blob: 7cd04ece5e06fb41bd061a1e62cf3cf530b95610 [file] [log] [blame]
/*
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* This file is part of the lwIP TCP/IP stack.
*
* Author: Adam Dunkels <adam@sics.se>
*
*/
/*
* This file is a skeleton for developing Ethernet network interface
* drivers for lwIP. Add code to the low_level functions and do a
* search-and-replace for the word "ethernetif" to replace it with
* something that better describes your network interface.
*/
#include "lwip/opt.h"
#include "lwip/def.h"
#include "lwip/mem.h"
#include "lwip/pbuf.h"
#include "lwip/sys.h"
#include "netif/etharp.h"
/* Define those to better describe your network interface. */
#define IFNAME0 'e'
#define IFNAME1 'n'
struct ethernetif {
struct eth_addr *ethaddr;
/* Add whatever per-interface state that is needed here. */
};
static const struct eth_addr ethbroadcast = {{0xff,0xff,0xff,0xff,0xff,0xff}};
/* Forward declarations. */
static void ethernetif_input(struct netif *netif);
static err_t ethernetif_output(struct netif *netif, struct pbuf *p,
struct ip_addr *ipaddr);
static void
low_level_init(struct netif *netif)
{
struct ethernetif *ethernetif;
ethernetif = netif->state;
/* set MAC hardware address length */
netif->hwaddr_len = 6;
/* set MAC hardware address */
netif->hwaddr[0] = ;
...
netif->hwaddr[5] = ;
/* maximum transfer unit */
netif->mtu = 1500;
/* broadcast capability */
netif->flags = NETIF_FLAG_BROADCAST;
/* Do whatever else is needed to initialize interface. */
}
/*
* low_level_output():
*
* Should do the actual transmission of the packet. The packet is
* contained in the pbuf that is passed to the function. This pbuf
* might be chained.
*
*/
static err_t
low_level_output(struct ethernetif *ethernetif, struct pbuf *p)
{
struct pbuf *q;
initiate transfer();
for(q = p; q != NULL; q = q->next) {
/* Send the data from the pbuf to the interface, one pbuf at a
time. The size of the data in each pbuf is kept in the ->len
variable. */
send data from(q->payload, q->len);
}
signal that packet should be sent();
#ifdef LINK_STATS
lwip_stats.link.xmit++;
#endif /* LINK_STATS */
return ERR_OK;
}
/*
* low_level_input():
*
* Should allocate a pbuf and transfer the bytes of the incoming
* packet from the interface into the pbuf.
*
*/
static struct pbuf *
low_level_input(struct ethernetif *ethernetif)
{
struct pbuf *p, *q;
u16_t len;
/* Obtain the size of the packet and put it into the "len"
variable. */
len = ;
/* We allocate a pbuf chain of pbufs from the pool. */
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
if (p != NULL) {
/* We iterate over the pbuf chain until we have read the entire
packet into the pbuf. */
for(q = p; q != NULL; q = q->next) {
/* Read enough bytes to fill this pbuf in the chain. The
available data in the pbuf is given by the q->len
variable. */
read data into(q->payload, q->len);
}
acknowledge that packet has been read();
#ifdef LINK_STATS
lwip_stats.link.recv++;
#endif /* LINK_STATS */
} else {
drop packet();
#ifdef LINK_STATS
lwip_stats.link.memerr++;
lwip_stats.link.drop++;
#endif /* LINK_STATS */
}
return p;
}
/*
* ethernetif_output():
*
* This function is called by the TCP/IP stack when an IP packet
* should be sent. It calls the function called low_level_output() to
* do the actual transmission of the packet.
*
*/
static err_t
ethernetif_output(struct netif *netif, struct pbuf *p,
struct ip_addr *ipaddr)
{
struct ethernetif *ethernetif;
struct pbuf *q;
struct eth_hdr *ethhdr;
struct eth_addr *dest, mcastaddr;
struct ip_addr *queryaddr;
err_t err;
u8_t i;
ethernetif = netif->state;
/* resolve the link destination hardware address */
p = etharp_output(netif, ipaddr, p);
/* network hardware address obtained? */
if (p == NULL)
{
/* we cannot tell if the packet was sent: the packet could */
/* have been queued on an ARP entry that was already pending. */
return ERR_OK;
}
/* send out the packet */
return low_level_output(ethernetif, p);
}
/*
* ethernetif_input():
*
* This function should be called when a packet is ready to be read
* from the interface. It uses the function low_level_input() that
* should handle the actual reception of bytes from the network
* interface.
*
*/
static void
ethernetif_input(struct netif *netif)
{
struct ethernetif *ethernetif;
struct eth_hdr *ethhdr;
struct pbuf *p, *q;
ethernetif = netif->state;
p = low_level_input(ethernetif);
if (p != NULL)
return;
#ifdef LINK_STATS
lwip_stats.link.recv++;
#endif /* LINK_STATS */
ethhdr = p->payload;
q = NULL;
switch (htons(ethhdr->type)) {
case ETHTYPE_IP:
q = etharp_ip_input(netif, p);
pbuf_header(p, -14);
netif->input(p, netif);
break;
case ETHTYPE_ARP:
q = etharp_arp_input(netif, ethernetif->ethaddr, p);
break;
default:
pbuf_free(p);
p = NULL;
break;
}
if (q != NULL) {
low_level_output(ethernetif, q);
pbuf_free(q);
q = NULL;
}
}
static void
arp_timer(void *arg)
{
etharp_tmr();
sys_timeout(ARP_TMR_INTERVAL, arp_timer, NULL);
}
/*
* ethernetif_init():
*
* Should be called at the beginning of the program to set up the
* network interface. It calls the function low_level_init() to do the
* actual setup of the hardware.
*
*/
void
ethernetif_init(struct netif *netif)
{
struct ethernetif *ethernetif;
ethernetif = mem_malloc(sizeof(struct ethernetif));
if (ethernetif == NULL)
{
LWIP_DEBUGF(NETIF_DEBUG, ("ethernetif_init: out of memory\n"));
return ERR_MEM;
}
netif->state = ethernetif;
netif->name[0] = IFNAME0;
netif->name[1] = IFNAME1;
netif->output = ethernetif_output;
netif->linkoutput = low_level_output;
ethernetif->ethaddr = (struct eth_addr *)&(netif->hwaddr[0]);
low_level_init(netif);
etharp_init();
sys_timeout(ARP_TMR_INTERVAL, arp_timer, NULL);
}