blob: b3115890543127647be54756553facd4088abffb [file] [log] [blame]
/*
* Copyright (c) 2001, 2002 Swedish Institute of Computer Science.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* This file is part of the lwIP TCP/IP stack.
*
* Author: Adam Dunkels <adam@sics.se>
*
*
*/
#include "lwip/opt.h"
#include "lwip/debug.h"
#include "lwip/inet.h"
#include "netif/etharp.h"
#include "lwip/ip.h"
#include "lwip/stats.h"
#if LWIP_DHCP
# include "lwip/dhcp.h"
#endif
#define ARP_MAXAGE 120 /* 120 * 10 seconds = 20 minutes. */
#define ARP_MAXPENDING 2 /* 2 * 10 seconds = 20 seconds. */
#define HWTYPE_ETHERNET 1
#define ARP_REQUEST 1
#define ARP_REPLY 2
/* MUST be compiled with "pack structs" or equivalent! */
PACK_STRUCT_BEGIN
struct etharp_hdr {
PACK_STRUCT_FIELD(struct eth_hdr ethhdr);
PACK_STRUCT_FIELD(u16_t hwtype);
PACK_STRUCT_FIELD(u16_t proto);
PACK_STRUCT_FIELD(u16_t _hwlen_protolen);
PACK_STRUCT_FIELD(u16_t opcode);
PACK_STRUCT_FIELD(struct eth_addr shwaddr);
PACK_STRUCT_FIELD(struct ip_addr sipaddr);
PACK_STRUCT_FIELD(struct eth_addr dhwaddr);
PACK_STRUCT_FIELD(struct ip_addr dipaddr);
} PACK_STRUCT_STRUCT;
PACK_STRUCT_END
#define ARPH_HWLEN(hdr) (NTOHS((hdr)->_hwlen_protolen) >> 8)
#define ARPH_PROTOLEN(hdr) (NTOHS((hdr)->_hwlen_protolen) & 0xff)
#define ARPH_HWLEN_SET(hdr, len) (hdr)->_hwlen_protolen = HTONS(ARPH_PROTOLEN(hdr) | ((len) << 8))
#define ARPH_PROTOLEN_SET(hdr, len) (hdr)->_hwlen_protolen = HTONS((len) | (ARPH_HWLEN(hdr) << 8))
PACK_STRUCT_BEGIN
struct ethip_hdr {
PACK_STRUCT_FIELD(struct eth_hdr eth);
PACK_STRUCT_FIELD(struct ip_hdr ip);
};
PACK_STRUCT_END
enum etharp_state {
ETHARP_STATE_EMPTY,
ETHARP_STATE_PENDING,
ETHARP_STATE_STABLE
};
struct etharp_entry {
struct ip_addr ipaddr;
struct eth_addr ethaddr;
enum etharp_state state;
struct pbuf *p;
void *payload;
u16_t len, tot_len;
u8_t ctime;
};
static const struct eth_addr ethbroadcast = {{0xff,0xff,0xff,0xff,0xff,0xff}};
static struct etharp_entry arp_table[ARP_TABLE_SIZE];
static u8_t ctime;
/*-----------------------------------------------------------------------------------*/
void
etharp_init(void)
{
u8_t i;
for(i = 0; i < ARP_TABLE_SIZE; ++i) {
arp_table[i].state = ETHARP_STATE_EMPTY;
}
}
/*-----------------------------------------------------------------------------------*/
void
etharp_tmr(void)
{
u8_t i;
++ctime;
for(i = 0; i < ARP_TABLE_SIZE; ++i) {
if(arp_table[i].state == ETHARP_STATE_STABLE &&
ctime - arp_table[i].ctime >= ARP_MAXAGE) {
DEBUGF(ETHARP_DEBUG, ("etharp_timer: expired stable entry %d.\n", i));
arp_table[i].state = ETHARP_STATE_EMPTY;
} else if(arp_table[i].state == ETHARP_STATE_PENDING &&
ctime - arp_table[i].ctime >= ARP_MAXPENDING) {
DEBUGF(ETHARP_DEBUG, ("etharp_timer: expired pending entry %d - dequeueing %p.\n", i, arp_table[i].p));
arp_table[i].state = ETHARP_STATE_EMPTY;
pbuf_free(arp_table[i].p);
}
}
}
/*----------------------------------------------------------------------------------*/
static u8_t
find_arp_entry(void)
{
u8_t i, j, maxtime;
/* Try to find an unused entry in the ARP table. */
for(i = 0; i < ARP_TABLE_SIZE; ++i) {
if(arp_table[i].state == ETHARP_STATE_EMPTY) {
break;
}
}
/* If no unused entry is found, we try to find the oldest entry and
throw it away. */
if(i == ARP_TABLE_SIZE) {
maxtime = 0;
j = 0;
for(i = 0; i < ARP_TABLE_SIZE; ++i) {
if(arp_table[i].state == ETHARP_STATE_STABLE &&
ctime - arp_table[i].ctime > maxtime) {
maxtime = ctime - arp_table[i].ctime;
j = i;
}
}
i = j;
}
return i;
}
/*-----------------------------------------------------------------------------------*/
static struct pbuf *
update_arp_entry(struct ip_addr *ipaddr, struct eth_addr *ethaddr)
{
u8_t i, k;
struct pbuf *p;
struct eth_hdr *ethhdr;
/* Walk through the ARP mapping table and try to find an entry to
update. If none is found, the IP -> MAC address mapping is
inserted in the ARP table. */
for(i = 0; i < ARP_TABLE_SIZE; ++i) {
/* Check if the source IP address of the incoming packet matches
the IP address in this ARP table entry. */
if(ip_addr_cmp(ipaddr, &arp_table[i].ipaddr)) {
/* First, check those entries that are already in use. */
if(arp_table[i].state == ETHARP_STATE_STABLE) {
/* An old entry found, update this and return. */
for(k = 0; k < 6; ++k) {
arp_table[i].ethaddr.addr[k] = ethaddr->addr[k];
}
arp_table[i].ctime = ctime;
return NULL;
}
if(arp_table[i].state == ETHARP_STATE_PENDING) {
/* A pending entry was found, so we fill this in and return
the queued packet (if any). */
for(k = 0; k < 6; ++k) {
arp_table[i].ethaddr.addr[k] = ethaddr->addr[k];
}
arp_table[i].ctime = ctime;
arp_table[i].state = ETHARP_STATE_STABLE;
p = arp_table[i].p;
if(p != NULL) {
p->payload = arp_table[i].payload;
p->len = arp_table[i].len;
p->tot_len = arp_table[i].tot_len;
arp_table[i].p = NULL;
ethhdr = p->payload;
for(k = 0; k < 6; ++k) {
ethhdr->dest.addr[k] = ethaddr->addr[k];
}
ethhdr->type = htons(ETHTYPE_IP);
}
return p;
}
}
}
/* We get here if no ARP entry was found. If so, we create one. */
i = find_arp_entry();
if(i == ARP_TABLE_SIZE) {
return NULL;
}
ip_addr_set(&arp_table[i].ipaddr, ipaddr);
for(k = 0; k < 6; ++k) {
arp_table[i].ethaddr.addr[k] = ethaddr->addr[k];
}
arp_table[i].ctime = ctime;
arp_table[i].state = ETHARP_STATE_STABLE;
arp_table[i].p = NULL;
return NULL;
}
/*-----------------------------------------------------------------------------------*/
struct pbuf *
etharp_ip_input(struct netif *netif, struct pbuf *p)
{
struct ethip_hdr *hdr;
hdr = p->payload;
/* Only insert/update an entry if the source IP address of the
incoming IP packet comes from a host on the local network. */
if(!ip_addr_maskcmp(&(hdr->ip.src), &(netif->ip_addr), &(netif->netmask))) {
return NULL;
}
DEBUGF(ETHARP_DEBUG, ("etharp_ip_input: updating ETHARP table.\n"));
return update_arp_entry(&(hdr->ip.src), &(hdr->eth.src));
}
/*-----------------------------------------------------------------------------------*/
struct pbuf *
etharp_arp_input(struct netif *netif, struct eth_addr *ethaddr, struct pbuf *p)
{
struct etharp_hdr *hdr;
u8_t i;
if(p->tot_len < sizeof(struct etharp_hdr)) {
DEBUGF(ETHARP_DEBUG, ("etharp_etharp_input: packet too short (%d/%d)\n", p->tot_len, sizeof(struct etharp_hdr)));
pbuf_free(p);
return NULL;
}
hdr = p->payload;
switch(htons(hdr->opcode)) {
case ARP_REQUEST:
/* ARP request. If it asked for our address, we send out a
reply. */
DEBUGF(ETHARP_DEBUG, ("etharp_arp_input: ARP request\n"));
if(ip_addr_cmp(&(hdr->dipaddr), &(netif->ip_addr))) {
hdr->opcode = htons(ARP_REPLY);
ip_addr_set(&(hdr->dipaddr), &(hdr->sipaddr));
ip_addr_set(&(hdr->sipaddr), &(netif->ip_addr));
for(i = 0; i < 6; ++i) {
hdr->dhwaddr.addr[i] = hdr->shwaddr.addr[i];
hdr->shwaddr.addr[i] = ethaddr->addr[i];
hdr->ethhdr.dest.addr[i] = hdr->dhwaddr.addr[i];
hdr->ethhdr.src.addr[i] = ethaddr->addr[i];
}
hdr->hwtype = htons(HWTYPE_ETHERNET);
ARPH_HWLEN_SET(hdr, 6);
hdr->proto = htons(ETHTYPE_IP);
ARPH_PROTOLEN_SET(hdr, sizeof(struct ip_addr));
hdr->ethhdr.type = htons(ETHTYPE_ARP);
return p;
}
break;
case ARP_REPLY:
/* ARP reply. We insert or update the ARP table. */
DEBUGF(ETHARP_DEBUG, ("etharp_arp_input: ARP reply\n"));
if(ip_addr_cmp(&(hdr->dipaddr), &(netif->ip_addr))) {
#if (LWIP_DHCP && DHCP_DOES_ARP_CHECK)
dhcp_arp_reply(&hdr->sipaddr);
#endif
/* update_arp_entry() will return a pbuf that has previously been
queued waiting for an ARP reply. */
pbuf_free(p);
p = update_arp_entry(&(hdr->sipaddr), &(hdr->shwaddr));
return p;
}
break;
default:
DEBUGF(ETHARP_DEBUG, ("etharp_arp_input: unknown type %d\n", htons(hdr->opcode)));
break;
}
pbuf_free(p);
return NULL;
}
/*-----------------------------------------------------------------------------------*/
struct pbuf *
etharp_output(struct netif *netif, struct ip_addr *ipaddr, struct pbuf *q)
{
struct eth_addr *dest, *srcaddr, mcastaddr;
struct eth_hdr *ethhdr;
struct etharp_hdr *hdr;
struct pbuf *p;
u8_t i;
srcaddr = (struct eth_addr *)netif->hwaddr;
/* Make room for Ethernet header. */
if(pbuf_header(q, sizeof(struct eth_hdr)) != 0) {
/* The pbuf_header() call shouldn't fail, and we'll just bail
out if it does.. */
DEBUGF(ETHARP_DEBUG, ("etharp_output: could not allocate room for header.\n"));
#ifdef LINK_STATS
++stats.link.lenerr;
#endif /* LINK_STATS */
return NULL;
}
dest = NULL;
/* Construct Ethernet header. Start with looking up deciding which
MAC address to use as a destination address. Broadcasts and
multicasts are special, all other addresses are looked up in the
ARP table. */
if(ip_addr_isany(ipaddr) ||
ip_addr_isbroadcast(ipaddr, &(netif->netmask))) {
dest = (struct eth_addr *)&ethbroadcast;
} else if(ip_addr_ismulticast(ipaddr)) {
/* Hash IP multicast address to MAC address. */
mcastaddr.addr[0] = 0x01;
mcastaddr.addr[1] = 0x0;
mcastaddr.addr[2] = 0x5e;
mcastaddr.addr[3] = ip4_addr2(ipaddr) & 0x7f;
mcastaddr.addr[4] = ip4_addr3(ipaddr);
mcastaddr.addr[5] = ip4_addr4(ipaddr);
dest = &mcastaddr;
} else {
if(!ip_addr_maskcmp(ipaddr, &(netif->ip_addr), &(netif->netmask))) {
/* Use the IP address of the default gateway if the destination
is on the same subnet as we are. */
ipaddr = &(netif->gw);
}
/* We try to find a stable mapping. */
for(i = 0; i < ARP_TABLE_SIZE; ++i) {
if(arp_table[i].state == ETHARP_STATE_STABLE &&
ip_addr_cmp(ipaddr, &arp_table[i].ipaddr)) {
dest = &arp_table[i].ethaddr;
break;
}
}
}
if(dest == NULL) {
/* No destination address has been found, so we'll have to send
out an ARP request for the IP address. The outgoing packet is
queued unless the queue is full. */
/* We check if we are already querying for this address. If so,
we'll bail out. */
for(i = 0; i < ARP_TABLE_SIZE; ++i) {
if(arp_table[i].state == ETHARP_STATE_PENDING &&
ip_addr_cmp(ipaddr, &arp_table[i].ipaddr)) {
DEBUGF(ETHARP_DEBUG, ("etharp_output: already queued\n"));
return NULL;
}
}
i = find_arp_entry();
/* If all table entries were in pending state, we won't send out any
more ARP requests. We'll just give up. */
if(i == ARP_TABLE_SIZE) {
return NULL;
}
/* Now, i is the ARP table entry which we will fill with the new
information. */
ip_addr_set(&arp_table[i].ipaddr, ipaddr);
/* for(k = 0; k < 6; ++k) {
arp_table[i].ethaddr.addr[k] = dest->addr[k];
}*/
arp_table[i].ctime = ctime;
arp_table[i].state = ETHARP_STATE_PENDING;
#if 1
arp_table[i].p = q;
arp_table[i].payload = q->payload;
arp_table[i].len = q->len;
arp_table[i].tot_len = q->tot_len;
/* Because the pbuf will be queued, we'll increase the refernce
count. */
DEBUGF(ETHARP_DEBUG, ("etharp_output: queueing %p\n", q));
pbuf_ref(q);
#else
arp_table[i].p = NULL;
#endif /* 0 */
/* We allocate a pbuf for the outgoing ARP request packet. */
p = pbuf_alloc(PBUF_LINK, sizeof(struct etharp_hdr), PBUF_RAM);
if(p == NULL) {
/* No ARP request packet could be allocated, so we forget about
the ARP table entry. */
if(i != ARP_TABLE_SIZE) {
arp_table[i].state = ETHARP_STATE_EMPTY;
/* We decrease the reference count of the queued pbuf (which now
is dequeued). */
DEBUGF(ETHARP_DEBUG, ("etharp_output: couldn't alloc pbuf for query, dequeueing %p\n", q));
pbuf_free(q);
}
return NULL;
}
hdr = p->payload;
hdr->opcode = htons(ARP_REQUEST);
for(i = 0; i < 6; ++i) {
hdr->dhwaddr.addr[i] = 0x00;
hdr->shwaddr.addr[i] = srcaddr->addr[i];
}
ip_addr_set(&(hdr->dipaddr), ipaddr);
ip_addr_set(&(hdr->sipaddr), &(netif->ip_addr));
hdr->hwtype = htons(HWTYPE_ETHERNET);
ARPH_HWLEN_SET(hdr, 6);
hdr->proto = htons(ETHTYPE_IP);
ARPH_PROTOLEN_SET(hdr, sizeof(struct ip_addr));
for(i = 0; i < 6; ++i) {
hdr->ethhdr.dest.addr[i] = 0xff;
hdr->ethhdr.src.addr[i] = srcaddr->addr[i];
}
hdr->ethhdr.type = htons(ETHTYPE_ARP);
return p;
} else {
/* A valid IP->MAC address mapping was found, so we construct the
Ethernet header for the outgoing packet. */
ethhdr = q->payload;
for(i = 0; i < 6; i++) {
ethhdr->dest.addr[i] = dest->addr[i];
ethhdr->src.addr[i] = srcaddr->addr[i];
}
ethhdr->type = htons(ETHTYPE_IP);
return q;
}
}
/*-----------------------------------------------------------------------------------*/