blob: ac3d80618c22463bb27ded067f7da83c75e0462b [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "radv_private.h"
#include "radv_shader.h"
#include "radv_shader_helper.h"
#include "nir/nir.h"
#include <llvm-c/Core.h>
#include <llvm-c/TargetMachine.h>
#include <llvm-c/Transforms/Scalar.h>
#if HAVE_LLVM >= 0x0700
#include <llvm-c/Transforms/Utils.h>
#endif
#include "sid.h"
#include "gfx9d.h"
#include "ac_binary.h"
#include "ac_llvm_util.h"
#include "ac_llvm_build.h"
#include "ac_shader_abi.h"
#include "ac_shader_util.h"
#include "ac_exp_param.h"
#define RADEON_LLVM_MAX_INPUTS (VARYING_SLOT_VAR31 + 1)
struct radv_shader_context {
struct ac_llvm_context ac;
const struct radv_nir_compiler_options *options;
struct radv_shader_variant_info *shader_info;
struct ac_shader_abi abi;
unsigned max_workgroup_size;
LLVMContextRef context;
LLVMValueRef main_function;
LLVMValueRef descriptor_sets[RADV_UD_MAX_SETS];
LLVMValueRef ring_offsets;
LLVMValueRef vertex_buffers;
LLVMValueRef rel_auto_id;
LLVMValueRef vs_prim_id;
LLVMValueRef es2gs_offset;
LLVMValueRef oc_lds;
LLVMValueRef merged_wave_info;
LLVMValueRef tess_factor_offset;
LLVMValueRef tes_rel_patch_id;
LLVMValueRef tes_u;
LLVMValueRef tes_v;
LLVMValueRef gs2vs_offset;
LLVMValueRef gs_wave_id;
LLVMValueRef gs_vtx_offset[6];
LLVMValueRef esgs_ring;
LLVMValueRef gsvs_ring;
LLVMValueRef hs_ring_tess_offchip;
LLVMValueRef hs_ring_tess_factor;
LLVMValueRef persp_sample, persp_center, persp_centroid;
LLVMValueRef linear_sample, linear_center, linear_centroid;
gl_shader_stage stage;
LLVMValueRef inputs[RADEON_LLVM_MAX_INPUTS * 4];
uint64_t input_mask;
uint64_t output_mask;
uint8_t num_output_clips;
uint8_t num_output_culls;
bool is_gs_copy_shader;
LLVMValueRef gs_next_vertex;
unsigned gs_max_out_vertices;
unsigned tes_primitive_mode;
uint32_t tcs_patch_outputs_read;
uint64_t tcs_outputs_read;
uint32_t tcs_vertices_per_patch;
uint32_t tcs_num_inputs;
uint32_t tcs_num_patches;
uint32_t max_gsvs_emit_size;
uint32_t gsvs_vertex_size;
};
enum radeon_llvm_calling_convention {
RADEON_LLVM_AMDGPU_VS = 87,
RADEON_LLVM_AMDGPU_GS = 88,
RADEON_LLVM_AMDGPU_PS = 89,
RADEON_LLVM_AMDGPU_CS = 90,
RADEON_LLVM_AMDGPU_HS = 93,
};
static inline struct radv_shader_context *
radv_shader_context_from_abi(struct ac_shader_abi *abi)
{
struct radv_shader_context *ctx = NULL;
return container_of(abi, ctx, abi);
}
struct ac_build_if_state
{
struct radv_shader_context *ctx;
LLVMValueRef condition;
LLVMBasicBlockRef entry_block;
LLVMBasicBlockRef true_block;
LLVMBasicBlockRef false_block;
LLVMBasicBlockRef merge_block;
};
static LLVMBasicBlockRef
ac_build_insert_new_block(struct radv_shader_context *ctx, const char *name)
{
LLVMBasicBlockRef current_block;
LLVMBasicBlockRef next_block;
LLVMBasicBlockRef new_block;
/* get current basic block */
current_block = LLVMGetInsertBlock(ctx->ac.builder);
/* chqeck if there's another block after this one */
next_block = LLVMGetNextBasicBlock(current_block);
if (next_block) {
/* insert the new block before the next block */
new_block = LLVMInsertBasicBlockInContext(ctx->context, next_block, name);
}
else {
/* append new block after current block */
LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
new_block = LLVMAppendBasicBlockInContext(ctx->context, function, name);
}
return new_block;
}
static void
ac_nir_build_if(struct ac_build_if_state *ifthen,
struct radv_shader_context *ctx,
LLVMValueRef condition)
{
LLVMBasicBlockRef block = LLVMGetInsertBlock(ctx->ac.builder);
memset(ifthen, 0, sizeof *ifthen);
ifthen->ctx = ctx;
ifthen->condition = condition;
ifthen->entry_block = block;
/* create endif/merge basic block for the phi functions */
ifthen->merge_block = ac_build_insert_new_block(ctx, "endif-block");
/* create/insert true_block before merge_block */
ifthen->true_block =
LLVMInsertBasicBlockInContext(ctx->context,
ifthen->merge_block,
"if-true-block");
/* successive code goes into the true block */
LLVMPositionBuilderAtEnd(ctx->ac.builder, ifthen->true_block);
}
/**
* End a conditional.
*/
static void
ac_nir_build_endif(struct ac_build_if_state *ifthen)
{
LLVMBuilderRef builder = ifthen->ctx->ac.builder;
/* Insert branch to the merge block from current block */
LLVMBuildBr(builder, ifthen->merge_block);
/*
* Now patch in the various branch instructions.
*/
/* Insert the conditional branch instruction at the end of entry_block */
LLVMPositionBuilderAtEnd(builder, ifthen->entry_block);
if (ifthen->false_block) {
/* we have an else clause */
LLVMBuildCondBr(builder, ifthen->condition,
ifthen->true_block, ifthen->false_block);
}
else {
/* no else clause */
LLVMBuildCondBr(builder, ifthen->condition,
ifthen->true_block, ifthen->merge_block);
}
/* Resume building code at end of the ifthen->merge_block */
LLVMPositionBuilderAtEnd(builder, ifthen->merge_block);
}
static LLVMValueRef get_rel_patch_id(struct radv_shader_context *ctx)
{
switch (ctx->stage) {
case MESA_SHADER_TESS_CTRL:
return ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
case MESA_SHADER_TESS_EVAL:
return ctx->tes_rel_patch_id;
break;
default:
unreachable("Illegal stage");
}
}
static unsigned
get_tcs_num_patches(struct radv_shader_context *ctx)
{
unsigned num_tcs_input_cp = ctx->options->key.tcs.input_vertices;
unsigned num_tcs_output_cp = ctx->tcs_vertices_per_patch;
uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
uint32_t output_vertex_size = num_tcs_outputs * 16;
uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
unsigned num_patches;
unsigned hardware_lds_size;
/* Ensure that we only need one wave per SIMD so we don't need to check
* resource usage. Also ensures that the number of tcs in and out
* vertices per threadgroup are at most 256.
*/
num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
/* Make sure that the data fits in LDS. This assumes the shaders only
* use LDS for the inputs and outputs.
*/
hardware_lds_size = ctx->options->chip_class >= CIK ? 65536 : 32768;
num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size));
/* Make sure the output data fits in the offchip buffer */
num_patches = MIN2(num_patches, (ctx->options->tess_offchip_block_dw_size * 4) / output_patch_size);
/* Not necessary for correctness, but improves performance. The
* specific value is taken from the proprietary driver.
*/
num_patches = MIN2(num_patches, 40);
/* SI bug workaround - limit LS-HS threadgroups to only one wave. */
if (ctx->options->chip_class == SI) {
unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp);
num_patches = MIN2(num_patches, one_wave);
}
return num_patches;
}
static unsigned
calculate_tess_lds_size(struct radv_shader_context *ctx)
{
unsigned num_tcs_input_cp = ctx->options->key.tcs.input_vertices;
unsigned num_tcs_output_cp;
unsigned num_tcs_outputs, num_tcs_patch_outputs;
unsigned input_vertex_size, output_vertex_size;
unsigned input_patch_size, output_patch_size;
unsigned pervertex_output_patch_size;
unsigned output_patch0_offset;
unsigned num_patches;
unsigned lds_size;
num_tcs_output_cp = ctx->tcs_vertices_per_patch;
num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
input_vertex_size = ctx->tcs_num_inputs * 16;
output_vertex_size = num_tcs_outputs * 16;
input_patch_size = num_tcs_input_cp * input_vertex_size;
pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
num_patches = ctx->tcs_num_patches;
output_patch0_offset = input_patch_size * num_patches;
lds_size = output_patch0_offset + output_patch_size * num_patches;
return lds_size;
}
/* Tessellation shaders pass outputs to the next shader using LDS.
*
* LS outputs = TCS inputs
* TCS outputs = TES inputs
*
* The LDS layout is:
* - TCS inputs for patch 0
* - TCS inputs for patch 1
* - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
* - ...
* - TCS outputs for patch 0 = get_tcs_out_patch0_offset
* - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
* - TCS outputs for patch 1
* - Per-patch TCS outputs for patch 1
* - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
* - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
* - ...
*
* All three shaders VS(LS), TCS, TES share the same LDS space.
*/
static LLVMValueRef
get_tcs_in_patch_stride(struct radv_shader_context *ctx)
{
assert (ctx->stage == MESA_SHADER_TESS_CTRL);
uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
input_patch_size /= 4;
return LLVMConstInt(ctx->ac.i32, input_patch_size, false);
}
static LLVMValueRef
get_tcs_out_patch_stride(struct radv_shader_context *ctx)
{
uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
uint32_t output_vertex_size = num_tcs_outputs * 16;
uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
output_patch_size /= 4;
return LLVMConstInt(ctx->ac.i32, output_patch_size, false);
}
static LLVMValueRef
get_tcs_out_vertex_stride(struct radv_shader_context *ctx)
{
uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
uint32_t output_vertex_size = num_tcs_outputs * 16;
output_vertex_size /= 4;
return LLVMConstInt(ctx->ac.i32, output_vertex_size, false);
}
static LLVMValueRef
get_tcs_out_patch0_offset(struct radv_shader_context *ctx)
{
assert (ctx->stage == MESA_SHADER_TESS_CTRL);
uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
uint32_t output_patch0_offset = input_patch_size;
unsigned num_patches = ctx->tcs_num_patches;
output_patch0_offset *= num_patches;
output_patch0_offset /= 4;
return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
}
static LLVMValueRef
get_tcs_out_patch0_patch_data_offset(struct radv_shader_context *ctx)
{
assert (ctx->stage == MESA_SHADER_TESS_CTRL);
uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
uint32_t output_patch0_offset = input_patch_size;
uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
uint32_t output_vertex_size = num_tcs_outputs * 16;
uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
unsigned num_patches = ctx->tcs_num_patches;
output_patch0_offset *= num_patches;
output_patch0_offset += pervertex_output_patch_size;
output_patch0_offset /= 4;
return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
}
static LLVMValueRef
get_tcs_in_current_patch_offset(struct radv_shader_context *ctx)
{
LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
}
static LLVMValueRef
get_tcs_out_current_patch_offset(struct radv_shader_context *ctx)
{
LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
return LLVMBuildAdd(ctx->ac.builder, patch0_offset,
LLVMBuildMul(ctx->ac.builder, patch_stride,
rel_patch_id, ""),
"");
}
static LLVMValueRef
get_tcs_out_current_patch_data_offset(struct radv_shader_context *ctx)
{
LLVMValueRef patch0_patch_data_offset =
get_tcs_out_patch0_patch_data_offset(ctx);
LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
return LLVMBuildAdd(ctx->ac.builder, patch0_patch_data_offset,
LLVMBuildMul(ctx->ac.builder, patch_stride,
rel_patch_id, ""),
"");
}
#define MAX_ARGS 64
struct arg_info {
LLVMTypeRef types[MAX_ARGS];
LLVMValueRef *assign[MAX_ARGS];
unsigned array_params_mask;
uint8_t count;
uint8_t sgpr_count;
uint8_t num_sgprs_used;
uint8_t num_vgprs_used;
};
enum ac_arg_regfile {
ARG_SGPR,
ARG_VGPR,
};
static void
add_arg(struct arg_info *info, enum ac_arg_regfile regfile, LLVMTypeRef type,
LLVMValueRef *param_ptr)
{
assert(info->count < MAX_ARGS);
info->assign[info->count] = param_ptr;
info->types[info->count] = type;
info->count++;
if (regfile == ARG_SGPR) {
info->num_sgprs_used += ac_get_type_size(type) / 4;
info->sgpr_count++;
} else {
assert(regfile == ARG_VGPR);
info->num_vgprs_used += ac_get_type_size(type) / 4;
}
}
static inline void
add_array_arg(struct arg_info *info, LLVMTypeRef type, LLVMValueRef *param_ptr)
{
info->array_params_mask |= (1 << info->count);
add_arg(info, ARG_SGPR, type, param_ptr);
}
static void assign_arguments(LLVMValueRef main_function,
struct arg_info *info)
{
unsigned i;
for (i = 0; i < info->count; i++) {
if (info->assign[i])
*info->assign[i] = LLVMGetParam(main_function, i);
}
}
static LLVMValueRef
create_llvm_function(LLVMContextRef ctx, LLVMModuleRef module,
LLVMBuilderRef builder, LLVMTypeRef *return_types,
unsigned num_return_elems,
struct arg_info *args,
unsigned max_workgroup_size,
const struct radv_nir_compiler_options *options)
{
LLVMTypeRef main_function_type, ret_type;
LLVMBasicBlockRef main_function_body;
if (num_return_elems)
ret_type = LLVMStructTypeInContext(ctx, return_types,
num_return_elems, true);
else
ret_type = LLVMVoidTypeInContext(ctx);
/* Setup the function */
main_function_type =
LLVMFunctionType(ret_type, args->types, args->count, 0);
LLVMValueRef main_function =
LLVMAddFunction(module, "main", main_function_type);
main_function_body =
LLVMAppendBasicBlockInContext(ctx, main_function, "main_body");
LLVMPositionBuilderAtEnd(builder, main_function_body);
LLVMSetFunctionCallConv(main_function, RADEON_LLVM_AMDGPU_CS);
for (unsigned i = 0; i < args->sgpr_count; ++i) {
ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_INREG);
if (args->array_params_mask & (1 << i)) {
LLVMValueRef P = LLVMGetParam(main_function, i);
ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_NOALIAS);
ac_add_attr_dereferenceable(P, UINT64_MAX);
}
}
if (options->address32_hi) {
ac_llvm_add_target_dep_function_attr(main_function,
"amdgpu-32bit-address-high-bits",
options->address32_hi);
}
if (max_workgroup_size) {
ac_llvm_add_target_dep_function_attr(main_function,
"amdgpu-max-work-group-size",
max_workgroup_size);
}
if (options->unsafe_math) {
/* These were copied from some LLVM test. */
LLVMAddTargetDependentFunctionAttr(main_function,
"less-precise-fpmad",
"true");
LLVMAddTargetDependentFunctionAttr(main_function,
"no-infs-fp-math",
"true");
LLVMAddTargetDependentFunctionAttr(main_function,
"no-nans-fp-math",
"true");
LLVMAddTargetDependentFunctionAttr(main_function,
"unsafe-fp-math",
"true");
LLVMAddTargetDependentFunctionAttr(main_function,
"no-signed-zeros-fp-math",
"true");
}
return main_function;
}
static void
set_loc(struct radv_userdata_info *ud_info, uint8_t *sgpr_idx,
uint8_t num_sgprs, bool indirect)
{
ud_info->sgpr_idx = *sgpr_idx;
ud_info->num_sgprs = num_sgprs;
ud_info->indirect = indirect;
*sgpr_idx += num_sgprs;
}
static void
set_loc_shader(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx,
uint8_t num_sgprs)
{
struct radv_userdata_info *ud_info =
&ctx->shader_info->user_sgprs_locs.shader_data[idx];
assert(ud_info);
set_loc(ud_info, sgpr_idx, num_sgprs, false);
}
static void
set_loc_shader_ptr(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx)
{
bool use_32bit_pointers = HAVE_32BIT_POINTERS &&
idx != AC_UD_SCRATCH_RING_OFFSETS;
set_loc_shader(ctx, idx, sgpr_idx, use_32bit_pointers ? 1 : 2);
}
static void
set_loc_desc(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx,
bool indirect)
{
struct radv_userdata_locations *locs =
&ctx->shader_info->user_sgprs_locs;
struct radv_userdata_info *ud_info = &locs->descriptor_sets[idx];
assert(ud_info);
set_loc(ud_info, sgpr_idx, HAVE_32BIT_POINTERS ? 1 : 2, indirect);
if (!indirect)
locs->descriptor_sets_enabled |= 1 << idx;
}
struct user_sgpr_info {
bool need_ring_offsets;
bool indirect_all_descriptor_sets;
};
static bool needs_view_index_sgpr(struct radv_shader_context *ctx,
gl_shader_stage stage)
{
switch (stage) {
case MESA_SHADER_VERTEX:
if (ctx->shader_info->info.needs_multiview_view_index ||
(!ctx->options->key.vs.as_es && !ctx->options->key.vs.as_ls && ctx->options->key.has_multiview_view_index))
return true;
break;
case MESA_SHADER_TESS_EVAL:
if (ctx->shader_info->info.needs_multiview_view_index || (!ctx->options->key.tes.as_es && ctx->options->key.has_multiview_view_index))
return true;
break;
case MESA_SHADER_GEOMETRY:
case MESA_SHADER_TESS_CTRL:
if (ctx->shader_info->info.needs_multiview_view_index)
return true;
break;
default:
break;
}
return false;
}
static uint8_t
count_vs_user_sgprs(struct radv_shader_context *ctx)
{
uint8_t count = 0;
if (ctx->shader_info->info.vs.has_vertex_buffers)
count += HAVE_32BIT_POINTERS ? 1 : 2;
count += ctx->shader_info->info.vs.needs_draw_id ? 3 : 2;
return count;
}
static void allocate_user_sgprs(struct radv_shader_context *ctx,
gl_shader_stage stage,
bool has_previous_stage,
gl_shader_stage previous_stage,
bool needs_view_index,
struct user_sgpr_info *user_sgpr_info)
{
uint8_t user_sgpr_count = 0;
memset(user_sgpr_info, 0, sizeof(struct user_sgpr_info));
/* until we sort out scratch/global buffers always assign ring offsets for gs/vs/es */
if (stage == MESA_SHADER_GEOMETRY ||
stage == MESA_SHADER_VERTEX ||
stage == MESA_SHADER_TESS_CTRL ||
stage == MESA_SHADER_TESS_EVAL ||
ctx->is_gs_copy_shader)
user_sgpr_info->need_ring_offsets = true;
if (stage == MESA_SHADER_FRAGMENT &&
ctx->shader_info->info.ps.needs_sample_positions)
user_sgpr_info->need_ring_offsets = true;
/* 2 user sgprs will nearly always be allocated for scratch/rings */
if (ctx->options->supports_spill || user_sgpr_info->need_ring_offsets) {
user_sgpr_count += 2;
}
switch (stage) {
case MESA_SHADER_COMPUTE:
if (ctx->shader_info->info.cs.uses_grid_size)
user_sgpr_count += 3;
break;
case MESA_SHADER_FRAGMENT:
user_sgpr_count += ctx->shader_info->info.ps.needs_sample_positions;
break;
case MESA_SHADER_VERTEX:
if (!ctx->is_gs_copy_shader)
user_sgpr_count += count_vs_user_sgprs(ctx);
break;
case MESA_SHADER_TESS_CTRL:
if (has_previous_stage) {
if (previous_stage == MESA_SHADER_VERTEX)
user_sgpr_count += count_vs_user_sgprs(ctx);
}
break;
case MESA_SHADER_TESS_EVAL:
break;
case MESA_SHADER_GEOMETRY:
if (has_previous_stage) {
if (previous_stage == MESA_SHADER_VERTEX) {
user_sgpr_count += count_vs_user_sgprs(ctx);
}
}
break;
default:
break;
}
if (needs_view_index)
user_sgpr_count++;
if (ctx->shader_info->info.loads_push_constants)
user_sgpr_count += HAVE_32BIT_POINTERS ? 1 : 2;
uint32_t available_sgprs = ctx->options->chip_class >= GFX9 && stage != MESA_SHADER_COMPUTE ? 32 : 16;
uint32_t remaining_sgprs = available_sgprs - user_sgpr_count;
uint32_t num_desc_set =
util_bitcount(ctx->shader_info->info.desc_set_used_mask);
if (remaining_sgprs / (HAVE_32BIT_POINTERS ? 1 : 2) < num_desc_set) {
user_sgpr_info->indirect_all_descriptor_sets = true;
}
}
static void
declare_global_input_sgprs(struct radv_shader_context *ctx,
gl_shader_stage stage,
bool has_previous_stage,
gl_shader_stage previous_stage,
const struct user_sgpr_info *user_sgpr_info,
struct arg_info *args,
LLVMValueRef *desc_sets)
{
LLVMTypeRef type = ac_array_in_const32_addr_space(ctx->ac.i8);
unsigned num_sets = ctx->options->layout ?
ctx->options->layout->num_sets : 0;
unsigned stage_mask = 1 << stage;
if (has_previous_stage)
stage_mask |= 1 << previous_stage;
/* 1 for each descriptor set */
if (!user_sgpr_info->indirect_all_descriptor_sets) {
for (unsigned i = 0; i < num_sets; ++i) {
if ((ctx->shader_info->info.desc_set_used_mask & (1 << i)) &&
ctx->options->layout->set[i].layout->shader_stages & stage_mask) {
add_array_arg(args, type,
&ctx->descriptor_sets[i]);
}
}
} else {
add_array_arg(args, ac_array_in_const32_addr_space(type), desc_sets);
}
if (ctx->shader_info->info.loads_push_constants) {
/* 1 for push constants and dynamic descriptors */
add_array_arg(args, type, &ctx->abi.push_constants);
}
}
static void
declare_vs_specific_input_sgprs(struct radv_shader_context *ctx,
gl_shader_stage stage,
bool has_previous_stage,
gl_shader_stage previous_stage,
struct arg_info *args)
{
if (!ctx->is_gs_copy_shader &&
(stage == MESA_SHADER_VERTEX ||
(has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
if (ctx->shader_info->info.vs.has_vertex_buffers) {
add_arg(args, ARG_SGPR,
ac_array_in_const32_addr_space(ctx->ac.v4i32),
&ctx->vertex_buffers);
}
add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.base_vertex);
add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.start_instance);
if (ctx->shader_info->info.vs.needs_draw_id) {
add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.draw_id);
}
}
}
static void
declare_vs_input_vgprs(struct radv_shader_context *ctx, struct arg_info *args)
{
add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.vertex_id);
if (!ctx->is_gs_copy_shader) {
if (ctx->options->key.vs.as_ls) {
add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->rel_auto_id);
add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
} else {
add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->vs_prim_id);
}
add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
}
}
static void
declare_tes_input_vgprs(struct radv_shader_context *ctx, struct arg_info *args)
{
add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_u);
add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_v);
add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->tes_rel_patch_id);
add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.tes_patch_id);
}
static void
set_global_input_locs(struct radv_shader_context *ctx, gl_shader_stage stage,
bool has_previous_stage, gl_shader_stage previous_stage,
const struct user_sgpr_info *user_sgpr_info,
LLVMValueRef desc_sets, uint8_t *user_sgpr_idx)
{
unsigned num_sets = ctx->options->layout ?
ctx->options->layout->num_sets : 0;
unsigned stage_mask = 1 << stage;
if (has_previous_stage)
stage_mask |= 1 << previous_stage;
if (!user_sgpr_info->indirect_all_descriptor_sets) {
for (unsigned i = 0; i < num_sets; ++i) {
if ((ctx->shader_info->info.desc_set_used_mask & (1 << i)) &&
ctx->options->layout->set[i].layout->shader_stages & stage_mask) {
set_loc_desc(ctx, i, user_sgpr_idx, false);
} else
ctx->descriptor_sets[i] = NULL;
}
} else {
set_loc_shader_ptr(ctx, AC_UD_INDIRECT_DESCRIPTOR_SETS,
user_sgpr_idx);
for (unsigned i = 0; i < num_sets; ++i) {
if ((ctx->shader_info->info.desc_set_used_mask & (1 << i)) &&
ctx->options->layout->set[i].layout->shader_stages & stage_mask) {
ctx->descriptor_sets[i] =
ac_build_load_to_sgpr(&ctx->ac,
desc_sets,
LLVMConstInt(ctx->ac.i32, i, false));
} else
ctx->descriptor_sets[i] = NULL;
}
ctx->shader_info->need_indirect_descriptor_sets = true;
}
if (ctx->shader_info->info.loads_push_constants) {
set_loc_shader_ptr(ctx, AC_UD_PUSH_CONSTANTS, user_sgpr_idx);
}
}
static void
set_vs_specific_input_locs(struct radv_shader_context *ctx,
gl_shader_stage stage, bool has_previous_stage,
gl_shader_stage previous_stage,
uint8_t *user_sgpr_idx)
{
if (!ctx->is_gs_copy_shader &&
(stage == MESA_SHADER_VERTEX ||
(has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
if (ctx->shader_info->info.vs.has_vertex_buffers) {
set_loc_shader_ptr(ctx, AC_UD_VS_VERTEX_BUFFERS,
user_sgpr_idx);
}
unsigned vs_num = 2;
if (ctx->shader_info->info.vs.needs_draw_id)
vs_num++;
set_loc_shader(ctx, AC_UD_VS_BASE_VERTEX_START_INSTANCE,
user_sgpr_idx, vs_num);
}
}
static void set_llvm_calling_convention(LLVMValueRef func,
gl_shader_stage stage)
{
enum radeon_llvm_calling_convention calling_conv;
switch (stage) {
case MESA_SHADER_VERTEX:
case MESA_SHADER_TESS_EVAL:
calling_conv = RADEON_LLVM_AMDGPU_VS;
break;
case MESA_SHADER_GEOMETRY:
calling_conv = RADEON_LLVM_AMDGPU_GS;
break;
case MESA_SHADER_TESS_CTRL:
calling_conv = RADEON_LLVM_AMDGPU_HS;
break;
case MESA_SHADER_FRAGMENT:
calling_conv = RADEON_LLVM_AMDGPU_PS;
break;
case MESA_SHADER_COMPUTE:
calling_conv = RADEON_LLVM_AMDGPU_CS;
break;
default:
unreachable("Unhandle shader type");
}
LLVMSetFunctionCallConv(func, calling_conv);
}
static void create_function(struct radv_shader_context *ctx,
gl_shader_stage stage,
bool has_previous_stage,
gl_shader_stage previous_stage)
{
uint8_t user_sgpr_idx;
struct user_sgpr_info user_sgpr_info;
struct arg_info args = {};
LLVMValueRef desc_sets;
bool needs_view_index = needs_view_index_sgpr(ctx, stage);
allocate_user_sgprs(ctx, stage, has_previous_stage,
previous_stage, needs_view_index, &user_sgpr_info);
if (user_sgpr_info.need_ring_offsets && !ctx->options->supports_spill) {
add_arg(&args, ARG_SGPR, ac_array_in_const_addr_space(ctx->ac.v4i32),
&ctx->ring_offsets);
}
switch (stage) {
case MESA_SHADER_COMPUTE:
declare_global_input_sgprs(ctx, stage, has_previous_stage,
previous_stage, &user_sgpr_info,
&args, &desc_sets);
if (ctx->shader_info->info.cs.uses_grid_size) {
add_arg(&args, ARG_SGPR, ctx->ac.v3i32,
&ctx->abi.num_work_groups);
}
for (int i = 0; i < 3; i++) {
ctx->abi.workgroup_ids[i] = NULL;
if (ctx->shader_info->info.cs.uses_block_id[i]) {
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->abi.workgroup_ids[i]);
}
}
if (ctx->shader_info->info.cs.uses_local_invocation_idx)
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.tg_size);
add_arg(&args, ARG_VGPR, ctx->ac.v3i32,
&ctx->abi.local_invocation_ids);
break;
case MESA_SHADER_VERTEX:
declare_global_input_sgprs(ctx, stage, has_previous_stage,
previous_stage, &user_sgpr_info,
&args, &desc_sets);
declare_vs_specific_input_sgprs(ctx, stage, has_previous_stage,
previous_stage, &args);
if (needs_view_index)
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->abi.view_index);
if (ctx->options->key.vs.as_es)
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->es2gs_offset);
declare_vs_input_vgprs(ctx, &args);
break;
case MESA_SHADER_TESS_CTRL:
if (has_previous_stage) {
// First 6 system regs
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->merged_wave_info);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->tess_factor_offset);
add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
declare_global_input_sgprs(ctx, stage,
has_previous_stage,
previous_stage,
&user_sgpr_info, &args,
&desc_sets);
declare_vs_specific_input_sgprs(ctx, stage,
has_previous_stage,
previous_stage, &args);
if (needs_view_index)
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->abi.view_index);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->abi.tcs_patch_id);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->abi.tcs_rel_ids);
declare_vs_input_vgprs(ctx, &args);
} else {
declare_global_input_sgprs(ctx, stage,
has_previous_stage,
previous_stage,
&user_sgpr_info, &args,
&desc_sets);
if (needs_view_index)
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->abi.view_index);
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->tess_factor_offset);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->abi.tcs_patch_id);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->abi.tcs_rel_ids);
}
break;
case MESA_SHADER_TESS_EVAL:
declare_global_input_sgprs(ctx, stage, has_previous_stage,
previous_stage, &user_sgpr_info,
&args, &desc_sets);
if (needs_view_index)
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->abi.view_index);
if (ctx->options->key.tes.as_es) {
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->es2gs_offset);
} else {
add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
}
declare_tes_input_vgprs(ctx, &args);
break;
case MESA_SHADER_GEOMETRY:
if (has_previous_stage) {
// First 6 system regs
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->gs2vs_offset);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->merged_wave_info);
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
declare_global_input_sgprs(ctx, stage,
has_previous_stage,
previous_stage,
&user_sgpr_info, &args,
&desc_sets);
if (previous_stage != MESA_SHADER_TESS_EVAL) {
declare_vs_specific_input_sgprs(ctx, stage,
has_previous_stage,
previous_stage,
&args);
}
if (needs_view_index)
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->abi.view_index);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[0]);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[2]);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->abi.gs_prim_id);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->abi.gs_invocation_id);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[4]);
if (previous_stage == MESA_SHADER_VERTEX) {
declare_vs_input_vgprs(ctx, &args);
} else {
declare_tes_input_vgprs(ctx, &args);
}
} else {
declare_global_input_sgprs(ctx, stage,
has_previous_stage,
previous_stage,
&user_sgpr_info, &args,
&desc_sets);
if (needs_view_index)
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->abi.view_index);
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs2vs_offset);
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs_wave_id);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[0]);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[1]);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->abi.gs_prim_id);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[2]);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[3]);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[4]);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[5]);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->abi.gs_invocation_id);
}
break;
case MESA_SHADER_FRAGMENT:
declare_global_input_sgprs(ctx, stage, has_previous_stage,
previous_stage, &user_sgpr_info,
&args, &desc_sets);
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.prim_mask);
add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_sample);
add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_center);
add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_centroid);
add_arg(&args, ARG_VGPR, ctx->ac.v3i32, NULL); /* persp pull model */
add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_sample);
add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_center);
add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_centroid);
add_arg(&args, ARG_VGPR, ctx->ac.f32, NULL); /* line stipple tex */
add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[0]);
add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[1]);
add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[2]);
add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[3]);
add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.front_face);
add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.ancillary);
add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.sample_coverage);
add_arg(&args, ARG_VGPR, ctx->ac.i32, NULL); /* fixed pt */
break;
default:
unreachable("Shader stage not implemented");
}
ctx->main_function = create_llvm_function(
ctx->context, ctx->ac.module, ctx->ac.builder, NULL, 0, &args,
ctx->max_workgroup_size, ctx->options);
set_llvm_calling_convention(ctx->main_function, stage);
ctx->shader_info->num_input_vgprs = 0;
ctx->shader_info->num_input_sgprs = ctx->options->supports_spill ? 2 : 0;
ctx->shader_info->num_input_sgprs += args.num_sgprs_used;
if (ctx->stage != MESA_SHADER_FRAGMENT)
ctx->shader_info->num_input_vgprs = args.num_vgprs_used;
assign_arguments(ctx->main_function, &args);
user_sgpr_idx = 0;
if (ctx->options->supports_spill || user_sgpr_info.need_ring_offsets) {
set_loc_shader_ptr(ctx, AC_UD_SCRATCH_RING_OFFSETS,
&user_sgpr_idx);
if (ctx->options->supports_spill) {
ctx->ring_offsets = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.implicit.buffer.ptr",
LLVMPointerType(ctx->ac.i8, AC_CONST_ADDR_SPACE),
NULL, 0, AC_FUNC_ATTR_READNONE);
ctx->ring_offsets = LLVMBuildBitCast(ctx->ac.builder, ctx->ring_offsets,
ac_array_in_const_addr_space(ctx->ac.v4i32), "");
}
}
/* For merged shaders the user SGPRs start at 8, with 8 system SGPRs in front (including
* the rw_buffers at s0/s1. With user SGPR0 = s8, lets restart the count from 0 */
if (has_previous_stage)
user_sgpr_idx = 0;
set_global_input_locs(ctx, stage, has_previous_stage, previous_stage,
&user_sgpr_info, desc_sets, &user_sgpr_idx);
switch (stage) {
case MESA_SHADER_COMPUTE:
if (ctx->shader_info->info.cs.uses_grid_size) {
set_loc_shader(ctx, AC_UD_CS_GRID_SIZE,
&user_sgpr_idx, 3);
}
break;
case MESA_SHADER_VERTEX:
set_vs_specific_input_locs(ctx, stage, has_previous_stage,
previous_stage, &user_sgpr_idx);
if (ctx->abi.view_index)
set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
break;
case MESA_SHADER_TESS_CTRL:
set_vs_specific_input_locs(ctx, stage, has_previous_stage,
previous_stage, &user_sgpr_idx);
if (ctx->abi.view_index)
set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
break;
case MESA_SHADER_TESS_EVAL:
if (ctx->abi.view_index)
set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
break;
case MESA_SHADER_GEOMETRY:
if (has_previous_stage) {
if (previous_stage == MESA_SHADER_VERTEX)
set_vs_specific_input_locs(ctx, stage,
has_previous_stage,
previous_stage,
&user_sgpr_idx);
}
if (ctx->abi.view_index)
set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
break;
case MESA_SHADER_FRAGMENT:
break;
default:
unreachable("Shader stage not implemented");
}
if (stage == MESA_SHADER_TESS_CTRL ||
(stage == MESA_SHADER_VERTEX && ctx->options->key.vs.as_ls) ||
/* GFX9 has the ESGS ring buffer in LDS. */
(stage == MESA_SHADER_GEOMETRY && has_previous_stage)) {
ac_declare_lds_as_pointer(&ctx->ac);
}
ctx->shader_info->num_user_sgprs = user_sgpr_idx;
}
static LLVMValueRef
radv_load_resource(struct ac_shader_abi *abi, LLVMValueRef index,
unsigned desc_set, unsigned binding)
{
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
LLVMValueRef desc_ptr = ctx->descriptor_sets[desc_set];
struct radv_pipeline_layout *pipeline_layout = ctx->options->layout;
struct radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
unsigned base_offset = layout->binding[binding].offset;
LLVMValueRef offset, stride;
if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start +
layout->binding[binding].dynamic_offset_offset;
desc_ptr = ctx->abi.push_constants;
base_offset = pipeline_layout->push_constant_size + 16 * idx;
stride = LLVMConstInt(ctx->ac.i32, 16, false);
} else
stride = LLVMConstInt(ctx->ac.i32, layout->binding[binding].size, false);
offset = LLVMConstInt(ctx->ac.i32, base_offset, false);
index = LLVMBuildMul(ctx->ac.builder, index, stride, "");
offset = LLVMBuildAdd(ctx->ac.builder, offset, index, "");
desc_ptr = ac_build_gep0(&ctx->ac, desc_ptr, offset);
desc_ptr = ac_cast_ptr(&ctx->ac, desc_ptr, ctx->ac.v4i32);
LLVMSetMetadata(desc_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
return desc_ptr;
}
/* The offchip buffer layout for TCS->TES is
*
* - attribute 0 of patch 0 vertex 0
* - attribute 0 of patch 0 vertex 1
* - attribute 0 of patch 0 vertex 2
* ...
* - attribute 0 of patch 1 vertex 0
* - attribute 0 of patch 1 vertex 1
* ...
* - attribute 1 of patch 0 vertex 0
* - attribute 1 of patch 0 vertex 1
* ...
* - per patch attribute 0 of patch 0
* - per patch attribute 0 of patch 1
* ...
*
* Note that every attribute has 4 components.
*/
static LLVMValueRef get_non_vertex_index_offset(struct radv_shader_context *ctx)
{
uint32_t num_patches = ctx->tcs_num_patches;
uint32_t num_tcs_outputs;
if (ctx->stage == MESA_SHADER_TESS_CTRL)
num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
else
num_tcs_outputs = ctx->options->key.tes.tcs_num_outputs;
uint32_t output_vertex_size = num_tcs_outputs * 16;
uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
return LLVMConstInt(ctx->ac.i32, pervertex_output_patch_size * num_patches, false);
}
static LLVMValueRef calc_param_stride(struct radv_shader_context *ctx,
LLVMValueRef vertex_index)
{
LLVMValueRef param_stride;
if (vertex_index)
param_stride = LLVMConstInt(ctx->ac.i32, ctx->tcs_vertices_per_patch * ctx->tcs_num_patches, false);
else
param_stride = LLVMConstInt(ctx->ac.i32, ctx->tcs_num_patches, false);
return param_stride;
}
static LLVMValueRef get_tcs_tes_buffer_address(struct radv_shader_context *ctx,
LLVMValueRef vertex_index,
LLVMValueRef param_index)
{
LLVMValueRef base_addr;
LLVMValueRef param_stride, constant16;
LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
LLVMValueRef vertices_per_patch = LLVMConstInt(ctx->ac.i32, ctx->tcs_vertices_per_patch, false);
constant16 = LLVMConstInt(ctx->ac.i32, 16, false);
param_stride = calc_param_stride(ctx, vertex_index);
if (vertex_index) {
base_addr = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
vertices_per_patch, "");
base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
vertex_index, "");
} else {
base_addr = rel_patch_id;
}
base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
LLVMBuildMul(ctx->ac.builder, param_index,
param_stride, ""), "");
base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
if (!vertex_index) {
LLVMValueRef patch_data_offset = get_non_vertex_index_offset(ctx);
base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
patch_data_offset, "");
}
return base_addr;
}
static LLVMValueRef get_tcs_tes_buffer_address_params(struct radv_shader_context *ctx,
unsigned param,
unsigned const_index,
bool is_compact,
LLVMValueRef vertex_index,
LLVMValueRef indir_index)
{
LLVMValueRef param_index;
if (indir_index)
param_index = LLVMBuildAdd(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, param, false),
indir_index, "");
else {
if (const_index && !is_compact)
param += const_index;
param_index = LLVMConstInt(ctx->ac.i32, param, false);
}
return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
}
static LLVMValueRef
get_dw_address(struct radv_shader_context *ctx,
LLVMValueRef dw_addr,
unsigned param,
unsigned const_index,
bool compact_const_index,
LLVMValueRef vertex_index,
LLVMValueRef stride,
LLVMValueRef indir_index)
{
if (vertex_index) {
dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
LLVMBuildMul(ctx->ac.builder,
vertex_index,
stride, ""), "");
}
if (indir_index)
dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
LLVMBuildMul(ctx->ac.builder, indir_index,
LLVMConstInt(ctx->ac.i32, 4, false), ""), "");
else if (const_index && !compact_const_index)
dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
LLVMConstInt(ctx->ac.i32, const_index * 4, false), "");
dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
LLVMConstInt(ctx->ac.i32, param * 4, false), "");
if (const_index && compact_const_index)
dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
LLVMConstInt(ctx->ac.i32, const_index, false), "");
return dw_addr;
}
static LLVMValueRef
load_tcs_varyings(struct ac_shader_abi *abi,
LLVMTypeRef type,
LLVMValueRef vertex_index,
LLVMValueRef indir_index,
unsigned const_index,
unsigned location,
unsigned driver_location,
unsigned component,
unsigned num_components,
bool is_patch,
bool is_compact,
bool load_input)
{
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
LLVMValueRef dw_addr, stride;
LLVMValueRef value[4], result;
unsigned param = shader_io_get_unique_index(location);
if (load_input) {
uint32_t input_vertex_size = (ctx->tcs_num_inputs * 16) / 4;
stride = LLVMConstInt(ctx->ac.i32, input_vertex_size, false);
dw_addr = get_tcs_in_current_patch_offset(ctx);
} else {
if (!is_patch) {
stride = get_tcs_out_vertex_stride(ctx);
dw_addr = get_tcs_out_current_patch_offset(ctx);
} else {
dw_addr = get_tcs_out_current_patch_data_offset(ctx);
stride = NULL;
}
}
dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
indir_index);
for (unsigned i = 0; i < num_components + component; i++) {
value[i] = ac_lds_load(&ctx->ac, dw_addr);
dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
ctx->ac.i32_1, "");
}
result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
return result;
}
static void
store_tcs_output(struct ac_shader_abi *abi,
const nir_variable *var,
LLVMValueRef vertex_index,
LLVMValueRef param_index,
unsigned const_index,
LLVMValueRef src,
unsigned writemask)
{
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
const unsigned location = var->data.location;
const unsigned component = var->data.location_frac;
const bool is_patch = var->data.patch;
const bool is_compact = var->data.compact;
LLVMValueRef dw_addr;
LLVMValueRef stride = NULL;
LLVMValueRef buf_addr = NULL;
unsigned param;
bool store_lds = true;
if (is_patch) {
if (!(ctx->tcs_patch_outputs_read & (1U << (location - VARYING_SLOT_PATCH0))))
store_lds = false;
} else {
if (!(ctx->tcs_outputs_read & (1ULL << location)))
store_lds = false;
}
param = shader_io_get_unique_index(location);
if (location == VARYING_SLOT_CLIP_DIST0 &&
is_compact && const_index > 3) {
const_index -= 3;
param++;
}
if (!is_patch) {
stride = get_tcs_out_vertex_stride(ctx);
dw_addr = get_tcs_out_current_patch_offset(ctx);
} else {
dw_addr = get_tcs_out_current_patch_data_offset(ctx);
}
dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
param_index);
buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index, is_compact,
vertex_index, param_index);
bool is_tess_factor = false;
if (location == VARYING_SLOT_TESS_LEVEL_INNER ||
location == VARYING_SLOT_TESS_LEVEL_OUTER)
is_tess_factor = true;
unsigned base = is_compact ? const_index : 0;
for (unsigned chan = 0; chan < 8; chan++) {
if (!(writemask & (1 << chan)))
continue;
LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
value = ac_to_integer(&ctx->ac, value);
value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
if (store_lds || is_tess_factor) {
LLVMValueRef dw_addr_chan =
LLVMBuildAdd(ctx->ac.builder, dw_addr,
LLVMConstInt(ctx->ac.i32, chan, false), "");
ac_lds_store(&ctx->ac, dw_addr_chan, value);
}
if (!is_tess_factor && writemask != 0xF)
ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, value, 1,
buf_addr, ctx->oc_lds,
4 * (base + chan), 1, 0, true, false);
}
if (writemask == 0xF) {
ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, src, 4,
buf_addr, ctx->oc_lds,
(base * 4), 1, 0, true, false);
}
}
static LLVMValueRef
load_tes_input(struct ac_shader_abi *abi,
LLVMTypeRef type,
LLVMValueRef vertex_index,
LLVMValueRef param_index,
unsigned const_index,
unsigned location,
unsigned driver_location,
unsigned component,
unsigned num_components,
bool is_patch,
bool is_compact,
bool load_input)
{
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
LLVMValueRef buf_addr;
LLVMValueRef result;
unsigned param = shader_io_get_unique_index(location);
if (location == VARYING_SLOT_CLIP_DIST0 && is_compact && const_index > 3) {
const_index -= 3;
param++;
}
buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index,
is_compact, vertex_index, param_index);
LLVMValueRef comp_offset = LLVMConstInt(ctx->ac.i32, component * 4, false);
buf_addr = LLVMBuildAdd(ctx->ac.builder, buf_addr, comp_offset, "");
result = ac_build_buffer_load(&ctx->ac, ctx->hs_ring_tess_offchip, num_components, NULL,
buf_addr, ctx->oc_lds, is_compact ? (4 * const_index) : 0, 1, 0, true, false);
result = ac_trim_vector(&ctx->ac, result, num_components);
return result;
}
static LLVMValueRef
load_gs_input(struct ac_shader_abi *abi,
unsigned location,
unsigned driver_location,
unsigned component,
unsigned num_components,
unsigned vertex_index,
unsigned const_index,
LLVMTypeRef type)
{
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
LLVMValueRef vtx_offset;
unsigned param, vtx_offset_param;
LLVMValueRef value[4], result;
vtx_offset_param = vertex_index;
assert(vtx_offset_param < 6);
vtx_offset = LLVMBuildMul(ctx->ac.builder, ctx->gs_vtx_offset[vtx_offset_param],
LLVMConstInt(ctx->ac.i32, 4, false), "");
param = shader_io_get_unique_index(location);
for (unsigned i = component; i < num_components + component; i++) {
if (ctx->ac.chip_class >= GFX9) {
LLVMValueRef dw_addr = ctx->gs_vtx_offset[vtx_offset_param];
dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
LLVMConstInt(ctx->ac.i32, param * 4 + i + const_index, 0), "");
value[i] = ac_lds_load(&ctx->ac, dw_addr);
} else {
LLVMValueRef soffset =
LLVMConstInt(ctx->ac.i32,
(param * 4 + i + const_index) * 256,
false);
value[i] = ac_build_buffer_load(&ctx->ac,
ctx->esgs_ring, 1,
ctx->ac.i32_0,
vtx_offset, soffset,
0, 1, 0, true, false);
}
if (ac_get_type_size(type) == 2) {
value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], ctx->ac.i32, "");
value[i] = LLVMBuildTrunc(ctx->ac.builder, value[i], ctx->ac.i16, "");
}
value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], type, "");
}
result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
result = ac_to_integer(&ctx->ac, result);
return result;
}
static void radv_emit_kill(struct ac_shader_abi *abi, LLVMValueRef visible)
{
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
ac_build_kill_if_false(&ctx->ac, visible);
}
static LLVMValueRef lookup_interp_param(struct ac_shader_abi *abi,
enum glsl_interp_mode interp, unsigned location)
{
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
switch (interp) {
case INTERP_MODE_FLAT:
default:
return NULL;
case INTERP_MODE_SMOOTH:
case INTERP_MODE_NONE:
if (location == INTERP_CENTER)
return ctx->persp_center;
else if (location == INTERP_CENTROID)
return ctx->persp_centroid;
else if (location == INTERP_SAMPLE)
return ctx->persp_sample;
break;
case INTERP_MODE_NOPERSPECTIVE:
if (location == INTERP_CENTER)
return ctx->linear_center;
else if (location == INTERP_CENTROID)
return ctx->linear_centroid;
else if (location == INTERP_SAMPLE)
return ctx->linear_sample;
break;
}
return NULL;
}
static uint32_t
radv_get_sample_pos_offset(uint32_t num_samples)
{
uint32_t sample_pos_offset = 0;
switch (num_samples) {
case 2:
sample_pos_offset = 1;
break;
case 4:
sample_pos_offset = 3;
break;
case 8:
sample_pos_offset = 7;
break;
case 16:
sample_pos_offset = 15;
break;
default:
break;
}
return sample_pos_offset;
}
static LLVMValueRef load_sample_position(struct ac_shader_abi *abi,
LLVMValueRef sample_id)
{
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
LLVMValueRef result;
LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_PS_SAMPLE_POSITIONS, false));
ptr = LLVMBuildBitCast(ctx->ac.builder, ptr,
ac_array_in_const_addr_space(ctx->ac.v2f32), "");
uint32_t sample_pos_offset =
radv_get_sample_pos_offset(ctx->options->key.fs.num_samples);
sample_id =
LLVMBuildAdd(ctx->ac.builder, sample_id,
LLVMConstInt(ctx->ac.i32, sample_pos_offset, false), "");
result = ac_build_load_invariant(&ctx->ac, ptr, sample_id);
return result;
}
static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
{
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
uint8_t log2_ps_iter_samples;
if (ctx->shader_info->info.ps.force_persample) {
log2_ps_iter_samples =
util_logbase2(ctx->options->key.fs.num_samples);
} else {
log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
}
/* The bit pattern matches that used by fixed function fragment
* processing. */
static const uint16_t ps_iter_masks[] = {
0xffff, /* not used */
0x5555,
0x1111,
0x0101,
0x0001,
};
assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
uint32_t ps_iter_mask = ps_iter_masks[log2_ps_iter_samples];
LLVMValueRef result, sample_id;
sample_id = ac_unpack_param(&ctx->ac, abi->ancillary, 8, 4);
sample_id = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false), sample_id, "");
result = LLVMBuildAnd(ctx->ac.builder, sample_id, abi->sample_coverage, "");
return result;
}
static void
visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs)
{
LLVMValueRef gs_next_vertex;
LLVMValueRef can_emit;
int idx;
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
assert(stream == 0);
/* Write vertex attribute values to GSVS ring */
gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
ctx->gs_next_vertex,
"");
/* If this thread has already emitted the declared maximum number of
* vertices, kill it: excessive vertex emissions are not supposed to
* have any effect, and GS threads have no externally observable
* effects other than emitting vertices.
*/
can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false), "");
ac_build_kill_if_false(&ctx->ac, can_emit);
/* loop num outputs */
idx = 0;
for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
unsigned output_usage_mask =
ctx->shader_info->info.gs.output_usage_mask[i];
LLVMValueRef *out_ptr = &addrs[i * 4];
int length = 4;
int slot = idx;
int slot_inc = 1;
if (!(ctx->output_mask & (1ull << i)))
continue;
if (i == VARYING_SLOT_CLIP_DIST0) {
/* pack clip and cull into a single set of slots */
length = ctx->num_output_clips + ctx->num_output_culls;
if (length > 4)
slot_inc = 2;
output_usage_mask = (1 << length) - 1;
}
for (unsigned j = 0; j < length; j++) {
if (!(output_usage_mask & (1 << j)))
continue;
LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
out_ptr[j], "");
LLVMValueRef voffset = LLVMConstInt(ctx->ac.i32, (slot * 4 + j) * ctx->gs_max_out_vertices, false);
voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
voffset = LLVMBuildMul(ctx->ac.builder, voffset, LLVMConstInt(ctx->ac.i32, 4, false), "");
out_val = ac_to_integer(&ctx->ac, out_val);
out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
ac_build_buffer_store_dword(&ctx->ac, ctx->gsvs_ring,
out_val, 1,
voffset, ctx->gs2vs_offset, 0,
1, 1, true, true);
}
idx += slot_inc;
}
gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex,
ctx->ac.i32_1, "");
LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex);
ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (0 << 8), ctx->gs_wave_id);
}
static void
visit_end_primitive(struct ac_shader_abi *abi, unsigned stream)
{
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8), ctx->gs_wave_id);
}
static LLVMValueRef
load_tess_coord(struct ac_shader_abi *abi)
{
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
LLVMValueRef coord[4] = {
ctx->tes_u,
ctx->tes_v,
ctx->ac.f32_0,
ctx->ac.f32_0,
};
if (ctx->tes_primitive_mode == GL_TRIANGLES)
coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
LLVMBuildFAdd(ctx->ac.builder, coord[0], coord[1], ""), "");
return ac_build_gather_values(&ctx->ac, coord, 3);
}
static LLVMValueRef
load_patch_vertices_in(struct ac_shader_abi *abi)
{
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
return LLVMConstInt(ctx->ac.i32, ctx->options->key.tcs.input_vertices, false);
}
static LLVMValueRef radv_load_base_vertex(struct ac_shader_abi *abi)
{
return abi->base_vertex;
}
static LLVMValueRef radv_load_ssbo(struct ac_shader_abi *abi,
LLVMValueRef buffer_ptr, bool write)
{
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
LLVMValueRef result;
LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
return result;
}
static LLVMValueRef radv_load_ubo(struct ac_shader_abi *abi, LLVMValueRef buffer_ptr)
{
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
LLVMValueRef result;
LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
return result;
}
static LLVMValueRef radv_get_sampler_desc(struct ac_shader_abi *abi,
unsigned descriptor_set,
unsigned base_index,
unsigned constant_index,
LLVMValueRef index,
enum ac_descriptor_type desc_type,
bool image, bool write,
bool bindless)
{
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
LLVMValueRef list = ctx->descriptor_sets[descriptor_set];
struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
unsigned offset = binding->offset;
unsigned stride = binding->size;
unsigned type_size;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMTypeRef type;
assert(base_index < layout->binding_count);
switch (desc_type) {
case AC_DESC_IMAGE:
type = ctx->ac.v8i32;
type_size = 32;
break;
case AC_DESC_FMASK:
type = ctx->ac.v8i32;
offset += 32;
type_size = 32;
break;
case AC_DESC_SAMPLER:
type = ctx->ac.v4i32;
if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
offset += 64;
type_size = 16;
break;
case AC_DESC_BUFFER:
type = ctx->ac.v4i32;
type_size = 16;
break;
default:
unreachable("invalid desc_type\n");
}
offset += constant_index * stride;
if (desc_type == AC_DESC_SAMPLER && binding->immutable_samplers_offset &&
(!index || binding->immutable_samplers_equal)) {
if (binding->immutable_samplers_equal)
constant_index = 0;
const uint32_t *samplers = radv_immutable_samplers(layout, binding);
LLVMValueRef constants[] = {
LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 0], 0),
LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 1], 0),
LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 2], 0),
LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 3], 0),
};
return ac_build_gather_values(&ctx->ac, constants, 4);
}
assert(stride % type_size == 0);
if (!index)
index = ctx->ac.i32_0;
index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->ac.i32, stride / type_size, 0), "");
list = ac_build_gep0(&ctx->ac, list, LLVMConstInt(ctx->ac.i32, offset, 0));
list = LLVMBuildPointerCast(builder, list,
ac_array_in_const32_addr_space(type), "");
return ac_build_load_to_sgpr(&ctx->ac, list, index);
}
/* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
* so we may need to fix it up. */
static LLVMValueRef
adjust_vertex_fetch_alpha(struct radv_shader_context *ctx,
unsigned adjustment,
LLVMValueRef alpha)
{
if (adjustment == RADV_ALPHA_ADJUST_NONE)
return alpha;
LLVMValueRef c30 = LLVMConstInt(ctx->ac.i32, 30, 0);
if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
alpha = LLVMBuildFPToUI(ctx->ac.builder, alpha, ctx->ac.i32, "");
else
alpha = ac_to_integer(&ctx->ac, alpha);
/* For the integer-like cases, do a natural sign extension.
*
* For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
* and happen to contain 0, 1, 2, 3 as the two LSBs of the
* exponent.
*/
alpha = LLVMBuildShl(ctx->ac.builder, alpha,
adjustment == RADV_ALPHA_ADJUST_SNORM ?
LLVMConstInt(ctx->ac.i32, 7, 0) : c30, "");
alpha = LLVMBuildAShr(ctx->ac.builder, alpha, c30, "");
/* Convert back to the right type. */
if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
LLVMValueRef clamp;
LLVMValueRef neg_one = LLVMConstReal(ctx->ac.f32, -1.0);
alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, alpha, neg_one, "");
alpha = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, alpha, "");
} else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
}
return alpha;
}
static void
handle_vs_input_decl(struct radv_shader_context *ctx,
struct nir_variable *variable)
{
LLVMValueRef t_list_ptr = ctx->vertex_buffers;
LLVMValueRef t_offset;
LLVMValueRef t_list;
LLVMValueRef input;
LLVMValueRef buffer_index;
unsigned attrib_count = glsl_count_attribute_slots(variable->type, true);
uint8_t input_usage_mask =
ctx->shader_info->info.vs.input_usage_mask[variable->data.location];
unsigned num_channels = util_last_bit(input_usage_mask);
variable->data.driver_location = variable->data.location * 4;
enum glsl_base_type type = glsl_get_base_type(variable->type);
for (unsigned i = 0; i < attrib_count; ++i) {
LLVMValueRef output[4];
unsigned attrib_index = variable->data.location + i - VERT_ATTRIB_GENERIC0;
if (ctx->options->key.vs.instance_rate_inputs & (1u << attrib_index)) {
uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[attrib_index];
if (divisor) {
buffer_index = ctx->abi.instance_id;
if (divisor != 1) {
buffer_index = LLVMBuildUDiv(ctx->ac.builder, buffer_index,
LLVMConstInt(ctx->ac.i32, divisor, 0), "");
}
if (ctx->options->key.vs.as_ls) {
ctx->shader_info->vs.vgpr_comp_cnt =
MAX2(2, ctx->shader_info->vs.vgpr_comp_cnt);
} else {
ctx->shader_info->vs.vgpr_comp_cnt =
MAX2(1, ctx->shader_info->vs.vgpr_comp_cnt);
}
} else {
buffer_index = ctx->ac.i32_0;
}
buffer_index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.start_instance, buffer_index, "");
} else
buffer_index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.vertex_id,
ctx->abi.base_vertex, "");
t_offset = LLVMConstInt(ctx->ac.i32, attrib_index, false);
t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
input = ac_build_buffer_load_format(&ctx->ac, t_list,
buffer_index,
ctx->ac.i32_0,
num_channels, false, true);
input = ac_build_expand_to_vec4(&ctx->ac, input, num_channels);
for (unsigned chan = 0; chan < 4; chan++) {
LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
output[chan] = LLVMBuildExtractElement(ctx->ac.builder, input, llvm_chan, "");
if (type == GLSL_TYPE_FLOAT16) {
output[chan] = LLVMBuildBitCast(ctx->ac.builder, output[chan], ctx->ac.f32, "");
output[chan] = LLVMBuildFPTrunc(ctx->ac.builder, output[chan], ctx->ac.f16, "");
}
}
unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (attrib_index * 2)) & 3;
output[3] = adjust_vertex_fetch_alpha(ctx, alpha_adjust, output[3]);
for (unsigned chan = 0; chan < 4; chan++) {
output[chan] = ac_to_integer(&ctx->ac, output[chan]);
if (type == GLSL_TYPE_UINT16 || type == GLSL_TYPE_INT16)
output[chan] = LLVMBuildTrunc(ctx->ac.builder, output[chan], ctx->ac.i16, "");
ctx->inputs[ac_llvm_reg_index_soa(variable->data.location + i, chan)] = output[chan];
}
}
}
static void interp_fs_input(struct radv_shader_context *ctx,
unsigned attr,
LLVMValueRef interp_param,
LLVMValueRef prim_mask,
LLVMValueRef result[4])
{
LLVMValueRef attr_number;
unsigned chan;
LLVMValueRef i, j;
bool interp = !LLVMIsUndef(interp_param);
attr_number = LLVMConstInt(ctx->ac.i32, attr, false);
/* fs.constant returns the param from the middle vertex, so it's not
* really useful for flat shading. It's meant to be used for custom
* interpolation (but the intrinsic can't fetch from the other two
* vertices).
*
* Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
* to do the right thing. The only reason we use fs.constant is that
* fs.interp cannot be used on integers, because they can be equal
* to NaN.
*/
if (interp) {
interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
ctx->ac.v2f32, "");
i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
ctx->ac.i32_0, "");
j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
ctx->ac.i32_1, "");
}
for (chan = 0; chan < 4; chan++) {
LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
if (interp) {
result[chan] = ac_build_fs_interp(&ctx->ac,
llvm_chan,
attr_number,
prim_mask, i, j);
} else {
result[chan] = ac_build_fs_interp_mov(&ctx->ac,
LLVMConstInt(ctx->ac.i32, 2, false),
llvm_chan,
attr_number,
prim_mask);
result[chan] = LLVMBuildBitCast(ctx->ac.builder, result[chan], ctx->ac.i32, "");
result[chan] = LLVMBuildTruncOrBitCast(ctx->ac.builder, result[chan], LLVMTypeOf(interp_param), "");
}
}
}
static void
handle_fs_input_decl(struct radv_shader_context *ctx,
struct nir_variable *variable)
{
int idx = variable->data.location;
unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
LLVMValueRef interp = NULL;
uint64_t mask;
variable->data.driver_location = idx * 4;
mask = ((1ull << attrib_count) - 1) << variable->data.location;
if (glsl_get_base_type(glsl_without_array(variable->type)) == GLSL_TYPE_FLOAT) {
unsigned interp_type;
if (variable->data.sample)
interp_type = INTERP_SAMPLE;
else if (variable->data.centroid)
interp_type = INTERP_CENTROID;
else
interp_type = INTERP_CENTER;
interp = lookup_interp_param(&ctx->abi, variable->data.interpolation, interp_type);
}
bool is_16bit = glsl_type_is_16bit(variable->type);
LLVMTypeRef type = is_16bit ? ctx->ac.i16 : ctx->ac.i32;
if (interp == NULL)
interp = LLVMGetUndef(type);
for (unsigned i = 0; i < attrib_count; ++i)
ctx->inputs[ac_llvm_reg_index_soa(idx + i, 0)] = interp;
if (idx == VARYING_SLOT_CLIP_DIST0) {
/* Do not account for the number of components inside the array
* of clip/cull distances because this might wrongly set other
* bits like primitive ID or layer.
*/
mask = 1ull << VARYING_SLOT_CLIP_DIST0;
}
ctx->input_mask |= mask;
}
static void
handle_vs_inputs(struct radv_shader_context *ctx,
struct nir_shader *nir) {
nir_foreach_variable(variable, &nir->inputs)
handle_vs_input_decl(ctx, variable);
}
static void
prepare_interp_optimize(struct radv_shader_context *ctx,
struct nir_shader *nir)
{
bool uses_center = false;
bool uses_centroid = false;
nir_foreach_variable(variable, &nir->inputs) {
if (glsl_get_base_type(glsl_without_array(variable->type)) != GLSL_TYPE_FLOAT ||
variable->data.sample)
continue;
if (variable->data.centroid)
uses_centroid = true;
else
uses_center = true;
}
if (uses_center && uses_centroid) {
LLVMValueRef sel = LLVMBuildICmp(ctx->ac.builder, LLVMIntSLT, ctx->abi.prim_mask, ctx->ac.i32_0, "");
ctx->persp_centroid = LLVMBuildSelect(ctx->ac.builder, sel, ctx->persp_center, ctx->persp_centroid, "");
ctx->linear_centroid = LLVMBuildSelect(ctx->ac.builder, sel, ctx->linear_center, ctx->linear_centroid, "");
}
}
static void
handle_fs_inputs(struct radv_shader_context *ctx,
struct nir_shader *nir)
{
prepare_interp_optimize(ctx, nir);
nir_foreach_variable(variable, &nir->inputs)
handle_fs_input_decl(ctx, variable);
unsigned index = 0;
if (ctx->shader_info->info.ps.uses_input_attachments ||
ctx->shader_info->info.needs_multiview_view_index) {
ctx->input_mask |= 1ull << VARYING_SLOT_LAYER;
ctx->inputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)] = LLVMGetUndef(ctx->ac.i32);
}
for (unsigned i = 0; i < RADEON_LLVM_MAX_INPUTS; ++i) {
LLVMValueRef interp_param;
LLVMValueRef *inputs = ctx->inputs +ac_llvm_reg_index_soa(i, 0);
if (!(ctx->input_mask & (1ull << i)))
continue;
if (i >= VARYING_SLOT_VAR0 || i == VARYING_SLOT_PNTC ||
i == VARYING_SLOT_PRIMITIVE_ID || i == VARYING_SLOT_LAYER) {
interp_param = *inputs;
interp_fs_input(ctx, index, interp_param, ctx->abi.prim_mask,
inputs);
if (LLVMIsUndef(interp_param))
ctx->shader_info->fs.flat_shaded_mask |= 1u << index;
++index;
} else if (i == VARYING_SLOT_CLIP_DIST0) {
int length = ctx->shader_info->info.ps.num_input_clips_culls;
for (unsigned j = 0; j < length; j += 4) {
inputs = ctx->inputs + ac_llvm_reg_index_soa(i, j);
interp_param = *inputs;
interp_fs_input(ctx, index, interp_param,
ctx->abi.prim_mask, inputs);
++index;
}
} else if (i == VARYING_SLOT_POS) {
for(int i = 0; i < 3; ++i)
inputs[i] = ctx->abi.frag_pos[i];
inputs[3] = ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
ctx->abi.frag_pos[3]);
}
}
ctx->shader_info->fs.num_interp = index;
ctx->shader_info->fs.input_mask = ctx->input_mask >> VARYING_SLOT_VAR0;
if (ctx->shader_info->info.needs_multiview_view_index)
ctx->abi.view_index = ctx->inputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
}
static void
scan_shader_output_decl(struct radv_shader_context *ctx,
struct nir_variable *variable,
struct nir_shader *shader,
gl_shader_stage stage)
{
int idx = variable->data.location + variable->data.index;
unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
uint64_t mask_attribs;
variable->data.driver_location = idx * 4;
/* tess ctrl has it's own load/store paths for outputs */
if (stage == MESA_SHADER_TESS_CTRL)
return;
mask_attribs = ((1ull << attrib_count) - 1) << idx;
if (stage == MESA_SHADER_VERTEX ||
stage == MESA_SHADER_TESS_EVAL ||
stage == MESA_SHADER_GEOMETRY) {
if (idx == VARYING_SLOT_CLIP_DIST0) {
int length = shader->info.clip_distance_array_size +
shader->info.cull_distance_array_size;
if (stage == MESA_SHADER_VERTEX) {
ctx->shader_info->vs.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
ctx->shader_info->vs.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
}
if (stage == MESA_SHADER_TESS_EVAL) {
ctx->shader_info->tes.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
ctx->shader_info->tes.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
}
if (length > 4)
attrib_count = 2;
else
attrib_count = 1;
mask_attribs = 1ull << idx;
}
}
ctx->output_mask |= mask_attribs;
}
/* Initialize arguments for the shader export intrinsic */
static void
si_llvm_init_export_args(struct radv_shader_context *ctx,
LLVMValueRef *values,
unsigned enabled_channels,
unsigned target,
struct ac_export_args *args)
{
/* Specify the channels that are enabled. */
args->enabled_channels = enabled_channels;
/* Specify whether the EXEC mask represents the valid mask */
args->valid_mask = 0;
/* Specify whether this is the last export */
args->done = 0;
/* Specify the target we are exporting */
args->target = target;
args->compr = false;
args->out[0] = LLVMGetUndef(ctx->ac.f32);
args->out[1] = LLVMGetUndef(ctx->ac.f32);
args->out[2] = LLVMGetUndef(ctx->ac.f32);
args->out[3] = LLVMGetUndef(ctx->ac.f32);
if (!values)
return;
bool is_16bit = ac_get_type_size(LLVMTypeOf(values[0])) == 2;
if (ctx->stage == MESA_SHADER_FRAGMENT && target >= V_008DFC_SQ_EXP_MRT) {
unsigned index = target - V_008DFC_SQ_EXP_MRT;
unsigned col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
unsigned chan;
LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
unsigned bits, bool hi) = NULL;
switch(col_format) {
case V_028714_SPI_SHADER_ZERO:
args->enabled_channels = 0; /* writemask */
args->target = V_008DFC_SQ_EXP_NULL;
break;
case V_028714_SPI_SHADER_32_R:
args->enabled_channels = 1;
args->out[0] = values[0];
break;
case V_028714_SPI_SHADER_32_GR:
args->enabled_channels = 0x3;
args->out[0] = values[0];
args->out[1] = values[1];
break;
case V_028714_SPI_SHADER_32_AR:
args->enabled_channels = 0x9;
args->out[0] = values[0];
args->out[3] = values[3];
break;
case V_028714_SPI_SHADER_FP16_ABGR:
args->enabled_channels = 0x5;
packf = ac_build_cvt_pkrtz_f16;
if (is_16bit) {
for (unsigned chan = 0; chan < 4; chan++)
values[chan] = LLVMBuildFPExt(ctx->ac.builder,
values[chan],
ctx->ac.f32, "");
}
break;
case V_028714_SPI_SHADER_UNORM16_ABGR:
args->enabled_channels = 0x5;
packf = ac_build_cvt_pknorm_u16;
break;
case V_028714_SPI_SHADER_SNORM16_ABGR:
args->enabled_channels = 0x5;
packf = ac_build_cvt_pknorm_i16;
break;
case V_028714_SPI_SHADER_UINT16_ABGR:
args->enabled_channels = 0x5;
packi = ac_build_cvt_pk_u16;
if (is_16bit) {
for (unsigned chan = 0; chan < 4; chan++)
values[chan] = LLVMBuildZExt(ctx->ac.builder,
values[chan],
ctx->ac.i32, "");
}
break;
case V_028714_SPI_SHADER_SINT16_ABGR:
args->enabled_channels = 0x5;
packi = ac_build_cvt_pk_i16;
if (is_16bit) {
for (unsigned chan = 0; chan < 4; chan++)
values[chan] = LLVMBuildSExt(ctx->ac.builder,
values[chan],
ctx->ac.i32, "");
}
break;
default:
case V_028714_SPI_SHADER_32_ABGR:
memcpy(&args->out[0], values, sizeof(values[0]) * 4);
break;
}
/* Pack f16 or norm_i16/u16. */
if (packf) {
for (chan = 0; chan < 2; chan++) {
LLVMValueRef pack_args[2] = {
values[2 * chan],
values[2 * chan + 1]
};
LLVMValueRef packed;
packed = packf(&ctx->ac, pack_args);
args->out[chan] = ac_to_float(&ctx->ac, packed);
}
args->compr = 1; /* COMPR flag */
}
/* Pack i16/u16. */
if (packi) {
for (chan = 0; chan < 2; chan++) {
LLVMValueRef pack_args[2] = {
ac_to_integer(&ctx->ac, values[2 * chan]),
ac_to_integer(&ctx->ac, values[2 * chan + 1])
};
LLVMValueRef packed;
packed = packi(&ctx->ac, pack_args,
is_int8 ? 8 : is_int10 ? 10 : 16,
chan == 1);
args->out[chan] = ac_to_float(&ctx->ac, packed);
}
args->compr = 1; /* COMPR flag */
}
return;
}
if (is_16bit) {
for (unsigned chan = 0; chan < 4; chan++) {
values[chan] = LLVMBuildBitCast(ctx->ac.builder, values[chan], ctx->ac.i16, "");
args->out[chan] = LLVMBuildZExt(ctx->ac.builder, values[chan], ctx->ac.i32, "");
}
} else
memcpy(&args->out[0], values, sizeof(values[0]) * 4);
for (unsigned i = 0; i < 4; ++i) {
if (!(args->enabled_channels & (1 << i)))
continue;
args->out[i] = ac_to_float(&ctx->ac, args->out[i]);
}
}
static void
radv_export_param(struct radv_shader_context *ctx, unsigned index,
LLVMValueRef *values, unsigned enabled_channels)
{
struct ac_export_args args;
si_llvm_init_export_args(ctx, values, enabled_channels,
V_008DFC_SQ_EXP_PARAM + index, &args);
ac_build_export(&ctx->ac, &args);
}
static LLVMValueRef
radv_load_output(struct radv_shader_context *ctx, unsigned index, unsigned chan)
{
LLVMValueRef output =
ctx->abi.outputs[ac_llvm_reg_index_soa(index, chan)];
return LLVMBuildLoad(ctx->ac.builder, output, "");
}
static void
handle_vs_outputs_post(struct radv_shader_context *ctx,
bool export_prim_id, bool export_layer_id,
struct radv_vs_output_info *outinfo)
{
uint32_t param_count = 0;
unsigned target;
unsigned pos_idx, num_pos_exports = 0;
struct ac_export_args args, pos_args[4] = {};
LLVMValueRef psize_value = NULL, layer_value = NULL, viewport_index_value = NULL;
int i;
if (ctx->options->key.has_multiview_view_index) {
LLVMValueRef* tmp_out = &ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
if(!*tmp_out) {
for(unsigned i = 0; i < 4; ++i)
ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, i)] =
ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
}
LLVMBuildStore(ctx->ac.builder, ac_to_float(&ctx->ac, ctx->abi.view_index), *tmp_out);
ctx->output_mask |= 1ull << VARYING_SLOT_LAYER;
}
memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
sizeof(outinfo->vs_output_param_offset));
if (ctx->output_mask & (1ull << VARYING_SLOT_CLIP_DIST0)) {
LLVMValueRef slots[8];
unsigned j;
if (outinfo->cull_dist_mask)
outinfo->cull_dist_mask <<= ctx->num_output_clips;
i = VARYING_SLOT_CLIP_DIST0;
for (j = 0; j < ctx->num_output_clips + ctx->num_output_culls; j++)
slots[j] = ac_to_float(&ctx->ac, radv_load_output(ctx, i, j));
for (i = ctx->num_output_clips + ctx->num_output_culls; i < 8; i++)
slots[i] = LLVMGetUndef(ctx->ac.f32);
if (ctx->num_output_clips + ctx->num_output_culls > 4) {
target = V_008DFC_SQ_EXP_POS + 3;
si_llvm_init_export_args(ctx, &slots[4], 0xf, target, &args);
memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
&args, sizeof(args));
}
target = V_008DFC_SQ_EXP_POS + 2;
si_llvm_init_export_args(ctx, &slots[0], 0xf, target, &args);
memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
&args, sizeof(args));
/* Export the clip/cull distances values to the next stage. */
radv_export_param(ctx, param_count, &slots[0], 0xf);
outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST0] = param_count++;
if (ctx->num_output_clips + ctx->num_output_culls > 4) {
radv_export_param(ctx, param_count, &slots[4], 0xf);
outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST1] = param_count++;
}
}
LLVMValueRef pos_values[4] = {ctx->ac.f32_0, ctx->ac.f32_0, ctx->ac.f32_0, ctx->ac.f32_1};
if (ctx->output_mask & (1ull << VARYING_SLOT_POS)) {
for (unsigned j = 0; j < 4; j++)
pos_values[j] = radv_load_output(ctx, VARYING_SLOT_POS, j);
}
si_llvm_init_export_args(ctx, pos_values, 0xf, V_008DFC_SQ_EXP_POS, &pos_args[0]);
if (ctx->output_mask & (1ull << VARYING_SLOT_PSIZ)) {
outinfo->writes_pointsize = true;
psize_value = radv_load_output(ctx, VARYING_SLOT_PSIZ, 0);
}
if (ctx->output_mask & (1ull << VARYING_SLOT_LAYER)) {
outinfo->writes_layer = true;
layer_value = radv_load_output(ctx, VARYING_SLOT_LAYER, 0);
}
if (ctx->output_mask & (1ull << VARYING_SLOT_VIEWPORT)) {
outinfo->writes_viewport_index = true;
viewport_index_value = radv_load_output(ctx, VARYING_SLOT_VIEWPORT, 0);
}
if (outinfo->writes_pointsize ||
outinfo->writes_layer ||
outinfo->writes_viewport_index) {
pos_args[1].enabled_channels = ((outinfo->writes_pointsize == true ? 1 : 0) |
(outinfo->writes_layer == true ? 4 : 0));
pos_args[1].valid_mask = 0;
pos_args[1].done = 0;
pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
pos_args[1].compr = 0;
pos_args[1].out[0] = ctx->ac.f32_0; /* X */
pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
pos_args[1].out[3] = ctx->ac.f32_0; /* W */
if (outinfo->writes_pointsize == true)
pos_args[1].out[0] = psize_value;
if (outinfo->writes_layer == true)
pos_args[1].out[2] = layer_value;
if (outinfo->writes_viewport_index == true) {
if (ctx->options->chip_class >= GFX9) {
/* GFX9 has the layer in out.z[10:0] and the viewport
* index in out.z[19:16].
*/
LLVMValueRef v = viewport_index_value;
v = ac_to_integer(&ctx->ac, v);
v = LLVMBuildShl(ctx->ac.builder, v,
LLVMConstInt(ctx->ac.i32, 16, false),
"");
v = LLVMBuildOr(ctx->ac.builder, v,
ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
pos_args[1].enabled_channels |= 1 << 2;
} else {
pos_args[1].out[3] = viewport_index_value;
pos_args[1].enabled_channels |= 1 << 3;
}
}
}
for (i = 0; i < 4; i++) {
if (pos_args[i].out[0])
num_pos_exports++;
}
pos_idx = 0;
for (i = 0; i < 4; i++) {
if (!pos_args[i].out[0])
continue;
/* Specify the target we are exporting */
pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
if (pos_idx == num_pos_exports)
pos_args[i].done = 1;
ac_build_export(&ctx->ac, &pos_args[i]);
}
for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
LLVMValueRef values[4];
if (!(ctx->output_mask & (1ull << i)))
continue;
if (i != VARYING_SLOT_LAYER &&
i != VARYING_SLOT_PRIMITIVE_ID &&
i < VARYING_SLOT_VAR0)
continue;
for (unsigned j = 0; j < 4; j++)
values[j] = ac_to_float(&ctx->ac, radv_load_output(ctx, i, j));
unsigned output_usage_mask;
if (ctx->stage == MESA_SHADER_VERTEX &&
!ctx->is_gs_copy_shader) {
output_usage_mask =
ctx->shader_info->info.vs.output_usage_mask[i];
} else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
output_usage_mask =
ctx->shader_info->info.tes.output_usage_mask[i];
} else {
assert(ctx->is_gs_copy_shader);
output_usage_mask =
ctx->shader_info->info.gs.output_usage_mask[i];
}
radv_export_param(ctx, param_count, values, output_usage_mask);
outinfo->vs_output_param_offset[i] = param_count++;
}
if (export_prim_id) {
LLVMValueRef values[4];
values[0] = ctx->vs_prim_id;
ctx->shader_info->vs.vgpr_comp_cnt = MAX2(2,
ctx->shader_info->vs.vgpr_comp_cnt);
for (unsigned j = 1; j < 4; j++)
values[j] = ctx->ac.f32_0;
radv_export_param(ctx, param_count, values, 0x1);
outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count++;
outinfo->export_prim_id = true;
}
if (export_layer_id && layer_value) {
LLVMValueRef values[4];
values[0] = layer_value;
for (unsigned j = 1; j < 4; j++)
values[j] = ctx->ac.f32_0;
radv_export_param(ctx, param_count, values, 0x1);
outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = param_count++;
}
outinfo->pos_exports = num_pos_exports;
outinfo->param_exports = param_count;
}
static void
handle_es_outputs_post(struct radv_shader_context *ctx,
struct radv_es_output_info *outinfo)
{
int j;
uint64_t max_output_written = 0;
LLVMValueRef lds_base = NULL;
for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
int param_index;
int length = 4;
if (!(ctx->output_mask & (1ull << i)))
continue;
if (i == VARYING_SLOT_CLIP_DIST0)
length = ctx->num_output_clips + ctx->num_output_culls;
param_index = shader_io_get_unique_index(i);
max_output_written = MAX2(param_index + (length > 4), max_output_written);
}
outinfo->esgs_itemsize = (max_output_written + 1) * 16;
if (ctx->ac.chip_class >= GFX9) {
unsigned itemsize_dw = outinfo->esgs_itemsize / 4;
LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
LLVMValueRef wave_idx = ac_build_bfe(&ctx->ac, ctx->merged_wave_info,
LLVMConstInt(ctx->ac.i32, 24, false),
LLVMConstInt(ctx->ac.i32, 4, false), false);
vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
LLVMBuildMul(ctx->ac.builder, wave_idx,
LLVMConstInt(ctx->ac.i32, 64, false), ""), "");
lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
LLVMConstInt(ctx->ac.i32, itemsize_dw, 0), "");
}
for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
LLVMValueRef dw_addr = NULL;
LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
unsigned output_usage_mask;
int param_index;
int length = 4;
if (!(ctx->output_mask & (1ull << i)))
continue;
if (ctx->stage == MESA_SHADER_VERTEX) {
output_usage_mask =
ctx->shader_info->info.vs.output_usage_mask[i];
} else {
assert(ctx->stage == MESA_SHADER_TESS_EVAL);
output_usage_mask =
ctx->shader_info->info.tes.output_usage_mask[i];
}
if (i == VARYING_SLOT_CLIP_DIST0) {
length = ctx->num_output_clips + ctx->num_output_culls;
output_usage_mask = (1 << length) - 1;
}
param_index = shader_io_get_unique_index(i);
if (lds_base) {
dw_addr = LLVMBuildAdd(ctx->ac.builder, lds_base,
LLVMConstInt(ctx->ac.i32, param_index * 4, false),
"");
}
for (j = 0; j < length; j++) {
if (!(output_usage_mask & (1 << j)))
continue;
LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
out_val = ac_to_integer(&ctx->ac, out_val);
out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
if (ctx->ac.chip_class >= GFX9) {
LLVMValueRef dw_addr_offset =
LLVMBuildAdd(ctx->ac.builder, dw_addr,
LLVMConstInt(ctx->ac.i32,
j, false), "");
ac_lds_store(&ctx->ac, dw_addr_offset, out_val);
} else {
ac_build_buffer_store_dword(&ctx->ac,
ctx->esgs_ring,
out_val, 1,
NULL, ctx->es2gs_offset,
(4 * param_index + j) * 4,
1, 1, true, true);
}
}
}
}
static void
handle_ls_outputs_post(struct radv_shader_context *ctx)
{
LLVMValueRef vertex_id = ctx->rel_auto_id;
uint32_t num_tcs_inputs = util_last_bit64(ctx->shader_info->info.vs.ls_outputs_written);
LLVMValueRef vertex_dw_stride = LLVMConstInt(ctx->ac.i32, num_tcs_inputs * 4, false);
LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
vertex_dw_stride, "");
for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
int length = 4;
if (!(ctx->output_mask & (1ull << i)))
continue;
if (i == VARYING_SLOT_CLIP_DIST0)
length = ctx->num_output_clips + ctx->num_output_culls;
int param = shader_io_get_unique_index(i);
LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
LLVMConstInt(ctx->ac.i32, param * 4, false),
"");
for (unsigned j = 0; j < length; j++) {
LLVMValueRef value = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
value = ac_to_integer(&ctx->ac, value);
value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
ac_lds_store(&ctx->ac, dw_addr, value);
dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr, ctx->ac.i32_1, "");
}
}
}
static void
write_tess_factors(struct radv_shader_context *ctx)
{
unsigned stride, outer_comps, inner_comps;
struct ac_build_if_state if_ctx, inner_if_ctx;
LLVMValueRef invocation_id = ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 8, 5);
LLVMValueRef rel_patch_id = ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
unsigned tess_inner_index = 0, tess_outer_index;
LLVMValueRef lds_base, lds_inner = NULL, lds_outer, byteoffset, buffer;
LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
int i;
ac_emit_barrier(&ctx->ac, ctx->stage);
switch (ctx->options->key.tcs.primitive_mode) {
case GL_ISOLINES:
stride = 2;
outer_comps = 2;
inner_comps = 0;
break;
case GL_TRIANGLES:
stride = 4;
outer_comps = 3;
inner_comps = 1;
break;
case GL_QUADS:
stride = 6;
outer_comps = 4;
inner_comps = 2;
break;
default:
return;
}
ac_nir_build_if(&if_ctx, ctx,
LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
invocation_id, ctx->ac.i32_0, ""));
lds_base = get_tcs_out_current_patch_data_offset(ctx);
if (inner_comps) {
tess_inner_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
LLVMConstInt(ctx->ac.i32, tess_inner_index * 4, false), "");
}
tess_outer_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
LLVMConstInt(ctx->ac.i32, tess_outer_index * 4, false), "");
for (i = 0; i < 4; i++) {
inner[i] = LLVMGetUndef(ctx->ac.i32);
outer[i] = LLVMGetUndef(ctx->ac.i32);
}
// LINES reversal
if (ctx->options->key.tcs.primitive_mode == GL_ISOLINES) {
outer[0] = out[1] = ac_lds_load(&ctx->ac, lds_outer);
lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
ctx->ac.i32_1, "");
outer[1] = out[0] = ac_lds_load(&ctx->ac, lds_outer);
} else {
for (i = 0; i < outer_comps; i++) {
outer[i] = out[i] =
ac_lds_load(&ctx->ac, lds_outer);
lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
ctx->ac.i32_1, "");
}
for (i = 0; i < inner_comps; i++) {
inner[i] = out[outer_comps+i] =
ac_lds_load(&ctx->ac, lds_inner);
lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_inner,
ctx->ac.i32_1, "");
}
}
/* Convert the outputs to vectors for stores. */
vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
vec1 = NULL;
if (stride > 4)
vec1 = ac_build_gather_values(&ctx->ac, out + 4, stride - 4);
buffer = ctx->hs_ring_tess_factor;
tf_base = ctx->tess_factor_offset;
byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
LLVMConstInt(ctx->ac.i32, 4 * stride, false), "");
unsigned tf_offset = 0;
if (ctx->options->chip_class <= VI) {
ac_nir_build_if(&inner_if_ctx, ctx,
LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
rel_patch_id, ctx->ac.i32_0, ""));
/* Store the dynamic HS control word. */
ac_build_buffer_store_dword(&ctx->ac, buffer,
LLVMConstInt(ctx->ac.i32, 0x80000000, false),
1, ctx->ac.i32_0, tf_base,
0, 1, 0, true, false);
tf_offset += 4;
ac_nir_build_endif(&inner_if_ctx);
}
/* Store the tessellation factors. */
ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
MIN2(stride, 4), byteoffset, tf_base,
tf_offset, 1, 0, true, false);
if (vec1)
ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
stride - 4, byteoffset, tf_base,
16 + tf_offset, 1, 0, true, false);
//store to offchip for TES to read - only if TES reads them
if (ctx->options->key.tcs.tes_reads_tess_factors) {
LLVMValueRef inner_vec, outer_vec, tf_outer_offset;
LLVMValueRef tf_inner_offset;
unsigned param_outer, param_inner;
param_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
tf_outer_offset = get_tcs_tes_buffer_address(ctx, NULL,
LLVMConstInt(ctx->ac.i32, param_outer, 0));
outer_vec = ac_build_gather_values(&ctx->ac, outer,
util_next_power_of_two(outer_comps));
ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, outer_vec,
outer_comps, tf_outer_offset,
ctx->oc_lds, 0, 1, 0, true, false);
if (inner_comps) {
param_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
tf_inner_offset = get_tcs_tes_buffer_address(ctx, NULL,
LLVMConstInt(ctx->ac.i32, param_inner, 0));
inner_vec = inner_comps == 1 ? inner[0] :
ac_build_gather_values(&ctx->ac, inner, inner_comps);
ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, inner_vec,
inner_comps, tf_inner_offset,
ctx->oc_lds, 0, 1, 0, true, false);
}
}
ac_nir_build_endif(&if_ctx);
}
static void
handle_tcs_outputs_post(struct radv_shader_context *ctx)
{
write_tess_factors(ctx);
}
static bool
si_export_mrt_color(struct radv_shader_context *ctx,
LLVMValueRef *color, unsigned index,
struct ac_export_args *args)
{
/* Export */
si_llvm_init_export_args(ctx, color, 0xf,
V_008DFC_SQ_EXP_MRT + index, args);
if (!args->enabled_channels)
return false; /* unnecessary NULL export */
return true;
}
static void
radv_export_mrt_z(struct radv_shader_context *ctx,
LLVMValueRef depth, LLVMValueRef stencil,
LLVMValueRef samplemask)
{
struct ac_export_args args;
ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
ac_build_export(&ctx->ac, &args);
}
static void
handle_fs_outputs_post(struct radv_shader_context *ctx)
{
unsigned index = 0;
LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
struct ac_export_args color_args[8];
for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
LLVMValueRef values[4];
if (!(ctx->output_mask & (1ull << i)))
continue;
if (i < FRAG_RESULT_DATA0)
continue;
for (unsigned j = 0; j < 4; j++)
values[j] = ac_to_float(&ctx->ac,
radv_load_output(ctx, i, j));
bool ret = si_export_mrt_color(ctx, values,
i - FRAG_RESULT_DATA0,
&color_args[index]);
if (ret)
index++;
}
/* Process depth, stencil, samplemask. */
if (ctx->shader_info->info.ps.writes_z) {
depth = ac_to_float(&ctx->ac,
radv_load_output(ctx, FRAG_RESULT_DEPTH, 0));
}
if (ctx->shader_info->info.ps.writes_stencil) {
stencil = ac_to_float(&ctx->ac,
radv_load_output(ctx, FRAG_RESULT_STENCIL, 0));
}
if (ctx->shader_info->info.ps.writes_sample_mask) {
samplemask = ac_to_float(&ctx->ac,
radv_load_output(ctx, FRAG_RESULT_SAMPLE_MASK, 0));
}
/* Set the DONE bit on last non-null color export only if Z isn't
* exported.
*/
if (index > 0 &&
!ctx->shader_info->info.ps.writes_z &&
!ctx->shader_info->info.ps.writes_stencil &&
!ctx->shader_info->info.ps.writes_sample_mask) {
unsigned last = index - 1;
color_args[last].valid_mask = 1; /* whether the EXEC mask is valid */
color_args[last].done = 1; /* DONE bit */
}
/* Export PS outputs. */
for (unsigned i = 0; i < index; i++)
ac_build_export(&ctx->ac, &color_args[i]);
if (depth || stencil || samplemask)
radv_export_mrt_z(ctx, depth, stencil, samplemask);
else if (!index)
ac_build_export_null(&ctx->ac);
}
static void
emit_gs_epilogue(struct radv_shader_context *ctx)
{
ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, ctx->gs_wave_id);
}
static void
handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
LLVMValueRef *addrs)
{
struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
switch (ctx->stage) {
case MESA_SHADER_VERTEX:
if (ctx->options->key.vs.as_ls)
handle_ls_outputs_post(ctx);
else if (ctx->options->key.vs.as_es)
handle_es_outputs_post(ctx, &ctx->shader_info->vs.es_info);
else
handle_vs_outputs_post(ctx, ctx->options->key.vs.export_prim_id,
ctx->options->key.vs.export_layer_id,
&ctx->shader_info->vs.outinfo);
break;
case MESA_SHADER_FRAGMENT:
handle_fs_outputs_post(ctx);
break;
case MESA_SHADER_GEOMETRY:
emit_gs_epilogue(ctx);
break;
case MESA_SHADER_TESS_CTRL:
handle_tcs_outputs_post(ctx);
break;
case MESA_SHADER_TESS_EVAL:
if (ctx->options->key.tes.as_es)
handle_es_outputs_post(ctx, &ctx->shader_info->tes.es_info);
else
handle_vs_outputs_post(ctx, ctx->options->key.tes.export_prim_id,
ctx->options->key.tes.export_layer_id,
&ctx->shader_info->tes.outinfo);
break;
default:
break;
}
}
static void ac_llvm_finalize_module(struct radv_shader_context *ctx,
LLVMPassManagerRef passmgr,
const struct radv_nir_compiler_options *options)
{
LLVMRunPassManager(passmgr, ctx->ac.module);
LLVMDisposeBuilder(ctx->ac.builder);
ac_llvm_context_dispose(&ctx->ac);
}
static void
ac_nir_eliminate_const_vs_outputs(struct radv_shader_context *ctx)
{
struct radv_vs_output_info *outinfo;
switch (ctx->stage) {
case MESA_SHADER_FRAGMENT:
case MESA_SHADER_COMPUTE:
case MESA_SHADER_TESS_CTRL:
case MESA_SHADER_GEOMETRY:
return;
case MESA_SHADER_VERTEX:
if (ctx->options->key.vs.as_ls ||
ctx->options->key.vs.as_es)
return;
outinfo = &ctx->shader_info->vs.outinfo;
break;
case MESA_SHADER_TESS_EVAL:
if (ctx->options->key.vs.as_es)
return;
outinfo = &ctx->shader_info->tes.outinfo;
break;
default:
unreachable("Unhandled shader type");
}
ac_optimize_vs_outputs(&ctx->ac,
ctx->main_function,
outinfo->vs_output_param_offset,
VARYING_SLOT_MAX,
&outinfo->param_exports);
}
static void
ac_setup_rings(struct radv_shader_context *ctx)
{
if (ctx->options->chip_class <= VI &&
(ctx->stage == MESA_SHADER_GEOMETRY ||
ctx->options->key.vs.as_es || ctx->options->key.tes.as_es)) {
unsigned ring = ctx->stage == MESA_SHADER_GEOMETRY ? RING_ESGS_GS
: RING_ESGS_VS;
LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, ring, false);
ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac,
ctx->ring_offsets,
offset);
}
if (ctx->is_gs_copy_shader) {
ctx->gsvs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_GSVS_VS, false));
}
if (ctx->stage == MESA_SHADER_GEOMETRY) {
LLVMValueRef tmp;
uint32_t num_entries = 64;
LLVMValueRef gsvs_ring_stride = LLVMConstInt(ctx->ac.i32, ctx->max_gsvs_emit_size, false);
LLVMValueRef gsvs_ring_desc = LLVMConstInt(ctx->ac.i32, ctx->max_gsvs_emit_size << 16, false);
ctx->gsvs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_GSVS_GS, false));
ctx->gsvs_ring = LLVMBuildBitCast(ctx->ac.builder, ctx->gsvs_ring, ctx->ac.v4i32, "");
tmp = LLVMConstInt(ctx->ac.i32, num_entries, false);
if (ctx->options->chip_class >= VI)
tmp = LLVMBuildMul(ctx->ac.builder, gsvs_ring_stride, tmp, "");
ctx->gsvs_ring = LLVMBuildInsertElement(ctx->ac.builder, ctx->gsvs_ring, tmp, LLVMConstInt(ctx->ac.i32, 2, false), "");
tmp = LLVMBuildExtractElement(ctx->ac.builder, ctx->gsvs_ring, ctx->ac.i32_1, "");
tmp = LLVMBuildOr(ctx->ac.builder, tmp, gsvs_ring_desc, "");
ctx->gsvs_ring = LLVMBuildInsertElement(ctx->ac.builder, ctx->gsvs_ring, tmp, ctx->ac.i32_1, "");
}
if (ctx->stage == MESA_SHADER_TESS_CTRL ||
ctx->stage == MESA_SHADER_TESS_EVAL) {
ctx->hs_ring_tess_offchip = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_OFFCHIP, false));
ctx->hs_ring_tess_factor = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_FACTOR, false));
}
}
static unsigned
ac_nir_get_max_workgroup_size(enum chip_class chip_class,
const struct nir_shader *nir)
{
switch (nir->info.stage) {
case MESA_SHADER_TESS_CTRL:
return chip_class >= CIK ? 128 : 64;
case MESA_SHADER_GEOMETRY:
return chip_class >= GFX9 ? 128 : 64;
case MESA_SHADER_COMPUTE:
break;
default:
return 0;
}
unsigned max_workgroup_size = nir->info.cs.local_size[0] *
nir->info.cs.local_size[1] *
nir->info.cs.local_size[2];
return max_workgroup_size;
}
/* Fixup the HW not emitting the TCS regs if there are no HS threads. */
static void ac_nir_fixup_ls_hs_input_vgprs(struct radv_shader_context *ctx)
{
LLVMValueRef count = ac_build_bfe(&ctx->ac, ctx->merged_wave_info,
LLVMConstInt(ctx->ac.i32, 8, false),
LLVMConstInt(ctx->ac.i32, 8, false), false);
LLVMValueRef hs_empty = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, count,
ctx->ac.i32_0, "");
ctx->abi.instance_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->rel_auto_id, ctx->abi.instance_id, "");
ctx->rel_auto_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_rel_ids, ctx->rel_auto_id, "");
ctx->abi.vertex_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_patch_id, ctx->abi.vertex_id, "");
}
static void prepare_gs_input_vgprs(struct radv_shader_context *ctx)
{
for(int i = 5; i >= 0; --i) {
ctx->gs_vtx_offset[i] = ac_build_bfe(&ctx->ac, ctx->gs_vtx_offset[i & ~1],
LLVMConstInt(ctx->ac.i32, (i & 1) * 16, false),
LLVMConstInt(ctx->ac.i32, 16, false), false);
}
ctx->gs_wave_id = ac_build_bfe(&ctx->ac, ctx->merged_wave_info,
LLVMConstInt(ctx->ac.i32, 16, false),
LLVMConstInt(ctx->ac.i32, 8, false), false);
}
static
LLVMModuleRef ac_translate_nir_to_llvm(struct ac_llvm_compiler *ac_llvm,
struct nir_shader *const *shaders,
int shader_count,
struct radv_shader_variant_info *shader_info,
const struct radv_nir_compiler_options *options)
{
struct radv_shader_context ctx = {0};
unsigned i;
ctx.options = options;
ctx.shader_info = shader_info;
ac_llvm_context_init(&ctx.ac, options->chip_class, options->family);
ctx.context = ctx.ac.context;
ctx.ac.module = ac_create_module(ac_llvm->tm, ctx.context);
enum ac_float_mode float_mode =
options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
AC_FLOAT_MODE_DEFAULT;
ctx.ac.builder = ac_create_builder(ctx.context, float_mode);
memset(shader_info, 0, sizeof(*shader_info));
for(int i = 0; i < shader_count; ++i)
radv_nir_shader_info_pass(shaders[i], options, &shader_info->info);
for (i = 0; i < RADV_UD_MAX_SETS; i++)
shader_info->user_sgprs_locs.descriptor_sets[i].sgpr_idx = -1;
for (i = 0; i < AC_UD_MAX_UD; i++)
shader_info->user_sgprs_locs.shader_data[i].sgpr_idx = -1;
ctx.max_workgroup_size = 0;
for (int i = 0; i < shader_count; ++i) {
ctx.max_workgroup_size = MAX2(ctx.max_workgroup_size,
ac_nir_get_max_workgroup_size(ctx.options->chip_class,
shaders[i]));
}
create_function(&ctx, shaders[shader_count - 1]->info.stage, shader_count >= 2,
shader_count >= 2 ? shaders[shader_count - 2]->info.stage : MESA_SHADER_VERTEX);
ctx.abi.inputs = &ctx.inputs[0];
ctx.abi.emit_outputs = handle_shader_outputs_post;
ctx.abi.emit_vertex = visit_emit_vertex;
ctx.abi.load_ubo = radv_load_ubo;
ctx.abi.load_ssbo = radv_load_ssbo;
ctx.abi.load_sampler_desc = radv_get_sampler_desc;
ctx.abi.load_resource = radv_load_resource;
ctx.abi.clamp_shadow_reference = false;
ctx.abi.gfx9_stride_size_workaround = ctx.ac.chip_class == GFX9;
if (shader_count >= 2)
ac_init_exec_full_mask(&ctx.ac);
if (ctx.ac.chip_class == GFX9 &&
shaders[shader_count - 1]->info.stage == MESA_SHADER_TESS_CTRL)
ac_nir_fixup_ls_hs_input_vgprs(&ctx);
for(int i = 0; i < shader_count; ++i) {
ctx.stage = shaders[i]->info.stage;
ctx.output_mask = 0;
ctx.num_output_clips = shaders[i]->info.clip_distance_array_size;
ctx.num_output_culls = shaders[i]->info.cull_distance_array_size;
if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
ctx.gs_next_vertex = ac_build_alloca(&ctx.ac, ctx.ac.i32, "gs_next_vertex");
ctx.gs_max_out_vertices = shaders[i]->info.gs.vertices_out;
ctx.abi.load_inputs = load_gs_input;
ctx.abi.emit_primitive = visit_end_primitive;
} else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
ctx.tcs_outputs_read = shaders[i]->info.outputs_read;
ctx.tcs_patch_outputs_read = shaders[i]->info.patch_outputs_read;
ctx.abi.load_tess_varyings = load_tcs_varyings;
ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
ctx.abi.store_tcs_outputs = store_tcs_output;
ctx.tcs_vertices_per_patch = shaders[i]->info.tess.tcs_vertices_out;
if (shader_count == 1)
ctx.tcs_num_inputs = ctx.options->key.tcs.num_inputs;
else
ctx.tcs_num_inputs = util_last_bit64(shader_info->info.vs.ls_outputs_written);
ctx.tcs_num_patches = get_tcs_num_patches(&ctx);
} else if (shaders[i]->info.stage == MESA_SHADER_TESS_EVAL) {
ctx.tes_primitive_mode = shaders[i]->info.tess.primitive_mode;
ctx.abi.load_tess_varyings = load_tes_input;
ctx.abi.load_tess_coord = load_tess_coord;
ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
ctx.tcs_vertices_per_patch = shaders[i]->info.tess.tcs_vertices_out;
ctx.tcs_num_patches = ctx.options->key.tes.num_patches;
} else if (shaders[i]->info.stage == MESA_SHADER_VERTEX) {
if (shader_info->info.vs.needs_instance_id) {
if (ctx.options->key.vs.as_ls) {
ctx.shader_info->vs.vgpr_comp_cnt =
MAX2(2, ctx.shader_info->vs.vgpr_comp_cnt);
} else {
ctx.shader_info->vs.vgpr_comp_cnt =
MAX2(1, ctx.shader_info->vs.vgpr_comp_cnt);
}
}
ctx.abi.load_base_vertex = radv_load_base_vertex;
} else if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT) {
shader_info->fs.can_discard = shaders[i]->info.fs.uses_discard;
ctx.abi.lookup_interp_param = lookup_interp_param;
ctx.abi.load_sample_position = load_sample_position;
ctx.abi.load_sample_mask_in = load_sample_mask_in;
ctx.abi.emit_kill = radv_emit_kill;
}
if (i)
ac_emit_barrier(&ctx.ac, ctx.stage);
nir_foreach_variable(variable, &shaders[i]->outputs)
scan_shader_output_decl(&ctx, variable, shaders[i], shaders[i]->info.stage);
if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
unsigned addclip = shaders[i]->info.clip_distance_array_size +
shaders[i]->info.cull_distance_array_size > 4;
ctx.gsvs_vertex_size = (util_bitcount64(ctx.output_mask) + addclip) * 16;
ctx.max_gsvs_emit_size = ctx.gsvs_vertex_size *
shaders[i]->info.gs.vertices_out;
}
ac_setup_rings(&ctx);
LLVMBasicBlockRef merge_block;
if (shader_count >= 2) {
LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
merge_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
LLVMValueRef count = ac_build_bfe(&ctx.ac, ctx.merged_wave_info,
LLVMConstInt(ctx.ac.i32, 8 * i, false),
LLVMConstInt(ctx.ac.i32, 8, false), false);
LLVMValueRef thread_id = ac_get_thread_id(&ctx.ac);
LLVMValueRef cond = LLVMBuildICmp(ctx.ac.builder, LLVMIntULT,
thread_id, count, "");
LLVMBuildCondBr(ctx.ac.builder, cond, then_block, merge_block);
LLVMPositionBuilderAtEnd(ctx.ac.builder, then_block);
}
if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT)
handle_fs_inputs(&ctx, shaders[i]);
else if(shaders[i]->info.stage == MESA_SHADER_VERTEX)
handle_vs_inputs(&ctx, shaders[i]);
else if(shader_count >= 2 && shaders[i]->info.stage == MESA_SHADER_GEOMETRY)
prepare_gs_input_vgprs(&ctx);
ac_nir_translate(&ctx.ac, &ctx.abi, shaders[i]);
if (shader_count >= 2) {
LLVMBuildBr(ctx.ac.builder, merge_block);
LLVMPositionBuilderAtEnd(ctx.ac.builder, merge_block);
}
if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
shader_info->gs.gsvs_vertex_size = ctx.gsvs_vertex_size;
shader_info->gs.max_gsvs_emit_size = ctx.max_gsvs_emit_size;
} else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
shader_info->tcs.num_patches = ctx.tcs_num_patches;
shader_info->tcs.lds_size = calculate_tess_lds_size(&ctx);
}
}
LLVMBuildRetVoid(ctx.ac.builder);
if (options->dump_preoptir)
ac_dump_module(ctx.ac.module);
ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, options);
if (shader_count == 1)
ac_nir_eliminate_const_vs_outputs(&ctx);
if (options->dump_shader) {
ctx.shader_info->private_mem_vgprs =
ac_count_scratch_private_memory(ctx.main_function);
}
return ctx.ac.module;
}
static void ac_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
{
unsigned *retval = (unsigned *)context;
LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
char *description = LLVMGetDiagInfoDescription(di);
if (severity == LLVMDSError) {
*retval = 1;
fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n",
description);
}
LLVMDisposeMessage(description);
}
static unsigned ac_llvm_compile(LLVMModuleRef M,
struct ac_shader_binary *binary,
struct ac_llvm_compiler *ac_llvm)
{
unsigned retval = 0;
LLVMContextRef llvm_ctx;
/* Setup Diagnostic Handler*/
llvm_ctx = LLVMGetModuleContext(M);
LLVMContextSetDiagnosticHandler(llvm_ctx, ac_diagnostic_handler,
&retval);
/* Compile IR*/
if (!radv_compile_to_binary(ac_llvm, M, binary))
retval = 1;
return retval;
}
static void ac_compile_llvm_module(struct ac_llvm_compiler *ac_llvm,
LLVMModuleRef llvm_module,
struct ac_shader_binary *binary,
struct ac_shader_config *config,
struct radv_shader_variant_info *shader_info,
gl_shader_stage stage,
const struct radv_nir_compiler_options *options)
{
if (options->dump_shader)
ac_dump_module(llvm_module);
memset(binary, 0, sizeof(*binary));
if (options->record_llvm_ir) {
char *llvm_ir = LLVMPrintModuleToString(llvm_module);
binary->llvm_ir_string = strdup(llvm_ir);
LLVMDisposeMessage(llvm_ir);
}
int v = ac_llvm_compile(llvm_module, binary, ac_llvm);
if (v) {
fprintf(stderr, "compile failed\n");
}
if (options->dump_shader)
fprintf(stderr, "disasm:\n%s\n", binary->disasm_string);
ac_shader_binary_read_config(binary, config, 0, options->supports_spill);
LLVMContextRef ctx = LLVMGetModuleContext(llvm_module);
LLVMDisposeModule(llvm_module);
LLVMContextDispose(ctx);
if (stage == MESA_SHADER_FRAGMENT) {
shader_info->num_input_vgprs = 0;
if (G_0286CC_PERSP_SAMPLE_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_PERSP_CENTER_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_PERSP_CENTROID_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_PERSP_PULL_MODEL_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 3;
if (G_0286CC_LINEAR_SAMPLE_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_LINEAR_CENTER_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_LINEAR_CENTROID_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_LINE_STIPPLE_TEX_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_POS_X_FLOAT_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_POS_Y_FLOAT_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_POS_Z_FLOAT_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_POS_W_FLOAT_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_FRONT_FACE_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_ANCILLARY_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_SAMPLE_COVERAGE_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_POS_FIXED_PT_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
}
config->num_vgprs = MAX2(config->num_vgprs, shader_info->num_input_vgprs);
/* +3 for scratch wave offset and VCC */
config->num_sgprs = MAX2(config->num_sgprs,
shader_info->num_input_sgprs + 3);
/* Enable 64-bit and 16-bit denormals, because there is no performance
* cost.
*
* If denormals are enabled, all floating-point output modifiers are
* ignored.
*
* Don't enable denormals for 32-bit floats, because:
* - Floating-point output modifiers would be ignored by the hw.
* - Some opcodes don't support denormals, such as v_mad_f32. We would
* have to stop using those.
* - SI & CI would be very slow.
*/
config->float_mode |= V_00B028_FP_64_DENORMS;
}
static void
ac_fill_shader_info(struct radv_shader_variant_info *shader_info, struct nir_shader *nir, const struct radv_nir_compiler_options *options)
{
switch (nir->info.stage) {
case MESA_SHADER_COMPUTE:
for (int i = 0; i < 3; ++i)
shader_info->cs.block_size[i] = nir->info.cs.local_size[i];
break;
case MESA_SHADER_FRAGMENT:
shader_info->fs.early_fragment_test = nir->info.fs.early_fragment_tests;
break;
case MESA_SHADER_GEOMETRY:
shader_info->gs.vertices_in = nir->info.gs.vertices_in;
shader_info->gs.vertices_out = nir->info.gs.vertices_out;
shader_info->gs.output_prim = nir->info.gs.output_primitive;
shader_info->gs.invocations = nir->info.gs.invocations;
break;
case MESA_SHADER_TESS_EVAL:
shader_info->tes.primitive_mode = nir->info.tess.primitive_mode;
shader_info->tes.spacing = nir->info.tess.spacing;
shader_info->tes.ccw = nir->info.tess.ccw;
shader_info->tes.point_mode = nir->info.tess.point_mode;
shader_info->tes.as_es = options->key.tes.as_es;
break;
case MESA_SHADER_TESS_CTRL:
shader_info->tcs.tcs_vertices_out = nir->info.tess.tcs_vertices_out;
break;
case MESA_SHADER_VERTEX:
shader_info->vs.as_es = options->key.vs.as_es;
shader_info->vs.as_ls = options->key.vs.as_ls;
/* in LS mode we need at least 1, invocation id needs 2, handled elsewhere */
if (options->key.vs.as_ls)
shader_info->vs.vgpr_comp_cnt = MAX2(1, shader_info->vs.vgpr_comp_cnt);
break;
default:
break;
}
}
void
radv_compile_nir_shader(struct ac_llvm_compiler *ac_llvm,
struct ac_shader_binary *binary,
struct ac_shader_config *config,
struct radv_shader_variant_info *shader_info,
struct nir_shader *const *nir,
int nir_count,
const struct radv_nir_compiler_options *options)
{
LLVMModuleRef llvm_module;
llvm_module = ac_translate_nir_to_llvm(ac_llvm, nir, nir_count, shader_info,
options);
ac_compile_llvm_module(ac_llvm, llvm_module, binary, config, shader_info,
nir[0]->info.stage, options);
for (int i = 0; i < nir_count; ++i)
ac_fill_shader_info(shader_info, nir[i], options);
/* Determine the ES type (VS or TES) for the GS on GFX9. */
if (options->chip_class == GFX9) {
if (nir_count == 2 &&
nir[1]->info.stage == MESA_SHADER_GEOMETRY) {
shader_info->gs.es_type = nir[0]->info.stage;
}
}
}
static void
ac_gs_copy_shader_emit(struct radv_shader_context *ctx)
{
LLVMValueRef vtx_offset =
LLVMBuildMul(ctx->ac.builder, ctx->abi.vertex_id,
LLVMConstInt(ctx->ac.i32, 4, false), "");
int idx = 0;
for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
int length = 4;
int slot = idx;
int slot_inc = 1;
if (!(ctx->output_mask & (1ull << i)))
continue;
if (i == VARYING_SLOT_CLIP_DIST0) {
/* unpack clip and cull from a single set of slots */
length = ctx->num_output_clips + ctx->num_output_culls;
if (length > 4)
slot_inc = 2;
}
for (unsigned j = 0; j < length; j++) {
LLVMValueRef value, soffset;
soffset = LLVMConstInt(ctx->ac.i32,
(slot * 4 + j) *
ctx->gs_max_out_vertices * 16 * 4, false);
value = ac_build_buffer_load(&ctx->ac, ctx->gsvs_ring,
1, ctx->ac.i32_0,
vtx_offset, soffset,
0, 1, 1, true, false);
LLVMTypeRef type = LLVMGetAllocatedType(ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
if (ac_get_type_size(type) == 2) {
value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
value = LLVMBuildTrunc(ctx->ac.builder, value, ctx->ac.i16, "");
}
LLVMBuildStore(ctx->ac.builder,
ac_to_float(&ctx->ac, value), ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
}
idx += slot_inc;
}
handle_vs_outputs_post(ctx, false, false, &ctx->shader_info->vs.outinfo);
}
void
radv_compile_gs_copy_shader(struct ac_llvm_compiler *ac_llvm,
struct nir_shader *geom_shader,
struct ac_shader_binary *binary,
struct ac_shader_config *config,
struct radv_shader_variant_info *shader_info,
const struct radv_nir_compiler_options *options)
{
struct radv_shader_context ctx = {0};
ctx.options = options;
ctx.shader_info = shader_info;
ac_llvm_context_init(&ctx.ac, options->chip_class, options->family);
ctx.context = ctx.ac.context;
ctx.ac.module = ac_create_module(ac_llvm->tm, ctx.context);
ctx.is_gs_copy_shader = true;
enum ac_float_mode float_mode =
options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
AC_FLOAT_MODE_DEFAULT;
ctx.ac.builder = ac_create_builder(ctx.context, float_mode);
ctx.stage = MESA_SHADER_VERTEX;
radv_nir_shader_info_pass(geom_shader, options, &shader_info->info);
create_function(&ctx, MESA_SHADER_VERTEX, false, MESA_SHADER_VERTEX);
ctx.gs_max_out_vertices = geom_shader->info.gs.vertices_out;
ac_setup_rings(&ctx);
ctx.num_output_clips = geom_shader->info.clip_distance_array_size;
ctx.num_output_culls = geom_shader->info.cull_distance_array_size;
nir_foreach_variable(variable, &geom_shader->outputs) {
scan_shader_output_decl(&ctx, variable, geom_shader, MESA_SHADER_VERTEX);
ac_handle_shader_output_decl(&ctx.ac, &ctx.abi, geom_shader,
variable, MESA_SHADER_VERTEX);
}
ac_gs_copy_shader_emit(&ctx);
LLVMBuildRetVoid(ctx.ac.builder);
ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, options);
ac_compile_llvm_module(ac_llvm, ctx.ac.module, binary, config, shader_info,
MESA_SHADER_VERTEX, options);
}