blob: f5db870571502fea88e50698778994ca72210851 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "util/mesa-sha1.h"
#include "radv_private.h"
#include "sid.h"
VkResult radv_CreateDescriptorSetLayout(
VkDevice _device,
const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDescriptorSetLayout* pSetLayout)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_descriptor_set_layout *set_layout;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
uint32_t max_binding = 0;
uint32_t immutable_sampler_count = 0;
for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
max_binding = MAX2(max_binding, pCreateInfo->pBindings[j].binding);
if (pCreateInfo->pBindings[j].pImmutableSamplers)
immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
}
uint32_t samplers_offset = sizeof(struct radv_descriptor_set_layout) +
(max_binding + 1) * sizeof(set_layout->binding[0]);
size_t size = samplers_offset + immutable_sampler_count * 4 * sizeof(uint32_t);
set_layout = vk_alloc2(&device->alloc, pAllocator, size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!set_layout)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
set_layout->flags = pCreateInfo->flags;
/* We just allocate all the samplers at the end of the struct */
uint32_t *samplers = (uint32_t*)&set_layout->binding[max_binding + 1];
set_layout->binding_count = max_binding + 1;
set_layout->shader_stages = 0;
set_layout->dynamic_shader_stages = 0;
set_layout->has_immutable_samplers = false;
set_layout->size = 0;
memset(set_layout->binding, 0, size - sizeof(struct radv_descriptor_set_layout));
uint32_t buffer_count = 0;
uint32_t dynamic_offset_count = 0;
for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
const VkDescriptorSetLayoutBinding *binding = &pCreateInfo->pBindings[j];
uint32_t b = binding->binding;
uint32_t alignment;
unsigned binding_buffer_count = 0;
switch (binding->descriptorType) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
assert(!(pCreateInfo->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
set_layout->binding[b].dynamic_offset_count = 1;
set_layout->dynamic_shader_stages |= binding->stageFlags;
set_layout->binding[b].size = 0;
binding_buffer_count = 1;
alignment = 1;
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
set_layout->binding[b].size = 16;
binding_buffer_count = 1;
alignment = 16;
break;
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
/* main descriptor + fmask descriptor */
set_layout->binding[b].size = 64;
binding_buffer_count = 1;
alignment = 32;
break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
/* main descriptor + fmask descriptor + sampler */
set_layout->binding[b].size = 96;
binding_buffer_count = 1;
alignment = 32;
break;
case VK_DESCRIPTOR_TYPE_SAMPLER:
set_layout->binding[b].size = 16;
alignment = 16;
break;
default:
unreachable("unknown descriptor type\n");
break;
}
set_layout->size = align(set_layout->size, alignment);
assert(binding->descriptorCount > 0);
set_layout->binding[b].type = binding->descriptorType;
set_layout->binding[b].array_size = binding->descriptorCount;
set_layout->binding[b].offset = set_layout->size;
set_layout->binding[b].buffer_offset = buffer_count;
set_layout->binding[b].dynamic_offset_offset = dynamic_offset_count;
if (binding->pImmutableSamplers) {
set_layout->binding[b].immutable_samplers_offset = samplers_offset;
set_layout->binding[b].immutable_samplers_equal = true;
set_layout->has_immutable_samplers = true;
for (uint32_t i = 0; i < binding->descriptorCount; i++)
memcpy(samplers + 4 * i, &radv_sampler_from_handle(binding->pImmutableSamplers[i])->state, 16);
for (uint32_t i = 1; i < binding->descriptorCount; i++)
if (memcmp(samplers + 4 * i, samplers, 16) != 0)
set_layout->binding[b].immutable_samplers_equal = false;
/* Don't reserve space for the samplers if they're not accessed. */
if (set_layout->binding[b].immutable_samplers_equal) {
if (binding->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
set_layout->binding[b].size -= 32;
else if (binding->descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER)
set_layout->binding[b].size -= 16;
}
samplers += 4 * binding->descriptorCount;
samplers_offset += 4 * sizeof(uint32_t) * binding->descriptorCount;
}
set_layout->size += binding->descriptorCount * set_layout->binding[b].size;
buffer_count += binding->descriptorCount * binding_buffer_count;
dynamic_offset_count += binding->descriptorCount *
set_layout->binding[b].dynamic_offset_count;
set_layout->shader_stages |= binding->stageFlags;
}
set_layout->buffer_count = buffer_count;
set_layout->dynamic_offset_count = dynamic_offset_count;
*pSetLayout = radv_descriptor_set_layout_to_handle(set_layout);
return VK_SUCCESS;
}
void radv_DestroyDescriptorSetLayout(
VkDevice _device,
VkDescriptorSetLayout _set_layout,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_descriptor_set_layout, set_layout, _set_layout);
if (!set_layout)
return;
vk_free2(&device->alloc, pAllocator, set_layout);
}
/*
* Pipeline layouts. These have nothing to do with the pipeline. They are
* just muttiple descriptor set layouts pasted together
*/
VkResult radv_CreatePipelineLayout(
VkDevice _device,
const VkPipelineLayoutCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPipelineLayout* pPipelineLayout)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_pipeline_layout *layout;
struct mesa_sha1 ctx;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
layout = vk_alloc2(&device->alloc, pAllocator, sizeof(*layout), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (layout == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
layout->num_sets = pCreateInfo->setLayoutCount;
unsigned dynamic_offset_count = 0;
_mesa_sha1_init(&ctx);
for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
RADV_FROM_HANDLE(radv_descriptor_set_layout, set_layout,
pCreateInfo->pSetLayouts[set]);
layout->set[set].layout = set_layout;
layout->set[set].dynamic_offset_start = dynamic_offset_count;
for (uint32_t b = 0; b < set_layout->binding_count; b++) {
dynamic_offset_count += set_layout->binding[b].array_size * set_layout->binding[b].dynamic_offset_count;
if (set_layout->binding[b].immutable_samplers_offset)
_mesa_sha1_update(&ctx, radv_immutable_samplers(set_layout, set_layout->binding + b),
set_layout->binding[b].array_size * 4 * sizeof(uint32_t));
}
_mesa_sha1_update(&ctx, set_layout->binding,
sizeof(set_layout->binding[0]) * set_layout->binding_count);
}
layout->dynamic_offset_count = dynamic_offset_count;
layout->push_constant_size = 0;
for (unsigned i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) {
const VkPushConstantRange *range = pCreateInfo->pPushConstantRanges + i;
layout->push_constant_size = MAX2(layout->push_constant_size,
range->offset + range->size);
}
layout->push_constant_size = align(layout->push_constant_size, 16);
_mesa_sha1_update(&ctx, &layout->push_constant_size,
sizeof(layout->push_constant_size));
_mesa_sha1_final(&ctx, layout->sha1);
*pPipelineLayout = radv_pipeline_layout_to_handle(layout);
return VK_SUCCESS;
}
void radv_DestroyPipelineLayout(
VkDevice _device,
VkPipelineLayout _pipelineLayout,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, _pipelineLayout);
if (!pipeline_layout)
return;
vk_free2(&device->alloc, pAllocator, pipeline_layout);
}
#define EMPTY 1
static VkResult
radv_descriptor_set_create(struct radv_device *device,
struct radv_descriptor_pool *pool,
const struct radv_descriptor_set_layout *layout,
struct radv_descriptor_set **out_set)
{
struct radv_descriptor_set *set;
unsigned range_offset = sizeof(struct radv_descriptor_set) +
sizeof(struct radeon_winsys_bo *) * layout->buffer_count;
unsigned mem_size = range_offset +
sizeof(struct radv_descriptor_range) * layout->dynamic_offset_count;
if (pool->host_memory_base) {
if (pool->host_memory_end - pool->host_memory_ptr < mem_size)
return vk_error(VK_ERROR_OUT_OF_POOL_MEMORY_KHR);
set = (struct radv_descriptor_set*)pool->host_memory_ptr;
pool->host_memory_ptr += mem_size;
} else {
set = vk_alloc2(&device->alloc, NULL, mem_size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!set)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
memset(set, 0, mem_size);
if (layout->dynamic_offset_count) {
set->dynamic_descriptors = (struct radv_descriptor_range*)((uint8_t*)set + range_offset);
}
set->layout = layout;
if (layout->size) {
uint32_t layout_size = align_u32(layout->size, 32);
set->size = layout->size;
/* try to allocate linearly first, so that we don't spend
* time looking for gaps if the app only allocates &
* resets via the pool. */
if (pool->current_offset + layout_size <= pool->size) {
set->bo = pool->bo;
set->mapped_ptr = (uint32_t*)(pool->mapped_ptr + pool->current_offset);
set->va = radv_buffer_get_va(set->bo) + pool->current_offset;
pool->current_offset += layout_size;
list_addtail(&set->vram_list, &pool->vram_list);
} else if (!pool->host_memory_base) {
uint64_t offset = 0;
struct list_head *prev = &pool->vram_list;
struct radv_descriptor_set *cur;
assert(!pool->host_memory_base);
LIST_FOR_EACH_ENTRY(cur, &pool->vram_list, vram_list) {
uint64_t start = (uint8_t*)cur->mapped_ptr - pool->mapped_ptr;
if (start - offset >= layout_size)
break;
offset = start + cur->size;
prev = &cur->vram_list;
}
if (pool->size - offset < layout_size) {
vk_free2(&device->alloc, NULL, set);
return vk_error(VK_ERROR_OUT_OF_POOL_MEMORY_KHR);
}
set->bo = pool->bo;
set->mapped_ptr = (uint32_t*)(pool->mapped_ptr + offset);
set->va = radv_buffer_get_va(set->bo) + offset;
list_add(&set->vram_list, prev);
} else
return vk_error(VK_ERROR_OUT_OF_POOL_MEMORY_KHR);
}
if (layout->has_immutable_samplers) {
for (unsigned i = 0; i < layout->binding_count; ++i) {
if (!layout->binding[i].immutable_samplers_offset ||
layout->binding[i].immutable_samplers_equal)
continue;
unsigned offset = layout->binding[i].offset / 4;
if (layout->binding[i].type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
offset += 16;
const uint32_t *samplers = (const uint32_t*)((const char*)layout + layout->binding[i].immutable_samplers_offset);
for (unsigned j = 0; j < layout->binding[i].array_size; ++j) {
memcpy(set->mapped_ptr + offset, samplers + 4 * j, 16);
offset += layout->binding[i].size / 4;
}
}
}
*out_set = set;
return VK_SUCCESS;
}
static void
radv_descriptor_set_destroy(struct radv_device *device,
struct radv_descriptor_pool *pool,
struct radv_descriptor_set *set,
bool free_bo)
{
assert(!pool->host_memory_base);
if (free_bo && set->size)
list_del(&set->vram_list);
vk_free2(&device->alloc, NULL, set);
}
VkResult radv_CreateDescriptorPool(
VkDevice _device,
const VkDescriptorPoolCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDescriptorPool* pDescriptorPool)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_descriptor_pool *pool;
int size = sizeof(struct radv_descriptor_pool);
uint64_t bo_size = 0, bo_count = 0, range_count = 0;
for (unsigned i = 0; i < pCreateInfo->poolSizeCount; ++i) {
if (pCreateInfo->pPoolSizes[i].type != VK_DESCRIPTOR_TYPE_SAMPLER)
bo_count += pCreateInfo->pPoolSizes[i].descriptorCount;
switch(pCreateInfo->pPoolSizes[i].type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
range_count += pCreateInfo->pPoolSizes[i].descriptorCount;
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_SAMPLER:
/* 32 as we may need to align for images */
bo_size += 32 * pCreateInfo->pPoolSizes[i].descriptorCount;
break;
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
bo_size += 64 * pCreateInfo->pPoolSizes[i].descriptorCount;
break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
bo_size += 96 * pCreateInfo->pPoolSizes[i].descriptorCount;
break;
default:
unreachable("unknown descriptor type\n");
break;
}
}
if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
uint64_t host_size = pCreateInfo->maxSets * sizeof(struct radv_descriptor_set);
host_size += sizeof(struct radeon_winsys_bo*) * bo_count;
host_size += sizeof(struct radv_descriptor_range) * range_count;
size += host_size;
}
pool = vk_alloc2(&device->alloc, pAllocator, size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!pool)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
memset(pool, 0, sizeof(*pool));
if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
pool->host_memory_base = (uint8_t*)pool + sizeof(struct radv_descriptor_pool);
pool->host_memory_ptr = pool->host_memory_base;
pool->host_memory_end = (uint8_t*)pool + size;
}
if (bo_size) {
pool->bo = device->ws->buffer_create(device->ws, bo_size,
32, RADEON_DOMAIN_VRAM, 0);
pool->mapped_ptr = (uint8_t*)device->ws->buffer_map(pool->bo);
}
pool->size = bo_size;
list_inithead(&pool->vram_list);
*pDescriptorPool = radv_descriptor_pool_to_handle(pool);
return VK_SUCCESS;
}
void radv_DestroyDescriptorPool(
VkDevice _device,
VkDescriptorPool _pool,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_descriptor_pool, pool, _pool);
if (!pool)
return;
if (!pool->host_memory_base) {
list_for_each_entry_safe(struct radv_descriptor_set, set,
&pool->vram_list, vram_list) {
radv_descriptor_set_destroy(device, pool, set, false);
}
}
if (pool->bo)
device->ws->buffer_destroy(pool->bo);
vk_free2(&device->alloc, pAllocator, pool);
}
VkResult radv_ResetDescriptorPool(
VkDevice _device,
VkDescriptorPool descriptorPool,
VkDescriptorPoolResetFlags flags)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_descriptor_pool, pool, descriptorPool);
if (!pool->host_memory_base) {
list_for_each_entry_safe(struct radv_descriptor_set, set,
&pool->vram_list, vram_list) {
radv_descriptor_set_destroy(device, pool, set, false);
}
}
list_inithead(&pool->vram_list);
pool->current_offset = 0;
pool->host_memory_ptr = pool->host_memory_base;
return VK_SUCCESS;
}
VkResult radv_AllocateDescriptorSets(
VkDevice _device,
const VkDescriptorSetAllocateInfo* pAllocateInfo,
VkDescriptorSet* pDescriptorSets)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_descriptor_pool, pool, pAllocateInfo->descriptorPool);
VkResult result = VK_SUCCESS;
uint32_t i;
struct radv_descriptor_set *set;
/* allocate a set of buffers for each shader to contain descriptors */
for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
RADV_FROM_HANDLE(radv_descriptor_set_layout, layout,
pAllocateInfo->pSetLayouts[i]);
assert(!(layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
result = radv_descriptor_set_create(device, pool, layout, &set);
if (result != VK_SUCCESS)
break;
pDescriptorSets[i] = radv_descriptor_set_to_handle(set);
}
if (result != VK_SUCCESS)
radv_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
i, pDescriptorSets);
return result;
}
VkResult radv_FreeDescriptorSets(
VkDevice _device,
VkDescriptorPool descriptorPool,
uint32_t count,
const VkDescriptorSet* pDescriptorSets)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_descriptor_pool, pool, descriptorPool);
for (uint32_t i = 0; i < count; i++) {
RADV_FROM_HANDLE(radv_descriptor_set, set, pDescriptorSets[i]);
if (set && !pool->host_memory_base)
radv_descriptor_set_destroy(device, pool, set, true);
}
return VK_SUCCESS;
}
static void write_texel_buffer_descriptor(struct radv_device *device,
struct radv_cmd_buffer *cmd_buffer,
unsigned *dst,
struct radeon_winsys_bo **buffer_list,
const VkBufferView _buffer_view)
{
RADV_FROM_HANDLE(radv_buffer_view, buffer_view, _buffer_view);
memcpy(dst, buffer_view->state, 4 * 4);
if (cmd_buffer)
device->ws->cs_add_buffer(cmd_buffer->cs, buffer_view->bo, 7);
else
*buffer_list = buffer_view->bo;
}
static void write_buffer_descriptor(struct radv_device *device,
struct radv_cmd_buffer *cmd_buffer,
unsigned *dst,
struct radeon_winsys_bo **buffer_list,
const VkDescriptorBufferInfo *buffer_info)
{
RADV_FROM_HANDLE(radv_buffer, buffer, buffer_info->buffer);
uint64_t va = radv_buffer_get_va(buffer->bo);
uint32_t range = buffer_info->range;
if (buffer_info->range == VK_WHOLE_SIZE)
range = buffer->size - buffer_info->offset;
va += buffer_info->offset + buffer->offset;
dst[0] = va;
dst[1] = S_008F04_BASE_ADDRESS_HI(va >> 32);
dst[2] = range;
dst[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
if (cmd_buffer)
device->ws->cs_add_buffer(cmd_buffer->cs, buffer->bo, 7);
else
*buffer_list = buffer->bo;
}
static void write_dynamic_buffer_descriptor(struct radv_device *device,
struct radv_descriptor_range *range,
struct radeon_winsys_bo **buffer_list,
const VkDescriptorBufferInfo *buffer_info)
{
RADV_FROM_HANDLE(radv_buffer, buffer, buffer_info->buffer);
uint64_t va = radv_buffer_get_va(buffer->bo);
unsigned size = buffer_info->range;
if (buffer_info->range == VK_WHOLE_SIZE)
size = buffer->size - buffer_info->offset;
va += buffer_info->offset + buffer->offset;
range->va = va;
range->size = size;
*buffer_list = buffer->bo;
}
static void
write_image_descriptor(struct radv_device *device,
struct radv_cmd_buffer *cmd_buffer,
unsigned *dst,
struct radeon_winsys_bo **buffer_list,
VkDescriptorType descriptor_type,
const VkDescriptorImageInfo *image_info)
{
RADV_FROM_HANDLE(radv_image_view, iview, image_info->imageView);
if (descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) {
memcpy(dst, iview->storage_descriptor, 8 * 4);
memcpy(dst + 8, iview->storage_fmask_descriptor, 8 * 4);
} else {
memcpy(dst, iview->descriptor, 8 * 4);
memcpy(dst + 8, iview->fmask_descriptor, 8 * 4);
}
if (cmd_buffer)
device->ws->cs_add_buffer(cmd_buffer->cs, iview->bo, 7);
else
*buffer_list = iview->bo;
}
static void
write_combined_image_sampler_descriptor(struct radv_device *device,
struct radv_cmd_buffer *cmd_buffer,
unsigned *dst,
struct radeon_winsys_bo **buffer_list,
VkDescriptorType descriptor_type,
const VkDescriptorImageInfo *image_info,
bool has_sampler)
{
RADV_FROM_HANDLE(radv_sampler, sampler, image_info->sampler);
write_image_descriptor(device, cmd_buffer, dst, buffer_list, descriptor_type, image_info);
/* copy over sampler state */
if (has_sampler)
memcpy(dst + 16, sampler->state, 16);
}
static void
write_sampler_descriptor(struct radv_device *device,
unsigned *dst,
const VkDescriptorImageInfo *image_info)
{
RADV_FROM_HANDLE(radv_sampler, sampler, image_info->sampler);
memcpy(dst, sampler->state, 16);
}
void radv_update_descriptor_sets(
struct radv_device* device,
struct radv_cmd_buffer* cmd_buffer,
VkDescriptorSet dstSetOverride,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet* pDescriptorWrites,
uint32_t descriptorCopyCount,
const VkCopyDescriptorSet* pDescriptorCopies)
{
uint32_t i, j;
for (i = 0; i < descriptorWriteCount; i++) {
const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i];
RADV_FROM_HANDLE(radv_descriptor_set, set,
dstSetOverride ? dstSetOverride : writeset->dstSet);
const struct radv_descriptor_set_binding_layout *binding_layout =
set->layout->binding + writeset->dstBinding;
uint32_t *ptr = set->mapped_ptr;
struct radeon_winsys_bo **buffer_list = set->descriptors;
/* Immutable samplers are not copied into push descriptors when they are
* allocated, so if we are writing push descriptors we have to copy the
* immutable samplers into them now.
*/
const bool copy_immutable_samplers = cmd_buffer &&
binding_layout->immutable_samplers_offset && !binding_layout->immutable_samplers_equal;
const uint32_t *samplers = radv_immutable_samplers(set->layout, binding_layout);
ptr += binding_layout->offset / 4;
ptr += binding_layout->size * writeset->dstArrayElement / 4;
buffer_list += binding_layout->buffer_offset;
buffer_list += writeset->dstArrayElement;
for (j = 0; j < writeset->descriptorCount; ++j) {
switch(writeset->descriptorType) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
unsigned idx = writeset->dstArrayElement + j;
idx += binding_layout->dynamic_offset_offset;
assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
write_dynamic_buffer_descriptor(device, set->dynamic_descriptors + idx,
buffer_list, writeset->pBufferInfo + j);
break;
}
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
write_buffer_descriptor(device, cmd_buffer, ptr, buffer_list,
writeset->pBufferInfo + j);
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
write_texel_buffer_descriptor(device, cmd_buffer, ptr, buffer_list,
writeset->pTexelBufferView[j]);
break;
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
write_image_descriptor(device, cmd_buffer, ptr, buffer_list,
writeset->descriptorType,
writeset->pImageInfo + j);
break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
write_combined_image_sampler_descriptor(device, cmd_buffer, ptr, buffer_list,
writeset->descriptorType,
writeset->pImageInfo + j,
!binding_layout->immutable_samplers_offset);
if (copy_immutable_samplers) {
const unsigned idx = writeset->dstArrayElement + j;
memcpy(ptr + 16, samplers + 4 * idx, 16);
}
break;
case VK_DESCRIPTOR_TYPE_SAMPLER:
if (!binding_layout->immutable_samplers_offset) {
write_sampler_descriptor(device, ptr,
writeset->pImageInfo + j);
} else if (copy_immutable_samplers) {
unsigned idx = writeset->dstArrayElement + j;
memcpy(ptr, samplers + 4 * idx, 16);
}
break;
default:
unreachable("unimplemented descriptor type");
break;
}
ptr += binding_layout->size / 4;
++buffer_list;
}
}
for (i = 0; i < descriptorCopyCount; i++) {
const VkCopyDescriptorSet *copyset = &pDescriptorCopies[i];
RADV_FROM_HANDLE(radv_descriptor_set, src_set,
copyset->srcSet);
RADV_FROM_HANDLE(radv_descriptor_set, dst_set,
copyset->dstSet);
const struct radv_descriptor_set_binding_layout *src_binding_layout =
src_set->layout->binding + copyset->srcBinding;
const struct radv_descriptor_set_binding_layout *dst_binding_layout =
dst_set->layout->binding + copyset->dstBinding;
uint32_t *src_ptr = src_set->mapped_ptr;
uint32_t *dst_ptr = dst_set->mapped_ptr;
struct radeon_winsys_bo **src_buffer_list = src_set->descriptors;
struct radeon_winsys_bo **dst_buffer_list = dst_set->descriptors;
src_ptr += src_binding_layout->offset / 4;
dst_ptr += dst_binding_layout->offset / 4;
src_ptr += src_binding_layout->size * copyset->srcArrayElement / 4;
dst_ptr += dst_binding_layout->size * copyset->dstArrayElement / 4;
src_buffer_list += src_binding_layout->buffer_offset;
src_buffer_list += copyset->srcArrayElement;
dst_buffer_list += dst_binding_layout->buffer_offset;
dst_buffer_list += copyset->dstArrayElement;
for (j = 0; j < copyset->descriptorCount; ++j) {
switch (src_binding_layout->type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
unsigned src_idx = copyset->srcArrayElement + j;
unsigned dst_idx = copyset->dstArrayElement + j;
struct radv_descriptor_range *src_range, *dst_range;
src_idx += src_binding_layout->dynamic_offset_offset;
dst_idx += dst_binding_layout->dynamic_offset_offset;
src_range = src_set->dynamic_descriptors + src_idx;
dst_range = dst_set->dynamic_descriptors + dst_idx;
*dst_range = *src_range;
break;
}
default:
memcpy(dst_ptr, src_ptr, src_binding_layout->size);
}
src_ptr += src_binding_layout->size / 4;
dst_ptr += dst_binding_layout->size / 4;
dst_buffer_list[j] = src_buffer_list[j];
++src_buffer_list;
++dst_buffer_list;
}
}
}
void radv_UpdateDescriptorSets(
VkDevice _device,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet* pDescriptorWrites,
uint32_t descriptorCopyCount,
const VkCopyDescriptorSet* pDescriptorCopies)
{
RADV_FROM_HANDLE(radv_device, device, _device);
radv_update_descriptor_sets(device, NULL, VK_NULL_HANDLE, descriptorWriteCount, pDescriptorWrites,
descriptorCopyCount, pDescriptorCopies);
}
VkResult radv_CreateDescriptorUpdateTemplateKHR(VkDevice _device,
const VkDescriptorUpdateTemplateCreateInfoKHR *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkDescriptorUpdateTemplateKHR *pDescriptorUpdateTemplate)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_descriptor_set_layout, set_layout, pCreateInfo->descriptorSetLayout);
const uint32_t entry_count = pCreateInfo->descriptorUpdateEntryCount;
const size_t size = sizeof(struct radv_descriptor_update_template) +
sizeof(struct radv_descriptor_update_template_entry) * entry_count;
struct radv_descriptor_update_template *templ;
uint32_t i;
templ = vk_alloc2(&device->alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!templ)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
templ->entry_count = entry_count;
for (i = 0; i < entry_count; i++) {
const VkDescriptorUpdateTemplateEntryKHR *entry = &pCreateInfo->pDescriptorUpdateEntries[i];
const struct radv_descriptor_set_binding_layout *binding_layout =
set_layout->binding + entry->dstBinding;
const uint32_t buffer_offset = binding_layout->buffer_offset + entry->dstArrayElement;
const uint32_t *immutable_samplers = NULL;
uint32_t dst_offset;
uint32_t dst_stride;
/* dst_offset is an offset into dynamic_descriptors when the descriptor
is dynamic, and an offset into mapped_ptr otherwise */
switch (entry->descriptorType) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
assert(pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR);
dst_offset = binding_layout->dynamic_offset_offset + entry->dstArrayElement;
dst_stride = 0; /* Not used */
break;
default:
switch (entry->descriptorType) {
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLER:
/* Immutable samplers are copied into push descriptors when they are pushed */
if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR &&
binding_layout->immutable_samplers_offset && !binding_layout->immutable_samplers_equal) {
immutable_samplers = radv_immutable_samplers(set_layout, binding_layout) + entry->dstArrayElement * 4;
}
break;
default:
break;
}
dst_offset = binding_layout->offset / 4 + binding_layout->size * entry->dstArrayElement / 4;
dst_stride = binding_layout->size / 4;
break;
}
templ->entry[i] = (struct radv_descriptor_update_template_entry) {
.descriptor_type = entry->descriptorType,
.descriptor_count = entry->descriptorCount,
.src_offset = entry->offset,
.src_stride = entry->stride,
.dst_offset = dst_offset,
.dst_stride = dst_stride,
.buffer_offset = buffer_offset,
.has_sampler = !binding_layout->immutable_samplers_offset,
.immutable_samplers = immutable_samplers
};
}
*pDescriptorUpdateTemplate = radv_descriptor_update_template_to_handle(templ);
return VK_SUCCESS;
}
void radv_DestroyDescriptorUpdateTemplateKHR(VkDevice _device,
VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate,
const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_descriptor_update_template, templ, descriptorUpdateTemplate);
if (!templ)
return;
vk_free2(&device->alloc, pAllocator, templ);
}
void radv_update_descriptor_set_with_template(struct radv_device *device,
struct radv_cmd_buffer *cmd_buffer,
struct radv_descriptor_set *set,
VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate,
const void *pData)
{
RADV_FROM_HANDLE(radv_descriptor_update_template, templ, descriptorUpdateTemplate);
uint32_t i;
for (i = 0; i < templ->entry_count; ++i) {
struct radeon_winsys_bo **buffer_list = set->descriptors + templ->entry[i].buffer_offset;
uint32_t *pDst = set->mapped_ptr + templ->entry[i].dst_offset;
const uint8_t *pSrc = ((const uint8_t *) pData) + templ->entry[i].src_offset;
uint32_t j;
for (j = 0; j < templ->entry[i].descriptor_count; ++j) {
switch (templ->entry[i].descriptor_type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
const unsigned idx = templ->entry[i].dst_offset + j;
assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
write_dynamic_buffer_descriptor(device, set->dynamic_descriptors + idx,
buffer_list, (struct VkDescriptorBufferInfo *) pSrc);
break;
}
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
write_buffer_descriptor(device, cmd_buffer, pDst, buffer_list,
(struct VkDescriptorBufferInfo *) pSrc);
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
write_texel_buffer_descriptor(device, cmd_buffer, pDst, buffer_list,
*(VkBufferView *) pSrc);
break;
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
write_image_descriptor(device, cmd_buffer, pDst, buffer_list,
templ->entry[i].descriptor_type,
(struct VkDescriptorImageInfo *) pSrc);
break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
write_combined_image_sampler_descriptor(device, cmd_buffer, pDst, buffer_list,
templ->entry[i].descriptor_type,
(struct VkDescriptorImageInfo *) pSrc,
templ->entry[i].has_sampler);
if (templ->entry[i].immutable_samplers)
memcpy(pDst + 16, templ->entry[i].immutable_samplers + 4 * j, 16);
break;
case VK_DESCRIPTOR_TYPE_SAMPLER:
if (templ->entry[i].has_sampler)
write_sampler_descriptor(device, pDst,
(struct VkDescriptorImageInfo *) pSrc);
else if (templ->entry[i].immutable_samplers)
memcpy(pDst, templ->entry[i].immutable_samplers + 4 * j, 16);
break;
default:
unreachable("unimplemented descriptor type");
break;
}
pSrc += templ->entry[i].src_stride;
pDst += templ->entry[i].dst_stride;
++buffer_list;
}
}
}
void radv_UpdateDescriptorSetWithTemplateKHR(VkDevice _device,
VkDescriptorSet descriptorSet,
VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate,
const void *pData)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_descriptor_set, set, descriptorSet);
radv_update_descriptor_set_with_template(device, NULL, set, descriptorUpdateTemplate, pData);
}