blob: aec35f9eac08cd09d9d9f4fb4ed19f5bec9a944b [file] [log] [blame]
#include "espresso.h"
map_dcset(PLA)
pPLA PLA;
{
int var, i;
pcover Tplus, Tminus, Tplusbar, Tminusbar;
pcover newf, term1, term2, dcset, dcsetbar;
pcube cplus, cminus, last, p;
if (PLA->label == NIL(char *) || PLA->label[0] == NIL(char))
return 0;
/* try to find a binary variable named "DONT_CARE" */
var = -1;
for(i = 0; i < cube.num_binary_vars * 2; i++) {
if (strncmp(PLA->label[i], "DONT_CARE", 9) == 0 ||
strncmp(PLA->label[i], "DONTCARE", 8) == 0 ||
strncmp(PLA->label[i], "dont_care", 9) == 0 ||
strncmp(PLA->label[i], "dontcare", 8) == 0) {
var = i/2;
break;
}
}
if (var == -1) {
return 0;
}
/* form the cofactor cubes for the don't-care variable */
cplus = set_save(cube.fullset);
cminus = set_save(cube.fullset);
set_remove(cplus, var*2);
set_remove(cminus, var*2 + 1);
/* form the don't-care set */
EXEC(simp_comp(cofactor(cube1list(PLA->F), cplus), &Tplus, &Tplusbar),
"simpcomp+", Tplus);
EXEC(simp_comp(cofactor(cube1list(PLA->F), cminus), &Tminus, &Tminusbar),
"simpcomp-", Tminus);
EXEC(term1 = cv_intersect(Tplus, Tminusbar), "term1 ", term1);
EXEC(term2 = cv_intersect(Tminus, Tplusbar), "term2 ", term2);
EXEC(dcset = sf_union(term1, term2), "union ", dcset);
EXEC(simp_comp(cube1list(dcset), &PLA->D, &dcsetbar), "simplify", PLA->D);
EXEC(newf = cv_intersect(PLA->F, dcsetbar), "separate ", PLA->F);
free_cover(PLA->F);
PLA->F = newf;
free_cover(Tplus);
free_cover(Tminus);
free_cover(Tplusbar);
free_cover(Tminusbar);
free_cover(dcsetbar);
/* remove any cubes dependent on the DONT_CARE variable */
(void) sf_active(PLA->F);
foreach_set(PLA->F, last, p) {
if (! is_in_set(p, var*2) || ! is_in_set(p, var*2+1)) {
RESET(p, ACTIVE);
}
}
PLA->F = sf_inactive(PLA->F);
/* resize the cube and delete the don't-care variable */
setdown_cube();
for(i = 2*var+2; i < cube.size; i++) {
PLA->label[i-2] = PLA->label[i];
}
for(i = var+1; i < cube.num_vars; i++) {
cube.part_size[i-1] = cube.part_size[i];
}
cube.num_binary_vars--;
cube.num_vars--;
cube_setup();
PLA->F = sf_delc(PLA->F, 2*var, 2*var+1);
PLA->D = sf_delc(PLA->D, 2*var, 2*var+1);
}
map_output_symbolic(PLA)
pPLA PLA;
{
pset_family newF, newD;
pset compress;
symbolic_t *p1;
symbolic_list_t *p2;
int i, bit, tot_size, base, old_size;
/* Remove the DC-set from the ON-set (is this necessary ??) */
if (PLA->D->count > 0) {
sf_free(PLA->F);
PLA->F = complement(cube2list(PLA->D, PLA->R));
}
/* tot_size = width added for all symbolic variables */
tot_size = 0;
for(p1=PLA->symbolic_output; p1!=NIL(symbolic_t); p1=p1->next) {
for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
if (p2->pos<0 || p2->pos>=cube.part_size[cube.output]) {
fatal("symbolic-output index out of range");
/* } else if (p2->variable != cube.output) {
fatal("symbolic-output label must be an output");*/
}
}
tot_size += 1 << p1->symbolic_list_length;
}
/* adjust the indices to skip over new outputs */
for(p1=PLA->symbolic_output; p1!=NIL(symbolic_t); p1=p1->next) {
for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
p2->pos += tot_size;
}
}
/* resize the cube structure -- add enough for the one-hot outputs */
old_size = cube.size;
cube.part_size[cube.output] += tot_size;
setdown_cube();
cube_setup();
/* insert space in the output part for the one-hot output */
base = cube.first_part[cube.output];
PLA->F = sf_addcol(PLA->F, base, tot_size);
PLA->D = sf_addcol(PLA->D, base, tot_size);
PLA->R = sf_addcol(PLA->R, base, tot_size);
/* do the real work */
for(p1=PLA->symbolic_output; p1!=NIL(symbolic_t); p1=p1->next) {
newF = new_cover(100);
newD = new_cover(100);
find_inputs(NIL(set_family_t), PLA, p1->symbolic_list, base, 0,
&newF, &newD);
/*
* Not sure what this means
find_dc_inputs(PLA, p1->symbolic_list,
base, 1 << p1->symbolic_list_length, &newF, &newD);
*/
free_cover(PLA->F);
PLA->F = newF;
/*
* retain OLD DC-set -- but we've lost the don't-care arc information
* (it defaults to branch to the zero state)
free_cover(PLA->D);
PLA->D = newD;
*/
free_cover(newD);
base += 1 << p1->symbolic_list_length;
}
/* delete the old outputs, and resize the cube */
compress = set_full(newF->sf_size);
for(p1=PLA->symbolic_output; p1!=NIL(symbolic_t); p1=p1->next) {
for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
bit = cube.first_part[cube.output] + p2->pos;
set_remove(compress, bit);
}
}
cube.part_size[cube.output] -= newF->sf_size - set_ord(compress);
setdown_cube();
cube_setup();
PLA->F = sf_compress(PLA->F, compress);
PLA->D = sf_compress(PLA->D, compress);
if (cube.size != PLA->F->sf_size) fatal("error");
/* Quick minimization */
PLA->F = sf_contain(PLA->F);
PLA->D = sf_contain(PLA->D);
for(i = 0; i < cube.num_vars; i++) {
PLA->F = d1merge(PLA->F, i);
PLA->D = d1merge(PLA->D, i);
}
PLA->F = sf_contain(PLA->F);
PLA->D = sf_contain(PLA->D);
free_cover(PLA->R);
PLA->R = new_cover(0);
symbolic_hack_labels(PLA, PLA->symbolic_output,
compress, cube.size, old_size, tot_size);
set_free(compress);
}
find_inputs(A, PLA, list, base, value, newF, newD)
pcover A;
pPLA PLA;
symbolic_list_t *list;
int base, value;
pcover *newF, *newD;
{
pcover S, S1;
register pset last, p;
/*
* A represents th 'input' values for which the outputs assume
* the integer value 'value
*/
if (list == NIL(symbolic_list_t)) {
/*
* Simulate these inputs against the on-set; then, insert into the
* new on-set a 1 in the proper position
*/
S = cv_intersect(A, PLA->F);
foreach_set(S, last, p) {
set_insert(p, base + value);
}
*newF = sf_append(*newF, S);
/*
* 'simulate' these inputs against the don't-care set
S = cv_intersect(A, PLA->D);
*newD = sf_append(*newD, S);
*/
} else {
/* intersect and recur with the OFF-set */
S = cof_output(PLA->R, cube.first_part[cube.output] + list->pos);
if (A != NIL(set_family_t)) {
S1 = cv_intersect(A, S);
free_cover(S);
S = S1;
}
find_inputs(S, PLA, list->next, base, value*2, newF, newD);
free_cover(S);
/* intersect and recur with the ON-set */
S = cof_output(PLA->F, cube.first_part[cube.output] + list->pos);
if (A != NIL(set_family_t)) {
S1 = cv_intersect(A, S);
free_cover(S);
S = S1;
}
find_inputs(S, PLA, list->next, base, value*2 + 1, newF, newD);
free_cover(S);
}
}
#if 0
find_dc_inputs(PLA, list, base, maxval, newF, newD)
pPLA PLA;
symbolic_list_t *list;
int base, maxval;
pcover *newF, *newD;
{
pcover A, S, S1;
symbolic_list_t *p2;
register pset p, last;
register int i;
/* painfully find the points for which the symbolic output is dc */
A = NIL(set_family_t);
for(p2=list; p2!=NIL(symbolic_list_t); p2=p2->next) {
S = cof_output(PLA->D, cube.first_part[cube.output] + p2->pos);
if (A == NIL(set_family_t)) {
A = S;
} else {
S1 = cv_intersect(A, S);
free_cover(S);
free_cover(A);
A = S1;
}
}
S = cv_intersect(A, PLA->F);
*newF = sf_append(*newF, S);
S = cv_intersect(A, PLA->D);
foreach_set(S, last, p) {
for(i = base; i < base + maxval; i++) {
set_insert(p, i);
}
}
*newD = sf_append(*newD, S);
free_cover(A);
}
#endif
map_symbolic(PLA)
pPLA PLA;
{
symbolic_t *p1;
symbolic_list_t *p2;
int var, base, num_vars, num_binary_vars, *new_part_size;
int new_size, size_added, num_deleted_vars, num_added_vars, newvar;
pset compress;
/* Verify legal values are in the symbolic lists */
for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) {
for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
if (p2->variable < 0 || p2->variable >= cube.num_binary_vars) {
fatal(".symbolic requires binary variables");
}
}
}
/*
* size_added = width added for all symbolic variables
* num_deleted_vars = # binary variables to be deleted
* num_added_vars = # new mv variables
* compress = a cube which will be used to compress the set families
*/
size_added = 0;
num_added_vars = 0;
for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) {
size_added += 1 << p1->symbolic_list_length;
num_added_vars++;
}
compress = set_full(PLA->F->sf_size + size_added);
for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) {
for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
set_remove(compress, p2->variable*2);
set_remove(compress, p2->variable*2+1);
}
}
num_deleted_vars = ((PLA->F->sf_size + size_added) - set_ord(compress))/2;
/* compute the new cube constants */
num_vars = cube.num_vars - num_deleted_vars + num_added_vars;
num_binary_vars = cube.num_binary_vars - num_deleted_vars;
new_size = cube.size - num_deleted_vars*2 + size_added;
new_part_size = ALLOC(int, num_vars);
new_part_size[num_vars-1] = cube.part_size[cube.num_vars-1];
for(var = cube.num_binary_vars; var < cube.num_vars-1; var++) {
new_part_size[var-num_deleted_vars] = cube.part_size[var];
}
/* re-size the covers, opening room for the new mv variables */
base = cube.first_part[cube.output];
PLA->F = sf_addcol(PLA->F, base, size_added);
PLA->D = sf_addcol(PLA->D, base, size_added);
PLA->R = sf_addcol(PLA->R, base, size_added);
/* compute the values for the new mv variables */
newvar = (cube.num_vars - 1) - num_deleted_vars;
for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) {
PLA->F = map_symbolic_cover(PLA->F, p1->symbolic_list, base);
PLA->D = map_symbolic_cover(PLA->D, p1->symbolic_list, base);
PLA->R = map_symbolic_cover(PLA->R, p1->symbolic_list, base);
base += 1 << p1->symbolic_list_length;
new_part_size[newvar++] = 1 << p1->symbolic_list_length;
}
/* delete the binary variables which disappear */
PLA->F = sf_compress(PLA->F, compress);
PLA->D = sf_compress(PLA->D, compress);
PLA->R = sf_compress(PLA->R, compress);
symbolic_hack_labels(PLA, PLA->symbolic, compress,
new_size, cube.size, size_added);
setdown_cube();
FREE(cube.part_size);
cube.num_vars = num_vars;
cube.num_binary_vars = num_binary_vars;
cube.part_size = new_part_size;
cube_setup();
set_free(compress);
}
pcover map_symbolic_cover(T, list, base)
pcover T;
symbolic_list_t *list;
int base;
{
pset last, p;
foreach_set(T, last, p) {
form_bitvector(p, base, 0, list);
}
return T;
}
form_bitvector(p, base, value, list)
pset p; /* old cube, looking at binary variables */
int base; /* where in mv cube the new variable starts */
int value; /* current value for this recursion */
symbolic_list_t *list; /* current place in the symbolic list */
{
if (list == NIL(symbolic_list_t)) {
set_insert(p, base + value);
} else {
switch(GETINPUT(p, list->variable)) {
case ZERO:
form_bitvector(p, base, value*2, list->next);
break;
case ONE:
form_bitvector(p, base, value*2+1, list->next);
break;
case TWO:
form_bitvector(p, base, value*2, list->next);
form_bitvector(p, base, value*2+1, list->next);
break;
default:
fatal("bad cube in form_bitvector");
}
}
}
symbolic_hack_labels(PLA, list, compress, new_size, old_size, size_added)
pPLA PLA;
symbolic_t *list;
pset compress;
int new_size, old_size, size_added;
{
int i, base;
char **oldlabel;
symbolic_t *p1;
symbolic_label_t *p3;
/* hack with the labels */
if ((oldlabel = PLA->label) == NIL(char *))
return 0;
PLA->label = ALLOC(char *, new_size);
for(i = 0; i < new_size; i++) {
PLA->label[i] = NIL(char);
}
/* copy the binary variable labels and unchanged mv variable labels */
base = 0;
for(i = 0; i < cube.first_part[cube.output]; i++) {
if (is_in_set(compress, i)) {
PLA->label[base++] = oldlabel[i];
} else {
if (oldlabel[i] != NIL(char)) {
FREE(oldlabel[i]);
}
}
}
/* add the user-defined labels for the symbolic outputs */
for(p1 = list; p1 != NIL(symbolic_t); p1 = p1->next) {
p3 = p1->symbolic_label;
for(i = 0; i < (1 << p1->symbolic_list_length); i++) {
if (p3 == NIL(symbolic_label_t)) {
PLA->label[base+i] = ALLOC(char, 10);
(void) sprintf(PLA->label[base+i], "X%d", i);
} else {
PLA->label[base+i] = p3->label;
p3 = p3->next;
}
}
base += 1 << p1->symbolic_list_length;
}
/* copy the labels for the binary outputs which remain */
for(i = cube.first_part[cube.output]; i < old_size; i++) {
if (is_in_set(compress, i + size_added)) {
PLA->label[base++] = oldlabel[i];
} else {
if (oldlabel[i] != NIL(char)) {
FREE(oldlabel[i]);
}
}
}
FREE(oldlabel);
}
static pcover fsm_simplify(F)
pcover F;
{
pcover D, R;
D = new_cover(0);
R = complement(cube1list(F));
F = espresso(F, D, R);
free_cover(D);
free_cover(R);
return F;
}
disassemble_fsm(PLA, verbose_mode)
pPLA PLA;
int verbose_mode;
{
int nin, nstates, nout;
int before, after, present_state, next_state, i, j;
pcube next_state_mask, present_state_mask, state_mask, p, p1, last;
pcover go_nowhere, F, tF;
/* We make the DISGUSTING assumption that the first 'n' outputs have
* been created by .symbolic-output, and represent a one-hot encoding
* of the next state. 'n' is the size of the second-to-last multiple-
* valued variable (i.e., before the outputs
*/
if (cube.num_vars - cube.num_binary_vars != 2) {
fprintf(stderr,
"use .symbolic and .symbolic-output to specify\n");
fprintf(stderr,
"the present state and next state field information\n");
fatal("disassemble_pla: need two multiple-valued variables\n");
}
nin = cube.num_binary_vars;
nstates = cube.part_size[cube.num_binary_vars];
nout = cube.part_size[cube.num_vars - 1];
if (nout < nstates) {
fprintf(stderr,
"use .symbolic and .symbolic-output to specify\n");
fprintf(stderr,
"the present state and next state field information\n");
fatal("disassemble_pla: # outputs < # states\n");
}
present_state = cube.first_part[cube.num_binary_vars];
present_state_mask = new_cube();
for(i = 0; i < nstates; i++) {
set_insert(present_state_mask, i + present_state);
}
next_state = cube.first_part[cube.num_binary_vars+1];
next_state_mask = new_cube();
for(i = 0; i < nstates; i++) {
set_insert(next_state_mask, i + next_state);
}
state_mask = set_or(new_cube(), next_state_mask, present_state_mask);
F = new_cover(10);
/*
* check for arcs which go from ANY state to state #i
*/
for(i = 0; i < nstates; i++) {
tF = new_cover(10);
foreach_set(PLA->F, last, p) {
if (setp_implies(present_state_mask, p)) { /* from any state ! */
if (is_in_set(p, next_state + i)) {
tF = sf_addset(tF, p);
}
}
}
before = tF->count;
if (before > 0) {
tF = fsm_simplify(tF);
/* don't allow the next state to disappear ... */
foreach_set(tF, last, p) {
set_insert(p, next_state + i);
}
after = tF->count;
F = sf_append(F, tF);
if (verbose_mode) {
printf("# state EVERY to %d, before=%d after=%d\n",
i, before, after);
}
}
}
/*
* some 'arcs' may NOT have a next state -- handle these
* we must unravel the present state part
*/
go_nowhere = new_cover(10);
foreach_set(PLA->F, last, p) {
if (setp_disjoint(p, next_state_mask)) { /* no next state !! */
go_nowhere = sf_addset(go_nowhere, p);
}
}
before = go_nowhere->count;
go_nowhere = unravel_range(go_nowhere,
cube.num_binary_vars, cube.num_binary_vars);
after = go_nowhere->count;
F = sf_append(F, go_nowhere);
if (verbose_mode) {
printf("# state ANY to NOWHERE, before=%d after=%d\n", before, after);
}
/*
* minimize cover for all arcs from state #i to state #j
*/
for(i = 0; i < nstates; i++) {
for(j = 0; j < nstates; j++) {
tF = new_cover(10);
foreach_set(PLA->F, last, p) {
/* not EVERY state */
if (! setp_implies(present_state_mask, p)) {
if (is_in_set(p, present_state + i)) {
if (is_in_set(p, next_state + j)) {
p1 = set_save(p);
set_diff(p1, p1, state_mask);
set_insert(p1, present_state + i);
set_insert(p1, next_state + j);
tF = sf_addset(tF, p1);
set_free(p1);
}
}
}
}
before = tF->count;
if (before > 0) {
tF = fsm_simplify(tF);
/* don't allow the next state to disappear ... */
foreach_set(tF, last, p) {
set_insert(p, next_state + j);
}
after = tF->count;
F = sf_append(F, tF);
if (verbose_mode) {
printf("# state %d to %d, before=%d after=%d\n",
i, j, before, after);
}
}
}
}
free_cube(state_mask);
free_cube(present_state_mask);
free_cube(next_state_mask);
free_cover(PLA->F);
PLA->F = F;
free_cover(PLA->D);
PLA->D = new_cover(0);
setdown_cube();
FREE(cube.part_size);
cube.num_binary_vars = nin;
cube.num_vars = nin + 3;
cube.part_size = ALLOC(int, cube.num_vars);
cube.part_size[cube.num_binary_vars] = nstates;
cube.part_size[cube.num_binary_vars+1] = nstates;
cube.part_size[cube.num_binary_vars+2] = nout - nstates;
cube_setup();
foreach_set(PLA->F, last, p) {
kiss_print_cube(stdout, PLA, p, "~1");
}
}