets[s]) * 8);
set_layout->stage_dynamic_offsets[s] |=
BITFIELD_RANGE(set_layout->binding[b].dynamic_offset_index,
binding->descriptorCount);
}
dynamic_offset_count += binding->descriptorCount;
assert(dynamic_offset_count < MAX_DYNAMIC_BUFFERS);
break;
default:
break;
}
if (binding->descriptorType ==
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
/* Inline uniform blocks are specified to use the descriptor array
* size as the size in bytes of the block.
*/
descriptor_buffer_size = align_u32(descriptor_buffer_size, 32);
set_layout->binding[b].descriptor_offset = descriptor_buffer_size;
descriptor_buffer_size += binding->descriptorCount;
} else {
set_layout->binding[b].descriptor_offset = descriptor_buffer_size;
descriptor_buffer_size += anv_descriptor_size(&set_layout->binding[b]) *
binding->descriptorCount;
}
set_layout->shader_stages |= binding->stageFlags;
}
set_layout->buffer_view_count = buffer_view_count;
set_layout->dynamic_offset_count = dynamic_offset_count;
set_layout->descriptor_buffer_size = descriptor_buffer_size;
*pSetLayout = anv_descriptor_set_layout_to_handle(set_layout);
return VK_SUCCESS;
}
void anv_DestroyDescriptorSetLayout(
VkDevice _device,
VkDescriptorSetLayout _set_layout,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout, _set_layout);
if (!set_layout)
return;
anv_descriptor_set_layout_unref(device, set_layout);
}
#define SHA1_UPDATE_VALUE(ctx, x) _mesa_sha1_update(ctx, &(x), sizeof(x));
static void
sha1_update_immutable_sampler(struct mesa_sha1 *ctx,
const struct anv_sampler *sampler)
{
if (!sampler->conversion)
return;
/* The only thing that affects the shader is ycbcr conversion */
_mesa_sha1_update(ctx, sampler->conversion,
sizeof(*sampler->conversion));
}
static void
sha1_update_descriptor_set_binding_layout(struct mesa_sha1 *ctx,
const struct anv_descriptor_set_binding_layout *layout)
{
SHA1_UPDATE_VALUE(ctx, layout->flags);
SHA1_UPDATE_VALUE(ctx, layout->data);
SHA1_UPDATE_VALUE(ctx, layout->max_plane_count);
SHA1_UPDATE_VALUE(ctx, layout->array_size);
SHA1_UPDATE_VALUE(ctx, layout->descriptor_index);
SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_index);
SHA1_UPDATE_VALUE(ctx, layout->buffer_view_index);
SHA1_UPDATE_VALUE(ctx, layout->descriptor_offset);
if (layout->immutable_samplers) {
for (uint16_t i = 0; i < layout->array_size; i++)
sha1_update_immutable_sampler(ctx, layout->immutable_samplers[i]);
}
}
static void
sha1_update_descriptor_set_layout(struct mesa_sha1 *ctx,
const struct anv_descriptor_set_layout *layout)
{
SHA1_UPDATE_VALUE(ctx, layout->binding_count);
SHA1_UPDATE_VALUE(ctx, layout->size);
SHA1_UPDATE_VALUE(ctx, layout->shader_stages);
SHA1_UPDATE_VALUE(ctx, layout->buffer_view_count);
SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_count);
SHA1_UPDATE_VALUE(ctx, layout->descriptor_buffer_size);
for (uint16_t i = 0; i < layout->binding_count; i++)
sha1_update_descriptor_set_binding_layout(ctx, &layout->binding[i]);
}
/*
* Pipeline layouts. These have nothing to do with the pipeline. They are
* just multiple descriptor set layouts pasted together
*/
VkResult anv_CreatePipelineLayout(
VkDevice _device,
const VkPipelineLayoutCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPipelineLayout* pPipelineLayout)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_pipeline_layout *layout;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
layout = vk_alloc2(&device->alloc, pAllocator, sizeof(*layout), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (layout == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
layout->num_sets = pCreateInfo->setLayoutCount;
unsigned dynamic_offset_count = 0;
for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout,
pCreateInfo->pSetLayouts[set]);
layout->set[set].layout = set_layout;
anv_descriptor_set_layout_ref(set_layout);
layout->set[set].dynamic_offset_start = dynamic_offset_count;
for (uint32_t b = 0; b < set_layout->binding_count; b++) {
if (set_layout->binding[b].dynamic_offset_index < 0)
continue;
dynamic_offset_count += set_layout->binding[b].array_size;
}
}
assert(dynamic_offset_count < MAX_DYNAMIC_BUFFERS);
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
for (unsigned s = 0; s < layout->num_sets; s++) {
sha1_update_descriptor_set_layout(&ctx, layout->set[s].layout);
_mesa_sha1_update(&ctx, &layout->set[s].dynamic_offset_start,
sizeof(layout->set[s].dynamic_offset_start));
}
_mesa_sha1_update(&ctx, &layout->num_sets, sizeof(layout->num_sets));
_mesa_sha1_final(&ctx, layout->sha1);
*pPipelineLayout = anv_pipeline_layout_to_handle(layout);
return VK_SUCCESS;
}
void anv_DestroyPipelineLayout(
VkDevice _device,
VkPipelineLayout _pipelineLayout,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, _pipelineLayout);
if (!pipeline_layout)
return;
for (uint32_t i = 0; i < pipeline_layout->num_sets; i++)
anv_descriptor_set_layout_unref(device, pipeline_layout->set[i].layout);
vk_free2(&device->alloc, pAllocator, pipeline_layout);
}
/*
* Descriptor pools.
*
* These are implemented using a big pool of memory and a free-list for the
* host memory allocations and a state_stream and a free list for the buffer
* view surface state. The spec allows us to fail to allocate due to
* fragmentation in all cases but two: 1) after pool reset, allocating up
* until the pool size with no freeing must succeed and 2) allocating and
* freeing only descriptor sets with the same layout. Case 1) is easy enogh,
* and the free lists lets us recycle blocks for case 2).
*/
/* The vma heap reserves 0 to mean NULL; we have to offset by some ammount to
* ensure we can allocate the entire BO without hitting zero. The actual
* amount doesn't matter.
*/
#define POOL_HEAP_OFFSET 64
#define EMPTY 1
VkResult anv_CreateDescriptorPool(
VkDevice _device,
const VkDescriptorPoolCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDescriptorPool* pDescriptorPool)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_descriptor_pool *pool;
const VkDescriptorPoolInlineUniformBlockCreateInfoEXT *inline_info =
vk_find_struct_const(pCreateInfo->pNext,
DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO_EXT);
uint32_t descriptor_count = 0;
uint32_t buffer_view_count = 0;
uint32_t descriptor_bo_size = 0;
for (uint32_t i = 0; i < pCreateInfo->poolSizeCount; i++) {
enum anv_descriptor_data desc_data =
anv_descriptor_data_for_type(device->physical,
pCreateInfo->pPoolSizes[i].type);
if (desc_data & ANV_DESCRIPTOR_BUFFER_VIEW)
buffer_view_count += pCreateInfo->pPoolSizes[i].descriptorCount;
unsigned desc_data_size = anv_descriptor_data_size(desc_data) *
pCreateInfo->pPoolSizes[i].descriptorCount;
/* Combined image sampler descriptors can take up to 3 slots if they
* hold a YCbCr image.
*/
if (pCreateInfo->pPoolSizes[i].type ==
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
desc_data_size *= 3;
if (pCreateInfo->pPoolSizes[i].type ==
VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
/* Inline uniform blocks are specified to use the descriptor array
* size as the size in bytes of the block.
*/
assert(inline_info);
desc_data_size += pCreateInfo->pPoolSizes[i].descriptorCount;
}
descriptor_bo_size += desc_data_size;
descriptor_count += pCreateInfo->pPoolSizes[i].descriptorCount;
}
/* We have to align descriptor buffer allocations to 32B so that we can
* push descriptor buffers. This means that each descriptor buffer
* allocated may burn up to 32B of extra space to get the right alignment.
* (Technically, it's at most 28B because we're always going to start at
* least 4B aligned but we're being conservative here.) Allocate enough
* extra space that we can chop it into maxSets pieces and align each one
* of them to 32B.
*/
descriptor_bo_size += 32 * pCreateInfo->maxSets;
/* We align inline uniform blocks to 32B */
if (inline_info)
descriptor_bo_size += 32 * inline_info->maxInlineUniformBlockBindings;
descriptor_bo_size = ALIGN(descriptor_bo_size, 4096);
const size_t pool_size =
pCreateInfo->maxSets * sizeof(struct anv_descriptor_set) +
descriptor_count * sizeof(struct anv_descriptor) +
buffer_view_count * sizeof(struct anv_buffer_view);
const size_t total_size = sizeof(*pool) + pool_size;
pool = vk_alloc2(&device->alloc, pAllocator, total_size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!pool)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
pool->size = pool_size;
pool->next = 0;
pool->free_list = EMPTY;
if (descriptor_bo_size > 0) {
VkResult result = anv_device_alloc_bo(device,
descriptor_bo_size,
ANV_BO_ALLOC_MAPPED |
ANV_BO_ALLOC_SNOOPED,
0 /* explicit_address */,
&pool->bo);
if (result != VK_SUCCESS) {
vk_free2(&device->alloc, pAllocator, pool);
return result;
}
util_vma_heap_init(&pool->bo_heap, POOL_HEAP_OFFSET, descriptor_bo_size);
} else {
pool->bo = NULL;
}
anv_state_stream_init(&pool->surface_state_stream,
&device->surface_state_pool, 4096);
pool->surface_state_free_list = NULL;
list_inithead(&pool->desc_sets);
*pDescriptorPool = anv_descriptor_pool_to_handle(pool);
return VK_SUCCESS;
}
void anv_DestroyDescriptorPool(
VkDevice _device,
VkDescriptorPool _pool,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_descriptor_pool, pool, _pool);
if (!pool)
return;
list_for_each_entry_safe(struct anv_descriptor_set, set,
&pool->desc_sets, pool_link) {
anv_descriptor_set_layout_unref(device, set->layout);
}
if (pool->bo) {
util_vma_heap_finish(&pool->bo_heap);
anv_device_release_bo(device, pool->bo);
}
anv_state_stream_finish(&pool->surface_state_stream);
vk_free2(&device->alloc, pAllocator, pool);
}
VkResult anv_ResetDescriptorPool(
VkDevice _device,
VkDescriptorPool descriptorPool,
VkDescriptorPoolResetFlags flags)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_descriptor_pool, pool, descriptorPool);
list_for_each_entry_safe(struct anv_descriptor_set, set,
&pool->desc_sets, pool_link) {
anv_descriptor_set_layout_unref(device, set->layout);
}
list_inithead(&pool->desc_sets);
pool->next = 0;
pool->free_list = EMPTY;
if (pool->bo) {
util_vma_heap_finish(&pool->bo_heap);
util_vma_heap_init(&pool->bo_heap, POOL_HEAP_OFFSET, pool->bo->size);
}
anv_state_stream_finish(&pool->surface_state_stream);
anv_state_stream_init(&pool->surface_state_stream,
&device->surface_state_pool, 4096);
pool->surface_state_free_list = NULL;
return VK_SUCCESS;
}
struct pool_free_list_entry {
uint32_t next;
uint32_t size;
};
static VkResult
anv_descriptor_pool_alloc_set(struct anv_descriptor_pool *pool,
uint32_t size,
struct anv_descriptor_set **set)
{
if (size <= pool->size - pool->next) {
*set = (struct anv_descriptor_set *) (pool->data + pool->next);
pool->next += size;
return VK_SUCCESS;
} else {
struct pool_free_list_entry *entry;
uint32_t *link = &pool->free_list;
for (uint32_t f = pool->free_list; f != EMPTY; f = entry->next) {
entry = (struct pool_free_list_entry *) (pool->data + f);
if (size <= entry->size) {
*link = entry->next;
*set = (struct anv_descriptor_set *) entry;
return VK_SUCCESS;
}
link = &entry->next;
}
if (pool->free_list != EMPTY) {
return vk_error(VK_ERROR_FRAGMENTED_POOL);
} else {
return vk_error(VK_ERROR_OUT_OF_POOL_MEMORY);
}
}
}
static void
anv_descriptor_pool_free_set(struct anv_descriptor_pool *pool,
struct anv_descriptor_set *set)
{
/* Put the descriptor set allocation back on the free list. */
const uint32_t index = (char *) set - pool->data;
if (index + set->size == pool->next) {
pool->next = index;
} else {
struct pool_free_list_entry *entry = (struct pool_free_list_entry *) set;
entry->next = pool->free_list;
entry->size = set->size;
pool->free_list = (char *) entry - pool->data;
}
}
struct surface_state_free_list_entry {
void *next;
struct anv_state state;
};
static struct anv_state
anv_descriptor_pool_alloc_state(struct anv_descriptor_pool *pool)
{
struct surface_state_free_list_entry *entry =
pool->surface_state_free_list;
if (entry) {
struct anv_state state = entry->state;
pool->surface_state_free_list = entry->next;
assert(state.alloc_size == 64);
return state;
} else {
return anv_state_stream_alloc(&pool->surface_state_stream, 64, 64);
}
}
static void
anv_descriptor_pool_free_state(struct anv_descriptor_pool *pool,
struct anv_state state)
{
/* Put the buffer view surface state back on the free list. */
struct surface_state_free_list_entry *entry = state.map;
entry->next = pool->surface_state_free_list;
entry->state = state;
pool->surface_state_free_list = entry;
}
size_t
anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout)
{
return
sizeof(struct anv_descriptor_set) +
layout->size * sizeof(struct anv_descriptor) +
layout->buffer_view_count * sizeof(struct anv_buffer_view);
}
VkResult
anv_descriptor_set_create(struct anv_device *device,
struct anv_descriptor_pool *pool,
struct anv_descriptor_set_layout *layout,
struct anv_descriptor_set **out_set)
{
struct anv_descriptor_set *set;
const size_t size = anv_descriptor_set_layout_size(layout);
VkResult result = anv_descriptor_pool_alloc_set(pool, size, &set);
if (result != VK_SUCCESS)
return result;
if (layout->descriptor_buffer_size) {
/* Align the size to 32 so that alignment gaps don't cause extra holes
* in the heap which can lead to bad performance.
*/
uint32_t set_buffer_size = ALIGN(layout->descriptor_buffer_size, 32);
uint64_t pool_vma_offset =
util_vma_heap_alloc(&pool->bo_heap, set_buffer_size, 32);
if (pool_vma_offset == 0) {
anv_descriptor_pool_free_set(pool, set);
return vk_error(VK_ERROR_FRAGMENTED_POOL);
}
assert(pool_vma_offset >= POOL_HEAP_OFFSET &&
pool_vma_offset - POOL_HEAP_OFFSET <= INT32_MAX);
set->desc_mem.offset = pool_vma_offset - POOL_HEAP_OFFSET;
set->desc_mem.alloc_size = set_buffer_size;
set->desc_mem.map = pool->bo->map + set->desc_mem.offset;
set->desc_surface_state = anv_descriptor_pool_alloc_state(pool);
anv_fill_buffer_surface_state(device, set->desc_surface_state,
ISL_FORMAT_R32G32B32A32_FLOAT,
(struct anv_address) {
.bo = pool->bo,
.offset = set->desc_mem.offset,
},
layout->descriptor_buffer_size, 1);
} else {
set->desc_mem = ANV_STATE_NULL;
set->desc_surface_state = ANV_STATE_NULL;
}
set->pool = pool;
set->layout = layout;
anv_descriptor_set_layout_ref(layout);
set->size = size;
set->buffer_views =
(struct anv_buffer_view *) &set->descriptors[layout->size];
set->buffer_view_count = layout->buffer_view_count;
/* By defining the descriptors to be zero now, we can later verify that
* a descriptor has not been populated with user data.
*/
memset(set->descriptors, 0, sizeof(struct anv_descriptor) * layout->size);
/* Go through and fill out immutable samplers if we have any */
struct anv_descriptor *desc = set->descriptors;
for (uint32_t b = 0; b < layout->binding_count; b++) {
if (layout->binding[b].immutable_samplers) {
for (uint32_t i = 0; i < layout->binding[b].array_size; i++) {
/* The type will get changed to COMBINED_IMAGE_SAMPLER in
* UpdateDescriptorSets if needed. However, if the descriptor
* set has an immutable sampler, UpdateDescriptorSets may never
* touch it, so we need to make sure it's 100% valid now.
*
* We don't need to actually provide a sampler because the helper
* will always write in the immutable sampler regardless of what
* is in the sampler parameter.
*/
VkDescriptorImageInfo info = { };
anv_descriptor_set_write_image_view(device, set, &info,
VK_DESCRIPTOR_TYPE_SAMPLER,
b, i);
}
}
desc += layout->binding[b].array_size;
}
/* Allocate surface state for the buffer views. */
for (uint32_t b = 0; b < layout->buffer_view_count; b++) {
set->buffer_views[b].surface_state =
anv_descriptor_pool_alloc_state(pool);
}
list_addtail(&set->pool_link, &pool->desc_sets);
*out_set = set;
return VK_SUCCESS;
}
void
anv_descriptor_set_destroy(struct anv_device *device,
struct anv_descriptor_pool *pool,
struct anv_descriptor_set *set)
{
anv_descriptor_set_layout_unref(device, set->layout);
if (set->desc_mem.alloc_size) {
util_vma_heap_free(&pool->bo_heap,
(uint64_t)set->desc_mem.offset + POOL_HEAP_OFFSET,
set->desc_mem.alloc_size);
anv_descriptor_pool_free_state(pool, set->desc_surface_state);
}
for (uint32_t b = 0; b < set->buffer_view_count; b++)
anv_descriptor_pool_free_state(pool, set->buffer_views[b].surface_state);
list_del(&set->pool_link);
anv_descriptor_pool_free_set(pool, set);
}
VkResult anv_AllocateDescriptorSets(
VkDevice _device,
const VkDescriptorSetAllocateInfo* pAllocateInfo,
VkDescriptorSet* pDescriptorSets)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_descriptor_pool, pool, pAllocateInfo->descriptorPool);
VkResult result = VK_SUCCESS;
struct anv_descriptor_set *set;
uint32_t i;
for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
ANV_FROM_HANDLE(anv_descriptor_set_layout, layout,
pAllocateInfo->pSetLayouts[i]);
result = anv_descriptor_set_create(device, pool, layout, &set);
if (result != VK_SUCCESS)
break;
pDescriptorSets[i] = anv_descriptor_set_to_handle(set);
}
if (result != VK_SUCCESS)
anv_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
i, pDescriptorSets);
return result;
}
VkResult anv_FreeDescriptorSets(
VkDevice _device,
VkDescriptorPool descriptorPool,
uint32_t count,
const VkDescriptorSet* pDescriptorSets)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_descriptor_pool, pool, descriptorPool);
for (uint32_t i = 0; i < count; i++) {
ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]);
if (!set)
continue;
anv_descriptor_set_destroy(device, pool, set);
}
return VK_SUCCESS;
}
static void
anv_descriptor_set_write_image_param(uint32_t *param_desc_map,
const struct brw_image_param *param)
{
#define WRITE_PARAM_FIELD(field, FIELD) \
for (unsigned i = 0; i < ARRAY_SIZE(param->field); i++) \
param_desc_map[BRW_IMAGE_PARAM_##FIELD##_OFFSET + i] = param->field[i]
WRITE_PARAM_FIELD(offset, OFFSET);
WRITE_PARAM_FIELD(size, SIZE);
WRITE_PARAM_FIELD(stride, STRIDE);
WRITE_PARAM_FIELD(tiling, TILING);
WRITE_PARAM_FIELD(swizzling, SWIZZLING);
WRITE_PARAM_FIELD(size, SIZE);
#undef WRITE_PARAM_FIELD
}
static uint32_t
anv_surface_state_to_handle(struct anv_state state)
{
/* Bits 31:12 of the bindless surface offset in the extended message
* descriptor is bits 25:6 of the byte-based address.
*/
assert(state.offset >= 0);
uint32_t offset = state.offset;
assert((offset & 0x3f) == 0 && offset < (1 << 26));
return offset << 6;
}
void
anv_descriptor_set_write_image_view(struct anv_device *device,
struct anv_descriptor_set *set,
const VkDescriptorImageInfo * const info,
VkDescriptorType type,
uint32_t binding,
uint32_t element)
{
const struct anv_descriptor_set_binding_layout *bind_layout =
&set->layout->binding[binding];
struct anv_descriptor *desc =
&set->descriptors[bind_layout->descriptor_index + element];
struct anv_image_view *image_view = NULL;
struct anv_sampler *sampler = NULL;
/* We get called with just VK_DESCRIPTOR_TYPE_SAMPLER as part of descriptor
* set initialization to set the bindless samplers.
*/
assert(type == bind_layout->type ||
type == VK_DESCRIPTOR_TYPE_SAMPLER);
switch (type) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
sampler = anv_sampler_from_handle(info->sampler);
break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
image_view = anv_image_view_from_handle(info->imageView);
sampler = anv_sampler_from_handle(info->sampler);
break;
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
image_view = anv_image_view_from_handle(info->imageView);
break;
default:
unreachable("invalid descriptor type");
}
/* If this descriptor has an immutable sampler, we don't want to stomp on
* it.
*/
sampler = bind_layout->immutable_samplers ?
bind_layout->immutable_samplers[element] :
sampler;
*desc = (struct anv_descriptor) {
.type = type,
.layout = info->imageLayout,
.image_view = image_view,
.sampler = sampler,
};
void *desc_map = set->desc_mem.map + bind_layout->descriptor_offset +
element * anv_descriptor_size(bind_layout);
if (bind_layout->data & ANV_DESCRIPTOR_SAMPLED_IMAGE) {
struct anv_sampled_image_descriptor desc_data[3];
memset(desc_data, 0, sizeof(desc_data));
if (image_view) {
for (unsigned p = 0; p < image_view->n_planes; p++) {
struct anv_surface_state sstate =
(desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
image_view->planes[p].general_sampler_surface_state :
image_view->planes[p].optimal_sampler_surface_state;
desc_data[p].image = anv_surface_state_to_handle(sstate.state);
}
}
if (sampler) {
for (unsigned p = 0; p < sampler->n_planes; p++)
desc_data[p].sampler = sampler->bindless_state.offset + p * 32;
}
/* We may have max_plane_count < 0 if this isn't a sampled image but it
* can be no more than the size of our array of handles.
*/
assert(bind_layout->max_plane_count <= ARRAY_SIZE(desc_data));
memcpy(desc_map, desc_data,
MAX2(1, bind_layout->max_plane_count) * sizeof(desc_data[0]));
}
if (bind_layout->data & ANV_DESCRIPTOR_STORAGE_IMAGE) {
assert(!(bind_layout->data & ANV_DESCRIPTOR_IMAGE_PARAM));
assert(image_view->n_planes == 1);
struct anv_storage_image_descriptor desc_data = {
.read_write = anv_surface_state_to_handle(
image_view->planes[0].storage_surface_state.state),
.write_only = anv_surface_state_to_handle(
image_view->planes[0].writeonly_storage_surface_state.state),
};
memcpy(desc_map, &desc_data, sizeof(desc_data));
}
if (bind_layout->data & ANV_DESCRIPTOR_IMAGE_PARAM) {
/* Storage images can only ever have one plane */
assert(image_view->n_planes == 1);
const struct brw_image_param *image_param =
&image_view->planes[0].storage_image_param;
anv_descriptor_set_write_image_param(desc_map, image_param);
}
if (image_view && (bind_layout->data & ANV_DESCRIPTOR_TEXTURE_SWIZZLE)) {
assert(!(bind_layout->data & ANV_DESCRIPTOR_SAMPLED_IMAGE));
assert(image_view);
struct anv_texture_swizzle_descriptor desc_data[3];
memset(desc_data, 0, sizeof(desc_data));
for (unsigned p = 0; p < image_view->n_planes; p++) {
desc_data[p] = (struct anv_texture_swizzle_descriptor) {
.swizzle = {
(uint8_t)image_view->planes[p].isl.swizzle.r,
(uint8_t)image_view->planes[p].isl.swizzle.g,
(uint8_t)image_view->planes[p].isl.swizzle.b,
(uint8_t)image_view->planes[p].isl.swizzle.a,
},
};
}
memcpy(desc_map, desc_data,
MAX2(1, bind_layout->max_plane_count) * sizeof(desc_data[0]));
}
}
void
anv_descriptor_set_write_buffer_view(struct anv_device *device,
struct anv_descriptor_set *set,
VkDescriptorType type,
struct anv_buffer_view *buffer_view,
uint32_t binding,
uint32_t element)
{
const struct anv_descriptor_set_binding_layout *bind_layout =
&set->layout->binding[binding];
struct anv_descriptor *desc =
&set->descriptors[bind_layout->descriptor_index + element];
assert(type == bind_layout->type);
*desc = (struct anv_descriptor) {
.type = type,
.buffer_view = buffer_view,
};
void *desc_map = set->desc_mem.map + bind_layout->descriptor_offset +
element * anv_descriptor_size(bind_layout);
if (bind_layout->data & ANV_DESCRIPTOR_SAMPLED_IMAGE) {
struct anv_sampled_image_descriptor desc_data = {
.image = anv_surface_state_to_handle(buffer_view->surface_state),
};
memcpy(desc_map, &desc_data, sizeof(desc_data));
}
if (bind_layout->data & ANV_DESCRIPTOR_STORAGE_IMAGE) {
assert(!(bind_layout->data & ANV_DESCRIPTOR_IMAGE_PARAM));
struct anv_storage_image_descriptor desc_data = {
.read_write = anv_surface_state_to_handle(
buffer_view->storage_surface_state),
.write_only = anv_surface_state_to_handle(
buffer_view->writeonly_storage_surface_state),
};
memcpy(desc_map, &desc_data, sizeof(desc_data));
}
if (bind_layout->data & ANV_DESCRIPTOR_IMAGE_PARAM) {
anv_descriptor_set_write_image_param(desc_map,
&buffer_view->storage_image_param);
}
}
void
anv_descriptor_set_write_buffer(struct anv_device *device,
struct anv_descriptor_set *set,
struct anv_state_stream *alloc_stream,
VkDescriptorType type,
struct anv_buffer *buffer,
uint32_t binding,
uint32_t element,
VkDeviceSize offset,
VkDeviceSize range)
{
const struct anv_descriptor_set_binding_layout *bind_layout =
&set->layout->binding[binding];
struct anv_descriptor *desc =
&set->descriptors[bind_layout->descriptor_index + element];
assert(type == bind_layout->type);
struct anv_address bind_addr = anv_address_add(buffer->address, offset);
uint64_t bind_range = anv_buffer_get_range(buffer, offset, range);
if (type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
*desc = (struct anv_descriptor) {
.type = type,
.buffer = buffer,
.offset = offset,
.range = range,
};
} else {
assert(bind_layout->data & ANV_DESCRIPTOR_BUFFER_VIEW);
struct anv_buffer_view *bview =
&set->buffer_views[bind_layout->buffer_view_index + element];
bview->format = anv_isl_format_for_descriptor_type(type);
bview->range = bind_range;
bview->address = bind_addr;
/* If we're writing descriptors through a push command, we need to
* allocate the surface state from the command buffer. Otherwise it will
* be allocated by the descriptor pool when calling
* vkAllocateDescriptorSets. */
if (alloc_stream)
bview->surface_state = anv_state_stream_alloc(alloc_stream, 64, 64);
anv_fill_buffer_surface_state(device, bview->surface_state,
bview->format, bind_addr, bind_range, 1);
*desc = (struct anv_descriptor) {
.type = type,
.buffer_view = bview,
};
}
void *desc_map = set->desc_mem.map + bind_layout->descriptor_offset +
element * anv_descriptor_size(bind_layout);
if (bind_layout->data & ANV_DESCRIPTOR_ADDRESS_RANGE) {
struct anv_address_range_descriptor desc_data = {
.address = anv_address_physical(bind_addr),
.range = bind_range,
};
memcpy(desc_map, &desc_data, sizeof(desc_data));
}
}
void
anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
struct anv_descriptor_set *set,
uint32_t binding,
const void *data,
size_t offset,
size_t size)
{
const struct anv_descriptor_set_binding_layout *bind_layout =
&set->layout->binding[binding];
assert(bind_layout->data & ANV_DESCRIPTOR_INLINE_UNIFORM);
void *desc_map = set->desc_mem.map + bind_layout->descriptor_offset;
memcpy(desc_map + offset, data, size);
}
void anv_UpdateDescriptorSets(
VkDevice _device,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet* pDescriptorWrites,
uint32_t descriptorCopyCount,
const VkCopyDescriptorSet* pDescriptorCopies)
{
ANV_FROM_HANDLE(anv_device, device, _device);
for (uint32_t i = 0; i < descriptorWriteCount; i++) {
const VkWriteDescriptorSet *write = &pDescriptorWrites[i];
ANV_FROM_HANDLE(anv_descriptor_set, set, write->dstSet);
switch (write->descriptorType) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
for (uint32_t j = 0; j < write->descriptorCount; j++) {
anv_descriptor_set_write_image_view(device, set,
write->pImageInfo + j,
write->descriptorType,
write->dstBinding,
write->dstArrayElement + j);
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
for (uint32_t j = 0; j < write->descriptorCount; j++) {
ANV_FROM_HANDLE(anv_buffer_view, bview,
write->pTexelBufferView[j]);
anv_descriptor_set_write_buffer_view(device, set,
write->descriptorType,
bview,
write->dstBinding,
write->dstArrayElement + j);
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
for (uint32_t j = 0; j < write->descriptorCount; j++) {
assert(write->pBufferInfo[j].buffer);
ANV_FROM_HANDLE(anv_buffer, buffer, write->pBufferInfo[j].buffer);
assert(buffer);
anv_descriptor_set_write_buffer(device, set,
NULL,
write->descriptorType,
buffer,
write->dstBinding,
write->dstArrayElement + j,
write->pBufferInfo[j].offset,
write->pBufferInfo[j].range);
}
break;
case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT: {
const VkWriteDescriptorSetInlineUniformBlockEXT *inline_write =
vk_find_struct_const(write->pNext,
WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK_EXT);
assert(inline_write->dataSize == write->descriptorCount);
anv_descriptor_set_write_inline_uniform_data(device, set,
write->dstBinding,
inline_write->pData,
write->dstArrayElement,
inline_write->dataSize);
break;
}
default:
break;
}
}
for (uint32_t i = 0; i < descriptorCopyCount; i++) {
const VkCopyDescriptorSet *copy = &pDescriptorCopies[i];
ANV_FROM_HANDLE(anv_descriptor_set, src, copy->srcSet);
ANV_FROM_HANDLE(anv_descriptor_set, dst, copy->dstSet);
const struct anv_descriptor_set_binding_layout *src_layout =
&src->layout->binding[copy->srcBinding];
struct anv_descriptor *src_desc =
&src->descriptors[src_layout->descriptor_index];
src_desc += copy->srcArrayElement;
const struct anv_descriptor_set_binding_layout *dst_layout =
&dst->layout->binding[copy->dstBinding];
struct anv_descriptor *dst_desc =
&dst->descriptors[dst_layout->descriptor_index];
dst_desc += copy->dstArrayElement;
if (src_layout->data & ANV_DESCRIPTOR_INLINE_UNIFORM) {
assert(src_layout->data == ANV_DESCRIPTOR_INLINE_UNIFORM);
memcpy(dst->desc_mem.map + dst_layout->descriptor_offset +
copy->dstArrayElement,
src->desc_mem.map + src_layout->descriptor_offset +
copy->srcArrayElement,
copy->descriptorCount);
} else {
for (uint32_t j = 0; j < copy->descriptorCount; j++)
dst_desc[j] = src_desc[j];
unsigned desc_size = anv_descriptor_size(src_layout);
if (desc_size > 0) {
assert(desc_size == anv_descriptor_size(dst_layout));
memcpy(dst->desc_mem.map + dst_layout->descriptor_offset +
copy->dstArrayElement * desc_size,
src->desc_mem.map + src_layout->descriptor_offset +
copy->srcArrayElement * desc_size,
copy->descriptorCount * desc_size);
}
}
}
}
/*
* Descriptor update templates.
*/
void
anv_descriptor_set_write_template(struct anv_device *device,
struct anv_descriptor_set *set,
struct anv_state_stream *alloc_stream,
const struct anv_descriptor_update_template *template,
const void *data)
{
for (uint32_t i = 0; i < template->entry_count; i++) {
const struct anv_descriptor_template_entry *entry =
&template->entries[i];
switch (entry->type) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
for (uint32_t j = 0; j < entry->array_count; j++) {
const VkDescriptorImageInfo *info =
data + entry->offset + j * entry->stride;
anv_descriptor_set_write_image_view(device, set,
info, entry->type,
entry->binding,
entry->array_element + j);
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
for (uint32_t j = 0; j < entry->array_count; j++) {
const VkBufferView *_bview =
data + entry->offset + j * entry->stride;
ANV_FROM_HANDLE(anv_buffer_view, bview, *_bview);
anv_descriptor_set_write_buffer_view(device, set,
entry->type,
bview,
entry->binding,
entry->array_element + j);
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
for (uint32_t j = 0; j < entry->array_count; j++) {
const VkDescriptorBufferInfo *info =
data + entry->offset + j * entry->stride;
ANV_FROM_HANDLE(anv_buffer, buffer, info->buffer);
anv_descriptor_set_write_buffer(device, set,
alloc_stream,
entry->type,
buffer,
entry->binding,
entry->array_element + j,
info->offset, info->range);
}
break;
case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT:
anv_descriptor_set_write_inline_uniform_data(device, set,
entry->binding,
data + entry->offset,
entry->array_element,
entry->array_count);
break;
default:
break;
}
}
}
VkResult anv_CreateDescriptorUpdateTemplate(
VkDevice _device,
const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDescriptorUpdateTemplate* pDescriptorUpdateTemplate)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_descriptor_update_template *template;
size_t size = sizeof(*template) +
pCreateInfo->descriptorUpdateEntryCount * sizeof(template->entries[0]);
template = vk_alloc2(&device->alloc, pAllocator, size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (template == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
template->bind_point = pCreateInfo->pipelineBindPoint;
if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET)
template->set = pCreateInfo->set;
template->entry_count = pCreateInfo->descriptorUpdateEntryCount;
for (uint32_t i = 0; i < template->entry_count; i++) {
const VkDescriptorUpdateTemplateEntry *pEntry =
&pCreateInfo->pDescriptorUpdateEntries[i];
template->entries[i] = (struct anv_descriptor_template_entry) {
.type = pEntry->descriptorType,
.binding = pEntry->dstBinding,
.array_element = pEntry->dstArrayElement,
.array_count = pEntry->descriptorCount,
.offset = pEntry->offset,
.stride = pEntry->stride,
};
}
*pDescriptorUpdateTemplate =
anv_descriptor_update_template_to_handle(template);
return VK_SUCCESS;
}
void anv_DestroyDescriptorUpdateTemplate(
VkDevice _device,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_descriptor_update_template, template,
descriptorUpdateTemplate);
vk_free2(&device->alloc, pAllocator, template);
}
void anv_UpdateDescriptorSetWithTemplate(
VkDevice _device,
VkDescriptorSet descriptorSet,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
const void* pData)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_descriptor_set, set, descriptorSet);
ANV_FROM_HANDLE(anv_descriptor_update_template, template,
descriptorUpdateTemplate);
anv_descriptor_set_write_template(device, set, NULL, template, pData);
}