blob: b71fcf6d13b3f4bd33457874d0e2f6fbd4a956da [file] [log] [blame]
// ************************************************************************
//
// miniAMR: stencil computations with boundary exchange and AMR.
//
// Copyright (2014) Sandia Corporation. Under the terms of Contract
// DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government
// retains certain rights in this software.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// Questions? Contact Courtenay T. Vaughan (ctvaugh@sandia.gov)
// Richard F. Barrett (rfbarre@sandia.gov)
//
// ************************************************************************
#include "block.h"
#include "proto.h"
// This routine does the stencil calculations.
void stencil_calc(int var)
{
int n, i, j, k, in;
double sb, sm, sf, work[x_block_size+2][y_block_size+2][z_block_size+2];
block *bp;
if (stencil == 7) {
for (in = 0; in < sorted_index[num_refine+1]; in++) {
n = sorted_list[in].n;
bp = &blocks[n];
if (bp->number >= 0) {
for (i = 1; i <= x_block_size; i++)
for (j = 1; j <= y_block_size; j++)
for (k = 1; k <= z_block_size; k++)
work[i][j][k] = (bp->array[var][i-1][j ][k ] +
bp->array[var][i ][j-1][k ] +
bp->array[var][i ][j ][k-1] +
bp->array[var][i ][j ][k ] +
bp->array[var][i ][j ][k+1] +
bp->array[var][i ][j+1][k ] +
bp->array[var][i+1][j ][k ])/7.0;
for (i = 1; i <= x_block_size; i++)
for (j = 1; j <= y_block_size; j++)
for (k = 1; k <= z_block_size; k++)
bp->array[var][i][j][k] = work[i][j][k];
}
}
} else {
for (in = 0; in < sorted_index[num_refine+1]; in++) {
n = sorted_list[in].n;
bp = &blocks[n];
if (bp->number >= 0) {
for (i = 1; i <= x_block_size; i++)
for (j = 1; j <= y_block_size; j++)
for (k = 1; k <= z_block_size; k++) {
sb = bp->array[var][i-1][j-1][k-1] +
bp->array[var][i-1][j-1][k ] +
bp->array[var][i-1][j-1][k+1] +
bp->array[var][i-1][j ][k-1] +
bp->array[var][i-1][j ][k ] +
bp->array[var][i-1][j ][k+1] +
bp->array[var][i-1][j+1][k-1] +
bp->array[var][i-1][j+1][k ] +
bp->array[var][i-1][j+1][k+1];
sm = bp->array[var][i ][j-1][k-1] +
bp->array[var][i ][j-1][k ] +
bp->array[var][i ][j-1][k+1] +
bp->array[var][i ][j ][k-1] +
bp->array[var][i ][j ][k ] +
bp->array[var][i ][j ][k+1] +
bp->array[var][i ][j+1][k-1] +
bp->array[var][i ][j+1][k ] +
bp->array[var][i ][j+1][k+1];
sf = bp->array[var][i+1][j-1][k-1] +
bp->array[var][i+1][j-1][k ] +
bp->array[var][i+1][j-1][k+1] +
bp->array[var][i+1][j ][k-1] +
bp->array[var][i+1][j ][k ] +
bp->array[var][i+1][j ][k+1] +
bp->array[var][i+1][j+1][k-1] +
bp->array[var][i+1][j+1][k ] +
bp->array[var][i+1][j+1][k+1];
work[i][j][k] = (sb + sm + sf)/27.0;
}
for (i = 1; i <= x_block_size; i++)
for (j = 1; j <= y_block_size; j++)
for (k = 1; k <= z_block_size; k++)
bp->array[var][i][j][k] = work[i][j][k];
}
}
}
}