blob: 294f4bf6f831e798dd0df9831db7d2d54a2805c7 [file] [log] [blame]
/**
* durbin.c: This file is part of the PolyBench/C 3.2 test suite.
*
*
* Contact: Louis-Noel Pouchet <pouchet@cse.ohio-state.edu>
* Web address: http://polybench.sourceforge.net
*/
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
/* Include polybench common header. */
#include <polybench.h>
/* Include benchmark-specific header. */
/* Default data type is double, default size is 4000. */
#include "durbin.h"
/* Array initialization. */
static
void init_array (int n,
DATA_TYPE POLYBENCH_2D(y,N,N,n,n),
DATA_TYPE POLYBENCH_2D(sum,N,N,n,n),
DATA_TYPE POLYBENCH_1D(alpha,N,n),
DATA_TYPE POLYBENCH_1D(beta,N,n),
DATA_TYPE POLYBENCH_1D(r,N,n))
{
#pragma STDC FP_CONTRACT OFF
int i, j;
for (i = 0; i < n; i++)
{
alpha[i] = i;
beta[i] = (i+1)/n/2.0;
r[i] = (i+1)/n/4.0;
for (j = 0; j < n; j++) {
y[i][j] = ((DATA_TYPE) i*j) / n;
sum[i][j] = ((DATA_TYPE) i*j) / n;
}
}
}
/* DCE code. Must scan the entire live-out data.
Can be used also to check the correctness of the output. */
static
void print_array(int n,
DATA_TYPE POLYBENCH_1D(out,N,n))
{
int i;
for (i = 0; i < n; i++) {
fprintf (stderr, DATA_PRINTF_MODIFIER, out[i]);
if (i % 20 == 0) fprintf (stderr, "\n");
}
}
/* Main computational kernel. The whole function will be timed,
including the call and return. */
static
void kernel_durbin(int n,
DATA_TYPE POLYBENCH_2D(y,N,N,n,n),
DATA_TYPE POLYBENCH_2D(sum,N,N,n,n),
DATA_TYPE POLYBENCH_1D(alpha,N,n),
DATA_TYPE POLYBENCH_1D(beta,N,n),
DATA_TYPE POLYBENCH_1D(r,N,n),
DATA_TYPE POLYBENCH_1D(out,N,n))
{
int i, k;
#pragma scop
y[0][0] = r[0];
beta[0] = 1;
alpha[0] = r[0];
for (k = 1; k < _PB_N; k++)
{
beta[k] = beta[k-1] - alpha[k-1] * alpha[k-1] * beta[k-1];
sum[0][k] = r[k];
for (i = 0; i <= k - 1; i++)
sum[i+1][k] = sum[i][k] + r[k-i-1] * y[i][k-1];
alpha[k] = -sum[k][k] * beta[k];
for (i = 0; i <= k-1; i++)
y[i][k] = y[i][k-1] + alpha[k] * y[k-i-1][k-1];
y[k][k] = alpha[k];
}
for (i = 0; i < _PB_N; i++)
out[i] = y[i][_PB_N-1];
#pragma endscop
}
#if !FMA_DISABLED
// NOTE: FMA_DISABLED is true for targets where FMA contraction causes
// discrepancies which cause the accuracy checks to fail.
// In this case, the test runs with the option -ffp-contract=off
static
void kernel_durbin_StrictFP(int n,
DATA_TYPE POLYBENCH_2D(y,N,N,n,n),
DATA_TYPE POLYBENCH_2D(sum,N,N,n,n),
DATA_TYPE POLYBENCH_1D(alpha,N,n),
DATA_TYPE POLYBENCH_1D(beta,N,n),
DATA_TYPE POLYBENCH_1D(r,N,n),
DATA_TYPE POLYBENCH_1D(out,N,n))
{
#pragma STDC FP_CONTRACT OFF
int i, k;
y[0][0] = r[0];
beta[0] = 1;
alpha[0] = r[0];
for (k = 1; k < _PB_N; k++)
{
beta[k] = beta[k-1] - alpha[k-1] * alpha[k-1] * beta[k-1];
sum[0][k] = r[k];
for (i = 0; i <= k - 1; i++)
sum[i+1][k] = sum[i][k] + r[k-i-1] * y[i][k-1];
alpha[k] = -sum[k][k] * beta[k];
for (i = 0; i <= k-1; i++)
y[i][k] = y[i][k-1] + alpha[k] * y[k-i-1][k-1];
y[k][k] = alpha[k];
}
for (i = 0; i < _PB_N; i++)
out[i] = y[i][_PB_N-1];
}
/* Return 0 when one of the elements of arrays A and B do not match within the
allowed FP_ABSTOLERANCE. Return 1 when all elements match. */
static int
check_FP(int n,
DATA_TYPE POLYBENCH_1D(A,N,n),
DATA_TYPE POLYBENCH_1D(B,N,n)) {
int i;
double AbsTolerance = FP_ABSTOLERANCE;
for (i = 0; i < _PB_N; i++)
{
double V1 = A[i];
double V2 = B[i];
double Diff = fabs(V1 - V2);
if (Diff > AbsTolerance) {
fprintf(stderr, "A[%d] = %lf and B[%d] = %lf differ more than"
" FP_ABSTOLERANCE = %lf\n", i, V1, i, V2, AbsTolerance);
return 0;
}
}
return 1;
}
#endif
int main(int argc, char** argv)
{
/* Retrieve problem size. */
int n = N;
/* Variable declaration/allocation. */
POLYBENCH_2D_ARRAY_DECL(y, DATA_TYPE, N, N, n, n);
POLYBENCH_2D_ARRAY_DECL(sum, DATA_TYPE, N, N, n, n);
POLYBENCH_1D_ARRAY_DECL(alpha, DATA_TYPE, N, n);
POLYBENCH_1D_ARRAY_DECL(beta, DATA_TYPE, N, n);
POLYBENCH_1D_ARRAY_DECL(r, DATA_TYPE, N, n);
POLYBENCH_1D_ARRAY_DECL(out, DATA_TYPE, N, n);
#if !FMA_DISABLED
POLYBENCH_1D_ARRAY_DECL(out_StrictFP, DATA_TYPE, N, n);
#endif
/* Initialize array(s). */
init_array (n,
POLYBENCH_ARRAY(y),
POLYBENCH_ARRAY(sum),
POLYBENCH_ARRAY(alpha),
POLYBENCH_ARRAY(beta),
POLYBENCH_ARRAY(r));
/* Start timer. */
polybench_start_instruments;
/* Run kernel. */
kernel_durbin (n,
POLYBENCH_ARRAY(y),
POLYBENCH_ARRAY(sum),
POLYBENCH_ARRAY(alpha),
POLYBENCH_ARRAY(beta),
POLYBENCH_ARRAY(r),
POLYBENCH_ARRAY(out));
/* Stop and print timer. */
polybench_stop_instruments;
polybench_print_instruments;
#if FMA_DISABLED
/* Prevent dead-code elimination. All live-out data must be printed
by the function call in argument. */
polybench_prevent_dce(print_array(n, POLYBENCH_ARRAY(out)));
#else
init_array (n,
POLYBENCH_ARRAY(y),
POLYBENCH_ARRAY(sum),
POLYBENCH_ARRAY(alpha),
POLYBENCH_ARRAY(beta),
POLYBENCH_ARRAY(r));
kernel_durbin_StrictFP (n,
POLYBENCH_ARRAY(y),
POLYBENCH_ARRAY(sum),
POLYBENCH_ARRAY(alpha),
POLYBENCH_ARRAY(beta),
POLYBENCH_ARRAY(r),
POLYBENCH_ARRAY(out_StrictFP));
if (!check_FP(n, POLYBENCH_ARRAY(out), POLYBENCH_ARRAY(out_StrictFP)))
return 1;
/* Prevent dead-code elimination. All live-out data must be printed
by the function call in argument. */
polybench_prevent_dce(print_array(n, POLYBENCH_ARRAY(out_StrictFP)));
#endif
/* Be clean. */
POLYBENCH_FREE_ARRAY(y);
POLYBENCH_FREE_ARRAY(sum);
POLYBENCH_FREE_ARRAY(alpha);
POLYBENCH_FREE_ARRAY(beta);
POLYBENCH_FREE_ARRAY(r);
POLYBENCH_FREE_ARRAY(out);
return 0;
}