blob: d04a794c40f6fa707dd185fc7712e02b892d43f7 [file] [log] [blame]
/*
* expr_c.tc - Expression example treecc input file for C.
*
* Copyright (C) 2001 Southern Storm Software, Pty Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* Include the following declarations into the ".h" file.
*/
%decls %{
/*
* Value that is computed by "eval_expr" below.
*/
typedef union
{
int int_value;
float float_value;
} eval_value;
%}
/*
* Include the following declarations into the ".c" file.
*/
%{
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "expr_c.h"
%}
/*
* Define the type code that is associated with a node
* in the syntax tree. We use "error_type" to indicate
* a failure during type inferencing.
*/
%enum type_code =
{
error_type,
int_type,
float_type
}
/*
* Define the node types that make up the syntax.
*/
%node expression %abstract %typedef =
{
%nocreate type_code type = {error_type};
}
%node binary expression %abstract =
{
expression *expr1;
expression *expr2;
}
%node unary expression %abstract =
{
expression *expr;
}
%node intnum expression =
{
int num;
}
%node floatnum expression =
{
float num;
}
%node plus binary
%node minus binary
%node multiply binary
%node divide binary
%node power binary
%node negate unary
%node cast expression =
{
type_code new_type;
expression *expr;
}
/*
* Define the "infer_type" operation as a non-virtual.
*/
%operation void infer_type(expression *e)
infer_type(binary)
{
infer_type(e->expr1);
infer_type(e->expr2);
if(e->expr1->type == error_type || e->expr2->type == error_type)
{
e->type = error_type;
}
else if(e->expr1->type == float_type || e->expr2->type == float_type)
{
e->type = float_type;
}
else
{
e->type = int_type;
}
}
infer_type(unary)
{
infer_type(e->expr);
e->type = e->expr->type;
}
infer_type(intnum)
{
e->type = int_type;
}
infer_type(floatnum)
{
e->type = float_type;
}
infer_type(power)
{
infer_type(e->expr1);
infer_type(e->expr2);
if(e->expr1->type == error_type || e->expr2->type == error_type)
{
e->type = error_type;
}
else if(e->expr2->type != int_type)
{
fprintf(stderr, "%s:%ld: second argument to `^' is not an integer\n",
yygetfilename(e), yygetlinenum(e));
e->type = error_type;
}
else
{
e->type = e->expr1->type;
}
}
infer_type(cast)
{
infer_type(e->expr);
if(e->expr->type != error_type)
{
e->type = e->new_type;
}
else
{
e->type = error_type;
}
}
/*
* Define the "eval_expr" operation as a virtual.
*/
%operation %virtual eval_value eval_expr(expression *e)
eval_expr(plus)
{
/* Evaluate the sub-expressions */
eval_value value1 = eval_expr(e->expr1);
eval_value value2 = eval_expr(e->expr2);
/* Coerce to the common type */
coerce(&value1, e->expr1->type, e->type);
coerce(&value2, e->expr2->type, e->type);
/* Evaluate the operator */
if(e->type == int_type)
{
value1.int_value += value2.int_value;
}
else
{
value1.float_value += value2.float_value;
}
/* Return the result to the caller */
return value1;
}
eval_expr(minus)
{
/* Evaluate the sub-expressions */
eval_value value1 = eval_expr(e->expr1);
eval_value value2 = eval_expr(e->expr2);
/* Coerce to the common type */
coerce(&value1, e->expr1->type, e->type);
coerce(&value2, e->expr2->type, e->type);
/* Evaluate the operator */
if(e->type == int_type)
{
value1.int_value -= value2.int_value;
}
else
{
value1.float_value -= value2.float_value;
}
/* Return the result to the caller */
return value1;
}
eval_expr(multiply)
{
/* Evaluate the sub-expressions */
eval_value value1 = eval_expr(e->expr1);
eval_value value2 = eval_expr(e->expr2);
/* Coerce to the common type */
coerce(&value1, e->expr1->type, e->type);
coerce(&value2, e->expr2->type, e->type);
/* Evaluate the operator */
if(e->type == int_type)
{
value1.int_value *= value2.int_value;
}
else
{
value1.float_value *= value2.float_value;
}
/* Return the result to the caller */
return value1;
}
eval_expr(divide)
{
/* Evaluate the sub-expressions */
eval_value value1 = eval_expr(e->expr1);
eval_value value2 = eval_expr(e->expr2);
/* Coerce to the common type */
coerce(&value1, e->expr1->type, e->type);
coerce(&value2, e->expr2->type, e->type);
/* Evaluate the operator */
if(e->type == int_type)
{
if(value2.int_value != 0)
{
value1.int_value /= value2.int_value;
}
else
{
fprintf(stderr, "%s:%ld: division by zero\n",
yygetfilename(e), yygetlinenum(e));
value1.int_value = 0;
}
}
else
{
value1.float_value /= value2.float_value;
}
/* Return the result to the caller */
return value1;
}
eval_expr(power)
{
/* Evaluate the sub-expressions */
eval_value value1 = eval_expr(e->expr1);
eval_value value2 = eval_expr(e->expr2);
/* Evaluate the operator */
if(e->type == int_type)
{
value1.int_value = (int)(pow((double)(value1.int_value),
(double)(value2.int_value)));
}
else
{
value1.float_value = (float)(pow((double)(value1.float_value),
(double)(value2.int_value)));
}
/* Return the result to the caller */
return value1;
}
eval_expr(negate)
{
/* Evaluate the sub-expression */
eval_value value = eval_expr(e->expr);
/* Evaluate the operator */
if(e->type == int_type)
{
value.int_value = -(value.int_value);
}
else
{
value.float_value = -(value.float_value);
}
/* Return the result to the caller */
return value;
}
eval_expr(cast)
{
/* Evaluate the sub-expression */
eval_value value = eval_expr(e->expr);
/* Cast to the final type */
coerce(&value, e->expr->type, e->type);
/* Return the result to the caller */
return value;
}
eval_expr(intnum)
{
eval_value value;
value.int_value = e->num;
return value;
}
eval_expr(floatnum)
{
eval_value value;
value.float_value = e->num;
return value;
}
/*
* Define the "coerce" operation as an inline non-virtual.
*/
%operation %inline void coerce
(eval_value *value, [type_code from], [type_code to])
coerce(int_type, float_type)
{
value->float_value = (float)(value->int_value);
}
coerce(float_type, int_type)
{
value->int_value = (int)(value->float_value);
}
coerce(type_code, type_code)
{
/* Nothing to do here */
}
/*
* Include the following code at the end of the ".c" file.
*/
%end %{
/*
* Global data used by the expression parser.
*/
char *progname;
char *filename;
long linenum;
/*
* Entry points that are imported from the yacc parser.
*/
extern void yyrestart(FILE *file);
extern int yyparse(void);
/*
* Main entry point for the expression parser and evaluator.
*/
int main(int argc, char *argv[])
{
FILE *file;
progname = argv[0];
linenum = 1;
if(argc < 2)
{
filename = "stdin";
yyrestart(stdin);
}
else if((file = fopen(argv[1], "r")) == NULL)
{
perror(argv[1]);
return 1;
}
else
{
filename = argv[1];
yyrestart(file);
}
return yyparse();
}
/*
* Get the name of the current input file in use by the parser.
*/
char *yycurrfilename(void)
{
return filename;
}
/*
* Get the line number for the current input line in use by the parser.
*/
long yycurrlinenum(void)
{
return linenum;
}
/*
* Report memory failure and exit.
*/
void yynodefailed(void)
{
fputs(progname, stderr);
fputs(": virtual memory exhausted\n", stderr);
exit(1);
}
%}