blob: 08080d895c8a3b85a9ea8ae1ecebd4a4cf522ac2 [file] [log] [blame]
/*
* espresso.h -- header file for Espresso-mv
*/
#include "port.h"
#include "utility.h"
#include "sparse.h"
#include "mincov.h"
#define ptime() util_cpu_time()
#define print_time(t) util_print_time(t)
#ifdef IBM_WATC
#define void int
#include "short.h"
#endif
#ifdef IBMPC /* set default options for IBM/PC */
#define NO_INLINE
#define BPI 16
#endif
/*-----THIS USED TO BE set.h----- */
/*
* set.h -- definitions for packed arrays of bits
*
* This header file describes the data structures which comprise a
* facility for efficiently implementing packed arrays of bits
* (otherwise known as sets, cf. Pascal).
*
* A set is a vector of bits and is implemented here as an array of
* unsigned integers. The low order bits of set[0] give the index of
* the last word of set data. The higher order bits of set[0] are
* used to store data associated with the set. The set data is
* contained in elements set[1] ... set[LOOP(set)] as a packed bit
* array.
*
* A family of sets is a two-dimensional matrix of bits and is
* implemented with the data type "set_family".
*
* BPI == 32 and BPI == 16 have been tested and work.
*/
/* Define host machine characteristics of "unsigned int" */
#ifndef BPI
#define BPI 32 /* # bits per integer */
#endif
#if BPI == 32
#define LOGBPI 5 /* log(BPI)/log(2) */
#else
#define LOGBPI 4 /* log(BPI)/log(2) */
#endif
/* Define the set type */
typedef unsigned int *pset;
/* Define the set family type -- an array of sets */
typedef struct set_family {
int wsize; /* Size of each set in 'ints' */
int sf_size; /* User declared set size */
int capacity; /* Number of sets allocated */
int count; /* The number of sets in the family */
int active_count; /* Number of "active" sets */
pset data; /* Pointer to the set data */
struct set_family *next; /* For garbage collection */
} set_family_t, *pset_family;
/* Macros to set and test single elements */
#define WHICH_WORD(element) (((element) >> LOGBPI) + 1)
#define WHICH_BIT(element) ((element) & (BPI-1))
/* # of ints needed to allocate a set with "size" elements */
#if BPI == 32
#define SET_SIZE(size) ((size) <= BPI ? 2 : (WHICH_WORD((size)-1) + 1))
#else
#define SET_SIZE(size) ((size) <= BPI ? 3 : (WHICH_WORD((size)-1) + 2))
#endif
/*
* Three fields are maintained in the first word of the set
* LOOP is the index of the last word used for set data
* LOOPCOPY is the index of the last word in the set
* SIZE is available for general use (e.g., recording # elements in set)
* NELEM retrieves the number of elements in the set
*/
#define LOOP(set) (set[0] & 0x03ff)
#define PUTLOOP(set, i) (set[0] &= ~0x03ff, set[0] |= (i))
#if BPI == 32
#define LOOPCOPY(set) LOOP(set)
#define SIZE(set) (set[0] >> 16)
#define PUTSIZE(set, size) (set[0] &= 0xffff, set[0] |= ((size) << 16))
#else
#define LOOPCOPY(set) (LOOP(set) + 1)
#define SIZE(set) (set[LOOP(set)+1])
#define PUTSIZE(set, size) ((set[LOOP(set)+1]) = (size))
#endif
#define NELEM(set) (BPI * LOOP(set))
#define LOOPINIT(size) ((size <= BPI) ? 1 : WHICH_WORD((size)-1))
/*
* FLAGS store general information about the set
*/
#define SET(set, flag) (set[0] |= (flag))
#define RESET(set, flag) (set[0] &= ~ (flag))
#define TESTP(set, flag) (set[0] & (flag))
/* Flag definitions are ... */
#define PRIME 0x8000 /* cube is prime */
#define NONESSEN 0x4000 /* cube cannot be essential prime */
#define ACTIVE 0x2000 /* cube is still active */
#define REDUND 0x1000 /* cube is redundant(at this point) */
#define COVERED 0x0800 /* cube has been covered */
#define RELESSEN 0x0400 /* cube is relatively essential */
/* Most efficient way to look at all members of a set family */
#define foreach_set(R, last, p)\
for(p=R->data,last=p+R->count*R->wsize;p<last;p+=R->wsize)
#define foreach_remaining_set(R, last, pfirst, p)\
for(p=pfirst+R->wsize,last=R->data+R->count*R->wsize;p<last;p+=R->wsize)
#define foreach_active_set(R, last, p)\
foreach_set(R,last,p) if (TESTP(p, ACTIVE))
/* Another way that also keeps the index of the current set member in i */
#define foreachi_set(R, i, p)\
for(p=R->data,i=0;i<R->count;p+=R->wsize,i++)
#define foreachi_active_set(R, i, p)\
foreachi_set(R,i,p) if (TESTP(p, ACTIVE))
/* Looping over all elements in a set:
* foreach_set_element(pset p, int i, unsigned val, int base) {
* .
* .
* .
* }
*/
#define foreach_set_element(p, i, val, base) \
for(i = LOOP(p); i > 0; ) \
for(val = p[i], base = --i << LOGBPI; val != 0; base++, val >>= 1) \
if (val & 1)
/* Return a pointer to a given member of a set family */
#define GETSET(family, index) ((family)->data + (family)->wsize * (index))
/* Allocate and deallocate sets */
#define set_new(size) set_clear(ALLOC(unsigned int, SET_SIZE(size)), size)
#define set_full(size) set_fill(ALLOC(unsigned int, SET_SIZE(size)), size)
#define set_save(r) set_copy(ALLOC(unsigned int, SET_SIZE(NELEM(r))), r)
#define set_free(r) FREE(r)
/* Check for set membership, remove set element and insert set element */
#define is_in_set(set, e) (set[WHICH_WORD(e)] & (1 << WHICH_BIT(e)))
#define set_remove(set, e) (set[WHICH_WORD(e)] &= ~ (1 << WHICH_BIT(e)))
#define set_insert(set, e) (set[WHICH_WORD(e)] |= 1 << WHICH_BIT(e))
/* Inline code substitution for those places that REALLY need it on a VAX */
#ifdef NO_INLINE
#define INLINEset_copy(r, a) (void) set_copy(r,a)
#define INLINEset_clear(r, size) (void) set_clear(r, size)
#define INLINEset_fill(r, size) (void) set_fill(r, size)
#define INLINEset_and(r, a, b) (void) set_and(r, a, b)
#define INLINEset_or(r, a, b) (void) set_or(r, a, b)
#define INLINEset_diff(r, a, b) (void) set_diff(r, a, b)
#define INLINEset_ndiff(r, a, b, f) (void) set_ndiff(r, a, b, f)
#define INLINEset_xor(r, a, b) (void) set_xor(r, a, b)
#define INLINEset_xnor(r, a, b, f) (void) set_xnor(r, a, b, f)
#define INLINEset_merge(r, a, b, mask) (void) set_merge(r, a, b, mask)
#define INLINEsetp_implies(a, b, when_false) \
if (! setp_implies(a,b)) when_false
#define INLINEsetp_disjoint(a, b, when_false) \
if (! setp_disjoint(a,b)) when_false
#define INLINEsetp_equal(a, b, when_false) \
if (! setp_equal(a,b)) when_false
#else
#define INLINEset_copy(r, a)\
{register int i_=LOOPCOPY(a); do r[i_]=a[i_]; while (--i_>=0);}
#define INLINEset_clear(r, size)\
{register int i_=LOOPINIT(size); *r=i_; do r[i_] = 0; while (--i_ > 0);}
#define INLINEset_fill(r, size)\
{register int i_=LOOPINIT(size); *r=i_; \
r[i_]=((unsigned int)(~0))>>(i_*BPI-size); while(--i_>0) r[i_]=~0;}
#define INLINEset_and(r, a, b)\
{register int i_=LOOP(a); PUTLOOP(r,i_);\
do r[i_] = a[i_] & b[i_]; while (--i_>0);}
#define INLINEset_or(r, a, b)\
{register int i_=LOOP(a); PUTLOOP(r,i_);\
do r[i_] = a[i_] | b[i_]; while (--i_>0);}
#define INLINEset_diff(r, a, b)\
{register int i_=LOOP(a); PUTLOOP(r,i_);\
do r[i_] = a[i_] & ~ b[i_]; while (--i_>0);}
#define INLINEset_ndiff(r, a, b, fullset)\
{register int i_=LOOP(a); PUTLOOP(r,i_);\
do r[i_] = fullset[i_] & (a[i_] | ~ b[i_]); while (--i_>0);}
#ifdef IBM_WATC
#define INLINEset_xor(r, a, b) (void) set_xor(r, a, b)
#define INLINEset_xnor(r, a, b, f) (void) set_xnor(r, a, b, f)
#else
#define INLINEset_xor(r, a, b)\
{register int i_=LOOP(a); PUTLOOP(r,i_);\
do r[i_] = a[i_] ^ b[i_]; while (--i_>0);}
#define INLINEset_xnor(r, a, b, fullset)\
{register int i_=LOOP(a); PUTLOOP(r,i_);\
do r[i_] = fullset[i_] & ~ (a[i_] ^ b[i_]); while (--i_>0);}
#endif
#define INLINEset_merge(r, a, b, mask)\
{register int i_=LOOP(a); PUTLOOP(r,i_);\
do r[i_] = (a[i_]&mask[i_]) | (b[i_]&~mask[i_]); while (--i_>0);}
#define INLINEsetp_implies(a, b, when_false)\
{register int i_=LOOP(a); do if (a[i_]&~b[i_]) break; while (--i_>0);\
if (i_ != 0) when_false;}
#define INLINEsetp_disjoint(a, b, when_false)\
{register int i_=LOOP(a); do if (a[i_]&b[i_]) break; while (--i_>0);\
if (i_ != 0) when_false;}
#define INLINEsetp_equal(a, b, when_false)\
{register int i_=LOOP(a); do if (a[i_]!=b[i_]) break; while (--i_>0);\
if (i_ != 0) when_false;}
#endif
#if BPI == 32
#define count_ones(v)\
(bit_count[v & 255] + bit_count[(v >> 8) & 255]\
+ bit_count[(v >> 16) & 255] + bit_count[(v >> 24) & 255])
#else
#define count_ones(v) (bit_count[v & 255] + bit_count[(v >> 8) & 255])
#endif
/* Table for efficient bit counting */
extern int bit_count[256];
/*----- END OF set.h ----- */
/* Define a boolean type */
#define bool int
#define FALSE 0
#define TRUE 1
#define MAYBE 2
#define print_bool(x) ((x) == 0 ? "FALSE" : ((x) == 1 ? "TRUE" : "MAYBE"))
/* Map many cube/cover types/routines into equivalent set types/routines */
#define pcube pset
#define new_cube() set_new(cube.size)
#define free_cube(r) set_free(r)
#define pcover pset_family
#define new_cover(i) sf_new(i, cube.size)
#define free_cover(r) sf_free(r)
#define free_cubelist(T) FREE(T[0]); FREE(T);
/* cost_t describes the cost of a cover */
typedef struct cost_struct {
int cubes; /* number of cubes in the cover */
int in; /* transistor count, binary-valued variables */
int out; /* transistor count, output part */
int mv; /* transistor count, multiple-valued vars */
int total; /* total number of transistors */
int primes; /* number of prime cubes */
} cost_t, *pcost;
/* pair_t describes bit-paired variables */
typedef struct pair_struct {
int cnt;
int *var1;
int *var2;
} pair_t, *ppair;
/* symbolic_list_t describes a single ".symbolic" line */
typedef struct symbolic_list_struct {
int variable;
int pos;
struct symbolic_list_struct *next;
} symbolic_list_t;
/* symbolic_list_t describes a single ".symbolic" line */
typedef struct symbolic_label_struct {
char *label;
struct symbolic_label_struct *next;
} symbolic_label_t;
/* symbolic_t describes a linked list of ".symbolic" lines */
typedef struct symbolic_struct {
symbolic_list_t *symbolic_list; /* linked list of items */
int symbolic_list_length; /* length of symbolic_list list */
symbolic_label_t *symbolic_label; /* linked list of new names */
int symbolic_label_length; /* length of symbolic_label list */
struct symbolic_struct *next;
} symbolic_t;
/* PLA_t stores the logical representation of a PLA */
typedef struct {
pcover F, D, R; /* on-set, off-set and dc-set */
char *filename; /* filename */
int pla_type; /* logical PLA format */
pcube phase; /* phase to split into on-set and off-set */
ppair pair; /* how to pair variables */
char **label; /* labels for the columns */
symbolic_t *symbolic; /* allow binary->symbolic mapping */
symbolic_t *symbolic_output;/* allow symbolic output mapping */
} PLA_t, *pPLA;
#define equal(a,b) (strcmp(a,b) == 0)
/* This is a hack which I wish I hadn't done, but too painful to change */
#define CUBELISTSIZE(T) (((pcube *) T[1] - T) - 3)
/* For documentation purposes */
#define IN
#define OUT
#define INOUT
/* The pla_type field describes the input and output format of the PLA */
#define F_type 1
#define D_type 2
#define R_type 4
#define PLEASURE_type 8 /* output format */
#define EQNTOTT_type 16 /* output format algebraic eqns */
#define KISS_type 128 /* output format kiss */
#define CONSTRAINTS_type 256 /* output the constraints (numeric) */
#define SYMBOLIC_CONSTRAINTS_type 512 /* output the constraints (symbolic) */
#define FD_type (F_type | D_type)
#define FR_type (F_type | R_type)
#define DR_type (D_type | R_type)
#define FDR_type (F_type | D_type | R_type)
/* Definitions for the debug variable */
#define COMPL 0x0001
#define ESSEN 0x0002
#define EXPAND 0x0004
#define EXPAND1 0x0008
#define GASP 0x0010
#define IRRED 0x0020
#define REDUCE 0x0040
#define REDUCE1 0x0080
#define SPARSE 0x0100
#define TAUT 0x0200
#define EXACT 0x0400
#define MINCOV 0x0800
#define MINCOV1 0x1000
#define SHARP 0x2000
#define IRRED1 0x4000
#define VERSION\
"UC Berkeley, Espresso Version #2.3, Release date 01/31/88"
/* Define constants used for recording program statistics */
#define TIME_COUNT 16
#define READ_TIME 0
#define COMPL_TIME 1
#define ONSET_TIME 2
#define ESSEN_TIME 3
#define EXPAND_TIME 4
#define IRRED_TIME 5
#define REDUCE_TIME 6
#define GEXPAND_TIME 7
#define GIRRED_TIME 8
#define GREDUCE_TIME 9
#define PRIMES_TIME 10
#define MINCOV_TIME 11
#define MV_REDUCE_TIME 12
#define RAISE_IN_TIME 13
#define VERIFY_TIME 14
#define WRITE_TIME 15
/* For those who like to think about PLAs, macros to get at inputs/outputs */
#define NUMINPUTS cube.num_binary_vars
#define NUMOUTPUTS cube.part_size[cube.num_vars - 1]
#define POSITIVE_PHASE(pos)\
(is_in_set(PLA->phase, cube.first_part[cube.output]+pos) != 0)
#define INLABEL(var) PLA->label[cube.first_part[var] + 1]
#define OUTLABEL(pos) PLA->label[cube.first_part[cube.output] + pos]
#define GETINPUT(c, pos)\
((c[WHICH_WORD(2*pos)] >> WHICH_BIT(2*pos)) & 3)
#define GETOUTPUT(c, pos)\
(is_in_set(c, cube.first_part[cube.output] + pos) != 0)
#define PUTINPUT(c, pos, value)\
c[WHICH_WORD(2*pos)] = (c[WHICH_WORD(2*pos)] & ~(3 << WHICH_BIT(2*pos)))\
| (value << WHICH_BIT(2*pos))
#define PUTOUTPUT(c, pos, value)\
c[WHICH_WORD(pos)] = (c[WHICH_WORD(pos)] & (1 << WHICH_BIT(pos)))\
| (value << WHICH_BIT(pos))
#define TWO 3
#define DASH 3
#define ONE 2
#define ZERO 1
#define EXEC(fct, name, S)\
{long t=ptime();fct;if(trace)print_trace(S,name,ptime()-t);}
#define EXEC_S(fct, name, S)\
{long t=ptime();fct;if(summary)print_trace(S,name,ptime()-t);}
#define EXECUTE(fct,i,S,cost)\
{long t=ptime();fct;totals(t,i,S,&(cost));}
/*
* Global Variable Declarations
*/
extern unsigned int debug; /* debug parameter */
extern bool verbose_debug; /* -v: whether to print a lot */
extern char *total_name[TIME_COUNT]; /* basic function names */
extern long total_time[TIME_COUNT]; /* time spent in basic fcts */
extern int total_calls[TIME_COUNT]; /* # calls to each fct */
extern bool echo_comments; /* turned off by -eat option */
extern bool echo_unknown_commands; /* always true ?? */
extern bool force_irredundant; /* -nirr command line option */
extern bool skip_make_sparse;
extern bool kiss; /* -kiss command line option */
extern bool pos; /* -pos command line option */
extern bool print_solution; /* -x command line option */
extern bool recompute_onset; /* -onset command line option */
extern bool remove_essential; /* -ness command line option */
extern bool single_expand; /* -fast command line option */
extern bool summary; /* -s command line option */
extern bool trace; /* -t command line option */
extern bool unwrap_onset; /* -nunwrap command line option */
extern bool use_random_order; /* -random command line option */
extern bool use_super_gasp; /* -strong command line option */
extern char *filename; /* filename PLA was read from */
extern bool debug_exact_minimization; /* dumps info for -do exact */
/*
* pla_types are the input and output types for reading/writing a PLA
*/
struct pla_types_struct {
char *key;
int value;
};
/*
* The cube structure is a global structure which contains information
* on how a set maps into a cube -- i.e., number of parts per variable,
* number of variables, etc. Also, many fields are pre-computed to
* speed up various primitive operations.
*/
#define CUBE_TEMP 10
struct cube_struct {
int size; /* set size of a cube */
int num_vars; /* number of variables in a cube */
int num_binary_vars; /* number of binary variables */
int *first_part; /* first element of each variable */
int *last_part; /* first element of each variable */
int *part_size; /* number of elements in each variable */
int *first_word; /* first word for each variable */
int *last_word; /* last word for each variable */
pset binary_mask; /* Mask to extract binary variables */
pset mv_mask; /* mask to get mv parts */
pset *var_mask; /* mask to extract a variable */
pset *temp; /* an array of temporary sets */
pset fullset; /* a full cube */
pset emptyset; /* an empty cube */
unsigned int inmask; /* mask to get odd word of binary part */
int inword; /* which word number for above */
int *sparse; /* should this variable be sparse? */
int num_mv_vars; /* number of multiple-valued variables */
int output; /* which variable is "output" (-1 if none) */
};
struct cdata_struct {
int *part_zeros; /* count of zeros for each element */
int *var_zeros; /* count of zeros for each variable */
int *parts_active; /* number of "active" parts for each var */
bool *is_unate; /* indicates given var is unate */
int vars_active; /* number of "active" variables */
int vars_unate; /* number of unate variables */
int best; /* best "binate" variable */
};
extern struct pla_types_struct pla_types[];
extern struct cube_struct cube, temp_cube_save;
extern struct cdata_struct cdata, temp_cdata_save;
#ifdef lint
#define DISJOINT 0x5555
#else
#if BPI == 32
#define DISJOINT 0x55555555
#else
#define DISJOINT 0x5555
#endif
#endif
/* function declarations */
/* cofactor.c */ extern int binate_split_select();
/* cofactor.c */ extern pcover cubeunlist();
/* cofactor.c */ extern pcube *cofactor();
/* cofactor.c */ extern pcube *cube1list();
/* cofactor.c */ extern pcube *cube2list();
/* cofactor.c */ extern pcube *cube3list();
/* cofactor.c */ extern pcube *scofactor();
/* cofactor.c */ extern void massive_count();
/* compl.c */ extern pcover complement();
/* compl.c */ extern pcover simplify();
/* compl.c */ extern void simp_comp();
/* contain.c */ extern int d1_rm_equal();
/* contain.c */ extern int rm2_contain();
/* contain.c */ extern int rm2_equal();
/* contain.c */ extern int rm_contain();
/* contain.c */ extern int rm_equal();
/* contain.c */ extern int rm_rev_contain();
/* contain.c */ extern pset *sf_list();
/* contain.c */ extern pset *sf_sort();
/* contain.c */ extern pset_family d1merge();
/* contain.c */ extern pset_family dist_merge();
/* contain.c */ extern pset_family sf_contain();
/* contain.c */ extern pset_family sf_dupl();
/* contain.c */ extern pset_family sf_ind_contain();
/* contain.c */ extern pset_family sf_ind_unlist();
/* contain.c */ extern pset_family sf_merge();
/* contain.c */ extern pset_family sf_rev_contain();
/* contain.c */ extern pset_family sf_union();
/* contain.c */ extern pset_family sf_unlist();
/* cubestr.c */ extern void cube_setup();
/* cubestr.c */ extern void restore_cube_struct();
/* cubestr.c */ extern void save_cube_struct();
/* cubestr.c */ extern void setdown_cube();
/* cvrin.c */ extern PLA_labels();
/* cvrin.c */ extern char *get_word();
/* cvrin.c */ extern int label_index();
/* cvrin.c */ extern int read_pla();
/* cvrin.c */ extern int read_symbolic();
/* cvrin.c */ extern pPLA new_PLA();
/* cvrin.c */ extern void PLA_summary();
/* cvrin.c */ extern void free_PLA();
/* cvrin.c */ extern void parse_pla();
/* cvrin.c */ extern void read_cube();
/* cvrin.c */ extern void skip_line();
/* cvrm.c */ extern foreach_output_function();
/* cvrm.c */ extern int cubelist_partition();
/* cvrm.c */ extern int so_both_do_espresso();
/* cvrm.c */ extern int so_both_do_exact();
/* cvrm.c */ extern int so_both_save();
/* cvrm.c */ extern int so_do_espresso();
/* cvrm.c */ extern int so_do_exact();
/* cvrm.c */ extern int so_save();
/* cvrm.c */ extern pcover cof_output();
/* cvrm.c */ extern pcover lex_sort();
/* cvrm.c */ extern pcover mini_sort();
/* cvrm.c */ extern pcover random_order();
/* cvrm.c */ extern pcover size_sort();
/* cvrm.c */ extern pcover sort_reduce();
/* cvrm.c */ extern pcover uncof_output();
/* cvrm.c */ extern pcover unravel();
/* cvrm.c */ extern pcover unravel_range();
/* cvrm.c */ extern void so_both_espresso();
/* cvrm.c */ extern void so_espresso();
/* cvrmisc.c */ extern char *fmt_cost();
/* cvrmisc.c */ extern char *print_cost();
/* cvrmisc.c */ extern char *strsav();
/* cvrmisc.c */ extern void copy_cost();
/* cvrmisc.c */ extern void cover_cost();
/* cvrmisc.c */ extern void fatal();
/* cvrmisc.c */ extern void print_trace();
/* cvrmisc.c */ extern void size_stamp();
/* cvrmisc.c */ extern void totals();
/* cvrout.c */ extern char *fmt_cube();
/* cvrout.c */ extern char *fmt_expanded_cube();
/* cvrout.c */ extern char *pc1();
/* cvrout.c */ extern char *pc2();
/* cvrout.c */ extern char *pc3();
/* cvrout.c */ extern int makeup_labels();
/* cvrout.c */ extern kiss_output();
/* cvrout.c */ extern kiss_print_cube();
/* cvrout.c */ extern output_symbolic_constraints();
/* cvrout.c */ extern void cprint();
/* cvrout.c */ extern void debug1_print();
/* cvrout.c */ extern void debug_print();
/* cvrout.c */ extern void eqn_output();
/* cvrout.c */ extern void fpr_header();
/* cvrout.c */ extern void fprint_pla();
/* cvrout.c */ extern void pls_group();
/* cvrout.c */ extern void pls_label();
/* cvrout.c */ extern void pls_output();
/* cvrout.c */ extern void print_cube();
/* cvrout.c */ extern void print_expanded_cube();
/* cvrout.c */ extern void sf_debug_print();
/* equiv.c */ extern find_equiv_outputs();
/* equiv.c */ extern int check_equiv();
/* espresso.c */ extern pcover espresso();
/* essen.c */ extern bool essen_cube();
/* essen.c */ extern pcover cb_consensus();
/* essen.c */ extern pcover cb_consensus_dist0();
/* essen.c */ extern pcover essential();
/* exact.c */ extern pcover minimize_exact();
/* exact.c */ extern pcover minimize_exact_literals();
/* expand.c */ extern bool feasibly_covered();
/* expand.c */ extern int most_frequent();
/* expand.c */ extern pcover all_primes();
/* expand.c */ extern pcover expand();
/* expand.c */ extern pcover find_all_primes();
/* expand.c */ extern void elim_lowering();
/* expand.c */ extern void essen_parts();
/* expand.c */ extern void essen_raising();
/* expand.c */ extern void expand1();
/* expand.c */ extern void mincov();
/* expand.c */ extern void select_feasible();
/* expand.c */ extern void setup_BB_CC();
/* gasp.c */ extern pcover expand_gasp();
/* gasp.c */ extern pcover irred_gasp();
/* gasp.c */ extern pcover last_gasp();
/* gasp.c */ extern pcover super_gasp();
/* gasp.c */ extern void expand1_gasp();
/* getopt.c */ extern int espresso_getopt();
/* hack.c */ extern find_dc_inputs();
/* hack.c */ extern find_inputs();
/* hack.c */ extern form_bitvector();
/* hack.c */ extern map_dcset();
/* hack.c */ extern map_output_symbolic();
/* hack.c */ extern map_symbolic();
/* hack.c */ extern pcover map_symbolic_cover();
/* hack.c */ extern symbolic_hack_labels();
/* irred.c */ extern bool cube_is_covered();
/* irred.c */ extern bool taut_special_cases();
/* irred.c */ extern bool tautology();
/* irred.c */ extern pcover irredundant();
/* irred.c */ extern void mark_irredundant();
/* irred.c */ extern void irred_split_cover();
/* irred.c */ extern sm_matrix *irred_derive_table();
/* map.c */ extern pset minterms();
/* map.c */ extern void explode();
/* map.c */ extern void map();
/* opo.c */ extern output_phase_setup();
/* opo.c */ extern pPLA set_phase();
/* opo.c */ extern pcover opo();
/* opo.c */ extern pcube find_phase();
/* opo.c */ extern pset_family find_covers();
/* opo.c */ extern pset_family form_cover_table();
/* opo.c */ extern pset_family opo_leaf();
/* opo.c */ extern pset_family opo_recur();
/* opo.c */ extern void opoall();
/* opo.c */ extern void phase_assignment();
/* opo.c */ extern void repeated_phase_assignment();
/* pair.c */ extern generate_all_pairs();
/* pair.c */ extern int **find_pairing_cost();
/* pair.c */ extern int find_best_cost();
/* pair.c */ extern int greedy_best_cost();
/* pair.c */ extern int minimize_pair();
/* pair.c */ extern int pair_free();
/* pair.c */ extern pair_all();
/* pair.c */ extern pcover delvar();
/* pair.c */ extern pcover pairvar();
/* pair.c */ extern ppair pair_best_cost();
/* pair.c */ extern ppair pair_new();
/* pair.c */ extern ppair pair_save();
/* pair.c */ extern print_pair();
/* pair.c */ extern void find_optimal_pairing();
/* pair.c */ extern void set_pair();
/* pair.c */ extern void set_pair1();
/* primes.c */ extern pcover primes_consensus();
/* reduce.c */ extern bool sccc_special_cases();
/* reduce.c */ extern pcover reduce();
/* reduce.c */ extern pcube reduce_cube();
/* reduce.c */ extern pcube sccc();
/* reduce.c */ extern pcube sccc_cube();
/* reduce.c */ extern pcube sccc_merge();
/* set.c */ extern bool set_andp();
/* set.c */ extern bool set_orp();
/* set.c */ extern bool setp_disjoint();
/* set.c */ extern bool setp_empty();
/* set.c */ extern bool setp_equal();
/* set.c */ extern bool setp_full();
/* set.c */ extern bool setp_implies();
/* set.c */ extern char *pbv1();
/* set.c */ extern char *ps1();
/* set.c */ extern int *sf_count();
/* set.c */ extern int *sf_count_restricted();
/* set.c */ extern int bit_index();
/* set.c */ extern int set_dist();
/* set.c */ extern int set_ord();
/* set.c */ extern void set_adjcnt();
/* set.c */ extern pset set_and();
/* set.c */ extern pset set_clear();
/* set.c */ extern pset set_copy();
/* set.c */ extern pset set_diff();
/* set.c */ extern pset set_fill();
/* set.c */ extern pset set_merge();
/* set.c */ extern pset set_or();
/* set.c */ extern pset set_xor();
/* set.c */ extern pset sf_and();
/* set.c */ extern pset sf_or();
/* set.c */ extern pset_family sf_active();
/* set.c */ extern pset_family sf_addcol();
/* set.c */ extern pset_family sf_addset();
/* set.c */ extern pset_family sf_append();
/* set.c */ extern pset_family sf_bm_read();
/* set.c */ extern pset_family sf_compress();
/* set.c */ extern pset_family sf_copy();
/* set.c */ extern pset_family sf_copy_col();
/* set.c */ extern pset_family sf_delc();
/* set.c */ extern pset_family sf_delcol();
/* set.c */ extern pset_family sf_inactive();
/* set.c */ extern pset_family sf_join();
/* set.c */ extern pset_family sf_new();
/* set.c */ extern pset_family sf_permute();
/* set.c */ extern pset_family sf_read();
/* set.c */ extern pset_family sf_save();
/* set.c */ extern pset_family sf_transpose();
/* set.c */ extern void set_write();
/* set.c */ extern void sf_bm_print();
/* set.c */ extern void sf_cleanup();
/* set.c */ extern void sf_delset();
/* set.c */ extern void sf_free();
/* set.c */ extern void sf_print();
/* set.c */ extern void sf_write();
/* setc.c */ extern bool ccommon();
/* setc.c */ extern bool cdist0();
/* setc.c */ extern bool full_row();
/* setc.c */ extern int ascend();
/* setc.c */ extern int cactive();
/* setc.c */ extern int cdist();
/* setc.c */ extern int cdist01();
/* setc.c */ extern int cvolume();
/* setc.c */ extern int d1_order();
/* setc.c */ extern int d1_order_size();
/* setc.c */ extern int desc1();
/* setc.c */ extern int descend();
/* setc.c */ extern int lex_order();
/* setc.c */ extern int lex_order1();
/* setc.c */ extern pset force_lower();
/* setc.c */ extern void consensus();
/* sharp.c */ extern pcover cb1_dsharp();
/* sharp.c */ extern pcover cb_dsharp();
/* sharp.c */ extern pcover cb_recur_dsharp();
/* sharp.c */ extern pcover cb_recur_sharp();
/* sharp.c */ extern pcover cb_sharp();
/* sharp.c */ extern pcover cv_dsharp();
/* sharp.c */ extern pcover cv_intersect();
/* sharp.c */ extern pcover cv_sharp();
/* sharp.c */ extern pcover dsharp();
/* sharp.c */ extern pcover make_disjoint();
/* sharp.c */ extern pcover sharp();
/* sminterf.c */pset do_sm_minimum_cover();
/* sparse.c */ extern pcover make_sparse();
/* sparse.c */ extern pcover mv_reduce();
/* ucbqsort.c extern qsort(); */
/* ucbqsort.c */ extern qst();
/* unate.c */ extern pcover find_all_minimal_covers_petrick();
/* unate.c */ extern pcover map_cover_to_unate();
/* unate.c */ extern pcover map_unate_to_cover();
/* unate.c */ extern pset_family exact_minimum_cover();
/* unate.c */ extern pset_family gen_primes();
/* unate.c */ extern pset_family unate_compl();
/* unate.c */ extern pset_family unate_complement();
/* unate.c */ extern pset_family unate_intersect();
/* verify.c */ extern PLA_permute();
/* verify.c */ extern bool PLA_verify();
/* verify.c */ extern bool check_consistency();
/* verify.c */ extern bool verify();
/* hack.c */ extern int disassemble_fsm();