blob: aa5c12076dbaf0c05d4d4873333e0dfa234a5da7 [file] [log] [blame]
/* Output the generated parsing program for bison,
Copyright (C) 1984, 1986 Bob Corbett and Free Software Foundation, Inc.
BISON is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY. No author or distributor accepts responsibility to anyone
for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing.
Refer to the BISON General Public License for full details.
Everyone is granted permission to copy, modify and redistribute BISON,
but only under the conditions described in the BISON General Public
License. A copy of this license is supposed to have been given to you
along with BISON so you can know your rights and responsibilities. It
should be in a file named COPYING. Among other things, the copyright
notice and this notice must be preserved on all copies.
In other words, you are welcome to use, share and improve this program.
You are forbidden to forbid anyone else to use, share and improve
what you give them. Help stamp out software-hoarding! */
/* functions to output parsing data to various files. Entries are:
output_headers ()
Output constant strings to the beginning of certain files.
output_trailers()
Output constant strings to the ends of certain files.
output ()
Output the parsing tables and the parser code to ftable.
The parser tables consist of: (starred ones needed only for the semantic parser)
yytranslate = vector mapping yylex's token numbers into bison's token numbers.
yytname = vector of string-names indexed by bison token number
yyrline = vector of line-numbers of all rules. For yydebug printouts.
* yyrhs = vector of items of all rules.
This is exactly what ritems contains.
* yyprhs[r] = index in yyrhs of first item for rule r.
yyr1[r] = symbol number of symbol that rule r derives.
yyr2[r] = number of symbols composing right hand side of rule r.
* yystos[s] = the symbol number of the symbol that leads to state s.
yydefact[s] = default rule to reduce with in state s,
when yytable doesn't specify something else to do.
Zero means the default is an error.
yydefgoto[i] = default state to go to after a reduction of a rule that
generates variable ntokens + i, except when yytable
specifies something else to do.
yypact[s] = index in yytable of the portion describing state s.
The lookahed token's type is used to index that portion
to find out what to do.
If the value in yytable is positive,
we shift the token and go to that state.
If the value is negative, it is minus a rule number to reduce by.
If the value is zero, the default action from yydefact[s] is used.
yypgoto[i] = the index in yytable of the portion describing
what to do after reducing a rule that derives variable i + ntokens.
This portion is indexed by the parser state number
as of before the text for this nonterminal was read.
The value from yytable is the state to go to.
yytable = a vector filled with portions for different uses,
found via yypact and yypgoto.
yycheck = a vector indexed in parallel with yytable.
It indicates, in a roundabout way, the bounds of the
portion you are trying to examine.
Suppose that the portion of yytable starts at index p
and the index to be examined within the portion is i.
Then if yycheck[p+i] != i, i is outside the bounds
of what is actually allocated, and the default
(from yydefact or yydefgoto) should be used.
Otherwise, yytable[p+i] should be used.
YYFINAL = the state number of the termination state.
YYFLAG = most negative short int. Used to flag ??
YYNTBASE = ntokens.
*/
#include <stdio.h>
#include <string.h>
#include "machine.h"
#include "new.h"
#include "files.h"
#include "gram.h"
#include "state.h"
#define MAXTABLE 32767
extern int debugflag;
extern int nolinesflag;
extern char **tags;
extern int tokensetsize;
extern int final_state;
extern core **state_table;
extern shifts **shift_table;
extern errs **err_table;
extern reductions **reduction_table;
extern short *accessing_symbol;
extern unsigned *LA;
extern short *LAruleno;
extern short *lookaheads;
extern char *consistent;
extern short *goto_map;
extern short *from_state;
extern short *to_state;
static int nvectors;
static int nentries;
static short **froms;
static short **tos;
static short *tally;
static short *width;
static short *actrow;
static short *state_count;
static short *order;
static short *base;
static short *pos;
static short *table;
static short *check;
static int lowzero;
static int high;
#define GUARDSTR "\n#include \"%s\"\nextern int yyerror;\n\
extern int yycost;\nextern char * yymsg;\nextern YYSTYPE yyval;\n\n\
yyguard(n, yyvsp, yylsp)\nregister int n;\nregister YYSTYPE *yyvsp;\n\
register YYLTYPE *yylsp;\n\
{\n yyerror = 0;\nyycost = 0;\n yymsg = 0;\nswitch (n)\n {"
#define ACTSTR "\n#include \"%s\"\nextern YYSTYPE yyval;\
\nextern int yychar;\
yyaction(n, yyvsp, yylsp)\nregister int n;\nregister YYSTYPE *yyvsp;\n\
register YYLTYPE *yylsp;\n{\n switch (n)\n{"
#define ACTSTR_SIMPLE "\n switch (yyn) {\n"
extern void berror(char *s);
extern void fatals(char *fmt,int x1,int x2,int x3,int x4,int x5,int x6,
int x7,int x8);
void free_itemsets(void);
void output_defines(void);
void output_token_translations(void);
void output_gram(void);
void output_stos(void);
void output_rule_data(void);
void output_actions(void);
void output_parser(void);
void output_program(void);
void token_actions(void);
void free_shifts(void);
void free_reductions(void);
void goto_actions(void);
void sort_actions(void);
void pack_table(void);
void output_base(void);
void output_table(void);
void output_check(void);
int action_row(int state);
void save_row(int state);
int default_goto(int symbol);
void save_column(int symbol,int default_state);
int matching_state(int vector);
int pack_vector(int vector);
void output_headers(void)
{
if (semantic_parser)
fprintf(fguard, GUARDSTR, attrsfile);
fprintf(faction, (semantic_parser ? ACTSTR : ACTSTR_SIMPLE), attrsfile);
/* if (semantic_parser) JF moved this below
fprintf(ftable, "#include \"%s\"\n", attrsfile);
fprintf(ftable, "#include <stdio.h>\n\n"); */
}
void output_trailers(void)
{
if (semantic_parser)
{
fprintf(fguard, "\n }\n}\n");
fprintf(faction, "\n }\n}\n");
}
else
fprintf(faction, "\n}\n");
}
void output(void)
{
int c;
/* output_token_defines(ftable); JF put out token defines FIRST */
if (!semantic_parser) /* JF Put out other stuff */
{
// rewind(fattrs);
// while ((c=getc(fattrs))!=EOF)
// putc(c,ftable);
}
if (debugflag)
fprintf(ftable, "#define YYDEBUG\n");
if (semantic_parser)
fprintf(ftable, "#include \"%s\"\n", attrsfile);
fprintf(ftable, "#include <stdio.h>\n\n");
/* Make "const" do nothing if not in ANSI C. */
fprintf (ftable, "#ifndef __STDC__\n#define const\n#endif\n\n");
free_itemsets();
output_defines();
output_token_translations();
if (semantic_parser)
output_gram();
FREE(ritem);
if (semantic_parser)
output_stos();
output_rule_data();
output_actions();
output_parser();
output_program();
}
void output_token_translations(void)
{
register int i, j;
/* register short *sp; JF unused */
if (translations)
{
fprintf(ftable,
"\n#define YYTRANSLATE(x) ((unsigned)(x) <= %d ? yytranslate[x] : %d)\n",
max_user_token_number, nsyms);
if (ntokens < 127) /* play it very safe; check maximum element value. */
fprintf(ftable, "\nstatic const char yytranslate[] = { 0");
else
fprintf(ftable, "\nstatic const short yytranslate[] = { 0");
j = 10;
for (i = 1; i <= max_user_token_number; i++)
{
putc(',', ftable);
if (j >= 10)
{
putc('\n', ftable);
j = 1;
}
else
{
j++;
}
fprintf(ftable, "%6d", token_translations[i]);
}
fprintf(ftable, "\n};\n");
}
else
{
fprintf(ftable, "\n#define YYTRANSLATE(x) (x)\n");
}
}
void output_gram(void)
{
register int i;
register int j;
register short *sp;
fprintf(ftable, "\nstatic const short yyprhs[] = { 0");
j = 10;
for (i = 1; i <= nrules; i++)
{
putc(',', ftable);
if (j >= 10)
{
putc('\n', ftable);
j = 1;
}
else
{
j++;
}
fprintf(ftable, "%6d", rrhs[i]);
}
fprintf(ftable, "\n};\n\nstatic const short yyrhs[] = {%6d", ritem[0]);
j = 10;
for (sp = ritem + 1; *sp; sp++)
{
putc(',', ftable);
if (j >= 10)
{
putc('\n', ftable);
j = 1;
}
else
{
j++;
}
if (*sp > 0)
fprintf(ftable, "%6d", *sp);
else
fprintf(ftable, " 0");
}
fprintf(ftable, "\n};\n");
}
void output_stos(void)
{
register int i;
register int j;
fprintf(ftable, "\nstatic const short yystos[] = { 0");
j = 10;
for (i = 1; i < nstates; i++)
{
putc(',', ftable);
if (j >= 10)
{
putc('\n', ftable);
j = 1;
}
else
{
j++;
}
fprintf(ftable, "%6d", accessing_symbol[i]);
}
fprintf(ftable, "\n};\n");
}
void output_rule_data(void)
{
register int i;
register int j;
fprintf(ftable, "\nstatic const short yyrline[] = { 0");
j = 10;
for (i = 1; i <= nrules; i++)
{
putc(',', ftable);
if (j >= 10)
{
putc('\n', ftable);
j = 1;
}
else
{
j++;
}
fprintf(ftable, "%6d", rline[i]);
}
/* Output the table of token names. */
fprintf(ftable, "\n};\n\nstatic const char * const yytname[] = { 0");
j = 10;
for (i = 1; i <= ntokens; i++)
{
register char *p;
putc(',', ftable);
if (j >= 10)
{
putc('\n', ftable);
j = 1;
}
else
{
j++;
}
putc ('\"', ftable);
for (p = tags[i]; *p; p++)
if (*p == '"' || *p == '\\')
fprintf(ftable, "\\%c", *p);
else if (*p == '\n')
fprintf(ftable, "\\n");
else if (*p == '\t')
fprintf(ftable, "\\t");
else if (*p == '\b')
fprintf(ftable, "\\b");
else if (*p < 040 || *p >= 0177)
fprintf(ftable, "\\%03o", *p);
else
putc(*p, ftable);
putc ('\"', ftable);
}
fprintf(ftable, "\n};\n\nstatic const short yyr1[] = { 0");
j = 10;
for (i = 1; i <= nrules; i++)
{
putc(',', ftable);
if (j >= 10)
{
putc('\n', ftable);
j = 1;
}
else
{
j++;
}
fprintf(ftable, "%6d", rlhs[i]);
}
FREE(rlhs + 1);
fprintf(ftable, "\n};\n\nstatic const short yyr2[] = { 0");
j = 10;
for (i = 1; i < nrules; i++)
{
putc(',', ftable);
if (j >= 10)
{
putc('\n', ftable);
j = 1;
}
else
{
j++;
}
fprintf(ftable, "%6d", rrhs[i + 1] - rrhs[i] - 1);
}
putc(',', ftable);
if (j >= 10)
putc('\n', ftable);
fprintf(ftable, "%6d\n};\n", nitems - rrhs[nrules] - 1);
FREE(rrhs + 1);
}
void output_defines(void)
{
fprintf(ftable, "\n\n#define\tYYFINAL\t\t%d\n", final_state);
fprintf(ftable, "#define\tYYFLAG\t\t%d\n", MINSHORT);
fprintf(ftable, "#define\tYYNTBASE\t%d\n", ntokens);
}
/* compute and output yydefact, yydefgoto, yypact, yypgoto, yytable and yycheck. */
void output_actions(void)
{
nvectors = nstates + nvars;
froms = NEW2(nvectors, short *);
tos = NEW2(nvectors, short *);
tally = NEW2(nvectors, short);
width = NEW2(nvectors, short);
token_actions();
free_shifts();
free_reductions();
FREE(lookaheads);
FREE(LA);
FREE(LAruleno);
FREE(accessing_symbol);
goto_actions();
FREE(goto_map + ntokens);
FREE(from_state);
FREE(to_state);
sort_actions();
pack_table();
output_base();
output_table();
output_check();
}
/* figure out the actions for the specified state, indexed by lookahead token type.
The yydefact table is output now. The detailed info
is saved for putting into yytable later. */
void token_actions(void)
{
register int i;
register int j;
register int k;
actrow = NEW2(ntokens, short);
k = action_row(0);
fprintf(ftable, "\nstatic const short yydefact[] = {%6d", k);
save_row(0);
j = 10;
for (i = 1; i < nstates; i++)
{
putc(',', ftable);
if (j >= 10)
{
putc('\n', ftable);
j = 1;
}
else
{
j++;
}
k = action_row(i);
fprintf(ftable, "%6d", k);
save_row(i);
}
fprintf(ftable, "\n};\n");
FREE(actrow);
}
/* Decide what to do for each type of token if seen as the lookahead token in specified state.
The value returned is used as the default action (yydefact) for the state.
In addition, actrow is filled with what to do for each kind of token,
index by symbol number, with zero meaning do the default action.
The value MINSHORT, a very negative number, means this situation
is an error. The parser recognizes this value specially.
This is where conflicts are resolved. The loop over lookahead rules
considered lower-numbered rules last, and the last rule considered that likes
a token gets to handle it. */
int action_row(int state)
{
register int i;
register int j;
register int k;
register int m;
register int n;
register int count;
register int default_rule;
register int nreds;
register int max;
register int rule;
register int shift_state;
register int symbol;
register unsigned mask;
register unsigned *wordp;
register reductions *redp;
register shifts *shiftp;
register errs *errp;
int nodefault = 0; /* set nonzero to inhibit having any default reduction */
for (i = 0; i < ntokens; i++)
actrow[i] = 0;
default_rule = 0;
nreds = 0;
redp = reduction_table[state];
if (redp)
{
nreds = redp->nreds;
if (nreds >= 1)
{
/* loop over all the rules available here which require lookahead */
m = lookaheads[state];
n = lookaheads[state + 1];
for (i = n - 1; i >= m; i--)
{
rule = - LAruleno[i];
wordp = LA + i * tokensetsize;
mask = 1;
/* and find each token which the rule finds acceptable to come next */
for (j = 0; j < ntokens; j++)
{
/* and record this rule as the rule to use if that token follows. */
if (mask & *wordp)
actrow[j] = rule;
mask <<= 1;
if (mask == 0)
{
mask = 1;
wordp++;
}
}
}
}
}
shiftp = shift_table[state];
/* now see which tokens are allowed for shifts in this state.
For them, record the shift as the thing to do. So shift is preferred to reduce. */
if (shiftp)
{
k = shiftp->nshifts;
for (i = 0; i < k; i++)
{
shift_state = shiftp->shifts[i];
if (! shift_state) continue;
symbol = accessing_symbol[shift_state];
if (ISVAR(symbol))
break;
actrow[symbol] = shift_state;
/* do not use any default reduction if there is a shift for error */
if (symbol == error_token_number) nodefault = 1;
}
}
errp = err_table[state];
/* See which tokens are an explicit error in this state
(due to %nonassoc). For them, record MINSHORT as the action. */
if (errp)
{
k = errp->nerrs;
for (i = 0; i < k; i++)
{
symbol = errp->errs[i];
actrow[symbol] = MINSHORT;
}
}
/* now find the most common reduction and make it the default action for this state. */
if (nreds >= 1 && ! nodefault)
{
if (consistent[state])
default_rule = redp->rules[0];
else
{
max = 0;
for (i = m; i < n; i++)
{
count = 0;
rule = - LAruleno[i];
for (j = 0; j < ntokens; j++)
{
if (actrow[j] == rule)
count++;
}
if (count > max)
{
max = count;
default_rule = rule;
}
}
/* actions which match the default are replaced with zero,
which means "use the default" */
if (max > 0)
{
for (j = 0; j < ntokens; j++)
{
if (actrow[j] == default_rule)
actrow[j] = 0;
}
default_rule = - default_rule;
}
}
}
/* If have no default rule, the default is an error.
So replace any action which says "error" with "use default". */
if (default_rule == 0)
for (j = 0; j < ntokens; j++)
{
if (actrow[j] == MINSHORT)
actrow[j] = 0;
}
return (default_rule);
}
void save_row(int state)
{
register int i;
register int count;
register short *sp;
register short *sp1;
register short *sp2;
count = 0;
for (i = 0; i < ntokens; i++)
{
if (actrow[i] != 0)
count++;
}
if (count == 0)
return;
froms[state] = sp1 = sp = NEW2(count, short);
tos[state] = sp2 = NEW2(count, short);
for (i = 0; i < ntokens; i++)
{
if (actrow[i] != 0)
{
*sp1++ = i;
*sp2++ = actrow[i];
}
}
tally[state] = count;
width[state] = sp1[-1] - sp[0] + 1;
}
/* figure out what to do after reducing with each rule,
depending on the saved state from before the beginning
of parsing the data that matched this rule.
The yydefgoto table is output now. The detailed info
is saved for putting into yytable later. */
void goto_actions(void)
{
register int i;
register int j;
register int k;
state_count = NEW2(nstates, short);
k = default_goto(ntokens);
fprintf(ftable, "\nstatic const short yydefgoto[] = {%6d", k);
save_column(ntokens, k);
j = 10;
for (i = ntokens + 1; i < nsyms; i++)
{
putc(',', ftable);
if (j >= 10)
{
putc('\n', ftable);
j = 1;
}
else
{
j++;
}
k = default_goto(i);
fprintf(ftable, "%6d", k);
save_column(i, k);
}
fprintf(ftable, "\n};\n");
FREE(state_count);
}
int default_goto(int symbol)
{
register int i;
register int m;
register int n;
register int default_state;
register int max;
m = goto_map[symbol];
n = goto_map[symbol + 1];
if (m == n)
return (-1);
for (i = 0; i < nstates; i++)
state_count[i] = 0;
for (i = m; i < n; i++)
state_count[to_state[i]]++;
max = 0;
default_state = -1;
for (i = 0; i < nstates; i++)
{
if (state_count[i] > max)
{
max = state_count[i];
default_state = i;
}
}
return (default_state);
}
void save_column(int symbol,int default_state)
{
register int i;
register int m;
register int n;
register short *sp;
register short *sp1;
register short *sp2;
register int count;
register int symno;
m = goto_map[symbol];
n = goto_map[symbol + 1];
count = 0;
for (i = m; i < n; i++)
{
if (to_state[i] != default_state)
count++;
}
if (count == 0)
return;
symno = symbol - ntokens + nstates;
froms[symno] = sp1 = sp = NEW2(count, short);
tos[symno] = sp2 = NEW2(count, short);
for (i = m; i < n; i++)
{
if (to_state[i] != default_state)
{
*sp1++ = from_state[i];
*sp2++ = to_state[i];
}
}
tally[symno] = count;
width[symno] = sp1[-1] - sp[0] + 1;
}
/* the next few functions decide how to pack
the actions and gotos information into yytable. */
void sort_actions(void)
{
register int i;
register int j;
register int k;
register int t;
register int w;
order = NEW2(nvectors, short);
nentries = 0;
for (i = 0; i < nvectors; i++)
{
if (tally[i] > 0)
{
t = tally[i];
w = width[i];
j = nentries - 1;
while (j >= 0 && (width[order[j]] < w))
j--;
while (j >= 0 && (width[order[j]] == w) && (tally[order[j]] < t))
j--;
for (k = nentries - 1; k > j; k--)
order[k + 1] = order[k];
order[j + 1] = i;
nentries++;
}
}
}
void pack_table(void)
{
register int i;
register int place;
register int state;
base = NEW2(nvectors, short);
pos = NEW2(nentries, short);
table = NEW2(MAXTABLE, short);
check = NEW2(MAXTABLE, short);
lowzero = 0;
high = 0;
for (i = 0; i < nvectors; i++)
base[i] = MINSHORT;
for (i = 0; i < MAXTABLE; i++)
check[i] = -1;
for (i = 0; i < nentries; i++)
{
state = matching_state(i);
if (state < 0)
place = pack_vector(i);
else
place = base[state];
pos[i] = place;
base[order[i]] = place;
}
for (i = 0; i < nvectors; i++)
{
FREE(froms[i]);
FREE(tos[i]);
}
FREE(froms);
FREE(tos);
FREE(pos);
}
int matching_state(int vector)
{
register int i;
register int j;
register int k;
register int t;
register int w;
register int match;
register int prev;
i = order[vector];
if (i >= nstates)
return (-1);
t = tally[i];
w = width[i];
for (prev = vector - 1; prev >= 0; prev--)
{
j = order[prev];
if (width[j] != w || tally[j] != t)
return (-1);
match = 1;
for (k = 0; match && k < t; k++)
{
if (tos[j][k] != tos[i][k] || froms[j][k] != froms[i][k])
match = 0;
}
if (match)
return (j);
}
return (-1);
}
int pack_vector(int vector)
{
register int i;
register int j;
register int k;
register int t;
register int loc;
register int ok;
register short *from;
register short *to;
i = order[vector];
t = tally[i];
if (t == 0)
berror("pack_vector");
from = froms[i];
to = tos[i];
for (j = lowzero - from[0]; j < MAXTABLE; j++)
{
ok = 1;
for (k = 0; ok && k < t; k++)
{
loc = j + from[k];
if (loc > MAXTABLE)
fatals("maximum table size (%d) exceeded",MAXTABLE,0,0,0,0,0,0,0);
if (table[loc] != 0)
ok = 0;
}
for (k = 0; ok && k < vector; k++)
{
if (pos[k] == j)
ok = 0;
}
if (ok)
{
for (k = 0; k < t; k++)
{
loc = j + from[k];
table[loc] = to[k];
check[loc] = from[k];
}
while (table[lowzero] != 0)
lowzero++;
if (loc > high)
high = loc;
return (j);
}
}
berror("pack_vector");
return 0; /* JF keep lint happy */
}
/* the following functions output yytable, yycheck
and the vectors whose elements index the portion starts */
void output_base(void)
{
register int i;
register int j;
fprintf(ftable, "\nstatic const short yypact[] = {%6d", base[0]);
j = 10;
for (i = 1; i < nstates; i++)
{
putc(',', ftable);
if (j >= 10)
{
putc('\n', ftable);
j = 1;
}
else
{
j++;
}
fprintf(ftable, "%6d", base[i]);
}
fprintf(ftable, "\n};\n\nstatic const short yypgoto[] = {%6d", base[nstates]);
j = 10;
for (i = nstates + 1; i < nvectors; i++)
{
putc(',', ftable);
if (j >= 10)
{
putc('\n', ftable);
j = 1;
}
else
{
j++;
}
fprintf(ftable, "%6d", base[i]);
}
fprintf(ftable, "\n};\n");
FREE(base);
}
void output_table(void)
{
register int i;
register int j;
fprintf(ftable, "\n\n#define\tYYLAST\t\t%d\n\n", high);
fprintf(ftable, "\nstatic const short yytable[] = {%6d", table[0]);
j = 10;
for (i = 1; i <= high; i++)
{
putc(',', ftable);
if (j >= 10)
{
putc('\n', ftable);
j = 1;
}
else
{
j++;
}
fprintf(ftable, "%6d", table[i]);
}
fprintf(ftable, "\n};\n");
FREE(table);
}
void output_check(void)
{
register int i;
register int j;
fprintf(ftable, "\nstatic const short yycheck[] = {%6d", check[0]);
j = 10;
for (i = 1; i <= high; i++)
{
putc(',', ftable);
if (j >= 10)
{
putc('\n', ftable);
j = 1;
}
else
{
j++;
}
fprintf(ftable, "%6d", check[i]);
}
fprintf(ftable, "\n};\n");
FREE(check);
}
/* copy the parser code into the ftable file at the end. */
void output_parser(void)
{
register int c;
#ifdef DONTDEF
FILE *fpars;
#else
#define fpars fparser
#endif
if (pure_parser)
fprintf(ftable, "#define YYIMPURE 1\n\n");
else
fprintf(ftable, "#define YYPURE 1\n\n");
#ifdef DONTDEF /* JF no longer needed 'cuz open_extra_files changes the
currently open parser from bison.simple to bison.hairy */
if (semantic_parser)
fpars = fparser;
else fpars = fparser1;
#endif
if (!fpars || feof(fpars))
return;
c = getc(fpars);
while (c != EOF)
{
/* This is a kludgy but easy-to-write way to delete lines
that start with `#line'. */
if (nolinesflag)
if (c == '\n')
{
putc (c, ftable);
c = getc (fpars);
if (c == '#')
{
c = getc (fpars);
if (c == 'l')
{
c = getc (fpars);
if (c == 'i')
{
c = getc (fpars);
if (c == 'n')
{
c = getc (fpars);
if (c == 'e')
{
while (1)
{
c = getc (fpars);
if (c == '\n' || c < 0)
break;
}
c = getc (fpars);
}
else
fprintf (ftable, "#lin");
}
else
fprintf (ftable, "#li");
}
else
fprintf (ftable, "#l");
}
else
fprintf (ftable, "#");
}
}
if (c == '$') {
#ifdef DONTDEF
fprintf(ftable, "#include \"%s\"\n", actfile);
#else
/* JF don't #include the action file. Stuff it right in. */
rewind(faction);
for(c=getc(faction);c!=EOF;c=getc(faction))
putc(c,ftable);
#endif
} else
putc(c, ftable);
c = getc(fpars);
}
}
static const char *mybasename(const char *str) {
const char *base = strrchr(str, '/');
return base ? base+1 : str;
}
void output_program(void)
{
register int c;
extern int lineno;
fprintf(ftable, "#line %d \"%s\"\n", lineno, mybasename(infile));
c = getc(finput);
while (c != EOF)
{
putc(c, ftable);
c = getc(finput);
}
}
void free_itemsets(void)
{
register core *cp,*cptmp;
FREE(state_table);
for (cp = first_state; cp; cp = cptmp) {
cptmp=cp->next;
FREE(cp);
}
}
void free_shifts(void)
{
register shifts *sp,*sptmp;/* JF derefrenced freed ptr */
FREE(shift_table);
for (sp = first_shift; sp; sp = sptmp) {
sptmp=sp->next;
FREE(sp);
}
}
void free_reductions(void)
{
register reductions *rp,*rptmp;/* JF fixed freed ptr */
FREE(reduction_table);
for (rp = first_reduction; rp; rp = rptmp) {
rptmp=rp->next;
FREE(rp);
}
}