blob: 07c1747f092c378a658d33b9f6e250dffd2165b5 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/mesa-sha1.h"
#include "util/u_atomic.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "spirv/nir_spirv.h"
#include "vk_util.h"
#include <llvm-c/Core.h>
#include <llvm-c/TargetMachine.h>
#include "sid.h"
#include "gfx9d.h"
#include "ac_binary.h"
#include "ac_llvm_util.h"
#include "ac_nir_to_llvm.h"
#include "vk_format.h"
#include "util/debug.h"
#include "ac_exp_param.h"
static void
radv_pipeline_destroy(struct radv_device *device,
struct radv_pipeline *pipeline,
const VkAllocationCallbacks* allocator)
{
for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i)
if (pipeline->shaders[i])
radv_shader_variant_destroy(device, pipeline->shaders[i]);
if (pipeline->gs_copy_shader)
radv_shader_variant_destroy(device, pipeline->gs_copy_shader);
vk_free2(&device->alloc, allocator, pipeline);
}
void radv_DestroyPipeline(
VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
if (!_pipeline)
return;
radv_pipeline_destroy(device, pipeline, pAllocator);
}
static void radv_dump_pipeline_stats(struct radv_device *device, struct radv_pipeline *pipeline)
{
int i;
for (i = 0; i < MESA_SHADER_STAGES; i++) {
if (!pipeline->shaders[i])
continue;
radv_shader_dump_stats(device, pipeline->shaders[i], i, stderr);
}
}
static uint32_t get_hash_flags(struct radv_device *device)
{
uint32_t hash_flags = 0;
if (device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH)
hash_flags |= RADV_HASH_SHADER_UNSAFE_MATH;
if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
hash_flags |= RADV_HASH_SHADER_SISCHED;
return hash_flags;
}
static VkResult
radv_pipeline_scratch_init(struct radv_device *device,
struct radv_pipeline *pipeline)
{
unsigned scratch_bytes_per_wave = 0;
unsigned max_waves = 0;
unsigned min_waves = 1;
for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
if (pipeline->shaders[i]) {
unsigned max_stage_waves = device->scratch_waves;
scratch_bytes_per_wave = MAX2(scratch_bytes_per_wave,
pipeline->shaders[i]->config.scratch_bytes_per_wave);
max_stage_waves = MIN2(max_stage_waves,
4 * device->physical_device->rad_info.num_good_compute_units *
(256 / pipeline->shaders[i]->config.num_vgprs));
max_waves = MAX2(max_waves, max_stage_waves);
}
}
if (pipeline->shaders[MESA_SHADER_COMPUTE]) {
unsigned group_size = pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[0] *
pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[1] *
pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[2];
min_waves = MAX2(min_waves, round_up_u32(group_size, 64));
}
if (scratch_bytes_per_wave)
max_waves = MIN2(max_waves, 0xffffffffu / scratch_bytes_per_wave);
if (scratch_bytes_per_wave && max_waves < min_waves) {
/* Not really true at this moment, but will be true on first
* execution. Avoid having hanging shaders. */
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
}
pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave;
pipeline->max_waves = max_waves;
return VK_SUCCESS;
}
static uint32_t si_translate_blend_function(VkBlendOp op)
{
switch (op) {
case VK_BLEND_OP_ADD:
return V_028780_COMB_DST_PLUS_SRC;
case VK_BLEND_OP_SUBTRACT:
return V_028780_COMB_SRC_MINUS_DST;
case VK_BLEND_OP_REVERSE_SUBTRACT:
return V_028780_COMB_DST_MINUS_SRC;
case VK_BLEND_OP_MIN:
return V_028780_COMB_MIN_DST_SRC;
case VK_BLEND_OP_MAX:
return V_028780_COMB_MAX_DST_SRC;
default:
return 0;
}
}
static uint32_t si_translate_blend_factor(VkBlendFactor factor)
{
switch (factor) {
case VK_BLEND_FACTOR_ZERO:
return V_028780_BLEND_ZERO;
case VK_BLEND_FACTOR_ONE:
return V_028780_BLEND_ONE;
case VK_BLEND_FACTOR_SRC_COLOR:
return V_028780_BLEND_SRC_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
return V_028780_BLEND_ONE_MINUS_SRC_COLOR;
case VK_BLEND_FACTOR_DST_COLOR:
return V_028780_BLEND_DST_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
return V_028780_BLEND_ONE_MINUS_DST_COLOR;
case VK_BLEND_FACTOR_SRC_ALPHA:
return V_028780_BLEND_SRC_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
return V_028780_BLEND_ONE_MINUS_SRC_ALPHA;
case VK_BLEND_FACTOR_DST_ALPHA:
return V_028780_BLEND_DST_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
return V_028780_BLEND_ONE_MINUS_DST_ALPHA;
case VK_BLEND_FACTOR_CONSTANT_COLOR:
return V_028780_BLEND_CONSTANT_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR;
case VK_BLEND_FACTOR_CONSTANT_ALPHA:
return V_028780_BLEND_CONSTANT_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA;
case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
return V_028780_BLEND_SRC_ALPHA_SATURATE;
case VK_BLEND_FACTOR_SRC1_COLOR:
return V_028780_BLEND_SRC1_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
return V_028780_BLEND_INV_SRC1_COLOR;
case VK_BLEND_FACTOR_SRC1_ALPHA:
return V_028780_BLEND_SRC1_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
return V_028780_BLEND_INV_SRC1_ALPHA;
default:
return 0;
}
}
static uint32_t si_translate_blend_opt_function(VkBlendOp op)
{
switch (op) {
case VK_BLEND_OP_ADD:
return V_028760_OPT_COMB_ADD;
case VK_BLEND_OP_SUBTRACT:
return V_028760_OPT_COMB_SUBTRACT;
case VK_BLEND_OP_REVERSE_SUBTRACT:
return V_028760_OPT_COMB_REVSUBTRACT;
case VK_BLEND_OP_MIN:
return V_028760_OPT_COMB_MIN;
case VK_BLEND_OP_MAX:
return V_028760_OPT_COMB_MAX;
default:
return V_028760_OPT_COMB_BLEND_DISABLED;
}
}
static uint32_t si_translate_blend_opt_factor(VkBlendFactor factor, bool is_alpha)
{
switch (factor) {
case VK_BLEND_FACTOR_ZERO:
return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL;
case VK_BLEND_FACTOR_ONE:
return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE;
case VK_BLEND_FACTOR_SRC_COLOR:
return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0
: V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1
: V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1;
case VK_BLEND_FACTOR_SRC_ALPHA:
return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1;
case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE
: V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
default:
return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
}
}
/**
* Get rid of DST in the blend factors by commuting the operands:
* func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
*/
static void si_blend_remove_dst(unsigned *func, unsigned *src_factor,
unsigned *dst_factor, unsigned expected_dst,
unsigned replacement_src)
{
if (*src_factor == expected_dst &&
*dst_factor == VK_BLEND_FACTOR_ZERO) {
*src_factor = VK_BLEND_FACTOR_ZERO;
*dst_factor = replacement_src;
/* Commuting the operands requires reversing subtractions. */
if (*func == VK_BLEND_OP_SUBTRACT)
*func = VK_BLEND_OP_REVERSE_SUBTRACT;
else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT)
*func = VK_BLEND_OP_SUBTRACT;
}
}
static bool si_blend_factor_uses_dst(unsigned factor)
{
return factor == VK_BLEND_FACTOR_DST_COLOR ||
factor == VK_BLEND_FACTOR_DST_ALPHA ||
factor == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
factor == VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA ||
factor == VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR;
}
static bool is_dual_src(VkBlendFactor factor)
{
switch (factor) {
case VK_BLEND_FACTOR_SRC1_COLOR:
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
case VK_BLEND_FACTOR_SRC1_ALPHA:
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
return true;
default:
return false;
}
}
static unsigned si_choose_spi_color_format(VkFormat vk_format,
bool blend_enable,
bool blend_need_alpha)
{
const struct vk_format_description *desc = vk_format_description(vk_format);
unsigned format, ntype, swap;
/* Alpha is needed for alpha-to-coverage.
* Blending may be with or without alpha.
*/
unsigned normal = 0; /* most optimal, may not support blending or export alpha */
unsigned alpha = 0; /* exports alpha, but may not support blending */
unsigned blend = 0; /* supports blending, but may not export alpha */
unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */
format = radv_translate_colorformat(vk_format);
ntype = radv_translate_color_numformat(vk_format, desc,
vk_format_get_first_non_void_channel(vk_format));
swap = radv_translate_colorswap(vk_format, false);
/* Choose the SPI color formats. These are required values for Stoney/RB+.
* Other chips have multiple choices, though they are not necessarily better.
*/
switch (format) {
case V_028C70_COLOR_5_6_5:
case V_028C70_COLOR_1_5_5_5:
case V_028C70_COLOR_5_5_5_1:
case V_028C70_COLOR_4_4_4_4:
case V_028C70_COLOR_10_11_11:
case V_028C70_COLOR_11_11_10:
case V_028C70_COLOR_8:
case V_028C70_COLOR_8_8:
case V_028C70_COLOR_8_8_8_8:
case V_028C70_COLOR_10_10_10_2:
case V_028C70_COLOR_2_10_10_10:
if (ntype == V_028C70_NUMBER_UINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
else if (ntype == V_028C70_NUMBER_SINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
else
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
break;
case V_028C70_COLOR_16:
case V_028C70_COLOR_16_16:
case V_028C70_COLOR_16_16_16_16:
if (ntype == V_028C70_NUMBER_UNORM ||
ntype == V_028C70_NUMBER_SNORM) {
/* UNORM16 and SNORM16 don't support blending */
if (ntype == V_028C70_NUMBER_UNORM)
normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR;
else
normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR;
/* Use 32 bits per channel for blending. */
if (format == V_028C70_COLOR_16) {
if (swap == V_028C70_SWAP_STD) { /* R */
blend = V_028714_SPI_SHADER_32_R;
blend_alpha = V_028714_SPI_SHADER_32_AR;
} else if (swap == V_028C70_SWAP_ALT_REV) /* A */
blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
else
assert(0);
} else if (format == V_028C70_COLOR_16_16) {
if (swap == V_028C70_SWAP_STD) { /* RG */
blend = V_028714_SPI_SHADER_32_GR;
blend_alpha = V_028714_SPI_SHADER_32_ABGR;
} else if (swap == V_028C70_SWAP_ALT) /* RA */
blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
else
assert(0);
} else /* 16_16_16_16 */
blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
} else if (ntype == V_028C70_NUMBER_UINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
else if (ntype == V_028C70_NUMBER_SINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
else if (ntype == V_028C70_NUMBER_FLOAT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
else
assert(0);
break;
case V_028C70_COLOR_32:
if (swap == V_028C70_SWAP_STD) { /* R */
blend = normal = V_028714_SPI_SHADER_32_R;
alpha = blend_alpha = V_028714_SPI_SHADER_32_AR;
} else if (swap == V_028C70_SWAP_ALT_REV) /* A */
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
else
assert(0);
break;
case V_028C70_COLOR_32_32:
if (swap == V_028C70_SWAP_STD) { /* RG */
blend = normal = V_028714_SPI_SHADER_32_GR;
alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
} else if (swap == V_028C70_SWAP_ALT) /* RA */
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
else
assert(0);
break;
case V_028C70_COLOR_32_32_32_32:
case V_028C70_COLOR_8_24:
case V_028C70_COLOR_24_8:
case V_028C70_COLOR_X24_8_32_FLOAT:
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR;
break;
default:
unreachable("unhandled blend format");
}
if (blend_enable && blend_need_alpha)
return blend_alpha;
else if(blend_need_alpha)
return alpha;
else if(blend_enable)
return blend;
else
return normal;
}
static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
{
unsigned i, cb_shader_mask = 0;
for (i = 0; i < 8; i++) {
switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
case V_028714_SPI_SHADER_ZERO:
break;
case V_028714_SPI_SHADER_32_R:
cb_shader_mask |= 0x1 << (i * 4);
break;
case V_028714_SPI_SHADER_32_GR:
cb_shader_mask |= 0x3 << (i * 4);
break;
case V_028714_SPI_SHADER_32_AR:
cb_shader_mask |= 0x9 << (i * 4);
break;
case V_028714_SPI_SHADER_FP16_ABGR:
case V_028714_SPI_SHADER_UNORM16_ABGR:
case V_028714_SPI_SHADER_SNORM16_ABGR:
case V_028714_SPI_SHADER_UINT16_ABGR:
case V_028714_SPI_SHADER_SINT16_ABGR:
case V_028714_SPI_SHADER_32_ABGR:
cb_shader_mask |= 0xf << (i * 4);
break;
default:
assert(0);
}
}
return cb_shader_mask;
}
static void
radv_pipeline_compute_spi_color_formats(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
uint32_t blend_enable,
uint32_t blend_need_alpha,
bool single_cb_enable,
bool blend_mrt0_is_dual_src)
{
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
struct radv_blend_state *blend = &pipeline->graphics.blend;
unsigned col_format = 0;
for (unsigned i = 0; i < (single_cb_enable ? 1 : subpass->color_count); ++i) {
unsigned cf;
if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) {
cf = V_028714_SPI_SHADER_ZERO;
} else {
struct radv_render_pass_attachment *attachment = pass->attachments + subpass->color_attachments[i].attachment;
cf = si_choose_spi_color_format(attachment->format,
blend_enable & (1 << i),
blend_need_alpha & (1 << i));
}
col_format |= cf << (4 * i);
}
blend->cb_shader_mask = si_get_cb_shader_mask(col_format);
if (blend_mrt0_is_dual_src)
col_format |= (col_format & 0xf) << 4;
blend->spi_shader_col_format = col_format;
}
static bool
format_is_int8(VkFormat format)
{
const struct vk_format_description *desc = vk_format_description(format);
int channel = vk_format_get_first_non_void_channel(format);
return channel >= 0 && desc->channel[channel].pure_integer &&
desc->channel[channel].size == 8;
}
static bool
format_is_int10(VkFormat format)
{
const struct vk_format_description *desc = vk_format_description(format);
if (desc->nr_channels != 4)
return false;
for (unsigned i = 0; i < 4; i++) {
if (desc->channel[i].pure_integer && desc->channel[i].size == 10)
return true;
}
return false;
}
unsigned radv_format_meta_fs_key(VkFormat format)
{
unsigned col_format = si_choose_spi_color_format(format, false, false) - 1;
bool is_int8 = format_is_int8(format);
bool is_int10 = format_is_int10(format);
return col_format + (is_int8 ? 3 : is_int10 ? 5 : 0);
}
static void
radv_pipeline_compute_get_int_clamp(const VkGraphicsPipelineCreateInfo *pCreateInfo,
unsigned *is_int8, unsigned *is_int10)
{
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
*is_int8 = 0;
*is_int10 = 0;
for (unsigned i = 0; i < subpass->color_count; ++i) {
struct radv_render_pass_attachment *attachment;
if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
continue;
attachment = pass->attachments + subpass->color_attachments[i].attachment;
if (format_is_int8(attachment->format))
*is_int8 |= 1 << i;
if (format_is_int10(attachment->format))
*is_int10 |= 1 << i;
}
}
static void
radv_pipeline_init_blend_state(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra)
{
const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState;
const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState;
struct radv_blend_state *blend = &pipeline->graphics.blend;
unsigned mode = V_028808_CB_NORMAL;
uint32_t blend_enable = 0, blend_need_alpha = 0;
bool blend_mrt0_is_dual_src = false;
int i;
bool single_cb_enable = false;
if (!vkblend)
return;
if (extra && extra->custom_blend_mode) {
single_cb_enable = true;
mode = extra->custom_blend_mode;
}
blend->cb_color_control = 0;
if (vkblend->logicOpEnable)
blend->cb_color_control |= S_028808_ROP3(vkblend->logicOp | (vkblend->logicOp << 4));
else
blend->cb_color_control |= S_028808_ROP3(0xcc);
blend->db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(2) |
S_028B70_ALPHA_TO_MASK_OFFSET1(2) |
S_028B70_ALPHA_TO_MASK_OFFSET2(2) |
S_028B70_ALPHA_TO_MASK_OFFSET3(2);
if (vkms && vkms->alphaToCoverageEnable) {
blend->db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1);
}
blend->cb_target_mask = 0;
for (i = 0; i < vkblend->attachmentCount; i++) {
const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i];
unsigned blend_cntl = 0;
unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt;
VkBlendOp eqRGB = att->colorBlendOp;
VkBlendFactor srcRGB = att->srcColorBlendFactor;
VkBlendFactor dstRGB = att->dstColorBlendFactor;
VkBlendOp eqA = att->alphaBlendOp;
VkBlendFactor srcA = att->srcAlphaBlendFactor;
VkBlendFactor dstA = att->dstAlphaBlendFactor;
blend->sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
if (!att->colorWriteMask)
continue;
blend->cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i);
if (!att->blendEnable) {
blend->cb_blend_control[i] = blend_cntl;
continue;
}
if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA))
if (i == 0)
blend_mrt0_is_dual_src = true;
if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) {
srcRGB = VK_BLEND_FACTOR_ONE;
dstRGB = VK_BLEND_FACTOR_ONE;
}
if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) {
srcA = VK_BLEND_FACTOR_ONE;
dstA = VK_BLEND_FACTOR_ONE;
}
/* Blending optimizations for RB+.
* These transformations don't change the behavior.
*
* First, get rid of DST in the blend factors:
* func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
*/
si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB,
VK_BLEND_FACTOR_DST_COLOR,
VK_BLEND_FACTOR_SRC_COLOR);
si_blend_remove_dst(&eqA, &srcA, &dstA,
VK_BLEND_FACTOR_DST_COLOR,
VK_BLEND_FACTOR_SRC_COLOR);
si_blend_remove_dst(&eqA, &srcA, &dstA,
VK_BLEND_FACTOR_DST_ALPHA,
VK_BLEND_FACTOR_SRC_ALPHA);
/* Look up the ideal settings from tables. */
srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false);
dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false);
srcA_opt = si_translate_blend_opt_factor(srcA, true);
dstA_opt = si_translate_blend_opt_factor(dstA, true);
/* Handle interdependencies. */
if (si_blend_factor_uses_dst(srcRGB))
dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
if (si_blend_factor_uses_dst(srcA))
dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE &&
(dstRGB == VK_BLEND_FACTOR_ZERO ||
dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE))
dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
/* Set the final value. */
blend->sx_mrt_blend_opt[i] =
S_028760_COLOR_SRC_OPT(srcRGB_opt) |
S_028760_COLOR_DST_OPT(dstRGB_opt) |
S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) |
S_028760_ALPHA_SRC_OPT(srcA_opt) |
S_028760_ALPHA_DST_OPT(dstA_opt) |
S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA));
blend_cntl |= S_028780_ENABLE(1);
blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB));
blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB));
blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB));
if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA));
blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA));
blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA));
}
blend->cb_blend_control[i] = blend_cntl;
blend_enable |= 1 << i;
if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA ||
dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
blend_need_alpha |= 1 << i;
}
for (i = vkblend->attachmentCount; i < 8; i++) {
blend->cb_blend_control[i] = 0;
blend->sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
}
/* disable RB+ for now */
if (pipeline->device->physical_device->has_rbplus)
blend->cb_color_control |= S_028808_DISABLE_DUAL_QUAD(1);
if (blend->cb_target_mask)
blend->cb_color_control |= S_028808_MODE(mode);
else
blend->cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE);
radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo,
blend_enable, blend_need_alpha, single_cb_enable, blend_mrt0_is_dual_src);
}
static uint32_t si_translate_stencil_op(enum VkStencilOp op)
{
switch (op) {
case VK_STENCIL_OP_KEEP:
return V_02842C_STENCIL_KEEP;
case VK_STENCIL_OP_ZERO:
return V_02842C_STENCIL_ZERO;
case VK_STENCIL_OP_REPLACE:
return V_02842C_STENCIL_REPLACE_TEST;
case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
return V_02842C_STENCIL_ADD_CLAMP;
case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
return V_02842C_STENCIL_SUB_CLAMP;
case VK_STENCIL_OP_INVERT:
return V_02842C_STENCIL_INVERT;
case VK_STENCIL_OP_INCREMENT_AND_WRAP:
return V_02842C_STENCIL_ADD_WRAP;
case VK_STENCIL_OP_DECREMENT_AND_WRAP:
return V_02842C_STENCIL_SUB_WRAP;
default:
return 0;
}
}
static void
radv_pipeline_init_depth_stencil_state(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra)
{
const VkPipelineDepthStencilStateCreateInfo *vkds = pCreateInfo->pDepthStencilState;
struct radv_depth_stencil_state *ds = &pipeline->graphics.ds;
if (!vkds)
return;
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
if (subpass->depth_stencil_attachment.attachment == VK_ATTACHMENT_UNUSED)
return;
struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment.attachment;
bool has_depth_attachment = vk_format_is_depth(attachment->format);
bool has_stencil_attachment = vk_format_is_stencil(attachment->format);
if (has_depth_attachment) {
ds->db_depth_control = S_028800_Z_ENABLE(vkds->depthTestEnable ? 1 : 0) |
S_028800_Z_WRITE_ENABLE(vkds->depthWriteEnable ? 1 : 0) |
S_028800_ZFUNC(vkds->depthCompareOp) |
S_028800_DEPTH_BOUNDS_ENABLE(vkds->depthBoundsTestEnable ? 1 : 0);
}
if (has_stencil_attachment && vkds->stencilTestEnable) {
ds->db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1);
ds->db_depth_control |= S_028800_STENCILFUNC(vkds->front.compareOp);
ds->db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(vkds->front.failOp));
ds->db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(vkds->front.passOp));
ds->db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(vkds->front.depthFailOp));
ds->db_depth_control |= S_028800_STENCILFUNC_BF(vkds->back.compareOp);
ds->db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(vkds->back.failOp));
ds->db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(vkds->back.passOp));
ds->db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(vkds->back.depthFailOp));
}
if (extra) {
ds->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear);
ds->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear);
ds->db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->db_resummarize);
ds->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->db_flush_depth_inplace);
ds->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->db_flush_stencil_inplace);
ds->db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear);
ds->db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear);
}
}
static uint32_t si_translate_fill(VkPolygonMode func)
{
switch(func) {
case VK_POLYGON_MODE_FILL:
return V_028814_X_DRAW_TRIANGLES;
case VK_POLYGON_MODE_LINE:
return V_028814_X_DRAW_LINES;
case VK_POLYGON_MODE_POINT:
return V_028814_X_DRAW_POINTS;
default:
assert(0);
return V_028814_X_DRAW_POINTS;
}
}
static void
radv_pipeline_init_raster_state(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState;
struct radv_raster_state *raster = &pipeline->graphics.raster;
raster->spi_interp_control =
S_0286D4_FLAT_SHADE_ENA(1) |
S_0286D4_PNT_SPRITE_ENA(1) |
S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) |
S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) |
S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) |
S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) |
S_0286D4_PNT_SPRITE_TOP_1(0); // vulkan is top to bottom - 1.0 at bottom
raster->pa_cl_clip_cntl = S_028810_PS_UCP_MODE(3) |
S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions.
S_028810_ZCLIP_NEAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) |
S_028810_ZCLIP_FAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) |
S_028810_DX_RASTERIZATION_KILL(vkraster->rasterizerDiscardEnable ? 1 : 0) |
S_028810_DX_LINEAR_ATTR_CLIP_ENA(1);
raster->pa_su_vtx_cntl =
S_028BE4_PIX_CENTER(1) | // TODO verify
S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) |
S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH);
raster->pa_su_sc_mode_cntl =
S_028814_FACE(vkraster->frontFace) |
S_028814_CULL_FRONT(!!(vkraster->cullMode & VK_CULL_MODE_FRONT_BIT)) |
S_028814_CULL_BACK(!!(vkraster->cullMode & VK_CULL_MODE_BACK_BIT)) |
S_028814_POLY_MODE(vkraster->polygonMode != VK_POLYGON_MODE_FILL) |
S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(vkraster->polygonMode)) |
S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(vkraster->polygonMode)) |
S_028814_POLY_OFFSET_FRONT_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
S_028814_POLY_OFFSET_BACK_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
S_028814_POLY_OFFSET_PARA_ENABLE(vkraster->depthBiasEnable ? 1 : 0);
}
static void
radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState;
struct radv_multisample_state *ms = &pipeline->graphics.ms;
unsigned num_tile_pipes = pipeline->device->physical_device->rad_info.num_tile_pipes;
int ps_iter_samples = 1;
uint32_t mask = 0xffff;
if (vkms)
ms->num_samples = vkms->rasterizationSamples;
else
ms->num_samples = 1;
if (vkms && vkms->sampleShadingEnable) {
ps_iter_samples = ceil(vkms->minSampleShading * ms->num_samples);
} else if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.info.ps.force_persample) {
ps_iter_samples = ms->num_samples;
}
ms->pa_sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1);
ms->pa_sc_aa_config = 0;
ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) |
S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
ms->pa_sc_mode_cntl_1 =
S_028A4C_WALK_FENCE_ENABLE(1) | //TODO linear dst fixes
S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) |
/* always 1: */
S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) |
S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) |
S_028A4C_TILE_WALK_ORDER_ENABLE(1) |
S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) |
S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) |
S_028A4C_FORCE_EOV_REZ_ENABLE(1);
ms->pa_sc_mode_cntl_0 = S_028A48_ALTERNATE_RBS_PER_TILE(pipeline->device->physical_device->rad_info.chip_class >= GFX9);
if (ms->num_samples > 1) {
unsigned log_samples = util_logbase2(ms->num_samples);
unsigned log_ps_iter_samples = util_logbase2(util_next_power_of_two(ps_iter_samples));
ms->pa_sc_mode_cntl_0 |= S_028A48_MSAA_ENABLE(1);
ms->pa_sc_line_cntl |= S_028BDC_EXPAND_LINE_WIDTH(1); /* CM_R_028BDC_PA_SC_LINE_CNTL */
ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_samples) |
S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) |
S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) |
S_028BE0_MAX_SAMPLE_DIST(radv_cayman_get_maxdist(log_samples)) |
S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples); /* CM_R_028BE0_PA_SC_AA_CONFIG */
ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1);
if (ps_iter_samples > 1)
pipeline->graphics.spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
}
const struct VkPipelineRasterizationStateRasterizationOrderAMD *raster_order =
vk_find_struct_const(pCreateInfo->pRasterizationState->pNext, PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD);
if (raster_order && raster_order->rasterizationOrder == VK_RASTERIZATION_ORDER_RELAXED_AMD) {
ms->pa_sc_mode_cntl_1 |= S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(1) |
S_028A4C_OUT_OF_ORDER_WATER_MARK(0x7);
}
if (vkms && vkms->pSampleMask) {
mask = vkms->pSampleMask[0] & 0xffff;
}
ms->pa_sc_aa_mask[0] = mask | (mask << 16);
ms->pa_sc_aa_mask[1] = mask | (mask << 16);
}
static bool
radv_prim_can_use_guardband(enum VkPrimitiveTopology topology)
{
switch (topology) {
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
return false;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
return true;
default:
unreachable("unhandled primitive type");
}
}
static uint32_t
si_translate_prim(enum VkPrimitiveTopology topology)
{
switch (topology) {
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
return V_008958_DI_PT_POINTLIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
return V_008958_DI_PT_LINELIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
return V_008958_DI_PT_LINESTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
return V_008958_DI_PT_TRILIST;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
return V_008958_DI_PT_TRISTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
return V_008958_DI_PT_TRIFAN;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
return V_008958_DI_PT_LINELIST_ADJ;
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
return V_008958_DI_PT_LINESTRIP_ADJ;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
return V_008958_DI_PT_TRILIST_ADJ;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
return V_008958_DI_PT_TRISTRIP_ADJ;
case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
return V_008958_DI_PT_PATCH;
default:
assert(0);
return 0;
}
}
static uint32_t
si_conv_gl_prim_to_gs_out(unsigned gl_prim)
{
switch (gl_prim) {
case 0: /* GL_POINTS */
return V_028A6C_OUTPRIM_TYPE_POINTLIST;
case 1: /* GL_LINES */
case 3: /* GL_LINE_STRIP */
case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */
case 0x8E7A: /* GL_ISOLINES */
return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
case 4: /* GL_TRIANGLES */
case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */
case 5: /* GL_TRIANGLE_STRIP */
case 7: /* GL_QUADS */
return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
default:
assert(0);
return 0;
}
}
static uint32_t
si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology)
{
switch (topology) {
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
return V_028A6C_OUTPRIM_TYPE_POINTLIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
default:
assert(0);
return 0;
}
}
static unsigned si_map_swizzle(unsigned swizzle)
{
switch (swizzle) {
case VK_SWIZZLE_Y:
return V_008F0C_SQ_SEL_Y;
case VK_SWIZZLE_Z:
return V_008F0C_SQ_SEL_Z;
case VK_SWIZZLE_W:
return V_008F0C_SQ_SEL_W;
case VK_SWIZZLE_0:
return V_008F0C_SQ_SEL_0;
case VK_SWIZZLE_1:
return V_008F0C_SQ_SEL_1;
default: /* VK_SWIZZLE_X */
return V_008F0C_SQ_SEL_X;
}
}
static void
radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
radv_cmd_dirty_mask_t states = RADV_CMD_DIRTY_DYNAMIC_ALL;
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
pipeline->dynamic_state = default_dynamic_state;
if (pCreateInfo->pDynamicState) {
/* Remove all of the states that are marked as dynamic */
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
for (uint32_t s = 0; s < count; s++)
states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
}
struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pViewportState is [...] NULL if the pipeline
* has rasterization disabled.
*/
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
assert(pCreateInfo->pViewportState);
dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
typed_memcpy(dynamic->viewport.viewports,
pCreateInfo->pViewportState->pViewports,
pCreateInfo->pViewportState->viewportCount);
}
dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
typed_memcpy(dynamic->scissor.scissors,
pCreateInfo->pViewportState->pScissors,
pCreateInfo->pViewportState->scissorCount);
}
}
if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
assert(pCreateInfo->pRasterizationState);
dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
}
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
assert(pCreateInfo->pRasterizationState);
dynamic->depth_bias.bias =
pCreateInfo->pRasterizationState->depthBiasConstantFactor;
dynamic->depth_bias.clamp =
pCreateInfo->pRasterizationState->depthBiasClamp;
dynamic->depth_bias.slope =
pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
}
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pColorBlendState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is
* created against does not use any color attachments.
*/
bool uses_color_att = false;
for (unsigned i = 0; i < subpass->color_count; ++i) {
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
uses_color_att = true;
break;
}
}
if (uses_color_att && states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) {
assert(pCreateInfo->pColorBlendState);
typed_memcpy(dynamic->blend_constants,
pCreateInfo->pColorBlendState->blendConstants, 4);
}
/* If there is no depthstencil attachment, then don't read
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
* no need to override the depthstencil defaults in
* radv_pipeline::dynamic_state when there is no depthstencil attachment.
*
* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pDepthStencilState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is created
* against does not use a depth/stencil attachment.
*/
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
assert(pCreateInfo->pDepthStencilState);
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
dynamic->depth_bounds.min =
pCreateInfo->pDepthStencilState->minDepthBounds;
dynamic->depth_bounds.max =
pCreateInfo->pDepthStencilState->maxDepthBounds;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
dynamic->stencil_compare_mask.front =
pCreateInfo->pDepthStencilState->front.compareMask;
dynamic->stencil_compare_mask.back =
pCreateInfo->pDepthStencilState->back.compareMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
dynamic->stencil_write_mask.front =
pCreateInfo->pDepthStencilState->front.writeMask;
dynamic->stencil_write_mask.back =
pCreateInfo->pDepthStencilState->back.writeMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
dynamic->stencil_reference.front =
pCreateInfo->pDepthStencilState->front.reference;
dynamic->stencil_reference.back =
pCreateInfo->pDepthStencilState->back.reference;
}
}
pipeline->dynamic_state_mask = states;
}
static struct ac_shader_variant_key
radv_compute_vs_key(const VkGraphicsPipelineCreateInfo *pCreateInfo, bool as_es, bool as_ls)
{
struct ac_shader_variant_key key;
const VkPipelineVertexInputStateCreateInfo *input_state =
pCreateInfo->pVertexInputState;
memset(&key, 0, sizeof(key));
key.vs.instance_rate_inputs = 0;
key.vs.as_es = as_es;
key.vs.as_ls = as_ls;
for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) {
unsigned binding;
binding = input_state->pVertexAttributeDescriptions[i].binding;
if (input_state->pVertexBindingDescriptions[binding].inputRate)
key.vs.instance_rate_inputs |= 1u << input_state->pVertexAttributeDescriptions[i].location;
}
return key;
}
static void calculate_gfx9_gs_info(const VkGraphicsPipelineCreateInfo *pCreateInfo,
struct radv_pipeline *pipeline)
{
struct ac_shader_variant_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info;
struct ac_es_output_info *es_info = radv_pipeline_has_tess(pipeline) ?
&gs_info->tes.es_info : &gs_info->vs.es_info;
unsigned gs_num_invocations = MAX2(gs_info->gs.invocations, 1);
bool uses_adjacency;
switch(pCreateInfo->pInputAssemblyState->topology) {
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
uses_adjacency = true;
break;
default:
uses_adjacency = false;
break;
}
/* All these are in dwords: */
/* We can't allow using the whole LDS, because GS waves compete with
* other shader stages for LDS space. */
const unsigned max_lds_size = 8 * 1024;
const unsigned esgs_itemsize = es_info->esgs_itemsize / 4;
unsigned esgs_lds_size;
/* All these are per subgroup: */
const unsigned max_out_prims = 32 * 1024;
const unsigned max_es_verts = 255;
const unsigned ideal_gs_prims = 64;
unsigned max_gs_prims, gs_prims;
unsigned min_es_verts, es_verts, worst_case_es_verts;
if (uses_adjacency || gs_num_invocations > 1)
max_gs_prims = 127 / gs_num_invocations;
else
max_gs_prims = 255;
/* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
* Make sure we don't go over the maximum value.
*/
if (gs_info->gs.vertices_out > 0) {
max_gs_prims = MIN2(max_gs_prims,
max_out_prims /
(gs_info->gs.vertices_out * gs_num_invocations));
}
assert(max_gs_prims > 0);
/* If the primitive has adjacency, halve the number of vertices
* that will be reused in multiple primitives.
*/
min_es_verts = gs_info->gs.vertices_in / (uses_adjacency ? 2 : 1);
gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
/* Compute ESGS LDS size based on the worst case number of ES vertices
* needed to create the target number of GS prims per subgroup.
*/
esgs_lds_size = esgs_itemsize * worst_case_es_verts;
/* If total LDS usage is too big, refactor partitions based on ratio
* of ESGS item sizes.
*/
if (esgs_lds_size > max_lds_size) {
/* Our target GS Prims Per Subgroup was too large. Calculate
* the maximum number of GS Prims Per Subgroup that will fit
* into LDS, capped by the maximum that the hardware can support.
*/
gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
max_gs_prims);
assert(gs_prims > 0);
worst_case_es_verts = MIN2(min_es_verts * gs_prims,
max_es_verts);
esgs_lds_size = esgs_itemsize * worst_case_es_verts;
assert(esgs_lds_size <= max_lds_size);
}
/* Now calculate remaining ESGS information. */
if (esgs_lds_size)
es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
else
es_verts = max_es_verts;
/* Vertices for adjacency primitives are not always reused, so restore
* it for ES_VERTS_PER_SUBGRP.
*/
min_es_verts = gs_info->gs.vertices_in;
/* For normal primitives, the VGT only checks if they are past the ES
* verts per subgroup after allocating a full GS primitive and if they
* are, kick off a new subgroup. But if those additional ES verts are
* unique (e.g. not reused) we need to make sure there is enough LDS
* space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
*/
es_verts -= min_es_verts - 1;
uint32_t es_verts_per_subgroup = es_verts;
uint32_t gs_prims_per_subgroup = gs_prims;
uint32_t gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
uint32_t max_prims_per_subgroup = gs_inst_prims_in_subgroup * gs_info->gs.vertices_out;
pipeline->graphics.gs.lds_size = align(esgs_lds_size, 128) / 128;
pipeline->graphics.gs.vgt_gs_onchip_cntl =
S_028A44_ES_VERTS_PER_SUBGRP(es_verts_per_subgroup) |
S_028A44_GS_PRIMS_PER_SUBGRP(gs_prims_per_subgroup) |
S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_inst_prims_in_subgroup);
pipeline->graphics.gs.vgt_gs_max_prims_per_subgroup =
S_028A94_MAX_PRIMS_PER_SUBGROUP(max_prims_per_subgroup);
pipeline->graphics.gs.vgt_esgs_ring_itemsize = esgs_itemsize;
assert(max_prims_per_subgroup <= max_out_prims);
}
static void
calculate_gs_ring_sizes(struct radv_pipeline *pipeline)
{
struct radv_device *device = pipeline->device;
unsigned num_se = device->physical_device->rad_info.max_se;
unsigned wave_size = 64;
unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */
unsigned alignment = 256 * num_se;
/* The maximum size is 63.999 MB per SE. */
unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
struct ac_shader_variant_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info;
struct ac_es_output_info *es_info;
if (pipeline->device->physical_device->rad_info.chip_class >= GFX9)
es_info = radv_pipeline_has_tess(pipeline) ? &gs_info->tes.es_info : &gs_info->vs.es_info;
else
es_info = radv_pipeline_has_tess(pipeline) ?
&pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.es_info :
&pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.es_info;
/* Calculate the minimum size. */
unsigned min_esgs_ring_size = align(es_info->esgs_itemsize * gs_vertex_reuse *
wave_size, alignment);
/* These are recommended sizes, not minimum sizes. */
unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
es_info->esgs_itemsize * gs_info->gs.vertices_in;
unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
gs_info->gs.max_gsvs_emit_size * 1; // no streams in VK (gs->max_gs_stream + 1);
min_esgs_ring_size = align(min_esgs_ring_size, alignment);
esgs_ring_size = align(esgs_ring_size, alignment);
gsvs_ring_size = align(gsvs_ring_size, alignment);
if (pipeline->device->physical_device->rad_info.chip_class <= VI)
pipeline->graphics.esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
pipeline->graphics.gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
}
static void si_multiwave_lds_size_workaround(struct radv_device *device,
unsigned *lds_size)
{
/* SPI barrier management bug:
* Make sure we have at least 4k of LDS in use to avoid the bug.
* It applies to workgroup sizes of more than one wavefront.
*/
if (device->physical_device->rad_info.family == CHIP_BONAIRE ||
device->physical_device->rad_info.family == CHIP_KABINI ||
device->physical_device->rad_info.family == CHIP_MULLINS)
*lds_size = MAX2(*lds_size, 8);
}
struct radv_shader_variant *
radv_get_vertex_shader(struct radv_pipeline *pipeline)
{
if (pipeline->shaders[MESA_SHADER_VERTEX])
return pipeline->shaders[MESA_SHADER_VERTEX];
if (pipeline->shaders[MESA_SHADER_TESS_CTRL])
return pipeline->shaders[MESA_SHADER_TESS_CTRL];
return pipeline->shaders[MESA_SHADER_GEOMETRY];
}
static struct radv_shader_variant *
radv_get_tess_eval_shader(struct radv_pipeline *pipeline)
{
if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
return pipeline->shaders[MESA_SHADER_TESS_EVAL];
return pipeline->shaders[MESA_SHADER_GEOMETRY];
}
static void
calculate_tess_state(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
unsigned num_tcs_input_cp = pCreateInfo->pTessellationState->patchControlPoints;
unsigned num_tcs_output_cp, num_tcs_inputs, num_tcs_outputs;
unsigned num_tcs_patch_outputs;
unsigned input_vertex_size, output_vertex_size, pervertex_output_patch_size;
unsigned input_patch_size, output_patch_size, output_patch0_offset;
unsigned lds_size, hardware_lds_size;
unsigned perpatch_output_offset;
unsigned num_patches;
struct radv_tessellation_state *tess = &pipeline->graphics.tess;
/* This calculates how shader inputs and outputs among VS, TCS, and TES
* are laid out in LDS. */
num_tcs_inputs = util_last_bit64(radv_get_vertex_shader(pipeline)->info.vs.outputs_written);
num_tcs_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written); //tcs->outputs_written
num_tcs_output_cp = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.tcs_vertices_out; //TCS VERTICES OUT
num_tcs_patch_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.patch_outputs_written);
/* Ensure that we only need one wave per SIMD so we don't need to check
* resource usage. Also ensures that the number of tcs in and out
* vertices per threadgroup are at most 256.
*/
input_vertex_size = num_tcs_inputs * 16;
output_vertex_size = num_tcs_outputs * 16;
input_patch_size = num_tcs_input_cp * input_vertex_size;
pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
/* Ensure that we only need one wave per SIMD so we don't need to check
* resource usage. Also ensures that the number of tcs in and out
* vertices per threadgroup are at most 256.
*/
num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
/* Make sure that the data fits in LDS. This assumes the shaders only
* use LDS for the inputs and outputs.
*/
hardware_lds_size = pipeline->device->physical_device->rad_info.chip_class >= CIK ? 65536 : 32768;
num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size));
/* Make sure the output data fits in the offchip buffer */
num_patches = MIN2(num_patches,
(pipeline->device->tess_offchip_block_dw_size * 4) /
output_patch_size);
/* Not necessary for correctness, but improves performance. The
* specific value is taken from the proprietary driver.
*/
num_patches = MIN2(num_patches, 40);
/* SI bug workaround - limit LS-HS threadgroups to only one wave. */
if (pipeline->device->physical_device->rad_info.chip_class == SI) {
unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp);
num_patches = MIN2(num_patches, one_wave);
}
output_patch0_offset = input_patch_size * num_patches;
perpatch_output_offset = output_patch0_offset + pervertex_output_patch_size;
lds_size = output_patch0_offset + output_patch_size * num_patches;
if (pipeline->device->physical_device->rad_info.chip_class >= CIK) {
assert(lds_size <= 65536);
lds_size = align(lds_size, 512) / 512;
} else {
assert(lds_size <= 32768);
lds_size = align(lds_size, 256) / 256;
}
si_multiwave_lds_size_workaround(pipeline->device, &lds_size);
tess->lds_size = lds_size;
tess->tcs_in_layout = (input_patch_size / 4) |
((input_vertex_size / 4) << 13);
tess->tcs_out_layout = (output_patch_size / 4) |
((output_vertex_size / 4) << 13);
tess->tcs_out_offsets = (output_patch0_offset / 16) |
((perpatch_output_offset / 16) << 16);
tess->offchip_layout = (pervertex_output_patch_size * num_patches << 16) |
(num_tcs_output_cp << 9) | num_patches;
tess->ls_hs_config = S_028B58_NUM_PATCHES(num_patches) |
S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
tess->num_patches = num_patches;
tess->num_tcs_input_cp = num_tcs_input_cp;
struct radv_shader_variant *tes = radv_get_tess_eval_shader(pipeline);
unsigned type = 0, partitioning = 0, topology = 0, distribution_mode = 0;
switch (tes->info.tes.primitive_mode) {
case GL_TRIANGLES:
type = V_028B6C_TESS_TRIANGLE;
break;
case GL_QUADS:
type = V_028B6C_TESS_QUAD;
break;
case GL_ISOLINES:
type = V_028B6C_TESS_ISOLINE;
break;
}
switch (tes->info.tes.spacing) {
case TESS_SPACING_EQUAL:
partitioning = V_028B6C_PART_INTEGER;
break;
case TESS_SPACING_FRACTIONAL_ODD:
partitioning = V_028B6C_PART_FRAC_ODD;
break;
case TESS_SPACING_FRACTIONAL_EVEN:
partitioning = V_028B6C_PART_FRAC_EVEN;
break;
default:
break;
}
bool ccw = tes->info.tes.ccw;
const VkPipelineTessellationDomainOriginStateCreateInfoKHR *domain_origin_state =
vk_find_struct_const(pCreateInfo->pTessellationState,
PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO_KHR);
if (domain_origin_state && domain_origin_state->domainOrigin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT_KHR)
ccw = !ccw;
if (tes->info.tes.point_mode)
topology = V_028B6C_OUTPUT_POINT;
else if (tes->info.tes.primitive_mode == GL_ISOLINES)
topology = V_028B6C_OUTPUT_LINE;
else if (ccw)
topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
else
topology = V_028B6C_OUTPUT_TRIANGLE_CW;
if (pipeline->device->has_distributed_tess) {
if (pipeline->device->physical_device->rad_info.family == CHIP_FIJI ||
pipeline->device->physical_device->rad_info.family >= CHIP_POLARIS10)
distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
else
distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
} else
distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
tess->tf_param = S_028B6C_TYPE(type) |
S_028B6C_PARTITIONING(partitioning) |
S_028B6C_TOPOLOGY(topology) |
S_028B6C_DISTRIBUTION_MODE(distribution_mode);
}
static const struct radv_prim_vertex_count prim_size_table[] = {
[V_008958_DI_PT_NONE] = {0, 0},
[V_008958_DI_PT_POINTLIST] = {1, 1},
[V_008958_DI_PT_LINELIST] = {2, 2},
[V_008958_DI_PT_LINESTRIP] = {2, 1},
[V_008958_DI_PT_TRILIST] = {3, 3},
[V_008958_DI_PT_TRIFAN] = {3, 1},
[V_008958_DI_PT_TRISTRIP] = {3, 1},
[V_008958_DI_PT_LINELIST_ADJ] = {4, 4},
[V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1},
[V_008958_DI_PT_TRILIST_ADJ] = {6, 6},
[V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2},
[V_008958_DI_PT_RECTLIST] = {3, 3},
[V_008958_DI_PT_LINELOOP] = {2, 1},
[V_008958_DI_PT_POLYGON] = {3, 1},
[V_008958_DI_PT_2D_TRI_STRIP] = {0, 0},
};
static uint32_t si_vgt_gs_mode(struct radv_shader_variant *gs,
enum chip_class chip_class)
{
unsigned gs_max_vert_out = gs->info.gs.vertices_out;
unsigned cut_mode;
if (gs_max_vert_out <= 128) {
cut_mode = V_028A40_GS_CUT_128;
} else if (gs_max_vert_out <= 256) {
cut_mode = V_028A40_GS_CUT_256;
} else if (gs_max_vert_out <= 512) {
cut_mode = V_028A40_GS_CUT_512;
} else {
assert(gs_max_vert_out <= 1024);
cut_mode = V_028A40_GS_CUT_1024;
}
return S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
S_028A40_CUT_MODE(cut_mode)|
S_028A40_ES_WRITE_OPTIMIZE(chip_class <= VI) |
S_028A40_GS_WRITE_OPTIMIZE(1) |
S_028A40_ONCHIP(chip_class >= GFX9 ? 1 : 0);
}
static struct ac_vs_output_info *get_vs_output_info(struct radv_pipeline *pipeline)
{
if (radv_pipeline_has_gs(pipeline))
return &pipeline->gs_copy_shader->info.vs.outinfo;
else if (radv_pipeline_has_tess(pipeline))
return &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.outinfo;
else
return &pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.outinfo;
}
static void calculate_vgt_gs_mode(struct radv_pipeline *pipeline)
{
struct ac_vs_output_info *outinfo = get_vs_output_info(pipeline);
pipeline->graphics.vgt_primitiveid_en = false;
pipeline->graphics.vgt_gs_mode = 0;
if (radv_pipeline_has_gs(pipeline)) {
pipeline->graphics.vgt_gs_mode = si_vgt_gs_mode(pipeline->shaders[MESA_SHADER_GEOMETRY],
pipeline->device->physical_device->rad_info.chip_class);
} else if (outinfo->export_prim_id) {
pipeline->graphics.vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A);
pipeline->graphics.vgt_primitiveid_en = true;
}
}
static void calculate_pa_cl_vs_out_cntl(struct radv_pipeline *pipeline)
{
struct ac_vs_output_info *outinfo = get_vs_output_info(pipeline);
unsigned clip_dist_mask, cull_dist_mask, total_mask;
clip_dist_mask = outinfo->clip_dist_mask;
cull_dist_mask = outinfo->cull_dist_mask;
total_mask = clip_dist_mask | cull_dist_mask;
bool misc_vec_ena = outinfo->writes_pointsize ||
outinfo->writes_layer ||
outinfo->writes_viewport_index;
pipeline->graphics.pa_cl_vs_out_cntl =
S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
cull_dist_mask << 8 |
clip_dist_mask;
}
static uint32_t offset_to_ps_input(uint32_t offset, bool flat_shade)
{
uint32_t ps_input_cntl;
if (offset <= AC_EXP_PARAM_OFFSET_31) {
ps_input_cntl = S_028644_OFFSET(offset);
if (flat_shade)
ps_input_cntl |= S_028644_FLAT_SHADE(1);
} else {
/* The input is a DEFAULT_VAL constant. */
assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
ps_input_cntl = S_028644_OFFSET(0x20) |
S_028644_DEFAULT_VAL(offset);
}
return ps_input_cntl;
}
static void calculate_ps_inputs(struct radv_pipeline *pipeline)
{
struct radv_shader_variant *ps;
struct ac_vs_output_info *outinfo = get_vs_output_info(pipeline);
ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
unsigned ps_offset = 0;
if (ps->info.fs.prim_id_input) {
unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID];
if (vs_offset != AC_EXP_PARAM_UNDEFINED) {
pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true);
++ps_offset;
}
}
if (ps->info.fs.layer_input) {
unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_LAYER];
if (vs_offset != AC_EXP_PARAM_UNDEFINED)
pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true);
else
pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(AC_EXP_PARAM_DEFAULT_VAL_0000, true);
++ps_offset;
}
if (ps->info.fs.has_pcoord) {
unsigned val;
val = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20);
pipeline->graphics.ps_input_cntl[ps_offset] = val;
ps_offset++;
}
for (unsigned i = 0; i < 32 && (1u << i) <= ps->info.fs.input_mask; ++i) {
unsigned vs_offset;
bool flat_shade;
if (!(ps->info.fs.input_mask & (1u << i)))
continue;
vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i];
if (vs_offset == AC_EXP_PARAM_UNDEFINED) {
pipeline->graphics.ps_input_cntl[ps_offset] = S_028644_OFFSET(0x20);
++ps_offset;
continue;
}
flat_shade = !!(ps->info.fs.flat_shaded_mask & (1u << ps_offset));
pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, flat_shade);
++ps_offset;
}
pipeline->graphics.ps_input_cntl_num = ps_offset;
}
static void
radv_link_shaders(struct radv_pipeline *pipeline, nir_shader **shaders)
{
nir_shader* ordered_shaders[MESA_SHADER_STAGES];
int shader_count = 0;
if(shaders[MESA_SHADER_FRAGMENT]) {
ordered_shaders[shader_count++] = shaders[MESA_SHADER_FRAGMENT];
}
if(shaders[MESA_SHADER_GEOMETRY]) {
ordered_shaders[shader_count++] = shaders[MESA_SHADER_GEOMETRY];
}
if(shaders[MESA_SHADER_TESS_EVAL]) {
ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_EVAL];
}
if(shaders[MESA_SHADER_TESS_CTRL]) {
ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_CTRL];
}
if(shaders[MESA_SHADER_VERTEX]) {
ordered_shaders[shader_count++] = shaders[MESA_SHADER_VERTEX];
}
for (int i = 1; i < shader_count; ++i) {
nir_remove_dead_variables(ordered_shaders[i],
nir_var_shader_out);
nir_remove_dead_variables(ordered_shaders[i - 1],
nir_var_shader_in);
bool progress = nir_remove_unused_varyings(ordered_shaders[i],
ordered_shaders[i - 1]);
if (progress) {
if (nir_lower_global_vars_to_local(ordered_shaders[i])) {
radv_lower_indirect_derefs(ordered_shaders[i],
pipeline->device->physical_device);
}
radv_optimize_nir(ordered_shaders[i]);
if (nir_lower_global_vars_to_local(ordered_shaders[i - 1])) {
radv_lower_indirect_derefs(ordered_shaders[i - 1],
pipeline->device->physical_device);
}
radv_optimize_nir(ordered_shaders[i - 1]);
}
}
}
static void
merge_tess_info(struct shader_info *tes_info,
const struct shader_info *tcs_info)
{
/* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
*
* "PointMode. Controls generation of points rather than triangles
* or lines. This functionality defaults to disabled, and is
* enabled if either shader stage includes the execution mode.
*
* and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
* PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
* and OutputVertices, it says:
*
* "One mode must be set in at least one of the tessellation
* shader stages."
*
* So, the fields can be set in either the TCS or TES, but they must
* agree if set in both. Our backend looks at TES, so bitwise-or in
* the values from the TCS.
*/
assert(tcs_info->tess.tcs_vertices_out == 0 ||
tes_info->tess.tcs_vertices_out == 0 ||
tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tcs_info->tess.spacing == tes_info->tess.spacing);
tes_info->tess.spacing |= tcs_info->tess.spacing;
assert(tcs_info->tess.primitive_mode == 0 ||
tes_info->tess.primitive_mode == 0 ||
tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
tes_info->tess.ccw |= tcs_info->tess.ccw;
tes_info->tess.point_mode |= tcs_info->tess.point_mode;
}
static
void radv_create_shaders(struct radv_pipeline *pipeline,
struct radv_device *device,
struct radv_pipeline_cache *cache,
struct ac_shader_variant_key *keys,
const VkPipelineShaderStageCreateInfo **pStages)
{
struct radv_shader_module fs_m = {0};
struct radv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
nir_shader *nir[MESA_SHADER_STAGES] = {0};
void *codes[MESA_SHADER_STAGES] = {0};
unsigned code_sizes[MESA_SHADER_STAGES] = {0};
unsigned char hash[20], gs_copy_hash[20];
for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
if (pStages[i]) {
modules[i] = radv_shader_module_from_handle(pStages[i]->module);
if (modules[i]->nir)
_mesa_sha1_compute(modules[i]->nir->info.name,
strlen(modules[i]->nir->info.name),
modules[i]->sha1);
}
}
radv_hash_shaders(hash, pStages, pipeline->layout, keys, get_hash_flags(device));
memcpy(gs_copy_hash, hash, 20);
gs_copy_hash[0] ^= 1;
if (modules[MESA_SHADER_GEOMETRY]) {
struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0};
radv_create_shader_variants_from_pipeline_cache(device, cache, gs_copy_hash, variants);
pipeline->gs_copy_shader = variants[MESA_SHADER_GEOMETRY];
}
if (radv_create_shader_variants_from_pipeline_cache(device, cache, hash, pipeline->shaders) &&
(!modules[MESA_SHADER_GEOMETRY] || pipeline->gs_copy_shader)) {
for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
if (pipeline->shaders[i])
pipeline->active_stages |= mesa_to_vk_shader_stage(i);
}
return;
}
if (!modules[MESA_SHADER_FRAGMENT] && !modules[MESA_SHADER_COMPUTE]) {
nir_builder fs_b;
nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL);
fs_b.shader->info.name = ralloc_strdup(fs_b.shader, "noop_fs");
fs_m.nir = fs_b.shader;
modules[MESA_SHADER_FRAGMENT] = &fs_m;
}
for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
const VkPipelineShaderStageCreateInfo *stage = pStages[i];
if (!modules[i])
continue;
nir[i] = radv_shader_compile_to_nir(device, modules[i],
stage ? stage->pName : "main", i,
stage ? stage->pSpecializationInfo : NULL);
pipeline->active_stages |= mesa_to_vk_shader_stage(i);
/* We don't want to alter meta shaders IR directly so clone it
* first.
*/
if (nir[i]->info.name) {
nir[i] = nir_shader_clone(NULL, nir[i]);
}
}
if (nir[MESA_SHADER_TESS_CTRL]) {
/* TODO: This is no longer used as a key we should refactor this */
if (keys)
keys[MESA_SHADER_TESS_CTRL].tcs.primitive_mode = nir[MESA_SHADER_TESS_EVAL]->info.tess.primitive_mode;
keys[MESA_SHADER_TESS_CTRL].tcs.tes_reads_tess_factors = !!(nir[MESA_SHADER_TESS_EVAL]->info.inputs_read & (VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER));
nir_lower_tes_patch_vertices(nir[MESA_SHADER_TESS_EVAL], nir[MESA_SHADER_TESS_CTRL]->info.tess.tcs_vertices_out);
merge_tess_info(&nir[MESA_SHADER_TESS_EVAL]->info, &nir[MESA_SHADER_TESS_CTRL]->info);
}
radv_link_shaders(pipeline, nir);
for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
if (!(device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS))
continue;
if (modules[i])
nir_print_shader(nir[i], stderr);
}
if (nir[MESA_SHADER_FRAGMENT]) {
if (!pipeline->shaders[MESA_SHADER_FRAGMENT]) {
pipeline->shaders[MESA_SHADER_FRAGMENT] =
radv_shader_variant_create(device, modules[MESA_SHADER_FRAGMENT], &nir[MESA_SHADER_FRAGMENT], 1,
pipeline->layout, keys ? keys + MESA_SHADER_FRAGMENT : 0,
&codes[MESA_SHADER_FRAGMENT], &code_sizes[MESA_SHADER_FRAGMENT]);
}
/* TODO: These are no longer used as keys we should refactor this */
if (keys) {
keys[MESA_SHADER_VERTEX].vs.export_prim_id =
pipeline->shaders[MESA_SHADER_FRAGMENT]->info.fs.prim_id_input;
keys[MESA_SHADER_TESS_EVAL].tes.export_prim_id =
pipeline->shaders[MESA_SHADER_FRAGMENT]->info.fs.prim_id_input;
}
}
if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_TESS_CTRL]) {
if (!pipeline->shaders[MESA_SHADER_TESS_CTRL]) {
struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]};
struct ac_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL];
key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs;
pipeline->shaders[MESA_SHADER_TESS_CTRL] = radv_shader_variant_create(device, modules[MESA_SHADER_TESS_CTRL], combined_nir, 2,
pipeline->layout,
&key, &codes[MESA_SHADER_TESS_CTRL],
&code_sizes[MESA_SHADER_TESS_CTRL]);
}
modules[MESA_SHADER_VERTEX] = NULL;
}
if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_GEOMETRY]) {
gl_shader_stage pre_stage = modules[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
if (!pipeline->shaders[MESA_SHADER_GEOMETRY]) {
struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]};
pipeline->shaders[MESA_SHADER_GEOMETRY] = radv_shader_variant_create(device, modules[MESA_SHADER_GEOMETRY], combined_nir, 2,
pipeline->layout,
&keys[pre_stage] , &codes[MESA_SHADER_GEOMETRY],
&code_sizes[MESA_SHADER_GEOMETRY]);
}
modules[pre_stage] = NULL;
}
for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
if(modules[i] && !pipeline->shaders[i]) {
pipeline->shaders[i] = radv_shader_variant_create(device, modules[i], &nir[i], 1,
pipeline->layout,
keys ? keys + i : 0, &codes[i],
&code_sizes[i]);
}
}
if(modules[MESA_SHADER_GEOMETRY]) {
void *gs_copy_code = NULL;
unsigned gs_copy_code_size = 0;
if (!pipeline->gs_copy_shader) {
pipeline->gs_copy_shader = radv_create_gs_copy_shader(
device, nir[MESA_SHADER_GEOMETRY], &gs_copy_code,
&gs_copy_code_size,
keys[MESA_SHADER_GEOMETRY].has_multiview_view_index);
}
if (pipeline->gs_copy_shader) {
void *code[MESA_SHADER_STAGES] = {0};
unsigned code_size[MESA_SHADER_STAGES] = {0};
struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0};
code[MESA_SHADER_GEOMETRY] = gs_copy_code;
code_size[MESA_SHADER_GEOMETRY] = gs_copy_code_size;
variants[MESA_SHADER_GEOMETRY] = pipeline->gs_copy_shader;
radv_pipeline_cache_insert_shaders(device, cache,
gs_copy_hash,
variants,
(const void**)code,
code_size);
}
free(gs_copy_code);
}
radv_pipeline_cache_insert_shaders(device, cache, hash, pipeline->shaders,
(const void**)codes, code_sizes);
for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
free(codes[i]);
if (modules[i] && !pipeline->device->trace_bo)
ralloc_free(nir[i]);
}
if (fs_m.nir)
ralloc_free(fs_m.nir);
}
static VkResult
radv_pipeline_init(struct radv_pipeline *pipeline,
struct radv_device *device,
struct radv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *alloc)
{
VkResult result;
bool has_view_index = false;
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
if (subpass->view_mask)
has_view_index = true;
if (alloc == NULL)
alloc = &device->alloc;
pipeline->device = device;
pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
radv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra);
const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
pStages[stage] = &pCreateInfo->pStages[i];
}
struct ac_shader_variant_key keys[MESA_SHADER_STAGES];
memset(keys, 0, sizeof(keys));
if (pStages[MESA_SHADER_VERTEX]) {
bool as_es = false;
bool as_ls = false;
if (pStages[MESA_SHADER_TESS_CTRL])
as_ls = true;
else if (pStages[MESA_SHADER_GEOMETRY])
as_es = true;
keys[MESA_SHADER_VERTEX] = radv_compute_vs_key(pCreateInfo, as_es, as_ls);
keys[MESA_SHADER_VERTEX].has_multiview_view_index = has_view_index;
}
if (pStages[MESA_SHADER_TESS_EVAL]) {
keys[MESA_SHADER_TESS_EVAL].has_multiview_view_index = has_view_index;
if (pStages[MESA_SHADER_GEOMETRY])
keys[MESA_SHADER_TESS_EVAL].tes.as_es = true;
}
if (pCreateInfo->pTessellationState)
keys[MESA_SHADER_TESS_CTRL].tcs.input_vertices = pCreateInfo->pTessellationState->patchControlPoints;
if (pStages[MESA_SHADER_GEOMETRY]) {
keys[MESA_SHADER_GEOMETRY] = radv_compute_vs_key(pCreateInfo, false, false);
keys[MESA_SHADER_GEOMETRY].has_multiview_view_index = has_view_index;
}
if (pCreateInfo->pMultisampleState &&
pCreateInfo->pMultisampleState->rasterizationSamples > 1)
keys[MESA_SHADER_FRAGMENT].fs.multisample = true;
keys[MESA_SHADER_FRAGMENT].fs.col_format = pipeline->graphics.blend.spi_shader_col_format;
if (pipeline->device->physical_device->rad_info.chip_class < VI)
radv_pipeline_compute_get_int_clamp(pCreateInfo, &keys[MESA_SHADER_FRAGMENT].fs.is_int8, &keys[MESA_SHADER_FRAGMENT].fs.is_int10);
radv_create_shaders(pipeline, device, cache, keys, pStages);
pipeline->graphics.spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
radv_pipeline_init_depth_stencil_state(pipeline, pCreateInfo, extra);
radv_pipeline_init_raster_state(pipeline, pCreateInfo);
radv_pipeline_init_multisample_state(pipeline, pCreateInfo);
pipeline->graphics.prim = si_translate_prim(pCreateInfo->pInputAssemblyState->topology);
pipeline->graphics.can_use_guardband = radv_prim_can_use_guardband(pCreateInfo->pInputAssemblyState->topology);
if (radv_pipeline_has_gs(pipeline)) {
pipeline->graphics.gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim);
pipeline->graphics.can_use_guardband = pipeline->graphics.gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP;
} else {
pipeline->graphics.gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology);
}
if (extra && extra->use_rectlist) {
pipeline->graphics.prim = V_008958_DI_PT_RECTLIST;
pipeline->graphics.gs_out = V_028A6C_OUTPRIM_TYPE_TRISTRIP;
pipeline->graphics.can_use_guardband = true;
}
pipeline->graphics.prim_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable;
/* prim vertex count will need TESS changes */
pipeline->graphics.prim_vertex_count = prim_size_table[pipeline->graphics.prim];
/* Ensure that some export memory is always allocated, for two reasons:
*
* 1) Correctness: The hardware ignores the EXEC mask if no export
* memory is allocated, so KILL and alpha test do not work correctly
* without this.
* 2) Performance: Every shader needs at least a NULL export, even when
* it writes no color/depth output. The NULL export instruction
* stalls without this setting.
*
* Don't add this to CB_SHADER_MASK.
*/
struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
if (!pipeline->graphics.blend.spi_shader_col_format) {
if (!ps->info.fs.writes_z &&
!ps->info.fs.writes_stencil &&
!ps->info.fs.writes_sample_mask)
pipeline->graphics.blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
}
unsigned z_order;
pipeline->graphics.db_shader_control = 0;
if (ps->info.fs.early_fragment_test || !ps->info.fs.writes_memory)
z_order = V_02880C_EARLY_Z_THEN_LATE_Z;
else
z_order = V_02880C_LATE_Z;
pipeline->graphics.db_shader_control =
S_02880C_Z_EXPORT_ENABLE(ps->info.fs.writes_z) |
S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.fs.writes_stencil) |
S_02880C_KILL_ENABLE(!!ps->info.fs.can_discard) |
S_02880C_MASK_EXPORT_ENABLE(ps->info.fs.writes_sample_mask) |
S_02880C_Z_ORDER(z_order) |
S_02880C_DEPTH_BEFORE_SHADER(ps->info.fs.early_fragment_test) |
S_02880C_EXEC_ON_HIER_FAIL(ps->info.fs.writes_memory) |
S_02880C_EXEC_ON_NOOP(ps->info.fs.writes_memory);
if (pipeline->device->physical_device->has_rbplus)
pipeline->graphics.db_shader_control |= S_02880C_DUAL_QUAD_DISABLE(1);
pipeline->graphics.shader_z_format =
ps->info.fs.writes_sample_mask ? V_028710_SPI_SHADER_32_ABGR :
ps->info.fs.writes_stencil ? V_028710_SPI_SHADER_32_GR :
ps->info.fs.writes_z ? V_028710_SPI_SHADER_32_R :
V_028710_SPI_SHADER_ZERO;
calculate_vgt_gs_mode(pipeline);
calculate_pa_cl_vs_out_cntl(pipeline);
calculate_ps_inputs(pipeline);
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (pipeline->shaders[i]) {
pipeline->need_indirect_descriptor_sets |= pipeline->shaders[i]->info.need_indirect_descriptor_sets;
}
}
uint32_t stages = 0;
if (radv_pipeline_has_tess(pipeline)) {
stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
if (radv_pipeline_has_gs(pipeline))
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
S_028B54_GS_EN(1) |
S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
else
stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
} else if (radv_pipeline_has_gs(pipeline))
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
S_028B54_GS_EN(1) |
S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
if (device->physical_device->rad_info.chip_class >= GFX9)
stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
pipeline->graphics.vgt_shader_stages_en = stages;
if (radv_pipeline_has_gs(pipeline)) {
calculate_gs_ring_sizes(pipeline);
if (device->physical_device->rad_info.chip_class >= GFX9)
calculate_gfx9_gs_info(pCreateInfo, pipeline);
}
if (radv_pipeline_has_tess(pipeline)) {
if (pipeline->graphics.prim == V_008958_DI_PT_PATCH) {
pipeline->graphics.prim_vertex_count.min = pCreateInfo->pTessellationState->patchControlPoints;
pipeline->graphics.prim_vertex_count.incr = 1;
}
calculate_tess_state(pipeline, pCreateInfo);
}
if (radv_pipeline_has_tess(pipeline))
pipeline->graphics.primgroup_size = pipeline->graphics.tess.num_patches;
else if (radv_pipeline_has_gs(pipeline))
pipeline->graphics.primgroup_size = 64;
else
pipeline->graphics.primgroup_size = 128; /* recommended without a GS */
pipeline->graphics.partial_es_wave = false;
if (pipeline->device->has_distributed_tess) {
if (radv_pipeline_has_gs(pipeline)) {
if (device->physical_device->rad_info.chip_class <= VI)
pipeline->graphics.partial_es_wave = true;
}
}
/* GS requirement. */
if (SI_GS_PER_ES / pipeline->graphics.primgroup_size >= pipeline->device->gs_table_depth - 3)
pipeline->graphics.partial_es_wave = true;
pipeline->graphics.wd_switch_on_eop = false;
if (device->physical_device->rad_info.chip_class >= CIK) {
unsigned prim = pipeline->graphics.prim;
/* WD_SWITCH_ON_EOP has no effect on GPUs with less than
* 4 shader engines. Set 1 to pass the assertion below.
* The other cases are hardware requirements. */
if (device->physical_device->rad_info.max_se < 4 ||
prim == V_008958_DI_PT_POLYGON ||
prim == V_008958_DI_PT_LINELOOP ||
prim == V_008958_DI_PT_TRIFAN ||
prim == V_008958_DI_PT_TRISTRIP_ADJ ||
(pipeline->graphics.prim_restart_enable &&
(device->physical_device->rad_info.family < CHIP_POLARIS10 ||
(prim != V_008958_DI_PT_POINTLIST &&
prim != V_008958_DI_PT_LINESTRIP &&
prim != V_008958_DI_PT_TRISTRIP))))
pipeline->graphics.wd_switch_on_eop = true;
}
pipeline->graphics.ia_switch_on_eoi = false;
if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.fs.prim_id_input)
pipeline->graphics.ia_switch_on_eoi = true;
if (radv_pipeline_has_gs(pipeline) &&
pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs.uses_prim_id)
pipeline->graphics.ia_switch_on_eoi = true;
if (radv_pipeline_has_tess(pipeline)) {
/* SWITCH_ON_EOI must be set if PrimID is used. */
if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.uses_prim_id ||
radv_get_tess_eval_shader(pipeline)->info.tes.uses_prim_id)
pipeline->graphics.ia_switch_on_eoi = true;
}
pipeline->graphics.partial_vs_wave = false;
if (radv_pipeline_has_tess(pipeline)) {
/* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
if ((device->physical_device->rad_info.family == CHIP_TAHITI ||
device->physical_device->rad_info.family == CHIP_PITCAIRN ||
device->physical_device->rad_info.family == CHIP_BONAIRE) &&
radv_pipeline_has_gs(pipeline))
pipeline->graphics.partial_vs_wave = true;
/* Needed for 028B6C_DISTRIBUTION_MODE != 0 */
if (device->has_distributed_tess) {
if (radv_pipeline_has_gs(pipeline)) {
if (device->physical_device->rad_info.family == CHIP_TONGA ||
device->physical_device->rad_info.family == CHIP_FIJI ||
device->physical_device->rad_info.family == CHIP_POLARIS10 ||
device->physical_device->rad_info.family == CHIP_POLARIS11 ||
device->physical_device->rad_info.family == CHIP_POLARIS12)
pipeline->graphics.partial_vs_wave = true;
} else {
pipeline->graphics.partial_vs_wave = true;
}
}
}
pipeline->graphics.base_ia_multi_vgt_param =
S_028AA8_PRIMGROUP_SIZE(pipeline->graphics.primgroup_size - 1) |
/* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
S_028AA8_MAX_PRIMGRP_IN_WAVE(device->physical_device->rad_info.chip_class == VI ? 2 : 0) |
S_030960_EN_INST_OPT_BASIC(device->physical_device->rad_info.chip_class >= GFX9) |
S_030960_EN_INST_OPT_ADV(device->physical_device->rad_info.chip_class >= GFX9);
const VkPipelineVertexInputStateCreateInfo *vi_info =
pCreateInfo->pVertexInputState;
struct radv_vertex_elements_info *velems = &pipeline->vertex_elements;
for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
const VkVertexInputAttributeDescription *desc =
&vi_info->pVertexAttributeDescriptions[i];
unsigned loc = desc->location;
const struct vk_format_description *format_desc;
int first_non_void;
uint32_t num_format, data_format;
format_desc = vk_format_description(desc->format);
first_non_void = vk_format_get_first_non_void_channel(desc->format);
num_format = radv_translate_buffer_numformat(format_desc, first_non_void);
data_format = radv_translate_buffer_dataformat(format_desc, first_non_void);
velems->rsrc_word3[loc] = S_008F0C_DST_SEL_X(si_map_swizzle(format_desc->swizzle[0])) |
S_008F0C_DST_SEL_Y(si_map_swizzle(format_desc->swizzle[1])) |
S_008F0C_DST_SEL_Z(si_map_swizzle(format_desc->swizzle[2])) |
S_008F0C_DST_SEL_W(si_map_swizzle(format_desc->swizzle[3])) |
S_008F0C_NUM_FORMAT(num_format) |
S_008F0C_DATA_FORMAT(data_format);
velems->format_size[loc] = format_desc->block.bits / 8;
velems->offset[loc] = desc->offset;
velems->binding[loc] = desc->binding;
velems->count = MAX2(velems->count, loc + 1);
}
for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *desc =
&vi_info->pVertexBindingDescriptions[i];
pipeline->binding_stride[desc->binding] = desc->stride;
}
struct ac_userdata_info *loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_VERTEX,
AC_UD_VS_BASE_VERTEX_START_INSTANCE);
if (loc->sgpr_idx != -1) {
pipeline->graphics.vtx_base_sgpr = radv_shader_stage_to_user_data_0(MESA_SHADER_VERTEX, device->physical_device->rad_info.chip_class, radv_pipeline_has_gs(pipeline), radv_pipeline_has_tess(pipeline));
pipeline->graphics.vtx_base_sgpr += loc->sgpr_idx * 4;
if (radv_get_vertex_shader(pipeline)->info.info.vs.needs_draw_id)
pipeline->graphics.vtx_emit_num = 3;
else
pipeline->graphics.vtx_emit_num = 2;
}
pipeline->graphics.vtx_reuse_depth = 30;
if (radv_pipeline_has_tess(pipeline) &&
radv_get_tess_eval_shader(pipeline)->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) {
pipeline->graphics.vtx_reuse_depth = 14;
}
if (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) {
radv_dump_pipeline_stats(device, pipeline);
}
result = radv_pipeline_scratch_init(device, pipeline);
return result;
}
VkResult
radv_graphics_pipeline_create(
VkDevice _device,
VkPipelineCache _cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
struct radv_pipeline *pipeline;
VkResult result;
pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
memset(pipeline, 0, sizeof(*pipeline));
result = radv_pipeline_init(pipeline, device, cache,
pCreateInfo, extra, pAllocator);
if (result != VK_SUCCESS) {
radv_pipeline_destroy(device, pipeline, pAllocator);
return result;
}
*pPipeline = radv_pipeline_to_handle(pipeline);
return VK_SUCCESS;
}
VkResult radv_CreateGraphicsPipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
VkResult r;
r = radv_graphics_pipeline_create(_device,
pipelineCache,
&pCreateInfos[i],
NULL, pAllocator, &pPipelines[i]);
if (r != VK_SUCCESS) {
result = r;
pPipelines[i] = VK_NULL_HANDLE;
}
}
return result;
}
static VkResult radv_compute_pipeline_create(
VkDevice _device,
VkPipelineCache _cache,
const VkComputePipelineCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipeline)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
struct radv_pipeline *pipeline;
VkResult result;
pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
memset(pipeline, 0, sizeof(*pipeline));
pipeline->device = device;
pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
pStages[MESA_SHADER_COMPUTE] = &pCreateInfo->stage;
radv_create_shaders(pipeline, device, cache, NULL, pStages);
pipeline->need_indirect_descriptor_sets |= pipeline->shaders[MESA_SHADER_COMPUTE]->info.need_indirect_descriptor_sets;
result = radv_pipeline_scratch_init(device, pipeline);
if (result != VK_SUCCESS) {
radv_pipeline_destroy(device, pipeline, pAllocator);
return result;
}
*pPipeline = radv_pipeline_to_handle(pipeline);
if (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) {
radv_dump_pipeline_stats(device, pipeline);
}
return VK_SUCCESS;
}
VkResult radv_CreateComputePipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkComputePipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
VkResult r;
r = radv_compute_pipeline_create(_device, pipelineCache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
if (r != VK_SUCCESS) {
result = r;
pPipelines[i] = VK_NULL_HANDLE;
}
}
return result;
}