blob: 12ce8ebd752d3a3636a5c84a7a0f33e7970f08ea [file] [log] [blame]
#include "custom.h"
#include "23tree.h"
int *how_many;
extern void tdelete( TNODEPTR *root , int value , int property );
extern void tpop( TNODEPTR *root , TNODEPTR *node , int *value ,
int *property);
extern double wireratio( int numofcells, double cellspernet, double netsperd,
double dnetspercell );
void qsortx(char *base, int n, int size);
void qst(char *base, char *max);
double analyze(void)
{
int **number , i , net , net1 , net2 , num , cell ;
int *count , different , cnum , c2num , *arraynet ;
int num_nets , tot_cels ;
double C , C1 , ratio ;
#ifdef notdef
double C2 , C3;
#endif
NETBOXPTR netptr ;
count = (int *) malloc( (1 + numcells) * sizeof( int ) ) ;
number = (int **) malloc( (1 + numnets) * sizeof( int *) ) ;
how_many = (int *) malloc( (1 + numnets) * sizeof( int ) ) ;
arraynet = (int *) malloc( (1 + numnets) * sizeof( int ) ) ;
for( net = 0 ; net <= numnets ; net++ ) {
number[net] = (int *) malloc( (1 + numcells) * sizeof(int) ) ;
}
for( net = 1 ; net <= numnets ; net++ ) {
for( cell = 0 ; cell <= numcells ; cell++ ) {
count[cell] = 0 ;
number[net][cell] = 0 ;
}
netptr = netarray[net]->netptr ;
for( ; netptr != (NETBOXPTR) NULL ; netptr = netptr->nextterm ){
if( netptr->cell <= numcells ) {
count[netptr->cell] = 1 ;
}
}
/*
* I would like to find the number of distinct nets
*/
for( cell = 1 ; cell <= numcells ; cell++ ) {
if( count[cell] == 1 ) {
number[net][ ++number[net][0] ] = cell ;
}
}
}
/* ********************************************************** */
num_nets = 0 ;
tot_cels = 0 ;
for( net1 = 1 ; net1 <= numnets ; net1++ ) {
if( number[net1][0] <= 1 ) {
continue ;
}
num_nets++ ;
tot_cels += number[net1][0] ;
}
fprintf(fpo,"\n\n*************************************\n");
fprintf(fpo,"AVERAGE NUMBER OF CELLS PER NET: %f\n",
(double) tot_cels / (double) num_nets ) ;
fprintf(fpo,"*************************************\n\n\n");
/* ********************************************************** */
for( net1 = 1 ; net1 <= numnets ; net1++ ) {
if( number[net1][0] == 0 ) {
how_many[net1] = 0 ;
continue ;
}
if( number[net1][0] == 1 ) {
number[net1][0] = 0 ;
how_many[net1] = 0 ;
continue ;
}
how_many[net1] = 1 ;
for( net2 = net1 + 1 ; net2 <= numnets ; net2++ ) {
if( number[net2][0] != number[net1][0] ) {
continue ;
}
different = 0 ;
for( i = 1 ; i <= numcells ; i++ ) {
if( number[net2][i] != number[net1][i] ) {
different = 1 ;
break ;
}
}
if( ! different ) {
number[net2][0] = 0 ;
how_many[net1]++ ;
}
}
}
arraynet[0] = 0 ;
for( net = 1 ; net <= numnets ; net++ ) {
if( how_many[net] <= 0 ) {
continue ;
}
arraynet[ ++arraynet[0] ] = net ;
}
num = arraynet[0] ;
arraynet[0] = arraynet[ arraynet[0] ] ;
qsortx( (char *) arraynet , num , sizeof( int ) ) ;
/* sorted: most occurrences first */
num = 0 ;
cnum = 0 ;
c2num = 0 ;
for( net = 1 ; net <= numnets ; net++ ) {
if( number[net][0] > 0 ) {
cnum += number[net][0] - 1 ;
c2num += number[net][0] ;
num++ ;
}
}
C = (double) num / (double) numcells ;
C1 = (double) cnum / (double) num ;
#ifdef notdef
C2 = (double) c2num / (double) num ;
C3 = (double) cnum / (double)(numcells - 1) ;
fprintf(fpo,"\n\n\n**********************************************\n\n");
fprintf(fpo,"The average number of distinct nets per cell is\n");
fprintf(fpo,"given by: %6.2f\n\n", C );
fprintf(fpo,"The average number of cells per net is\n");
fprintf(fpo,"given by: %6.2f\n\n", C2 );
fprintf(fpo,"The average number of other cells per net is\n");
fprintf(fpo,"given by: %6.2f\n\n", C1 );
fprintf(fpo,"The ratio of total cells specified per net to\n");
fprintf(fpo,"numcells is given by: %6.2f\n\n", C3 );
fprintf(fpo,"The average number of cells connected to a cell is\n");
fprintf(fpo,"given by: %6.2f\n\n", C * C1 );
fprintf(fpo,"**********************************************\n\n\n");
#endif
ratio = wireratio( numcells, C1,
((double) numnets / (double) numcells) / C , C ) ;
fprintf(fpo,"Expected Wire Reduction Relative to Random:%6.2f\n\n",ratio);
fflush(fpo);
return( ratio );
}
int comparex( int *a , int *b )
{
return( how_many[*b] - how_many[*a] ) ;
}
/* @(#)qsort.c 4.2 (Berkeley) 3/9/83 */
#define THRESH 4 /* threshold for insertion */
#define MTHRESH 6 /* threshold for median */
int qsz; /* size of each record */
int thresh; /* THRESHold in chars */
int mthresh; /* MTHRESHold in chars */
void qsortx(char *base, int n, int size)
{
register char c, *i, *j, *lo, *hi;
char *min, *max;
if (n <= 1)
return;
qsz = size;
thresh = qsz * THRESH;
mthresh = qsz * MTHRESH;
max = base + n * qsz;
if (n >= THRESH) {
qst(base, max);
hi = base + thresh;
} else {
hi = max;
}
/*
* First put smallest element, which must be in the first THRESH, in
* the first position as a sentinel. This is done just by searching
* the first THRESH elements (or the first n if n < THRESH), finding
* the min, and swapping it into the first position.
*/
for (j = lo = base; (lo += qsz) < hi; )
if (comparex(j, lo) > 0)
j = lo;
if (j != base) {
/* swap j into place */
for (i = base, hi = base + qsz; i < hi; ) {
c = *j;
*j++ = *i;
*i++ = c;
}
}
/*
* With our sentinel in place, we now run the following hyper-fast
* insertion sort. For each remaining element, min, from [1] to [n-1],
* set hi to the index of the element AFTER which this one goes.
* Then, do the standard insertion sort shift on a character at a time
* basis for each element in the frob.
*/
for (min = base; (hi = min += qsz) < max; ) {
while (comparex(hi -= qsz, min) > 0)
/* void */;
if ((hi += qsz) != min) {
for (lo = min + qsz; --lo >= min; ) {
c = *lo;
for (i = j = lo; (j -= qsz) >= hi; i = j)
*i = *j;
*i = c;
}
}
}
}
/*
* qst:
* Do a quicksort
* First, find the median element, and put that one in the first place as the
* discriminator. (This "median" is just the median of the first, last and
* middle elements). (Using this median instead of the first element is a big
* win). Then, the usual partitioning/swapping, followed by moving the
* discriminator into the right place. Then, figure out the sizes of the two
* partions, do the smaller one recursively and the larger one via a repeat of
* this code. Stopping when there are less than THRESH elements in a partition
* and cleaning up with an insertion sort (in our caller) is a huge win.
* All data swaps are done in-line, which is space-losing but time-saving.
* (And there are only three places where this is done).
*/
void qst(char *base, char *max)
{
register char c, *i, *j, *jj;
register int ii;
char *mid, *tmp;
int lo, hi;
/*
* At the top here, lo is the number of characters of elements in the
* current partition. (Which should be max - base).
* Find the median of the first, last, and middle element and make
* that the middle element. Set j to largest of first and middle.
* If max is larger than that guy, then it's that guy, else compare
* max with loser of first and take larger. Things are set up to
* prefer the middle, then the first in case of ties.
*/
lo = max - base; /* number of elements as chars */
do {
mid = i = base + qsz * ((lo / qsz) >> 1);
if (lo >= mthresh) {
j = (comparex((jj = base), i) > 0 ? jj : i);
if (comparex(j, (tmp = max - qsz)) > 0) {
/* switch to first loser */
j = (j == jj ? i : jj);
if (comparex(j, tmp) < 0)
j = tmp;
}
if (j != i) {
ii = qsz;
do {
c = *i;
*i++ = *j;
*j++ = c;
} while (--ii);
}
}
/*
* Semi-standard quicksort partitioning/swapping
*/
for (i = base, j = max - qsz; ; ) {
while (i < mid && comparex(i, mid) <= 0)
i += qsz;
while (j > mid) {
if (comparex(mid, j) <= 0) {
j -= qsz;
continue;
}
tmp = i + qsz; /* value of i after swap */
if (i == mid) {
/* j <-> mid, new mid is j */
mid = jj = j;
} else {
/* i <-> j */
jj = j;
j -= qsz;
}
goto swap;
}
if (i == mid) {
break;
} else {
/* i <-> mid, new mid is i */
jj = mid;
tmp = mid = i; /* value of i after swap */
j -= qsz;
}
swap:
ii = qsz;
do {
c = *i;
*i++ = *jj;
*jj++ = c;
} while (--ii);
i = tmp;
}
/*
* Look at sizes of the two partitions, do the smaller
* one first by recursion, then do the larger one by
* making sure lo is its size, base and max are update
* correctly, and branching back. But only repeat
* (recursively or by branching) if the partition is
* of at least size THRESH.
*/
i = (j = mid) + qsz;
if ((lo = j - base) <= (hi = max - i)) {
if (lo >= thresh)
qst(base, j);
base = i;
lo = hi;
} else {
if (hi >= thresh)
qst(i, max);
max = j;
}
} while (lo >= thresh);
}