blob: 3ed2204d4371afca95cbc3fa5f54e90ba5b9ab02 [file] [log] [blame]
/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* @file iris_bufmgr.c
*
* The Iris buffer manager.
*
* XXX: write better comments
* - BOs
* - Explain BO cache
* - main interface to GEM in the kernel
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <xf86drm.h>
#include <util/u_atomic.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <assert.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <stdbool.h>
#include <time.h>
#include <unistd.h>
#include "errno.h"
#include "common/gen_aux_map.h"
#include "common/gen_clflush.h"
#include "dev/gen_debug.h"
#include "common/gen_gem.h"
#include "dev/gen_device_info.h"
#include "main/macros.h"
#include "os/os_mman.h"
#include "util/debug.h"
#include "util/macros.h"
#include "util/hash_table.h"
#include "util/list.h"
#include "util/os_file.h"
#include "util/u_dynarray.h"
#include "util/vma.h"
#include "iris_bufmgr.h"
#include "iris_context.h"
#include "string.h"
#include "drm-uapi/i915_drm.h"
#ifdef HAVE_VALGRIND
#include <valgrind.h>
#include <memcheck.h>
#define VG(x) x
#else
#define VG(x)
#endif
/* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
* VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
* leaked. All because it does not call VG(cli_free) from its
* VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
* and allocation, we mark it available for use upon mmapping and remove
* it upon unmapping.
*/
#define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
#define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
#define PAGE_SIZE 4096
#define WARN_ONCE(cond, fmt...) do { \
if (unlikely(cond)) { \
static bool _warned = false; \
if (!_warned) { \
fprintf(stderr, "WARNING: "); \
fprintf(stderr, fmt); \
_warned = true; \
} \
} \
} while (0)
#define FILE_DEBUG_FLAG DEBUG_BUFMGR
static inline int
atomic_add_unless(int *v, int add, int unless)
{
int c, old;
c = p_atomic_read(v);
while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
c = old;
return c == unless;
}
static const char *
memzone_name(enum iris_memory_zone memzone)
{
const char *names[] = {
[IRIS_MEMZONE_SHADER] = "shader",
[IRIS_MEMZONE_BINDER] = "binder",
[IRIS_MEMZONE_SURFACE] = "surface",
[IRIS_MEMZONE_DYNAMIC] = "dynamic",
[IRIS_MEMZONE_OTHER] = "other",
[IRIS_MEMZONE_BORDER_COLOR_POOL] = "bordercolor",
};
assert(memzone < ARRAY_SIZE(names));
return names[memzone];
}
struct bo_cache_bucket {
/** List of cached BOs. */
struct list_head head;
/** Size of this bucket, in bytes. */
uint64_t size;
};
struct bo_export {
/** File descriptor associated with a handle export. */
int drm_fd;
/** GEM handle in drm_fd */
uint32_t gem_handle;
struct list_head link;
};
struct iris_bufmgr {
/**
* List into the list of bufmgr.
*/
struct list_head link;
uint32_t refcount;
int fd;
mtx_t lock;
/** Array of lists of cached gem objects of power-of-two sizes */
struct bo_cache_bucket cache_bucket[14 * 4];
int num_buckets;
time_t time;
struct hash_table *name_table;
struct hash_table *handle_table;
/**
* List of BOs which we've effectively freed, but are hanging on to
* until they're idle before closing and returning the VMA.
*/
struct list_head zombie_list;
struct util_vma_heap vma_allocator[IRIS_MEMZONE_COUNT];
bool has_llc:1;
bool bo_reuse:1;
struct gen_aux_map_context *aux_map_ctx;
};
static mtx_t global_bufmgr_list_mutex = _MTX_INITIALIZER_NP;
static struct list_head global_bufmgr_list = {
.next = &global_bufmgr_list,
.prev = &global_bufmgr_list,
};
static int bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
uint32_t stride);
static void bo_free(struct iris_bo *bo);
static uint64_t vma_alloc(struct iris_bufmgr *bufmgr,
enum iris_memory_zone memzone,
uint64_t size, uint64_t alignment);
static struct iris_bo *
find_and_ref_external_bo(struct hash_table *ht, unsigned int key)
{
struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
struct iris_bo *bo = entry ? entry->data : NULL;
if (bo) {
assert(bo->external);
assert(!bo->reusable);
/* Being non-reusable, the BO cannot be in the cache lists, but it
* may be in the zombie list if it had reached zero references, but
* we hadn't yet closed it...and then reimported the same BO. If it
* is, then remove it since it's now been resurrected.
*/
if (bo->head.prev || bo->head.next)
list_del(&bo->head);
iris_bo_reference(bo);
}
return bo;
}
/**
* This function finds the correct bucket fit for the input size.
* The function works with O(1) complexity when the requested size
* was queried instead of iterating the size through all the buckets.
*/
static struct bo_cache_bucket *
bucket_for_size(struct iris_bufmgr *bufmgr, uint64_t size)
{
/* Calculating the pages and rounding up to the page size. */
const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
/* Row Bucket sizes clz((x-1) | 3) Row Column
* in pages stride size
* 0: 1 2 3 4 -> 30 30 30 30 4 1
* 1: 5 6 7 8 -> 29 29 29 29 4 1
* 2: 10 12 14 16 -> 28 28 28 28 8 2
* 3: 20 24 28 32 -> 27 27 27 27 16 4
*/
const unsigned row = 30 - __builtin_clz((pages - 1) | 3);
const unsigned row_max_pages = 4 << row;
/* The '& ~2' is the special case for row 1. In row 1, max pages /
* 2 is 2, but the previous row maximum is zero (because there is
* no previous row). All row maximum sizes are power of 2, so that
* is the only case where that bit will be set.
*/
const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2;
int col_size_log2 = row - 1;
col_size_log2 += (col_size_log2 < 0);
const unsigned col = (pages - prev_row_max_pages +
((1 << col_size_log2) - 1)) >> col_size_log2;
/* Calculating the index based on the row and column. */
const unsigned index = (row * 4) + (col - 1);
return (index < bufmgr->num_buckets) ?
&bufmgr->cache_bucket[index] : NULL;
}
enum iris_memory_zone
iris_memzone_for_address(uint64_t address)
{
STATIC_ASSERT(IRIS_MEMZONE_OTHER_START > IRIS_MEMZONE_DYNAMIC_START);
STATIC_ASSERT(IRIS_MEMZONE_DYNAMIC_START > IRIS_MEMZONE_SURFACE_START);
STATIC_ASSERT(IRIS_MEMZONE_SURFACE_START > IRIS_MEMZONE_BINDER_START);
STATIC_ASSERT(IRIS_MEMZONE_BINDER_START > IRIS_MEMZONE_SHADER_START);
STATIC_ASSERT(IRIS_BORDER_COLOR_POOL_ADDRESS == IRIS_MEMZONE_DYNAMIC_START);
if (address >= IRIS_MEMZONE_OTHER_START)
return IRIS_MEMZONE_OTHER;
if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
return IRIS_MEMZONE_BORDER_COLOR_POOL;
if (address > IRIS_MEMZONE_DYNAMIC_START)
return IRIS_MEMZONE_DYNAMIC;
if (address >= IRIS_MEMZONE_SURFACE_START)
return IRIS_MEMZONE_SURFACE;
if (address >= IRIS_MEMZONE_BINDER_START)
return IRIS_MEMZONE_BINDER;
return IRIS_MEMZONE_SHADER;
}
/**
* Allocate a section of virtual memory for a buffer, assigning an address.
*
* This uses either the bucket allocator for the given size, or the large
* object allocator (util_vma).
*/
static uint64_t
vma_alloc(struct iris_bufmgr *bufmgr,
enum iris_memory_zone memzone,
uint64_t size,
uint64_t alignment)
{
/* Force alignment to be some number of pages */
alignment = ALIGN(alignment, PAGE_SIZE);
if (memzone == IRIS_MEMZONE_BORDER_COLOR_POOL)
return IRIS_BORDER_COLOR_POOL_ADDRESS;
/* The binder handles its own allocations. Return non-zero here. */
if (memzone == IRIS_MEMZONE_BINDER)
return IRIS_MEMZONE_BINDER_START;
uint64_t addr =
util_vma_heap_alloc(&bufmgr->vma_allocator[memzone], size, alignment);
assert((addr >> 48ull) == 0);
assert((addr % alignment) == 0);
return gen_canonical_address(addr);
}
static void
vma_free(struct iris_bufmgr *bufmgr,
uint64_t address,
uint64_t size)
{
if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
return;
/* Un-canonicalize the address. */
address = gen_48b_address(address);
if (address == 0ull)
return;
enum iris_memory_zone memzone = iris_memzone_for_address(address);
/* The binder handles its own allocations. */
if (memzone == IRIS_MEMZONE_BINDER)
return;
util_vma_heap_free(&bufmgr->vma_allocator[memzone], address, size);
}
int
iris_bo_busy(struct iris_bo *bo)
{
struct iris_bufmgr *bufmgr = bo->bufmgr;
struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };
int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
if (ret == 0) {
bo->idle = !busy.busy;
return busy.busy;
}
return false;
}
int
iris_bo_madvise(struct iris_bo *bo, int state)
{
struct drm_i915_gem_madvise madv = {
.handle = bo->gem_handle,
.madv = state,
.retained = 1,
};
gen_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
return madv.retained;
}
static struct iris_bo *
bo_calloc(void)
{
struct iris_bo *bo = calloc(1, sizeof(*bo));
if (!bo)
return NULL;
list_inithead(&bo->exports);
bo->hash = _mesa_hash_pointer(bo);
return bo;
}
static struct iris_bo *
alloc_bo_from_cache(struct iris_bufmgr *bufmgr,
struct bo_cache_bucket *bucket,
uint32_t alignment,
enum iris_memory_zone memzone,
unsigned flags,
bool match_zone)
{
if (!bucket)
return NULL;
struct iris_bo *bo = NULL;
list_for_each_entry_safe(struct iris_bo, cur, &bucket->head, head) {
/* Try a little harder to find one that's already in the right memzone */
if (match_zone && memzone != iris_memzone_for_address(cur->gtt_offset))
continue;
/* If the last BO in the cache is busy, there are no idle BOs. Bail,
* either falling back to a non-matching memzone, or if that fails,
* allocating a fresh buffer.
*/
if (iris_bo_busy(cur))
return NULL;
list_del(&cur->head);
/* Tell the kernel we need this BO. If it still exists, we're done! */
if (iris_bo_madvise(cur, I915_MADV_WILLNEED)) {
bo = cur;
break;
}
/* This BO was purged, throw it out and keep looking. */
bo_free(cur);
}
if (!bo)
return NULL;
if (bo->aux_map_address) {
/* This buffer was associated with an aux-buffer range. We make sure
* that buffers are not reused from the cache while the buffer is (busy)
* being used by an executing batch. Since we are here, the buffer is no
* longer being used by a batch and the buffer was deleted (in order to
* end up in the cache). Therefore its old aux-buffer range can be
* removed from the aux-map.
*/
if (bo->bufmgr->aux_map_ctx)
gen_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->gtt_offset,
bo->size);
bo->aux_map_address = 0;
}
/* If the cached BO isn't in the right memory zone, or the alignment
* isn't sufficient, free the old memory and assign it a new address.
*/
if (memzone != iris_memzone_for_address(bo->gtt_offset) ||
bo->gtt_offset % alignment != 0) {
vma_free(bufmgr, bo->gtt_offset, bo->size);
bo->gtt_offset = 0ull;
}
/* Zero the contents if necessary. If this fails, fall back to
* allocating a fresh BO, which will always be zeroed by the kernel.
*/
if (flags & BO_ALLOC_ZEROED) {
void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
if (map) {
memset(map, 0, bo->size);
} else {
bo_free(bo);
return NULL;
}
}
return bo;
}
static struct iris_bo *
alloc_fresh_bo(struct iris_bufmgr *bufmgr, uint64_t bo_size)
{
struct iris_bo *bo = bo_calloc();
if (!bo)
return NULL;
struct drm_i915_gem_create create = { .size = bo_size };
/* All new BOs we get from the kernel are zeroed, so we don't need to
* worry about that here.
*/
if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create) != 0) {
free(bo);
return NULL;
}
bo->gem_handle = create.handle;
bo->bufmgr = bufmgr;
bo->size = bo_size;
bo->idle = true;
bo->tiling_mode = I915_TILING_NONE;
bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
bo->stride = 0;
/* Calling set_domain() will allocate pages for the BO outside of the
* struct mutex lock in the kernel, which is more efficient than waiting
* to create them during the first execbuf that uses the BO.
*/
struct drm_i915_gem_set_domain sd = {
.handle = bo->gem_handle,
.read_domains = I915_GEM_DOMAIN_CPU,
.write_domain = 0,
};
if (gen_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0) {
bo_free(bo);
return NULL;
}
return bo;
}
static struct iris_bo *
bo_alloc_internal(struct iris_bufmgr *bufmgr,
const char *name,
uint64_t size,
uint32_t alignment,
enum iris_memory_zone memzone,
unsigned flags,
uint32_t tiling_mode,
uint32_t stride)
{
struct iris_bo *bo;
unsigned int page_size = getpagesize();
struct bo_cache_bucket *bucket = bucket_for_size(bufmgr, size);
/* Round the size up to the bucket size, or if we don't have caching
* at this size, a multiple of the page size.
*/
uint64_t bo_size =
bucket ? bucket->size : MAX2(ALIGN(size, page_size), page_size);
mtx_lock(&bufmgr->lock);
/* Get a buffer out of the cache if available. First, we try to find
* one with a matching memory zone so we can avoid reallocating VMA.
*/
bo = alloc_bo_from_cache(bufmgr, bucket, alignment, memzone, flags, true);
/* If that fails, we try for any cached BO, without matching memzone. */
if (!bo) {
bo = alloc_bo_from_cache(bufmgr, bucket, alignment, memzone, flags,
false);
}
mtx_unlock(&bufmgr->lock);
if (!bo) {
bo = alloc_fresh_bo(bufmgr, bo_size);
if (!bo)
return NULL;
}
if (bo->gtt_offset == 0ull) {
mtx_lock(&bufmgr->lock);
bo->gtt_offset = vma_alloc(bufmgr, memzone, bo->size, alignment);
mtx_unlock(&bufmgr->lock);
if (bo->gtt_offset == 0ull)
goto err_free;
}
if (bo_set_tiling_internal(bo, tiling_mode, stride))
goto err_free;
bo->name = name;
p_atomic_set(&bo->refcount, 1);
bo->reusable = bucket && bufmgr->bo_reuse;
bo->cache_coherent = bufmgr->has_llc;
bo->index = -1;
bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
/* By default, capture all driver-internal buffers like shader kernels,
* surface states, dynamic states, border colors, and so on.
*/
if (memzone < IRIS_MEMZONE_OTHER)
bo->kflags |= EXEC_OBJECT_CAPTURE;
if ((flags & BO_ALLOC_COHERENT) && !bo->cache_coherent) {
struct drm_i915_gem_caching arg = {
.handle = bo->gem_handle,
.caching = 1,
};
if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &arg) == 0) {
bo->cache_coherent = true;
bo->reusable = false;
}
}
DBG("bo_create: buf %d (%s) (%s memzone) %llub\n", bo->gem_handle,
bo->name, memzone_name(memzone), (unsigned long long) size);
return bo;
err_free:
bo_free(bo);
return NULL;
}
struct iris_bo *
iris_bo_alloc(struct iris_bufmgr *bufmgr,
const char *name,
uint64_t size,
enum iris_memory_zone memzone)
{
return bo_alloc_internal(bufmgr, name, size, 1, memzone,
0, I915_TILING_NONE, 0);
}
struct iris_bo *
iris_bo_alloc_tiled(struct iris_bufmgr *bufmgr, const char *name,
uint64_t size, uint32_t alignment,
enum iris_memory_zone memzone,
uint32_t tiling_mode, uint32_t pitch, unsigned flags)
{
return bo_alloc_internal(bufmgr, name, size, alignment, memzone,
flags, tiling_mode, pitch);
}
struct iris_bo *
iris_bo_create_userptr(struct iris_bufmgr *bufmgr, const char *name,
void *ptr, size_t size,
enum iris_memory_zone memzone)
{
struct drm_gem_close close = { 0, };
struct iris_bo *bo;
bo = bo_calloc();
if (!bo)
return NULL;
struct drm_i915_gem_userptr arg = {
.user_ptr = (uintptr_t)ptr,
.user_size = size,
};
if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg))
goto err_free;
bo->gem_handle = arg.handle;
/* Check the buffer for validity before we try and use it in a batch */
struct drm_i915_gem_set_domain sd = {
.handle = bo->gem_handle,
.read_domains = I915_GEM_DOMAIN_CPU,
};
if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd))
goto err_close;
bo->name = name;
bo->size = size;
bo->map_cpu = ptr;
bo->bufmgr = bufmgr;
bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
mtx_lock(&bufmgr->lock);
bo->gtt_offset = vma_alloc(bufmgr, memzone, size, 1);
mtx_unlock(&bufmgr->lock);
if (bo->gtt_offset == 0ull)
goto err_close;
p_atomic_set(&bo->refcount, 1);
bo->userptr = true;
bo->cache_coherent = true;
bo->index = -1;
bo->idle = true;
return bo;
err_close:
close.handle = bo->gem_handle;
gen_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
err_free:
free(bo);
return NULL;
}
/**
* Returns a iris_bo wrapping the given buffer object handle.
*
* This can be used when one application needs to pass a buffer object
* to another.
*/
struct iris_bo *
iris_bo_gem_create_from_name(struct iris_bufmgr *bufmgr,
const char *name, unsigned int handle)
{
struct iris_bo *bo;
/* At the moment most applications only have a few named bo.
* For instance, in a DRI client only the render buffers passed
* between X and the client are named. And since X returns the
* alternating names for the front/back buffer a linear search
* provides a sufficiently fast match.
*/
mtx_lock(&bufmgr->lock);
bo = find_and_ref_external_bo(bufmgr->name_table, handle);
if (bo)
goto out;
struct drm_gem_open open_arg = { .name = handle };
int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
if (ret != 0) {
DBG("Couldn't reference %s handle 0x%08x: %s\n",
name, handle, strerror(errno));
bo = NULL;
goto out;
}
/* Now see if someone has used a prime handle to get this
* object from the kernel before by looking through the list
* again for a matching gem_handle
*/
bo = find_and_ref_external_bo(bufmgr->handle_table, open_arg.handle);
if (bo)
goto out;
bo = bo_calloc();
if (!bo)
goto out;
p_atomic_set(&bo->refcount, 1);
bo->size = open_arg.size;
bo->gtt_offset = 0;
bo->bufmgr = bufmgr;
bo->gem_handle = open_arg.handle;
bo->name = name;
bo->global_name = handle;
bo->reusable = false;
bo->external = true;
bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
_mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
_mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
if (ret != 0)
goto err_unref;
bo->tiling_mode = get_tiling.tiling_mode;
bo->swizzle_mode = get_tiling.swizzle_mode;
/* XXX stride is unknown */
DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
out:
mtx_unlock(&bufmgr->lock);
return bo;
err_unref:
bo_free(bo);
mtx_unlock(&bufmgr->lock);
return NULL;
}
static void
bo_close(struct iris_bo *bo)
{
struct iris_bufmgr *bufmgr = bo->bufmgr;
if (bo->external) {
struct hash_entry *entry;
if (bo->global_name) {
entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
_mesa_hash_table_remove(bufmgr->name_table, entry);
}
entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
_mesa_hash_table_remove(bufmgr->handle_table, entry);
list_for_each_entry_safe(struct bo_export, export, &bo->exports, link) {
struct drm_gem_close close = { .handle = export->gem_handle };
gen_ioctl(export->drm_fd, DRM_IOCTL_GEM_CLOSE, &close);
list_del(&export->link);
free(export);
}
} else {
assert(list_is_empty(&bo->exports));
}
/* Close this object */
struct drm_gem_close close = { .handle = bo->gem_handle };
int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
if (ret != 0) {
DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
bo->gem_handle, bo->name, strerror(errno));
}
if (bo->aux_map_address && bo->bufmgr->aux_map_ctx) {
gen_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->gtt_offset,
bo->size);
}
/* Return the VMA for reuse */
vma_free(bo->bufmgr, bo->gtt_offset, bo->size);
free(bo);
}
static void
bo_free(struct iris_bo *bo)
{
struct iris_bufmgr *bufmgr = bo->bufmgr;
if (bo->map_cpu && !bo->userptr) {
VG_NOACCESS(bo->map_cpu, bo->size);
os_munmap(bo->map_cpu, bo->size);
}
if (bo->map_wc) {
VG_NOACCESS(bo->map_wc, bo->size);
os_munmap(bo->map_wc, bo->size);
}
if (bo->map_gtt) {
VG_NOACCESS(bo->map_gtt, bo->size);
os_munmap(bo->map_gtt, bo->size);
}
if (bo->idle) {
bo_close(bo);
} else {
/* Defer closing the GEM BO and returning the VMA for reuse until the
* BO is idle. Just move it to the dead list for now.
*/
list_addtail(&bo->head, &bufmgr->zombie_list);
}
}
/** Frees all cached buffers significantly older than @time. */
static void
cleanup_bo_cache(struct iris_bufmgr *bufmgr, time_t time)
{
int i;
if (bufmgr->time == time)
return;
for (i = 0; i < bufmgr->num_buckets; i++) {
struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
if (time - bo->free_time <= 1)
break;
list_del(&bo->head);
bo_free(bo);
}
}
list_for_each_entry_safe(struct iris_bo, bo, &bufmgr->zombie_list, head) {
/* Stop once we reach a busy BO - all others past this point were
* freed more recently so are likely also busy.
*/
if (!bo->idle && iris_bo_busy(bo))
break;
list_del(&bo->head);
bo_close(bo);
}
bufmgr->time = time;
}
static void
bo_unreference_final(struct iris_bo *bo, time_t time)
{
struct iris_bufmgr *bufmgr = bo->bufmgr;
struct bo_cache_bucket *bucket;
DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
bucket = NULL;
if (bo->reusable)
bucket = bucket_for_size(bufmgr, bo->size);
/* Put the buffer into our internal cache for reuse if we can. */
if (bucket && iris_bo_madvise(bo, I915_MADV_DONTNEED)) {
bo->free_time = time;
bo->name = NULL;
list_addtail(&bo->head, &bucket->head);
} else {
bo_free(bo);
}
}
void
iris_bo_unreference(struct iris_bo *bo)
{
if (bo == NULL)
return;
assert(p_atomic_read(&bo->refcount) > 0);
if (atomic_add_unless(&bo->refcount, -1, 1)) {
struct iris_bufmgr *bufmgr = bo->bufmgr;
struct timespec time;
clock_gettime(CLOCK_MONOTONIC, &time);
mtx_lock(&bufmgr->lock);
if (p_atomic_dec_zero(&bo->refcount)) {
bo_unreference_final(bo, time.tv_sec);
cleanup_bo_cache(bufmgr, time.tv_sec);
}
mtx_unlock(&bufmgr->lock);
}
}
static void
bo_wait_with_stall_warning(struct pipe_debug_callback *dbg,
struct iris_bo *bo,
const char *action)
{
bool busy = dbg && !bo->idle;
double elapsed = unlikely(busy) ? -get_time() : 0.0;
iris_bo_wait_rendering(bo);
if (unlikely(busy)) {
elapsed += get_time();
if (elapsed > 1e-5) /* 0.01ms */ {
perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n",
action, bo->name, elapsed * 1000);
}
}
}
static void
print_flags(unsigned flags)
{
if (flags & MAP_READ)
DBG("READ ");
if (flags & MAP_WRITE)
DBG("WRITE ");
if (flags & MAP_ASYNC)
DBG("ASYNC ");
if (flags & MAP_PERSISTENT)
DBG("PERSISTENT ");
if (flags & MAP_COHERENT)
DBG("COHERENT ");
if (flags & MAP_RAW)
DBG("RAW ");
DBG("\n");
}
static void *
iris_bo_map_cpu(struct pipe_debug_callback *dbg,
struct iris_bo *bo, unsigned flags)
{
struct iris_bufmgr *bufmgr = bo->bufmgr;
/* We disallow CPU maps for writing to non-coherent buffers, as the
* CPU map can become invalidated when a batch is flushed out, which
* can happen at unpredictable times. You should use WC maps instead.
*/
assert(bo->cache_coherent || !(flags & MAP_WRITE));
if (!bo->map_cpu) {
DBG("iris_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);
struct drm_i915_gem_mmap mmap_arg = {
.handle = bo->gem_handle,
.size = bo->size,
};
int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
if (ret != 0) {
DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
__FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
return NULL;
}
void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
VG_DEFINED(map, bo->size);
if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
VG_NOACCESS(map, bo->size);
os_munmap(map, bo->size);
}
}
assert(bo->map_cpu);
DBG("iris_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
bo->map_cpu);
print_flags(flags);
if (!(flags & MAP_ASYNC)) {
bo_wait_with_stall_warning(dbg, bo, "CPU mapping");
}
if (!bo->cache_coherent && !bo->bufmgr->has_llc) {
/* If we're reusing an existing CPU mapping, the CPU caches may
* contain stale data from the last time we read from that mapping.
* (With the BO cache, it might even be data from a previous buffer!)
* Even if it's a brand new mapping, the kernel may have zeroed the
* buffer via CPU writes.
*
* We need to invalidate those cachelines so that we see the latest
* contents, and so long as we only read from the CPU mmap we do not
* need to write those cachelines back afterwards.
*
* On LLC, the emprical evidence suggests that writes from the GPU
* that bypass the LLC (i.e. for scanout) do *invalidate* the CPU
* cachelines. (Other reads, such as the display engine, bypass the
* LLC entirely requiring us to keep dirty pixels for the scanout
* out of any cache.)
*/
gen_invalidate_range(bo->map_cpu, bo->size);
}
return bo->map_cpu;
}
static void *
iris_bo_map_wc(struct pipe_debug_callback *dbg,
struct iris_bo *bo, unsigned flags)
{
struct iris_bufmgr *bufmgr = bo->bufmgr;
if (!bo->map_wc) {
DBG("iris_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name);
struct drm_i915_gem_mmap mmap_arg = {
.handle = bo->gem_handle,
.size = bo->size,
.flags = I915_MMAP_WC,
};
int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
if (ret != 0) {
DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
__FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
return NULL;
}
void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
VG_DEFINED(map, bo->size);
if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) {
VG_NOACCESS(map, bo->size);
os_munmap(map, bo->size);
}
}
assert(bo->map_wc);
DBG("iris_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc);
print_flags(flags);
if (!(flags & MAP_ASYNC)) {
bo_wait_with_stall_warning(dbg, bo, "WC mapping");
}
return bo->map_wc;
}
/**
* Perform an uncached mapping via the GTT.
*
* Write access through the GTT is not quite fully coherent. On low power
* systems especially, like modern Atoms, we can observe reads from RAM before
* the write via GTT has landed. A write memory barrier that flushes the Write
* Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later
* read after the write as the GTT write suffers a small delay through the GTT
* indirection. The kernel uses an uncached mmio read to ensure the GTT write
* is ordered with reads (either by the GPU, WB or WC) and unconditionally
* flushes prior to execbuf submission. However, if we are not informing the
* kernel about our GTT writes, it will not flush before earlier access, such
* as when using the cmdparser. Similarly, we need to be careful if we should
* ever issue a CPU read immediately following a GTT write.
*
* Telling the kernel about write access also has one more important
* side-effect. Upon receiving notification about the write, it cancels any
* scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by
* either SW_FINISH or DIRTYFB. The presumption is that we never write to the
* actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR
* tracking is handled on the buffer exchange instead.
*/
static void *
iris_bo_map_gtt(struct pipe_debug_callback *dbg,
struct iris_bo *bo, unsigned flags)
{
struct iris_bufmgr *bufmgr = bo->bufmgr;
/* Get a mapping of the buffer if we haven't before. */
if (bo->map_gtt == NULL) {
DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);
struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle };
/* Get the fake offset back... */
int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
if (ret != 0) {
DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
__FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
return NULL;
}
/* and mmap it. */
void *map = os_mmap(0, bo->size, PROT_READ | PROT_WRITE,
MAP_SHARED, bufmgr->fd, mmap_arg.offset);
if (map == MAP_FAILED) {
DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
__FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
return NULL;
}
/* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will
* already intercept this mmap call. However, for consistency between
* all the mmap paths, we mark the pointer as defined now and mark it
* as inaccessible afterwards.
*/
VG_DEFINED(map, bo->size);
if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
VG_NOACCESS(map, bo->size);
os_munmap(map, bo->size);
}
}
assert(bo->map_gtt);
DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
print_flags(flags);
if (!(flags & MAP_ASYNC)) {
bo_wait_with_stall_warning(dbg, bo, "GTT mapping");
}
return bo->map_gtt;
}
static bool
can_map_cpu(struct iris_bo *bo, unsigned flags)
{
if (bo->cache_coherent)
return true;
/* Even if the buffer itself is not cache-coherent (such as a scanout), on
* an LLC platform reads always are coherent (as they are performed via the
* central system agent). It is just the writes that we need to take special
* care to ensure that land in main memory and not stick in the CPU cache.
*/
if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc)
return true;
/* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid
* across batch flushes where the kernel will change cache domains of the
* bo, invalidating continued access to the CPU mmap on non-LLC device.
*
* Similarly, ASYNC typically means that the buffer will be accessed via
* both the CPU and the GPU simultaneously. Batches may be executed that
* use the BO even while it is mapped. While OpenGL technically disallows
* most drawing while non-persistent mappings are active, we may still use
* the GPU for blits or other operations, causing batches to happen at
* inconvenient times.
*
* If RAW is set, we expect the caller to be able to handle a WC buffer
* more efficiently than the involuntary clflushes.
*/
if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC | MAP_RAW))
return false;
return !(flags & MAP_WRITE);
}
void *
iris_bo_map(struct pipe_debug_callback *dbg,
struct iris_bo *bo, unsigned flags)
{
if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
return iris_bo_map_gtt(dbg, bo, flags);
void *map;
if (can_map_cpu(bo, flags))
map = iris_bo_map_cpu(dbg, bo, flags);
else
map = iris_bo_map_wc(dbg, bo, flags);
/* Allow the attempt to fail by falling back to the GTT where necessary.
*
* Not every buffer can be mmaped directly using the CPU (or WC), for
* example buffers that wrap stolen memory or are imported from other
* devices. For those, we have little choice but to use a GTT mmapping.
* However, if we use a slow GTT mmapping for reads where we expected fast
* access, that order of magnitude difference in throughput will be clearly
* expressed by angry users.
*
* We skip MAP_RAW because we want to avoid map_gtt's fence detiling.
*/
if (!map && !(flags & MAP_RAW)) {
perf_debug(dbg, "Fallback GTT mapping for %s with access flags %x\n",
bo->name, flags);
map = iris_bo_map_gtt(dbg, bo, flags);
}
return map;
}
/** Waits for all GPU rendering with the object to have completed. */
void
iris_bo_wait_rendering(struct iris_bo *bo)
{
/* We require a kernel recent enough for WAIT_IOCTL support.
* See intel_init_bufmgr()
*/
iris_bo_wait(bo, -1);
}
/**
* Waits on a BO for the given amount of time.
*
* @bo: buffer object to wait for
* @timeout_ns: amount of time to wait in nanoseconds.
* If value is less than 0, an infinite wait will occur.
*
* Returns 0 if the wait was successful ie. the last batch referencing the
* object has completed within the allotted time. Otherwise some negative return
* value describes the error. Of particular interest is -ETIME when the wait has
* failed to yield the desired result.
*
* Similar to iris_bo_wait_rendering except a timeout parameter allows
* the operation to give up after a certain amount of time. Another subtle
* difference is the internal locking semantics are different (this variant does
* not hold the lock for the duration of the wait). This makes the wait subject
* to a larger userspace race window.
*
* The implementation shall wait until the object is no longer actively
* referenced within a batch buffer at the time of the call. The wait will
* not guarantee that the buffer is re-issued via another thread, or an flinked
* handle. Userspace must make sure this race does not occur if such precision
* is important.
*
* Note that some kernels have broken the inifite wait for negative values
* promise, upgrade to latest stable kernels if this is the case.
*/
int
iris_bo_wait(struct iris_bo *bo, int64_t timeout_ns)
{
struct iris_bufmgr *bufmgr = bo->bufmgr;
/* If we know it's idle, don't bother with the kernel round trip */
if (bo->idle && !bo->external)
return 0;
struct drm_i915_gem_wait wait = {
.bo_handle = bo->gem_handle,
.timeout_ns = timeout_ns,
};
int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
if (ret != 0)
return -errno;
bo->idle = true;
return ret;
}
static void
iris_bufmgr_destroy(struct iris_bufmgr *bufmgr)
{
/* Free aux-map buffers */
gen_aux_map_finish(bufmgr->aux_map_ctx);
/* bufmgr will no longer try to free VMA entries in the aux-map */
bufmgr->aux_map_ctx = NULL;
mtx_destroy(&bufmgr->lock);
/* Free any cached buffer objects we were going to reuse */
for (int i = 0; i < bufmgr->num_buckets; i++) {
struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
list_del(&bo->head);
bo_free(bo);
}
}
/* Close any buffer objects on the dead list. */
list_for_each_entry_safe(struct iris_bo, bo, &bufmgr->zombie_list, head) {
list_del(&bo->head);
bo_close(bo);
}
_mesa_hash_table_destroy(bufmgr->name_table, NULL);
_mesa_hash_table_destroy(bufmgr->handle_table, NULL);
for (int z = 0; z < IRIS_MEMZONE_COUNT; z++) {
if (z != IRIS_MEMZONE_BINDER)
util_vma_heap_finish(&bufmgr->vma_allocator[z]);
}
close(bufmgr->fd);
free(bufmgr);
}
static int
bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
uint32_t stride)
{
struct iris_bufmgr *bufmgr = bo->bufmgr;
struct drm_i915_gem_set_tiling set_tiling;
int ret;
if (bo->global_name == 0 &&
tiling_mode == bo->tiling_mode && stride == bo->stride)
return 0;
memset(&set_tiling, 0, sizeof(set_tiling));
do {
/* set_tiling is slightly broken and overwrites the
* input on the error path, so we have to open code
* drm_ioctl.
*/
set_tiling.handle = bo->gem_handle;
set_tiling.tiling_mode = tiling_mode;
set_tiling.stride = stride;
ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
if (ret == -1)
return -errno;
bo->tiling_mode = set_tiling.tiling_mode;
bo->swizzle_mode = set_tiling.swizzle_mode;
bo->stride = set_tiling.stride;
return 0;
}
int
iris_bo_get_tiling(struct iris_bo *bo, uint32_t *tiling_mode,
uint32_t *swizzle_mode)
{
*tiling_mode = bo->tiling_mode;
*swizzle_mode = bo->swizzle_mode;
return 0;
}
struct iris_bo *
iris_bo_import_dmabuf(struct iris_bufmgr *bufmgr, int prime_fd,
uint32_t tiling, uint32_t stride)
{
uint32_t handle;
struct iris_bo *bo;
mtx_lock(&bufmgr->lock);
int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
if (ret) {
DBG("import_dmabuf: failed to obtain handle from fd: %s\n",
strerror(errno));
mtx_unlock(&bufmgr->lock);
return NULL;
}
/*
* See if the kernel has already returned this buffer to us. Just as
* for named buffers, we must not create two bo's pointing at the same
* kernel object
*/
bo = find_and_ref_external_bo(bufmgr->handle_table, handle);
if (bo)
goto out;
bo = bo_calloc();
if (!bo)
goto out;
p_atomic_set(&bo->refcount, 1);
/* Determine size of bo. The fd-to-handle ioctl really should
* return the size, but it doesn't. If we have kernel 3.12 or
* later, we can lseek on the prime fd to get the size. Older
* kernels will just fail, in which case we fall back to the
* provided (estimated or guess size). */
ret = lseek(prime_fd, 0, SEEK_END);
if (ret != -1)
bo->size = ret;
bo->bufmgr = bufmgr;
bo->name = "prime";
bo->reusable = false;
bo->external = true;
bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
bo->gem_handle = handle;
_mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
goto err;
if (get_tiling.tiling_mode == tiling || tiling > I915_TILING_LAST) {
bo->tiling_mode = get_tiling.tiling_mode;
bo->swizzle_mode = get_tiling.swizzle_mode;
/* XXX stride is unknown */
} else {
if (bo_set_tiling_internal(bo, tiling, stride)) {
goto err;
}
}
out:
mtx_unlock(&bufmgr->lock);
return bo;
err:
bo_free(bo);
mtx_unlock(&bufmgr->lock);
return NULL;
}
static void
iris_bo_make_external_locked(struct iris_bo *bo)
{
if (!bo->external) {
_mesa_hash_table_insert(bo->bufmgr->handle_table, &bo->gem_handle, bo);
/* If a BO is going to be used externally, it could be sent to the
* display HW. So make sure our CPU mappings don't assume cache
* coherency since display is outside that cache.
*/
bo->cache_coherent = false;
bo->external = true;
bo->reusable = false;
}
}
void
iris_bo_make_external(struct iris_bo *bo)
{
struct iris_bufmgr *bufmgr = bo->bufmgr;
if (bo->external) {
assert(!bo->reusable);
return;
}
mtx_lock(&bufmgr->lock);
iris_bo_make_external_locked(bo);
mtx_unlock(&bufmgr->lock);
}
int
iris_bo_export_dmabuf(struct iris_bo *bo, int *prime_fd)
{
struct iris_bufmgr *bufmgr = bo->bufmgr;
iris_bo_make_external(bo);
if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
DRM_CLOEXEC, prime_fd) != 0)
return -errno;
return 0;
}
uint32_t
iris_bo_export_gem_handle(struct iris_bo *bo)
{
iris_bo_make_external(bo);
return bo->gem_handle;
}
int
iris_bo_flink(struct iris_bo *bo, uint32_t *name)
{
struct iris_bufmgr *bufmgr = bo->bufmgr;
if (!bo->global_name) {
struct drm_gem_flink flink = { .handle = bo->gem_handle };
if (gen_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
return -errno;
mtx_lock(&bufmgr->lock);
if (!bo->global_name) {
iris_bo_make_external_locked(bo);
bo->global_name = flink.name;
_mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
}
mtx_unlock(&bufmgr->lock);
}
*name = bo->global_name;
return 0;
}
int
iris_bo_export_gem_handle_for_device(struct iris_bo *bo, int drm_fd,
uint32_t *out_handle)
{
/* Only add the new GEM handle to the list of export if it belongs to a
* different GEM device. Otherwise we might close the same buffer multiple
* times.
*/
struct iris_bufmgr *bufmgr = bo->bufmgr;
int ret = os_same_file_description(drm_fd, bufmgr->fd);
WARN_ONCE(ret < 0,
"Kernel has no file descriptor comparison support: %s\n",
strerror(errno));
if (ret == 0) {
*out_handle = iris_bo_export_gem_handle(bo);
return 0;
}
struct bo_export *export = calloc(1, sizeof(*export));
if (!export)
return -ENOMEM;
export->drm_fd = drm_fd;
int dmabuf_fd = -1;
int err = iris_bo_export_dmabuf(bo, &dmabuf_fd);
if (err) {
free(export);
return err;
}
mtx_lock(&bufmgr->lock);
err = drmPrimeFDToHandle(drm_fd, dmabuf_fd, &export->gem_handle);
close(dmabuf_fd);
if (err) {
mtx_unlock(&bufmgr->lock);
free(export);
return err;
}
bool found = false;
list_for_each_entry(struct bo_export, iter, &bo->exports, link) {
if (iter->drm_fd != drm_fd)
continue;
/* Here we assume that for a given DRM fd, we'll always get back the
* same GEM handle for a given buffer.
*/
assert(iter->gem_handle == export->gem_handle);
free(export);
export = iter;
found = true;
break;
}
if (!found)
list_addtail(&export->link, &bo->exports);
mtx_unlock(&bufmgr->lock);
*out_handle = export->gem_handle;
return 0;
}
static void
add_bucket(struct iris_bufmgr *bufmgr, int size)
{
unsigned int i = bufmgr->num_buckets;
assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
list_inithead(&bufmgr->cache_bucket[i].head);
bufmgr->cache_bucket[i].size = size;
bufmgr->num_buckets++;
assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]);
assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]);
assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]);
}
static void
init_cache_buckets(struct iris_bufmgr *bufmgr)
{
uint64_t size, cache_max_size = 64 * 1024 * 1024;
/* OK, so power of two buckets was too wasteful of memory.
* Give 3 other sizes between each power of two, to hopefully
* cover things accurately enough. (The alternative is
* probably to just go for exact matching of sizes, and assume
* that for things like composited window resize the tiled
* width/height alignment and rounding of sizes to pages will
* get us useful cache hit rates anyway)
*/
add_bucket(bufmgr, PAGE_SIZE);
add_bucket(bufmgr, PAGE_SIZE * 2);
add_bucket(bufmgr, PAGE_SIZE * 3);
/* Initialize the linked lists for BO reuse cache. */
for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) {
add_bucket(bufmgr, size);
add_bucket(bufmgr, size + size * 1 / 4);
add_bucket(bufmgr, size + size * 2 / 4);
add_bucket(bufmgr, size + size * 3 / 4);
}
}
uint32_t
iris_create_hw_context(struct iris_bufmgr *bufmgr)
{
struct drm_i915_gem_context_create create = { };
int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
if (ret != 0) {
DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
return 0;
}
/* Upon declaring a GPU hang, the kernel will zap the guilty context
* back to the default logical HW state and attempt to continue on to
* our next submitted batchbuffer. However, our render batches assume
* the previous GPU state is preserved, and only emit commands needed
* to incrementally change that state. In particular, we inherit the
* STATE_BASE_ADDRESS and PIPELINE_SELECT settings, which are critical.
* With default base addresses, our next batches will almost certainly
* cause more GPU hangs, leading to repeated hangs until we're banned
* or the machine is dead.
*
* Here we tell the kernel not to attempt to recover our context but
* immediately (on the next batchbuffer submission) report that the
* context is lost, and we will do the recovery ourselves. Ideally,
* we'll have two lost batches instead of a continual stream of hangs.
*/
struct drm_i915_gem_context_param p = {
.ctx_id = create.ctx_id,
.param = I915_CONTEXT_PARAM_RECOVERABLE,
.value = false,
};
drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p);
return create.ctx_id;
}
static int
iris_hw_context_get_priority(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
{
struct drm_i915_gem_context_param p = {
.ctx_id = ctx_id,
.param = I915_CONTEXT_PARAM_PRIORITY,
};
drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p);
return p.value; /* on error, return 0 i.e. default priority */
}
int
iris_hw_context_set_priority(struct iris_bufmgr *bufmgr,
uint32_t ctx_id,
int priority)
{
struct drm_i915_gem_context_param p = {
.ctx_id = ctx_id,
.param = I915_CONTEXT_PARAM_PRIORITY,
.value = priority,
};
int err;
err = 0;
if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
err = -errno;
return err;
}
uint32_t
iris_clone_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
{
uint32_t new_ctx = iris_create_hw_context(bufmgr);
if (new_ctx) {
int priority = iris_hw_context_get_priority(bufmgr, ctx_id);
iris_hw_context_set_priority(bufmgr, new_ctx, priority);
}
return new_ctx;
}
void
iris_destroy_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
{
struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id };
if (ctx_id != 0 &&
gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
strerror(errno));
}
}
int
iris_reg_read(struct iris_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
{
struct drm_i915_reg_read reg_read = { .offset = offset };
int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
*result = reg_read.val;
return ret;
}
static uint64_t
iris_gtt_size(int fd)
{
/* We use the default (already allocated) context to determine
* the default configuration of the virtual address space.
*/
struct drm_i915_gem_context_param p = {
.param = I915_CONTEXT_PARAM_GTT_SIZE,
};
if (!gen_ioctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p))
return p.value;
return 0;
}
static struct gen_buffer *
gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
{
struct gen_buffer *buf = malloc(sizeof(struct gen_buffer));
if (!buf)
return NULL;
struct iris_bufmgr *bufmgr = (struct iris_bufmgr *)driver_ctx;
struct iris_bo *bo =
iris_bo_alloc_tiled(bufmgr, "aux-map", size, 64 * 1024,
IRIS_MEMZONE_OTHER, I915_TILING_NONE, 0, 0);
buf->driver_bo = bo;
buf->gpu = bo->gtt_offset;
buf->gpu_end = buf->gpu + bo->size;
buf->map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
return buf;
}
static void
gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
{
iris_bo_unreference((struct iris_bo*)buffer->driver_bo);
free(buffer);
}
static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
.alloc = gen_aux_map_buffer_alloc,
.free = gen_aux_map_buffer_free,
};
/**
* Initializes the GEM buffer manager, which uses the kernel to allocate, map,
* and manage map buffer objections.
*
* \param fd File descriptor of the opened DRM device.
*/
static struct iris_bufmgr *
iris_bufmgr_create(struct gen_device_info *devinfo, int fd, bool bo_reuse)
{
uint64_t gtt_size = iris_gtt_size(fd);
if (gtt_size <= IRIS_MEMZONE_OTHER_START)
return NULL;
struct iris_bufmgr *bufmgr = calloc(1, sizeof(*bufmgr));
if (bufmgr == NULL)
return NULL;
/* Handles to buffer objects belong to the device fd and are not
* reference counted by the kernel. If the same fd is used by
* multiple parties (threads sharing the same screen bufmgr, or
* even worse the same device fd passed to multiple libraries)
* ownership of those handles is shared by those independent parties.
*
* Don't do this! Ensure that each library/bufmgr has its own device
* fd so that its namespace does not clash with another.
*/
bufmgr->fd = dup(fd);
p_atomic_set(&bufmgr->refcount, 1);
if (mtx_init(&bufmgr->lock, mtx_plain) != 0) {
close(bufmgr->fd);
free(bufmgr);
return NULL;
}
list_inithead(&bufmgr->zombie_list);
bufmgr->has_llc = devinfo->has_llc;
bufmgr->bo_reuse = bo_reuse;
STATIC_ASSERT(IRIS_MEMZONE_SHADER_START == 0ull);
const uint64_t _4GB = 1ull << 32;
const uint64_t _2GB = 1ul << 31;
/* The STATE_BASE_ADDRESS size field can only hold 1 page shy of 4GB */
const uint64_t _4GB_minus_1 = _4GB - PAGE_SIZE;
util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SHADER],
PAGE_SIZE, _4GB_minus_1 - PAGE_SIZE);
util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SURFACE],
IRIS_MEMZONE_SURFACE_START,
_4GB_minus_1 - IRIS_MAX_BINDERS * IRIS_BINDER_SIZE);
/* TODO: Why does limiting to 2GB help some state items on gen12?
* - CC Viewport Pointer
* - Blend State Pointer
* - Color Calc State Pointer
*/
const uint64_t dynamic_pool_size =
(devinfo->gen >= 12 ? _2GB : _4GB_minus_1) - IRIS_BORDER_COLOR_POOL_SIZE;
util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_DYNAMIC],
IRIS_MEMZONE_DYNAMIC_START + IRIS_BORDER_COLOR_POOL_SIZE,
dynamic_pool_size);
/* Leave the last 4GB out of the high vma range, so that no state
* base address + size can overflow 48 bits.
*/
util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_OTHER],
IRIS_MEMZONE_OTHER_START,
(gtt_size - _4GB) - IRIS_MEMZONE_OTHER_START);
init_cache_buckets(bufmgr);
bufmgr->name_table =
_mesa_hash_table_create(NULL, _mesa_hash_uint, _mesa_key_uint_equal);
bufmgr->handle_table =
_mesa_hash_table_create(NULL, _mesa_hash_uint, _mesa_key_uint_equal);
if (devinfo->gen >= 12) {
bufmgr->aux_map_ctx = gen_aux_map_init(bufmgr, &aux_map_allocator,
devinfo);
assert(bufmgr->aux_map_ctx);
}
return bufmgr;
}
static struct iris_bufmgr *
iris_bufmgr_ref(struct iris_bufmgr *bufmgr)
{
p_atomic_inc(&bufmgr->refcount);
return bufmgr;
}
void
iris_bufmgr_unref(struct iris_bufmgr *bufmgr)
{
mtx_lock(&global_bufmgr_list_mutex);
if (p_atomic_dec_zero(&bufmgr->refcount)) {
list_del(&bufmgr->link);
iris_bufmgr_destroy(bufmgr);
}
mtx_unlock(&global_bufmgr_list_mutex);
}
/**
* Gets an already existing GEM buffer manager or create a new one.
*
* \param fd File descriptor of the opened DRM device.
*/
struct iris_bufmgr *
iris_bufmgr_get_for_fd(struct gen_device_info *devinfo, int fd, bool bo_reuse)
{
struct stat st;
if (fstat(fd, &st))
return NULL;
struct iris_bufmgr *bufmgr = NULL;
mtx_lock(&global_bufmgr_list_mutex);
list_for_each_entry(struct iris_bufmgr, iter_bufmgr, &global_bufmgr_list, link) {
struct stat iter_st;
if (fstat(iter_bufmgr->fd, &iter_st))
continue;
if (st.st_rdev == iter_st.st_rdev) {
assert(iter_bufmgr->bo_reuse == bo_reuse);
bufmgr = iris_bufmgr_ref(iter_bufmgr);
goto unlock;
}
}
bufmgr = iris_bufmgr_create(devinfo, fd, bo_reuse);
list_addtail(&bufmgr->link, &global_bufmgr_list);
unlock:
mtx_unlock(&global_bufmgr_list_mutex);
return bufmgr;
}
int
iris_bufmgr_get_fd(struct iris_bufmgr *bufmgr)
{
return bufmgr->fd;
}
void*
iris_bufmgr_get_aux_map_context(struct iris_bufmgr *bufmgr)
{
return bufmgr->aux_map_ctx;
}