blob: c96f325173cc32ae2368067637211f29caa67bb4 [file] [log] [blame]
//===- lib/ReaderWriter/MachO/MachONormalizedFileBinaryReader.cpp ---------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file For mach-o object files, this implementation converts from
/// mach-o on-disk binary format to in-memory normalized mach-o.
///
/// +---------------+
/// | binary mach-o |
/// +---------------+
/// |
/// |
/// v
/// +------------+
/// | normalized |
/// +------------+
#include "MachONormalizedFile.h"
#include "ArchHandler.h"
#include "MachONormalizedFileBinaryUtils.h"
#include "lld/Core/Error.h"
#include "lld/Core/LLVM.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MachO.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <functional>
#include <system_error>
using namespace llvm::MachO;
namespace lld {
namespace mach_o {
namespace normalized {
// Utility to call a lambda expression on each load command.
static std::error_code forEachLoadCommand(
StringRef lcRange, unsigned lcCount, bool swap, bool is64,
std::function<bool(uint32_t cmd, uint32_t size, const char *lc)> func) {
const char* p = lcRange.begin();
for (unsigned i=0; i < lcCount; ++i) {
const load_command *lc = reinterpret_cast<const load_command*>(p);
load_command lcCopy;
const load_command *slc = lc;
if (swap) {
memcpy(&lcCopy, lc, sizeof(load_command));
swapStruct(lcCopy);
slc = &lcCopy;
}
if ( (p + slc->cmdsize) > lcRange.end() )
return make_error_code(llvm::errc::executable_format_error);
if (func(slc->cmd, slc->cmdsize, p))
return std::error_code();
p += slc->cmdsize;
}
return std::error_code();
}
static std::error_code appendRelocations(Relocations &relocs, StringRef buffer,
bool swap, bool bigEndian,
uint32_t reloff, uint32_t nreloc) {
if ((reloff + nreloc*8) > buffer.size())
return make_error_code(llvm::errc::executable_format_error);
const any_relocation_info* relocsArray =
reinterpret_cast<const any_relocation_info*>(buffer.begin()+reloff);
for(uint32_t i=0; i < nreloc; ++i) {
relocs.push_back(unpackRelocation(relocsArray[i], swap, bigEndian));
}
return std::error_code();
}
static std::error_code
appendIndirectSymbols(IndirectSymbols &isyms, StringRef buffer, bool swap,
bool bigEndian, uint32_t istOffset, uint32_t istCount,
uint32_t startIndex, uint32_t count) {
if ((istOffset + istCount*4) > buffer.size())
return make_error_code(llvm::errc::executable_format_error);
if (startIndex+count > istCount)
return make_error_code(llvm::errc::executable_format_error);
const uint32_t *indirectSymbolArray =
reinterpret_cast<const uint32_t*>(buffer.begin()+istOffset);
for(uint32_t i=0; i < count; ++i) {
isyms.push_back(read32(swap, indirectSymbolArray[startIndex+i]));
}
return std::error_code();
}
template <typename T> static T readBigEndian(T t) {
if (llvm::sys::IsLittleEndianHost)
llvm::sys::swapByteOrder(t);
return t;
}
/// Reads a mach-o file and produces an in-memory normalized view.
ErrorOr<std::unique_ptr<NormalizedFile>>
readBinary(std::unique_ptr<MemoryBuffer> &mb,
const MachOLinkingContext::Arch arch) {
// Make empty NormalizedFile.
std::unique_ptr<NormalizedFile> f(new NormalizedFile());
const char *start = mb->getBufferStart();
size_t objSize = mb->getBufferSize();
// Determine endianness and pointer size for mach-o file.
const mach_header *mh = reinterpret_cast<const mach_header *>(start);
bool isFat = mh->magic == llvm::MachO::FAT_CIGAM ||
mh->magic == llvm::MachO::FAT_MAGIC;
if (isFat) {
uint32_t cputype = MachOLinkingContext::cpuTypeFromArch(arch);
uint32_t cpusubtype = MachOLinkingContext::cpuSubtypeFromArch(arch);
const fat_header *fh = reinterpret_cast<const fat_header *>(start);
uint32_t nfat_arch = readBigEndian(fh->nfat_arch);
const fat_arch *fa =
reinterpret_cast<const fat_arch *>(start + sizeof(fat_header));
bool foundArch = false;
while (nfat_arch-- > 0) {
if (readBigEndian(fa->cputype) == cputype &&
readBigEndian(fa->cpusubtype) == cpusubtype) {
foundArch = true;
break;
}
fa++;
}
if (!foundArch) {
return make_dynamic_error_code(Twine("file does not contain required"
" architecture ("
+ MachOLinkingContext::nameFromArch(arch)
+ ")" ));
}
objSize = readBigEndian(fa->size);
uint32_t offset = readBigEndian(fa->offset);
if ((offset + objSize) > mb->getBufferSize())
return make_error_code(llvm::errc::executable_format_error);
start += offset;
mh = reinterpret_cast<const mach_header *>(start);
}
bool is64, swap;
switch (mh->magic) {
case llvm::MachO::MH_MAGIC:
is64 = false;
swap = false;
break;
case llvm::MachO::MH_MAGIC_64:
is64 = true;
swap = false;
break;
case llvm::MachO::MH_CIGAM:
is64 = false;
swap = true;
break;
case llvm::MachO::MH_CIGAM_64:
is64 = true;
swap = true;
break;
default:
return make_error_code(llvm::errc::executable_format_error);
}
// Endian swap header, if needed.
mach_header headerCopy;
const mach_header *smh = mh;
if (swap) {
memcpy(&headerCopy, mh, sizeof(mach_header));
swapStruct(headerCopy);
smh = &headerCopy;
}
// Validate head and load commands fit in buffer.
const uint32_t lcCount = smh->ncmds;
const char *lcStart =
start + (is64 ? sizeof(mach_header_64) : sizeof(mach_header));
StringRef lcRange(lcStart, smh->sizeofcmds);
if (lcRange.end() > (start + objSize))
return make_error_code(llvm::errc::executable_format_error);
// Get architecture from mach_header.
f->arch = MachOLinkingContext::archFromCpuType(smh->cputype, smh->cpusubtype);
if (f->arch != arch) {
return make_dynamic_error_code(Twine("file is wrong architecture. Expected "
"(" + MachOLinkingContext::nameFromArch(arch)
+ ") found ("
+ MachOLinkingContext::nameFromArch(f->arch)
+ ")" ));
}
bool isBigEndianArch = MachOLinkingContext::isBigEndian(f->arch);
// Copy file type and flags
f->fileType = HeaderFileType(smh->filetype);
f->flags = smh->flags;
// Pre-scan load commands looking for indirect symbol table.
uint32_t indirectSymbolTableOffset = 0;
uint32_t indirectSymbolTableCount = 0;
std::error_code ec = forEachLoadCommand(lcRange, lcCount, swap, is64,
[&](uint32_t cmd, uint32_t size,
const char *lc) -> bool {
if (cmd == LC_DYSYMTAB) {
const dysymtab_command *d = reinterpret_cast<const dysymtab_command*>(lc);
indirectSymbolTableOffset = read32(swap, d->indirectsymoff);
indirectSymbolTableCount = read32(swap, d->nindirectsyms);
return true;
}
return false;
});
if (ec)
return ec;
// Walk load commands looking for segments/sections and the symbol table.
ec = forEachLoadCommand(lcRange, lcCount, swap, is64,
[&] (uint32_t cmd, uint32_t size, const char* lc) -> bool {
if (is64) {
if (cmd == LC_SEGMENT_64) {
const segment_command_64 *seg =
reinterpret_cast<const segment_command_64*>(lc);
const unsigned sectionCount = (swap
? llvm::sys::getSwappedBytes(seg->nsects)
: seg->nsects);
const section_64 *sects = reinterpret_cast<const section_64*>
(lc + sizeof(segment_command_64));
const unsigned lcSize = sizeof(segment_command_64)
+ sectionCount*sizeof(section_64);
// Verify sections don't extend beyond end of segment load command.
if (lcSize > size)
return true;
for (unsigned i=0; i < sectionCount; ++i) {
const section_64 *sect = &sects[i];
Section section;
section.segmentName = getString16(sect->segname);
section.sectionName = getString16(sect->sectname);
section.type = (SectionType)(read32(swap, sect->flags)
& SECTION_TYPE);
section.attributes = read32(swap, sect->flags) & SECTION_ATTRIBUTES;
section.alignment = read32(swap, sect->align);
section.address = read64(swap, sect->addr);
const uint8_t *content =
(uint8_t *)start + read32(swap, sect->offset);
size_t contentSize = read64(swap, sect->size);
// Note: this assign() is copying the content bytes. Ideally,
// we can use a custom allocator for vector to avoid the copy.
section.content = llvm::makeArrayRef(content, contentSize);
appendRelocations(section.relocations, mb->getBuffer(),
swap, isBigEndianArch, read32(swap, sect->reloff),
read32(swap, sect->nreloc));
if (section.type == S_NON_LAZY_SYMBOL_POINTERS) {
appendIndirectSymbols(section.indirectSymbols, mb->getBuffer(),
swap, isBigEndianArch,
indirectSymbolTableOffset,
indirectSymbolTableCount,
read32(swap, sect->reserved1), contentSize/4);
}
f->sections.push_back(section);
}
}
} else {
if (cmd == LC_SEGMENT) {
const segment_command *seg =
reinterpret_cast<const segment_command*>(lc);
const unsigned sectionCount = (swap
? llvm::sys::getSwappedBytes(seg->nsects)
: seg->nsects);
const section *sects = reinterpret_cast<const section*>
(lc + sizeof(segment_command));
const unsigned lcSize = sizeof(segment_command)
+ sectionCount*sizeof(section);
// Verify sections don't extend beyond end of segment load command.
if (lcSize > size)
return true;
for (unsigned i=0; i < sectionCount; ++i) {
const section *sect = &sects[i];
Section section;
section.segmentName = getString16(sect->segname);
section.sectionName = getString16(sect->sectname);
section.type = (SectionType)(read32(swap, sect->flags)
& SECTION_TYPE);
section.attributes = read32(swap, sect->flags) & SECTION_ATTRIBUTES;
section.alignment = read32(swap, sect->align);
section.address = read32(swap, sect->addr);
const uint8_t *content =
(uint8_t *)start + read32(swap, sect->offset);
size_t contentSize = read32(swap, sect->size);
// Note: this assign() is copying the content bytes. Ideally,
// we can use a custom allocator for vector to avoid the copy.
section.content = llvm::makeArrayRef(content, contentSize);
appendRelocations(section.relocations, mb->getBuffer(),
swap, isBigEndianArch, read32(swap, sect->reloff),
read32(swap, sect->nreloc));
if (section.type == S_NON_LAZY_SYMBOL_POINTERS) {
appendIndirectSymbols(section.indirectSymbols, mb->getBuffer(),
swap, isBigEndianArch,
indirectSymbolTableOffset,
indirectSymbolTableCount,
read32(swap, sect->reserved1), contentSize/4);
}
f->sections.push_back(section);
}
}
}
if (cmd == LC_SYMTAB) {
const symtab_command *st = reinterpret_cast<const symtab_command*>(lc);
const char *strings = start + read32(swap, st->stroff);
const uint32_t strSize = read32(swap, st->strsize);
// Validate string pool and symbol table all in buffer.
if ( read32(swap, st->stroff)+read32(swap, st->strsize)
> objSize )
return true;
if (is64) {
const uint32_t symOffset = read32(swap, st->symoff);
const uint32_t symCount = read32(swap, st->nsyms);
if ( symOffset+(symCount*sizeof(nlist_64)) > objSize)
return true;
const nlist_64 *symbols =
reinterpret_cast<const nlist_64 *>(start + symOffset);
// Convert each nlist_64 to a lld::mach_o::normalized::Symbol.
for(uint32_t i=0; i < symCount; ++i) {
const nlist_64 *sin = &symbols[i];
nlist_64 tempSym;
if (swap) {
tempSym = *sin; swapStruct(tempSym); sin = &tempSym;
}
Symbol sout;
if (sin->n_strx > strSize)
return true;
sout.name = &strings[sin->n_strx];
sout.type = (NListType)(sin->n_type & N_TYPE);
sout.scope = (sin->n_type & (N_PEXT|N_EXT));
sout.sect = sin->n_sect;
sout.desc = sin->n_desc;
sout.value = sin->n_value;
if (sout.type == N_UNDF)
f->undefinedSymbols.push_back(sout);
else if (sin->n_type & N_EXT)
f->globalSymbols.push_back(sout);
else
f->localSymbols.push_back(sout);
}
} else {
const uint32_t symOffset = read32(swap, st->symoff);
const uint32_t symCount = read32(swap, st->nsyms);
if ( symOffset+(symCount*sizeof(nlist)) > objSize)
return true;
const nlist *symbols =
reinterpret_cast<const nlist *>(start + symOffset);
// Convert each nlist to a lld::mach_o::normalized::Symbol.
for(uint32_t i=0; i < symCount; ++i) {
const nlist *sin = &symbols[i];
nlist tempSym;
if (swap) {
tempSym = *sin; swapStruct(tempSym); sin = &tempSym;
}
Symbol sout;
if (sin->n_strx > strSize)
return true;
sout.name = &strings[sin->n_strx];
sout.type = (NListType)(sin->n_type & N_TYPE);
sout.scope = (sin->n_type & (N_PEXT|N_EXT));
sout.sect = sin->n_sect;
sout.desc = sin->n_desc;
sout.value = sin->n_value;
if (sout.type == N_UNDF)
f->undefinedSymbols.push_back(sout);
else if (sout.scope == (SymbolScope)N_EXT)
f->globalSymbols.push_back(sout);
else
f->localSymbols.push_back(sout);
}
}
}
if (cmd == LC_ID_DYLIB) {
const dylib_command *dl = reinterpret_cast<const dylib_command*>(lc);
dylib_command tempDL;
if (swap) {
tempDL = *dl; swapStruct(tempDL); dl = &tempDL;
}
f->installName = lc + dl->dylib.name;
}
return false;
});
if (ec)
return ec;
return std::move(f);
}
class MachOReader : public Reader {
public:
MachOReader(MachOLinkingContext::Arch arch) : _arch(arch) {}
bool canParse(file_magic magic, StringRef ext,
const MemoryBuffer &mb) const override {
if (magic != llvm::sys::fs::file_magic::macho_object &&
magic != llvm::sys::fs::file_magic::macho_universal_binary &&
magic != llvm::sys::fs::file_magic::macho_dynamically_linked_shared_lib)
return false;
return (mb.getBufferSize() > 32);
}
std::error_code
parseFile(std::unique_ptr<MemoryBuffer> &mb, const Registry &registry,
std::vector<std::unique_ptr<File>> &result) const override {
// Convert binary file to normalized mach-o.
auto normFile = readBinary(mb, _arch);
if (std::error_code ec = normFile.getError())
return ec;
// Convert normalized mach-o to atoms.
auto file = normalizedToAtoms(**normFile, mb->getBufferIdentifier(), false);
if (std::error_code ec = file.getError())
return ec;
result.push_back(std::move(*file));
return std::error_code();
}
private:
MachOLinkingContext::Arch _arch;
};
} // namespace normalized
} // namespace mach_o
void Registry::addSupportMachOObjects(const MachOLinkingContext &ctx) {
MachOLinkingContext::Arch arch = ctx.arch();
add(std::unique_ptr<Reader>(new mach_o::normalized::MachOReader(arch)));
addKindTable(Reference::KindNamespace::mach_o, ctx.archHandler().kindArch(),
ctx.archHandler().kindStrings());
add(std::unique_ptr<YamlIOTaggedDocumentHandler>(
new mach_o::MachOYamlIOTaggedDocumentHandler(arch)));
}
} // namespace lld